xref: /openbmc/linux/fs/aio.c (revision f99cb7a4)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 /* ioctx_alloc
195  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
196  */
197 static struct kioctx *ioctx_alloc(unsigned nr_events)
198 {
199 	struct mm_struct *mm;
200 	struct kioctx *ctx;
201 
202 	/* Prevent overflows */
203 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
204 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
205 		pr_debug("ENOMEM: nr_events too high\n");
206 		return ERR_PTR(-EINVAL);
207 	}
208 
209 	if ((unsigned long)nr_events > aio_max_nr)
210 		return ERR_PTR(-EAGAIN);
211 
212 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
213 	if (!ctx)
214 		return ERR_PTR(-ENOMEM);
215 
216 	ctx->max_reqs = nr_events;
217 	mm = ctx->mm = current->mm;
218 	atomic_inc(&mm->mm_count);
219 
220 	atomic_set(&ctx->users, 1);
221 	spin_lock_init(&ctx->ctx_lock);
222 	spin_lock_init(&ctx->ring_info.ring_lock);
223 	init_waitqueue_head(&ctx->wait);
224 
225 	INIT_LIST_HEAD(&ctx->active_reqs);
226 	INIT_LIST_HEAD(&ctx->run_list);
227 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
228 
229 	if (aio_setup_ring(ctx) < 0)
230 		goto out_freectx;
231 
232 	/* limit the number of system wide aios */
233 	spin_lock(&aio_nr_lock);
234 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
235 	    aio_nr + ctx->max_reqs < aio_nr)
236 		ctx->max_reqs = 0;
237 	else
238 		aio_nr += ctx->max_reqs;
239 	spin_unlock(&aio_nr_lock);
240 	if (ctx->max_reqs == 0)
241 		goto out_cleanup;
242 
243 	/* now link into global list.  kludge.  FIXME */
244 	write_lock(&mm->ioctx_list_lock);
245 	ctx->next = mm->ioctx_list;
246 	mm->ioctx_list = ctx;
247 	write_unlock(&mm->ioctx_list_lock);
248 
249 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
250 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
251 	return ctx;
252 
253 out_cleanup:
254 	__put_ioctx(ctx);
255 	return ERR_PTR(-EAGAIN);
256 
257 out_freectx:
258 	mmdrop(mm);
259 	kmem_cache_free(kioctx_cachep, ctx);
260 	ctx = ERR_PTR(-ENOMEM);
261 
262 	dprintk("aio: error allocating ioctx %p\n", ctx);
263 	return ctx;
264 }
265 
266 /* aio_cancel_all
267  *	Cancels all outstanding aio requests on an aio context.  Used
268  *	when the processes owning a context have all exited to encourage
269  *	the rapid destruction of the kioctx.
270  */
271 static void aio_cancel_all(struct kioctx *ctx)
272 {
273 	int (*cancel)(struct kiocb *, struct io_event *);
274 	struct io_event res;
275 	spin_lock_irq(&ctx->ctx_lock);
276 	ctx->dead = 1;
277 	while (!list_empty(&ctx->active_reqs)) {
278 		struct list_head *pos = ctx->active_reqs.next;
279 		struct kiocb *iocb = list_kiocb(pos);
280 		list_del_init(&iocb->ki_list);
281 		cancel = iocb->ki_cancel;
282 		kiocbSetCancelled(iocb);
283 		if (cancel) {
284 			iocb->ki_users++;
285 			spin_unlock_irq(&ctx->ctx_lock);
286 			cancel(iocb, &res);
287 			spin_lock_irq(&ctx->ctx_lock);
288 		}
289 	}
290 	spin_unlock_irq(&ctx->ctx_lock);
291 }
292 
293 static void wait_for_all_aios(struct kioctx *ctx)
294 {
295 	struct task_struct *tsk = current;
296 	DECLARE_WAITQUEUE(wait, tsk);
297 
298 	spin_lock_irq(&ctx->ctx_lock);
299 	if (!ctx->reqs_active)
300 		goto out;
301 
302 	add_wait_queue(&ctx->wait, &wait);
303 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
304 	while (ctx->reqs_active) {
305 		spin_unlock_irq(&ctx->ctx_lock);
306 		io_schedule();
307 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
308 		spin_lock_irq(&ctx->ctx_lock);
309 	}
310 	__set_task_state(tsk, TASK_RUNNING);
311 	remove_wait_queue(&ctx->wait, &wait);
312 
313 out:
314 	spin_unlock_irq(&ctx->ctx_lock);
315 }
316 
317 /* wait_on_sync_kiocb:
318  *	Waits on the given sync kiocb to complete.
319  */
320 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
321 {
322 	while (iocb->ki_users) {
323 		set_current_state(TASK_UNINTERRUPTIBLE);
324 		if (!iocb->ki_users)
325 			break;
326 		io_schedule();
327 	}
328 	__set_current_state(TASK_RUNNING);
329 	return iocb->ki_user_data;
330 }
331 
332 /* exit_aio: called when the last user of mm goes away.  At this point,
333  * there is no way for any new requests to be submited or any of the
334  * io_* syscalls to be called on the context.  However, there may be
335  * outstanding requests which hold references to the context; as they
336  * go away, they will call put_ioctx and release any pinned memory
337  * associated with the request (held via struct page * references).
338  */
339 void exit_aio(struct mm_struct *mm)
340 {
341 	struct kioctx *ctx = mm->ioctx_list;
342 	mm->ioctx_list = NULL;
343 	while (ctx) {
344 		struct kioctx *next = ctx->next;
345 		ctx->next = NULL;
346 		aio_cancel_all(ctx);
347 
348 		wait_for_all_aios(ctx);
349 		/*
350 		 * Ensure we don't leave the ctx on the aio_wq
351 		 */
352 		cancel_work_sync(&ctx->wq.work);
353 
354 		if (1 != atomic_read(&ctx->users))
355 			printk(KERN_DEBUG
356 				"exit_aio:ioctx still alive: %d %d %d\n",
357 				atomic_read(&ctx->users), ctx->dead,
358 				ctx->reqs_active);
359 		put_ioctx(ctx);
360 		ctx = next;
361 	}
362 }
363 
364 /* __put_ioctx
365  *	Called when the last user of an aio context has gone away,
366  *	and the struct needs to be freed.
367  */
368 void __put_ioctx(struct kioctx *ctx)
369 {
370 	unsigned nr_events = ctx->max_reqs;
371 
372 	BUG_ON(ctx->reqs_active);
373 
374 	cancel_delayed_work(&ctx->wq);
375 	cancel_work_sync(&ctx->wq.work);
376 	aio_free_ring(ctx);
377 	mmdrop(ctx->mm);
378 	ctx->mm = NULL;
379 	pr_debug("__put_ioctx: freeing %p\n", ctx);
380 	kmem_cache_free(kioctx_cachep, ctx);
381 
382 	if (nr_events) {
383 		spin_lock(&aio_nr_lock);
384 		BUG_ON(aio_nr - nr_events > aio_nr);
385 		aio_nr -= nr_events;
386 		spin_unlock(&aio_nr_lock);
387 	}
388 }
389 
390 /* aio_get_req
391  *	Allocate a slot for an aio request.  Increments the users count
392  * of the kioctx so that the kioctx stays around until all requests are
393  * complete.  Returns NULL if no requests are free.
394  *
395  * Returns with kiocb->users set to 2.  The io submit code path holds
396  * an extra reference while submitting the i/o.
397  * This prevents races between the aio code path referencing the
398  * req (after submitting it) and aio_complete() freeing the req.
399  */
400 static struct kiocb *__aio_get_req(struct kioctx *ctx)
401 {
402 	struct kiocb *req = NULL;
403 	struct aio_ring *ring;
404 	int okay = 0;
405 
406 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
407 	if (unlikely(!req))
408 		return NULL;
409 
410 	req->ki_flags = 0;
411 	req->ki_users = 2;
412 	req->ki_key = 0;
413 	req->ki_ctx = ctx;
414 	req->ki_cancel = NULL;
415 	req->ki_retry = NULL;
416 	req->ki_dtor = NULL;
417 	req->private = NULL;
418 	req->ki_iovec = NULL;
419 	INIT_LIST_HEAD(&req->ki_run_list);
420 	req->ki_eventfd = ERR_PTR(-EINVAL);
421 
422 	/* Check if the completion queue has enough free space to
423 	 * accept an event from this io.
424 	 */
425 	spin_lock_irq(&ctx->ctx_lock);
426 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
427 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
428 		list_add(&req->ki_list, &ctx->active_reqs);
429 		ctx->reqs_active++;
430 		okay = 1;
431 	}
432 	kunmap_atomic(ring, KM_USER0);
433 	spin_unlock_irq(&ctx->ctx_lock);
434 
435 	if (!okay) {
436 		kmem_cache_free(kiocb_cachep, req);
437 		req = NULL;
438 	}
439 
440 	return req;
441 }
442 
443 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 {
445 	struct kiocb *req;
446 	/* Handle a potential starvation case -- should be exceedingly rare as
447 	 * requests will be stuck on fput_head only if the aio_fput_routine is
448 	 * delayed and the requests were the last user of the struct file.
449 	 */
450 	req = __aio_get_req(ctx);
451 	if (unlikely(NULL == req)) {
452 		aio_fput_routine(NULL);
453 		req = __aio_get_req(ctx);
454 	}
455 	return req;
456 }
457 
458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 {
460 	assert_spin_locked(&ctx->ctx_lock);
461 
462 	if (!IS_ERR(req->ki_eventfd))
463 		fput(req->ki_eventfd);
464 	if (req->ki_dtor)
465 		req->ki_dtor(req);
466 	if (req->ki_iovec != &req->ki_inline_vec)
467 		kfree(req->ki_iovec);
468 	kmem_cache_free(kiocb_cachep, req);
469 	ctx->reqs_active--;
470 
471 	if (unlikely(!ctx->reqs_active && ctx->dead))
472 		wake_up(&ctx->wait);
473 }
474 
475 static void aio_fput_routine(struct work_struct *data)
476 {
477 	spin_lock_irq(&fput_lock);
478 	while (likely(!list_empty(&fput_head))) {
479 		struct kiocb *req = list_kiocb(fput_head.next);
480 		struct kioctx *ctx = req->ki_ctx;
481 
482 		list_del(&req->ki_list);
483 		spin_unlock_irq(&fput_lock);
484 
485 		/* Complete the fput */
486 		__fput(req->ki_filp);
487 
488 		/* Link the iocb into the context's free list */
489 		spin_lock_irq(&ctx->ctx_lock);
490 		really_put_req(ctx, req);
491 		spin_unlock_irq(&ctx->ctx_lock);
492 
493 		put_ioctx(ctx);
494 		spin_lock_irq(&fput_lock);
495 	}
496 	spin_unlock_irq(&fput_lock);
497 }
498 
499 /* __aio_put_req
500  *	Returns true if this put was the last user of the request.
501  */
502 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
503 {
504 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
505 		req, atomic_read(&req->ki_filp->f_count));
506 
507 	assert_spin_locked(&ctx->ctx_lock);
508 
509 	req->ki_users --;
510 	BUG_ON(req->ki_users < 0);
511 	if (likely(req->ki_users))
512 		return 0;
513 	list_del(&req->ki_list);		/* remove from active_reqs */
514 	req->ki_cancel = NULL;
515 	req->ki_retry = NULL;
516 
517 	/* Must be done under the lock to serialise against cancellation.
518 	 * Call this aio_fput as it duplicates fput via the fput_work.
519 	 */
520 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
521 		get_ioctx(ctx);
522 		spin_lock(&fput_lock);
523 		list_add(&req->ki_list, &fput_head);
524 		spin_unlock(&fput_lock);
525 		queue_work(aio_wq, &fput_work);
526 	} else
527 		really_put_req(ctx, req);
528 	return 1;
529 }
530 
531 /* aio_put_req
532  *	Returns true if this put was the last user of the kiocb,
533  *	false if the request is still in use.
534  */
535 int aio_put_req(struct kiocb *req)
536 {
537 	struct kioctx *ctx = req->ki_ctx;
538 	int ret;
539 	spin_lock_irq(&ctx->ctx_lock);
540 	ret = __aio_put_req(ctx, req);
541 	spin_unlock_irq(&ctx->ctx_lock);
542 	return ret;
543 }
544 
545 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
546  *	FIXME: this is O(n) and is only suitable for development.
547  */
548 struct kioctx *lookup_ioctx(unsigned long ctx_id)
549 {
550 	struct kioctx *ioctx;
551 	struct mm_struct *mm;
552 
553 	mm = current->mm;
554 	read_lock(&mm->ioctx_list_lock);
555 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
556 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
557 			get_ioctx(ioctx);
558 			break;
559 		}
560 	read_unlock(&mm->ioctx_list_lock);
561 
562 	return ioctx;
563 }
564 
565 /*
566  * use_mm
567  *	Makes the calling kernel thread take on the specified
568  *	mm context.
569  *	Called by the retry thread execute retries within the
570  *	iocb issuer's mm context, so that copy_from/to_user
571  *	operations work seamlessly for aio.
572  *	(Note: this routine is intended to be called only
573  *	from a kernel thread context)
574  */
575 static void use_mm(struct mm_struct *mm)
576 {
577 	struct mm_struct *active_mm;
578 	struct task_struct *tsk = current;
579 
580 	task_lock(tsk);
581 	tsk->flags |= PF_BORROWED_MM;
582 	active_mm = tsk->active_mm;
583 	atomic_inc(&mm->mm_count);
584 	tsk->mm = mm;
585 	tsk->active_mm = mm;
586 	/*
587 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
588 	 * it won't work. Update it accordingly if you change it here
589 	 */
590 	switch_mm(active_mm, mm, tsk);
591 	task_unlock(tsk);
592 
593 	mmdrop(active_mm);
594 }
595 
596 /*
597  * unuse_mm
598  *	Reverses the effect of use_mm, i.e. releases the
599  *	specified mm context which was earlier taken on
600  *	by the calling kernel thread
601  *	(Note: this routine is intended to be called only
602  *	from a kernel thread context)
603  */
604 static void unuse_mm(struct mm_struct *mm)
605 {
606 	struct task_struct *tsk = current;
607 
608 	task_lock(tsk);
609 	tsk->flags &= ~PF_BORROWED_MM;
610 	tsk->mm = NULL;
611 	/* active_mm is still 'mm' */
612 	enter_lazy_tlb(mm, tsk);
613 	task_unlock(tsk);
614 }
615 
616 /*
617  * Queue up a kiocb to be retried. Assumes that the kiocb
618  * has already been marked as kicked, and places it on
619  * the retry run list for the corresponding ioctx, if it
620  * isn't already queued. Returns 1 if it actually queued
621  * the kiocb (to tell the caller to activate the work
622  * queue to process it), or 0, if it found that it was
623  * already queued.
624  */
625 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 {
627 	struct kioctx *ctx = iocb->ki_ctx;
628 
629 	assert_spin_locked(&ctx->ctx_lock);
630 
631 	if (list_empty(&iocb->ki_run_list)) {
632 		list_add_tail(&iocb->ki_run_list,
633 			&ctx->run_list);
634 		return 1;
635 	}
636 	return 0;
637 }
638 
639 /* aio_run_iocb
640  *	This is the core aio execution routine. It is
641  *	invoked both for initial i/o submission and
642  *	subsequent retries via the aio_kick_handler.
643  *	Expects to be invoked with iocb->ki_ctx->lock
644  *	already held. The lock is released and reacquired
645  *	as needed during processing.
646  *
647  * Calls the iocb retry method (already setup for the
648  * iocb on initial submission) for operation specific
649  * handling, but takes care of most of common retry
650  * execution details for a given iocb. The retry method
651  * needs to be non-blocking as far as possible, to avoid
652  * holding up other iocbs waiting to be serviced by the
653  * retry kernel thread.
654  *
655  * The trickier parts in this code have to do with
656  * ensuring that only one retry instance is in progress
657  * for a given iocb at any time. Providing that guarantee
658  * simplifies the coding of individual aio operations as
659  * it avoids various potential races.
660  */
661 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 {
663 	struct kioctx	*ctx = iocb->ki_ctx;
664 	ssize_t (*retry)(struct kiocb *);
665 	ssize_t ret;
666 
667 	if (!(retry = iocb->ki_retry)) {
668 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669 		return 0;
670 	}
671 
672 	/*
673 	 * We don't want the next retry iteration for this
674 	 * operation to start until this one has returned and
675 	 * updated the iocb state. However, wait_queue functions
676 	 * can trigger a kick_iocb from interrupt context in the
677 	 * meantime, indicating that data is available for the next
678 	 * iteration. We want to remember that and enable the
679 	 * next retry iteration _after_ we are through with
680 	 * this one.
681 	 *
682 	 * So, in order to be able to register a "kick", but
683 	 * prevent it from being queued now, we clear the kick
684 	 * flag, but make the kick code *think* that the iocb is
685 	 * still on the run list until we are actually done.
686 	 * When we are done with this iteration, we check if
687 	 * the iocb was kicked in the meantime and if so, queue
688 	 * it up afresh.
689 	 */
690 
691 	kiocbClearKicked(iocb);
692 
693 	/*
694 	 * This is so that aio_complete knows it doesn't need to
695 	 * pull the iocb off the run list (We can't just call
696 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
697 	 * queue this on the run list yet)
698 	 */
699 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700 	spin_unlock_irq(&ctx->ctx_lock);
701 
702 	/* Quit retrying if the i/o has been cancelled */
703 	if (kiocbIsCancelled(iocb)) {
704 		ret = -EINTR;
705 		aio_complete(iocb, ret, 0);
706 		/* must not access the iocb after this */
707 		goto out;
708 	}
709 
710 	/*
711 	 * Now we are all set to call the retry method in async
712 	 * context.
713 	 */
714 	ret = retry(iocb);
715 
716 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
717 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
718 		aio_complete(iocb, ret, 0);
719 	}
720 out:
721 	spin_lock_irq(&ctx->ctx_lock);
722 
723 	if (-EIOCBRETRY == ret) {
724 		/*
725 		 * OK, now that we are done with this iteration
726 		 * and know that there is more left to go,
727 		 * this is where we let go so that a subsequent
728 		 * "kick" can start the next iteration
729 		 */
730 
731 		/* will make __queue_kicked_iocb succeed from here on */
732 		INIT_LIST_HEAD(&iocb->ki_run_list);
733 		/* we must queue the next iteration ourselves, if it
734 		 * has already been kicked */
735 		if (kiocbIsKicked(iocb)) {
736 			__queue_kicked_iocb(iocb);
737 
738 			/*
739 			 * __queue_kicked_iocb will always return 1 here, because
740 			 * iocb->ki_run_list is empty at this point so it should
741 			 * be safe to unconditionally queue the context into the
742 			 * work queue.
743 			 */
744 			aio_queue_work(ctx);
745 		}
746 	}
747 	return ret;
748 }
749 
750 /*
751  * __aio_run_iocbs:
752  * 	Process all pending retries queued on the ioctx
753  * 	run list.
754  * Assumes it is operating within the aio issuer's mm
755  * context.
756  */
757 static int __aio_run_iocbs(struct kioctx *ctx)
758 {
759 	struct kiocb *iocb;
760 	struct list_head run_list;
761 
762 	assert_spin_locked(&ctx->ctx_lock);
763 
764 	list_replace_init(&ctx->run_list, &run_list);
765 	while (!list_empty(&run_list)) {
766 		iocb = list_entry(run_list.next, struct kiocb,
767 			ki_run_list);
768 		list_del(&iocb->ki_run_list);
769 		/*
770 		 * Hold an extra reference while retrying i/o.
771 		 */
772 		iocb->ki_users++;       /* grab extra reference */
773 		aio_run_iocb(iocb);
774 		__aio_put_req(ctx, iocb);
775  	}
776 	if (!list_empty(&ctx->run_list))
777 		return 1;
778 	return 0;
779 }
780 
781 static void aio_queue_work(struct kioctx * ctx)
782 {
783 	unsigned long timeout;
784 	/*
785 	 * if someone is waiting, get the work started right
786 	 * away, otherwise, use a longer delay
787 	 */
788 	smp_mb();
789 	if (waitqueue_active(&ctx->wait))
790 		timeout = 1;
791 	else
792 		timeout = HZ/10;
793 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
794 }
795 
796 
797 /*
798  * aio_run_iocbs:
799  * 	Process all pending retries queued on the ioctx
800  * 	run list.
801  * Assumes it is operating within the aio issuer's mm
802  * context.
803  */
804 static inline void aio_run_iocbs(struct kioctx *ctx)
805 {
806 	int requeue;
807 
808 	spin_lock_irq(&ctx->ctx_lock);
809 
810 	requeue = __aio_run_iocbs(ctx);
811 	spin_unlock_irq(&ctx->ctx_lock);
812 	if (requeue)
813 		aio_queue_work(ctx);
814 }
815 
816 /*
817  * just like aio_run_iocbs, but keeps running them until
818  * the list stays empty
819  */
820 static inline void aio_run_all_iocbs(struct kioctx *ctx)
821 {
822 	spin_lock_irq(&ctx->ctx_lock);
823 	while (__aio_run_iocbs(ctx))
824 		;
825 	spin_unlock_irq(&ctx->ctx_lock);
826 }
827 
828 /*
829  * aio_kick_handler:
830  * 	Work queue handler triggered to process pending
831  * 	retries on an ioctx. Takes on the aio issuer's
832  *	mm context before running the iocbs, so that
833  *	copy_xxx_user operates on the issuer's address
834  *      space.
835  * Run on aiod's context.
836  */
837 static void aio_kick_handler(struct work_struct *work)
838 {
839 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
840 	mm_segment_t oldfs = get_fs();
841 	struct mm_struct *mm;
842 	int requeue;
843 
844 	set_fs(USER_DS);
845 	use_mm(ctx->mm);
846 	spin_lock_irq(&ctx->ctx_lock);
847 	requeue =__aio_run_iocbs(ctx);
848 	mm = ctx->mm;
849 	spin_unlock_irq(&ctx->ctx_lock);
850  	unuse_mm(mm);
851 	set_fs(oldfs);
852 	/*
853 	 * we're in a worker thread already, don't use queue_delayed_work,
854 	 */
855 	if (requeue)
856 		queue_delayed_work(aio_wq, &ctx->wq, 0);
857 }
858 
859 
860 /*
861  * Called by kick_iocb to queue the kiocb for retry
862  * and if required activate the aio work queue to process
863  * it
864  */
865 static void try_queue_kicked_iocb(struct kiocb *iocb)
866 {
867  	struct kioctx	*ctx = iocb->ki_ctx;
868 	unsigned long flags;
869 	int run = 0;
870 
871 	/* We're supposed to be the only path putting the iocb back on the run
872 	 * list.  If we find that the iocb is *back* on a wait queue already
873 	 * than retry has happened before we could queue the iocb.  This also
874 	 * means that the retry could have completed and freed our iocb, no
875 	 * good. */
876 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
877 
878 	spin_lock_irqsave(&ctx->ctx_lock, flags);
879 	/* set this inside the lock so that we can't race with aio_run_iocb()
880 	 * testing it and putting the iocb on the run list under the lock */
881 	if (!kiocbTryKick(iocb))
882 		run = __queue_kicked_iocb(iocb);
883 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
884 	if (run)
885 		aio_queue_work(ctx);
886 }
887 
888 /*
889  * kick_iocb:
890  *      Called typically from a wait queue callback context
891  *      (aio_wake_function) to trigger a retry of the iocb.
892  *      The retry is usually executed by aio workqueue
893  *      threads (See aio_kick_handler).
894  */
895 void kick_iocb(struct kiocb *iocb)
896 {
897 	/* sync iocbs are easy: they can only ever be executing from a
898 	 * single context. */
899 	if (is_sync_kiocb(iocb)) {
900 		kiocbSetKicked(iocb);
901 	        wake_up_process(iocb->ki_obj.tsk);
902 		return;
903 	}
904 
905 	try_queue_kicked_iocb(iocb);
906 }
907 EXPORT_SYMBOL(kick_iocb);
908 
909 /* aio_complete
910  *	Called when the io request on the given iocb is complete.
911  *	Returns true if this is the last user of the request.  The
912  *	only other user of the request can be the cancellation code.
913  */
914 int aio_complete(struct kiocb *iocb, long res, long res2)
915 {
916 	struct kioctx	*ctx = iocb->ki_ctx;
917 	struct aio_ring_info	*info;
918 	struct aio_ring	*ring;
919 	struct io_event	*event;
920 	unsigned long	flags;
921 	unsigned long	tail;
922 	int		ret;
923 
924 	/*
925 	 * Special case handling for sync iocbs:
926 	 *  - events go directly into the iocb for fast handling
927 	 *  - the sync task with the iocb in its stack holds the single iocb
928 	 *    ref, no other paths have a way to get another ref
929 	 *  - the sync task helpfully left a reference to itself in the iocb
930 	 */
931 	if (is_sync_kiocb(iocb)) {
932 		BUG_ON(iocb->ki_users != 1);
933 		iocb->ki_user_data = res;
934 		iocb->ki_users = 0;
935 		wake_up_process(iocb->ki_obj.tsk);
936 		return 1;
937 	}
938 
939 	/*
940 	 * Check if the user asked us to deliver the result through an
941 	 * eventfd. The eventfd_signal() function is safe to be called
942 	 * from IRQ context.
943 	 */
944 	if (!IS_ERR(iocb->ki_eventfd))
945 		eventfd_signal(iocb->ki_eventfd, 1);
946 
947 	info = &ctx->ring_info;
948 
949 	/* add a completion event to the ring buffer.
950 	 * must be done holding ctx->ctx_lock to prevent
951 	 * other code from messing with the tail
952 	 * pointer since we might be called from irq
953 	 * context.
954 	 */
955 	spin_lock_irqsave(&ctx->ctx_lock, flags);
956 
957 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
958 		list_del_init(&iocb->ki_run_list);
959 
960 	/*
961 	 * cancelled requests don't get events, userland was given one
962 	 * when the event got cancelled.
963 	 */
964 	if (kiocbIsCancelled(iocb))
965 		goto put_rq;
966 
967 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
968 
969 	tail = info->tail;
970 	event = aio_ring_event(info, tail, KM_IRQ0);
971 	if (++tail >= info->nr)
972 		tail = 0;
973 
974 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
975 	event->data = iocb->ki_user_data;
976 	event->res = res;
977 	event->res2 = res2;
978 
979 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
980 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
981 		res, res2);
982 
983 	/* after flagging the request as done, we
984 	 * must never even look at it again
985 	 */
986 	smp_wmb();	/* make event visible before updating tail */
987 
988 	info->tail = tail;
989 	ring->tail = tail;
990 
991 	put_aio_ring_event(event, KM_IRQ0);
992 	kunmap_atomic(ring, KM_IRQ1);
993 
994 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
995 put_rq:
996 	/* everything turned out well, dispose of the aiocb. */
997 	ret = __aio_put_req(ctx, iocb);
998 
999 	if (waitqueue_active(&ctx->wait))
1000 		wake_up(&ctx->wait);
1001 
1002 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1003 	return ret;
1004 }
1005 
1006 /* aio_read_evt
1007  *	Pull an event off of the ioctx's event ring.  Returns the number of
1008  *	events fetched (0 or 1 ;-)
1009  *	FIXME: make this use cmpxchg.
1010  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1011  */
1012 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1013 {
1014 	struct aio_ring_info *info = &ioctx->ring_info;
1015 	struct aio_ring *ring;
1016 	unsigned long head;
1017 	int ret = 0;
1018 
1019 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1020 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1021 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1022 		 (unsigned long)ring->nr);
1023 
1024 	if (ring->head == ring->tail)
1025 		goto out;
1026 
1027 	spin_lock(&info->ring_lock);
1028 
1029 	head = ring->head % info->nr;
1030 	if (head != ring->tail) {
1031 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1032 		*ent = *evp;
1033 		head = (head + 1) % info->nr;
1034 		smp_mb(); /* finish reading the event before updatng the head */
1035 		ring->head = head;
1036 		ret = 1;
1037 		put_aio_ring_event(evp, KM_USER1);
1038 	}
1039 	spin_unlock(&info->ring_lock);
1040 
1041 out:
1042 	kunmap_atomic(ring, KM_USER0);
1043 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1044 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1045 	return ret;
1046 }
1047 
1048 struct aio_timeout {
1049 	struct timer_list	timer;
1050 	int			timed_out;
1051 	struct task_struct	*p;
1052 };
1053 
1054 static void timeout_func(unsigned long data)
1055 {
1056 	struct aio_timeout *to = (struct aio_timeout *)data;
1057 
1058 	to->timed_out = 1;
1059 	wake_up_process(to->p);
1060 }
1061 
1062 static inline void init_timeout(struct aio_timeout *to)
1063 {
1064 	init_timer(&to->timer);
1065 	to->timer.data = (unsigned long)to;
1066 	to->timer.function = timeout_func;
1067 	to->timed_out = 0;
1068 	to->p = current;
1069 }
1070 
1071 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1072 			       const struct timespec *ts)
1073 {
1074 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1075 	if (time_after(to->timer.expires, jiffies))
1076 		add_timer(&to->timer);
1077 	else
1078 		to->timed_out = 1;
1079 }
1080 
1081 static inline void clear_timeout(struct aio_timeout *to)
1082 {
1083 	del_singleshot_timer_sync(&to->timer);
1084 }
1085 
1086 static int read_events(struct kioctx *ctx,
1087 			long min_nr, long nr,
1088 			struct io_event __user *event,
1089 			struct timespec __user *timeout)
1090 {
1091 	long			start_jiffies = jiffies;
1092 	struct task_struct	*tsk = current;
1093 	DECLARE_WAITQUEUE(wait, tsk);
1094 	int			ret;
1095 	int			i = 0;
1096 	struct io_event		ent;
1097 	struct aio_timeout	to;
1098 	int			retry = 0;
1099 
1100 	/* needed to zero any padding within an entry (there shouldn't be
1101 	 * any, but C is fun!
1102 	 */
1103 	memset(&ent, 0, sizeof(ent));
1104 retry:
1105 	ret = 0;
1106 	while (likely(i < nr)) {
1107 		ret = aio_read_evt(ctx, &ent);
1108 		if (unlikely(ret <= 0))
1109 			break;
1110 
1111 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1112 			ent.data, ent.obj, ent.res, ent.res2);
1113 
1114 		/* Could we split the check in two? */
1115 		ret = -EFAULT;
1116 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1117 			dprintk("aio: lost an event due to EFAULT.\n");
1118 			break;
1119 		}
1120 		ret = 0;
1121 
1122 		/* Good, event copied to userland, update counts. */
1123 		event ++;
1124 		i ++;
1125 	}
1126 
1127 	if (min_nr <= i)
1128 		return i;
1129 	if (ret)
1130 		return ret;
1131 
1132 	/* End fast path */
1133 
1134 	/* racey check, but it gets redone */
1135 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1136 		retry = 1;
1137 		aio_run_all_iocbs(ctx);
1138 		goto retry;
1139 	}
1140 
1141 	init_timeout(&to);
1142 	if (timeout) {
1143 		struct timespec	ts;
1144 		ret = -EFAULT;
1145 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1146 			goto out;
1147 
1148 		set_timeout(start_jiffies, &to, &ts);
1149 	}
1150 
1151 	while (likely(i < nr)) {
1152 		add_wait_queue_exclusive(&ctx->wait, &wait);
1153 		do {
1154 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1155 			ret = aio_read_evt(ctx, &ent);
1156 			if (ret)
1157 				break;
1158 			if (min_nr <= i)
1159 				break;
1160 			ret = 0;
1161 			if (to.timed_out)	/* Only check after read evt */
1162 				break;
1163 			/* Try to only show up in io wait if there are ops
1164 			 *  in flight */
1165 			if (ctx->reqs_active)
1166 				io_schedule();
1167 			else
1168 				schedule();
1169 			if (signal_pending(tsk)) {
1170 				ret = -EINTR;
1171 				break;
1172 			}
1173 			/*ret = aio_read_evt(ctx, &ent);*/
1174 		} while (1) ;
1175 
1176 		set_task_state(tsk, TASK_RUNNING);
1177 		remove_wait_queue(&ctx->wait, &wait);
1178 
1179 		if (unlikely(ret <= 0))
1180 			break;
1181 
1182 		ret = -EFAULT;
1183 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1184 			dprintk("aio: lost an event due to EFAULT.\n");
1185 			break;
1186 		}
1187 
1188 		/* Good, event copied to userland, update counts. */
1189 		event ++;
1190 		i ++;
1191 	}
1192 
1193 	if (timeout)
1194 		clear_timeout(&to);
1195 out:
1196 	return i ? i : ret;
1197 }
1198 
1199 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1200  * against races with itself via ->dead.
1201  */
1202 static void io_destroy(struct kioctx *ioctx)
1203 {
1204 	struct mm_struct *mm = current->mm;
1205 	struct kioctx **tmp;
1206 	int was_dead;
1207 
1208 	/* delete the entry from the list is someone else hasn't already */
1209 	write_lock(&mm->ioctx_list_lock);
1210 	was_dead = ioctx->dead;
1211 	ioctx->dead = 1;
1212 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1213 	     tmp = &(*tmp)->next)
1214 		;
1215 	if (*tmp)
1216 		*tmp = ioctx->next;
1217 	write_unlock(&mm->ioctx_list_lock);
1218 
1219 	dprintk("aio_release(%p)\n", ioctx);
1220 	if (likely(!was_dead))
1221 		put_ioctx(ioctx);	/* twice for the list */
1222 
1223 	aio_cancel_all(ioctx);
1224 	wait_for_all_aios(ioctx);
1225 	put_ioctx(ioctx);	/* once for the lookup */
1226 }
1227 
1228 /* sys_io_setup:
1229  *	Create an aio_context capable of receiving at least nr_events.
1230  *	ctxp must not point to an aio_context that already exists, and
1231  *	must be initialized to 0 prior to the call.  On successful
1232  *	creation of the aio_context, *ctxp is filled in with the resulting
1233  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1234  *	if the specified nr_events exceeds internal limits.  May fail
1235  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1236  *	of available events.  May fail with -ENOMEM if insufficient kernel
1237  *	resources are available.  May fail with -EFAULT if an invalid
1238  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1239  *	implemented.
1240  */
1241 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1242 {
1243 	struct kioctx *ioctx = NULL;
1244 	unsigned long ctx;
1245 	long ret;
1246 
1247 	ret = get_user(ctx, ctxp);
1248 	if (unlikely(ret))
1249 		goto out;
1250 
1251 	ret = -EINVAL;
1252 	if (unlikely(ctx || nr_events == 0)) {
1253 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1254 		         ctx, nr_events);
1255 		goto out;
1256 	}
1257 
1258 	ioctx = ioctx_alloc(nr_events);
1259 	ret = PTR_ERR(ioctx);
1260 	if (!IS_ERR(ioctx)) {
1261 		ret = put_user(ioctx->user_id, ctxp);
1262 		if (!ret)
1263 			return 0;
1264 
1265 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1266 		io_destroy(ioctx);
1267 	}
1268 
1269 out:
1270 	return ret;
1271 }
1272 
1273 /* sys_io_destroy:
1274  *	Destroy the aio_context specified.  May cancel any outstanding
1275  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1276  *	implemented.  May fail with -EFAULT if the context pointed to
1277  *	is invalid.
1278  */
1279 asmlinkage long sys_io_destroy(aio_context_t ctx)
1280 {
1281 	struct kioctx *ioctx = lookup_ioctx(ctx);
1282 	if (likely(NULL != ioctx)) {
1283 		io_destroy(ioctx);
1284 		return 0;
1285 	}
1286 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1287 	return -EINVAL;
1288 }
1289 
1290 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1291 {
1292 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1293 
1294 	BUG_ON(ret <= 0);
1295 
1296 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1297 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1298 		iov->iov_base += this;
1299 		iov->iov_len -= this;
1300 		iocb->ki_left -= this;
1301 		ret -= this;
1302 		if (iov->iov_len == 0) {
1303 			iocb->ki_cur_seg++;
1304 			iov++;
1305 		}
1306 	}
1307 
1308 	/* the caller should not have done more io than what fit in
1309 	 * the remaining iovecs */
1310 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1311 }
1312 
1313 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1314 {
1315 	struct file *file = iocb->ki_filp;
1316 	struct address_space *mapping = file->f_mapping;
1317 	struct inode *inode = mapping->host;
1318 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1319 			 unsigned long, loff_t);
1320 	ssize_t ret = 0;
1321 	unsigned short opcode;
1322 
1323 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1324 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1325 		rw_op = file->f_op->aio_read;
1326 		opcode = IOCB_CMD_PREADV;
1327 	} else {
1328 		rw_op = file->f_op->aio_write;
1329 		opcode = IOCB_CMD_PWRITEV;
1330 	}
1331 
1332 	/* This matches the pread()/pwrite() logic */
1333 	if (iocb->ki_pos < 0)
1334 		return -EINVAL;
1335 
1336 	do {
1337 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1338 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1339 			    iocb->ki_pos);
1340 		if (ret > 0)
1341 			aio_advance_iovec(iocb, ret);
1342 
1343 	/* retry all partial writes.  retry partial reads as long as its a
1344 	 * regular file. */
1345 	} while (ret > 0 && iocb->ki_left > 0 &&
1346 		 (opcode == IOCB_CMD_PWRITEV ||
1347 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1348 
1349 	/* This means we must have transferred all that we could */
1350 	/* No need to retry anymore */
1351 	if ((ret == 0) || (iocb->ki_left == 0))
1352 		ret = iocb->ki_nbytes - iocb->ki_left;
1353 
1354 	/* If we managed to write some out we return that, rather than
1355 	 * the eventual error. */
1356 	if (opcode == IOCB_CMD_PWRITEV
1357 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1358 	    && iocb->ki_nbytes - iocb->ki_left)
1359 		ret = iocb->ki_nbytes - iocb->ki_left;
1360 
1361 	return ret;
1362 }
1363 
1364 static ssize_t aio_fdsync(struct kiocb *iocb)
1365 {
1366 	struct file *file = iocb->ki_filp;
1367 	ssize_t ret = -EINVAL;
1368 
1369 	if (file->f_op->aio_fsync)
1370 		ret = file->f_op->aio_fsync(iocb, 1);
1371 	return ret;
1372 }
1373 
1374 static ssize_t aio_fsync(struct kiocb *iocb)
1375 {
1376 	struct file *file = iocb->ki_filp;
1377 	ssize_t ret = -EINVAL;
1378 
1379 	if (file->f_op->aio_fsync)
1380 		ret = file->f_op->aio_fsync(iocb, 0);
1381 	return ret;
1382 }
1383 
1384 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1385 {
1386 	ssize_t ret;
1387 
1388 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1389 				    kiocb->ki_nbytes, 1,
1390 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1391 	if (ret < 0)
1392 		goto out;
1393 
1394 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1395 	kiocb->ki_cur_seg = 0;
1396 	/* ki_nbytes/left now reflect bytes instead of segs */
1397 	kiocb->ki_nbytes = ret;
1398 	kiocb->ki_left = ret;
1399 
1400 	ret = 0;
1401 out:
1402 	return ret;
1403 }
1404 
1405 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1406 {
1407 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1408 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1409 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1410 	kiocb->ki_nr_segs = 1;
1411 	kiocb->ki_cur_seg = 0;
1412 	return 0;
1413 }
1414 
1415 /*
1416  * aio_setup_iocb:
1417  *	Performs the initial checks and aio retry method
1418  *	setup for the kiocb at the time of io submission.
1419  */
1420 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1421 {
1422 	struct file *file = kiocb->ki_filp;
1423 	ssize_t ret = 0;
1424 
1425 	switch (kiocb->ki_opcode) {
1426 	case IOCB_CMD_PREAD:
1427 		ret = -EBADF;
1428 		if (unlikely(!(file->f_mode & FMODE_READ)))
1429 			break;
1430 		ret = -EFAULT;
1431 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1432 			kiocb->ki_left)))
1433 			break;
1434 		ret = security_file_permission(file, MAY_READ);
1435 		if (unlikely(ret))
1436 			break;
1437 		ret = aio_setup_single_vector(kiocb);
1438 		if (ret)
1439 			break;
1440 		ret = -EINVAL;
1441 		if (file->f_op->aio_read)
1442 			kiocb->ki_retry = aio_rw_vect_retry;
1443 		break;
1444 	case IOCB_CMD_PWRITE:
1445 		ret = -EBADF;
1446 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1447 			break;
1448 		ret = -EFAULT;
1449 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1450 			kiocb->ki_left)))
1451 			break;
1452 		ret = security_file_permission(file, MAY_WRITE);
1453 		if (unlikely(ret))
1454 			break;
1455 		ret = aio_setup_single_vector(kiocb);
1456 		if (ret)
1457 			break;
1458 		ret = -EINVAL;
1459 		if (file->f_op->aio_write)
1460 			kiocb->ki_retry = aio_rw_vect_retry;
1461 		break;
1462 	case IOCB_CMD_PREADV:
1463 		ret = -EBADF;
1464 		if (unlikely(!(file->f_mode & FMODE_READ)))
1465 			break;
1466 		ret = security_file_permission(file, MAY_READ);
1467 		if (unlikely(ret))
1468 			break;
1469 		ret = aio_setup_vectored_rw(READ, kiocb);
1470 		if (ret)
1471 			break;
1472 		ret = -EINVAL;
1473 		if (file->f_op->aio_read)
1474 			kiocb->ki_retry = aio_rw_vect_retry;
1475 		break;
1476 	case IOCB_CMD_PWRITEV:
1477 		ret = -EBADF;
1478 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1479 			break;
1480 		ret = security_file_permission(file, MAY_WRITE);
1481 		if (unlikely(ret))
1482 			break;
1483 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1484 		if (ret)
1485 			break;
1486 		ret = -EINVAL;
1487 		if (file->f_op->aio_write)
1488 			kiocb->ki_retry = aio_rw_vect_retry;
1489 		break;
1490 	case IOCB_CMD_FDSYNC:
1491 		ret = -EINVAL;
1492 		if (file->f_op->aio_fsync)
1493 			kiocb->ki_retry = aio_fdsync;
1494 		break;
1495 	case IOCB_CMD_FSYNC:
1496 		ret = -EINVAL;
1497 		if (file->f_op->aio_fsync)
1498 			kiocb->ki_retry = aio_fsync;
1499 		break;
1500 	default:
1501 		dprintk("EINVAL: io_submit: no operation provided\n");
1502 		ret = -EINVAL;
1503 	}
1504 
1505 	if (!kiocb->ki_retry)
1506 		return ret;
1507 
1508 	return 0;
1509 }
1510 
1511 /*
1512  * aio_wake_function:
1513  * 	wait queue callback function for aio notification,
1514  * 	Simply triggers a retry of the operation via kick_iocb.
1515  *
1516  * 	This callback is specified in the wait queue entry in
1517  *	a kiocb.
1518  *
1519  * Note:
1520  * This routine is executed with the wait queue lock held.
1521  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1522  * the ioctx lock inside the wait queue lock. This is safe
1523  * because this callback isn't used for wait queues which
1524  * are nested inside ioctx lock (i.e. ctx->wait)
1525  */
1526 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1527 			     int sync, void *key)
1528 {
1529 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1530 
1531 	list_del_init(&wait->task_list);
1532 	kick_iocb(iocb);
1533 	return 1;
1534 }
1535 
1536 int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1537 			 struct iocb *iocb)
1538 {
1539 	struct kiocb *req;
1540 	struct file *file;
1541 	ssize_t ret;
1542 
1543 	/* enforce forwards compatibility on users */
1544 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1545 		pr_debug("EINVAL: io_submit: reserve field set\n");
1546 		return -EINVAL;
1547 	}
1548 
1549 	/* prevent overflows */
1550 	if (unlikely(
1551 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1552 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1553 	    ((ssize_t)iocb->aio_nbytes < 0)
1554 	   )) {
1555 		pr_debug("EINVAL: io_submit: overflow check\n");
1556 		return -EINVAL;
1557 	}
1558 
1559 	file = fget(iocb->aio_fildes);
1560 	if (unlikely(!file))
1561 		return -EBADF;
1562 
1563 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1564 	if (unlikely(!req)) {
1565 		fput(file);
1566 		return -EAGAIN;
1567 	}
1568 	req->ki_filp = file;
1569 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1570 		/*
1571 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1572 		 * instance of the file* now. The file descriptor must be
1573 		 * an eventfd() fd, and will be signaled for each completed
1574 		 * event using the eventfd_signal() function.
1575 		 */
1576 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1577 		if (unlikely(IS_ERR(req->ki_eventfd))) {
1578 			ret = PTR_ERR(req->ki_eventfd);
1579 			goto out_put_req;
1580 		}
1581 	}
1582 
1583 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1584 	if (unlikely(ret)) {
1585 		dprintk("EFAULT: aio_key\n");
1586 		goto out_put_req;
1587 	}
1588 
1589 	req->ki_obj.user = user_iocb;
1590 	req->ki_user_data = iocb->aio_data;
1591 	req->ki_pos = iocb->aio_offset;
1592 
1593 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1594 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1595 	req->ki_opcode = iocb->aio_lio_opcode;
1596 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1597 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1598 
1599 	ret = aio_setup_iocb(req);
1600 
1601 	if (ret)
1602 		goto out_put_req;
1603 
1604 	spin_lock_irq(&ctx->ctx_lock);
1605 	aio_run_iocb(req);
1606 	if (!list_empty(&ctx->run_list)) {
1607 		/* drain the run list */
1608 		while (__aio_run_iocbs(ctx))
1609 			;
1610 	}
1611 	spin_unlock_irq(&ctx->ctx_lock);
1612 	aio_put_req(req);	/* drop extra ref to req */
1613 	return 0;
1614 
1615 out_put_req:
1616 	aio_put_req(req);	/* drop extra ref to req */
1617 	aio_put_req(req);	/* drop i/o ref to req */
1618 	return ret;
1619 }
1620 
1621 /* sys_io_submit:
1622  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1623  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1624  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1625  *	*iocbpp[0] is not properly initialized, if the operation specified
1626  *	is invalid for the file descriptor in the iocb.  May fail with
1627  *	-EFAULT if any of the data structures point to invalid data.  May
1628  *	fail with -EBADF if the file descriptor specified in the first
1629  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1630  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1631  *	fail with -ENOSYS if not implemented.
1632  */
1633 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1634 			      struct iocb __user * __user *iocbpp)
1635 {
1636 	struct kioctx *ctx;
1637 	long ret = 0;
1638 	int i;
1639 
1640 	if (unlikely(nr < 0))
1641 		return -EINVAL;
1642 
1643 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1644 		return -EFAULT;
1645 
1646 	ctx = lookup_ioctx(ctx_id);
1647 	if (unlikely(!ctx)) {
1648 		pr_debug("EINVAL: io_submit: invalid context id\n");
1649 		return -EINVAL;
1650 	}
1651 
1652 	/*
1653 	 * AKPM: should this return a partial result if some of the IOs were
1654 	 * successfully submitted?
1655 	 */
1656 	for (i=0; i<nr; i++) {
1657 		struct iocb __user *user_iocb;
1658 		struct iocb tmp;
1659 
1660 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1661 			ret = -EFAULT;
1662 			break;
1663 		}
1664 
1665 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1666 			ret = -EFAULT;
1667 			break;
1668 		}
1669 
1670 		ret = io_submit_one(ctx, user_iocb, &tmp);
1671 		if (ret)
1672 			break;
1673 	}
1674 
1675 	put_ioctx(ctx);
1676 	return i ? i : ret;
1677 }
1678 
1679 /* lookup_kiocb
1680  *	Finds a given iocb for cancellation.
1681  */
1682 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1683 				  u32 key)
1684 {
1685 	struct list_head *pos;
1686 
1687 	assert_spin_locked(&ctx->ctx_lock);
1688 
1689 	/* TODO: use a hash or array, this sucks. */
1690 	list_for_each(pos, &ctx->active_reqs) {
1691 		struct kiocb *kiocb = list_kiocb(pos);
1692 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1693 			return kiocb;
1694 	}
1695 	return NULL;
1696 }
1697 
1698 /* sys_io_cancel:
1699  *	Attempts to cancel an iocb previously passed to io_submit.  If
1700  *	the operation is successfully cancelled, the resulting event is
1701  *	copied into the memory pointed to by result without being placed
1702  *	into the completion queue and 0 is returned.  May fail with
1703  *	-EFAULT if any of the data structures pointed to are invalid.
1704  *	May fail with -EINVAL if aio_context specified by ctx_id is
1705  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1706  *	cancelled.  Will fail with -ENOSYS if not implemented.
1707  */
1708 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1709 			      struct io_event __user *result)
1710 {
1711 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1712 	struct kioctx *ctx;
1713 	struct kiocb *kiocb;
1714 	u32 key;
1715 	int ret;
1716 
1717 	ret = get_user(key, &iocb->aio_key);
1718 	if (unlikely(ret))
1719 		return -EFAULT;
1720 
1721 	ctx = lookup_ioctx(ctx_id);
1722 	if (unlikely(!ctx))
1723 		return -EINVAL;
1724 
1725 	spin_lock_irq(&ctx->ctx_lock);
1726 	ret = -EAGAIN;
1727 	kiocb = lookup_kiocb(ctx, iocb, key);
1728 	if (kiocb && kiocb->ki_cancel) {
1729 		cancel = kiocb->ki_cancel;
1730 		kiocb->ki_users ++;
1731 		kiocbSetCancelled(kiocb);
1732 	} else
1733 		cancel = NULL;
1734 	spin_unlock_irq(&ctx->ctx_lock);
1735 
1736 	if (NULL != cancel) {
1737 		struct io_event tmp;
1738 		pr_debug("calling cancel\n");
1739 		memset(&tmp, 0, sizeof(tmp));
1740 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1741 		tmp.data = kiocb->ki_user_data;
1742 		ret = cancel(kiocb, &tmp);
1743 		if (!ret) {
1744 			/* Cancellation succeeded -- copy the result
1745 			 * into the user's buffer.
1746 			 */
1747 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1748 				ret = -EFAULT;
1749 		}
1750 	} else
1751 		ret = -EINVAL;
1752 
1753 	put_ioctx(ctx);
1754 
1755 	return ret;
1756 }
1757 
1758 /* io_getevents:
1759  *	Attempts to read at least min_nr events and up to nr events from
1760  *	the completion queue for the aio_context specified by ctx_id.  May
1761  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1762  *	if nr is out of range, if when is out of range.  May fail with
1763  *	-EFAULT if any of the memory specified to is invalid.  May return
1764  *	0 or < min_nr if no events are available and the timeout specified
1765  *	by when	has elapsed, where when == NULL specifies an infinite
1766  *	timeout.  Note that the timeout pointed to by when is relative and
1767  *	will be updated if not NULL and the operation blocks.  Will fail
1768  *	with -ENOSYS if not implemented.
1769  */
1770 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1771 				 long min_nr,
1772 				 long nr,
1773 				 struct io_event __user *events,
1774 				 struct timespec __user *timeout)
1775 {
1776 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1777 	long ret = -EINVAL;
1778 
1779 	if (likely(ioctx)) {
1780 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1781 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1782 		put_ioctx(ioctx);
1783 	}
1784 
1785 	return ret;
1786 }
1787 
1788 __initcall(aio_setup);
1789 
1790 EXPORT_SYMBOL(aio_complete);
1791 EXPORT_SYMBOL(aio_put_req);
1792 EXPORT_SYMBOL(wait_on_sync_kiocb);
1793