xref: /openbmc/linux/fs/aio.c (revision f0931824)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->private_lock);
320 		i_mapping->private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->private_lock);
427 	ctx = mapping->private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_pages[idx] != &src->page)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_pages[idx] != &src->page);
470 	ctx->ring_pages[idx] = &dst->page;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_pages = ctx->internal_pages;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 					  GFP_KERNEL);
524 		if (!ctx->ring_pages) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct page *page;
532 		page = find_or_create_page(file->f_mapping,
533 					   i, GFP_USER | __GFP_ZERO);
534 		if (!page)
535 			break;
536 		pr_debug("pid(%d) page[%d]->count=%d\n",
537 			 current->pid, i, page_count(page));
538 		SetPageUptodate(page);
539 		unlock_page(page);
540 
541 		ctx->ring_pages[i] = page;
542 	}
543 	ctx->nr_pages = i;
544 
545 	if (unlikely(i != nr_pages)) {
546 		aio_free_ring(ctx);
547 		return -ENOMEM;
548 	}
549 
550 	ctx->mmap_size = nr_pages * PAGE_SIZE;
551 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
552 
553 	if (mmap_write_lock_killable(mm)) {
554 		ctx->mmap_size = 0;
555 		aio_free_ring(ctx);
556 		return -EINTR;
557 	}
558 
559 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 				 PROT_READ | PROT_WRITE,
561 				 MAP_SHARED, 0, 0, &unused, NULL);
562 	mmap_write_unlock(mm);
563 	if (IS_ERR((void *)ctx->mmap_base)) {
564 		ctx->mmap_size = 0;
565 		aio_free_ring(ctx);
566 		return -ENOMEM;
567 	}
568 
569 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
570 
571 	ctx->user_id = ctx->mmap_base;
572 	ctx->nr_events = nr_events; /* trusted copy */
573 
574 	ring = page_address(ctx->ring_pages[0]);
575 	ring->nr = nr_events;	/* user copy */
576 	ring->id = ~0U;
577 	ring->head = ring->tail = 0;
578 	ring->magic = AIO_RING_MAGIC;
579 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 	ring->header_length = sizeof(struct aio_ring);
582 	flush_dcache_page(ctx->ring_pages[0]);
583 
584 	return 0;
585 }
586 
587 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
588 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
589 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
590 
591 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
592 {
593 	struct aio_kiocb *req;
594 	struct kioctx *ctx;
595 	unsigned long flags;
596 
597 	/*
598 	 * kiocb didn't come from aio or is neither a read nor a write, hence
599 	 * ignore it.
600 	 */
601 	if (!(iocb->ki_flags & IOCB_AIO_RW))
602 		return;
603 
604 	req = container_of(iocb, struct aio_kiocb, rw);
605 
606 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
607 		return;
608 
609 	ctx = req->ki_ctx;
610 
611 	spin_lock_irqsave(&ctx->ctx_lock, flags);
612 	list_add_tail(&req->ki_list, &ctx->active_reqs);
613 	req->ki_cancel = cancel;
614 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
615 }
616 EXPORT_SYMBOL(kiocb_set_cancel_fn);
617 
618 /*
619  * free_ioctx() should be RCU delayed to synchronize against the RCU
620  * protected lookup_ioctx() and also needs process context to call
621  * aio_free_ring().  Use rcu_work.
622  */
623 static void free_ioctx(struct work_struct *work)
624 {
625 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
626 					  free_rwork);
627 	pr_debug("freeing %p\n", ctx);
628 
629 	aio_free_ring(ctx);
630 	free_percpu(ctx->cpu);
631 	percpu_ref_exit(&ctx->reqs);
632 	percpu_ref_exit(&ctx->users);
633 	kmem_cache_free(kioctx_cachep, ctx);
634 }
635 
636 static void free_ioctx_reqs(struct percpu_ref *ref)
637 {
638 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
639 
640 	/* At this point we know that there are no any in-flight requests */
641 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
642 		complete(&ctx->rq_wait->comp);
643 
644 	/* Synchronize against RCU protected table->table[] dereferences */
645 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
646 	queue_rcu_work(system_wq, &ctx->free_rwork);
647 }
648 
649 /*
650  * When this function runs, the kioctx has been removed from the "hash table"
651  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
652  * now it's safe to cancel any that need to be.
653  */
654 static void free_ioctx_users(struct percpu_ref *ref)
655 {
656 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
657 	struct aio_kiocb *req;
658 
659 	spin_lock_irq(&ctx->ctx_lock);
660 
661 	while (!list_empty(&ctx->active_reqs)) {
662 		req = list_first_entry(&ctx->active_reqs,
663 				       struct aio_kiocb, ki_list);
664 		req->ki_cancel(&req->rw);
665 		list_del_init(&req->ki_list);
666 	}
667 
668 	spin_unlock_irq(&ctx->ctx_lock);
669 
670 	percpu_ref_kill(&ctx->reqs);
671 	percpu_ref_put(&ctx->reqs);
672 }
673 
674 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
675 {
676 	unsigned i, new_nr;
677 	struct kioctx_table *table, *old;
678 	struct aio_ring *ring;
679 
680 	spin_lock(&mm->ioctx_lock);
681 	table = rcu_dereference_raw(mm->ioctx_table);
682 
683 	while (1) {
684 		if (table)
685 			for (i = 0; i < table->nr; i++)
686 				if (!rcu_access_pointer(table->table[i])) {
687 					ctx->id = i;
688 					rcu_assign_pointer(table->table[i], ctx);
689 					spin_unlock(&mm->ioctx_lock);
690 
691 					/* While kioctx setup is in progress,
692 					 * we are protected from page migration
693 					 * changes ring_pages by ->ring_lock.
694 					 */
695 					ring = page_address(ctx->ring_pages[0]);
696 					ring->id = ctx->id;
697 					return 0;
698 				}
699 
700 		new_nr = (table ? table->nr : 1) * 4;
701 		spin_unlock(&mm->ioctx_lock);
702 
703 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
704 		if (!table)
705 			return -ENOMEM;
706 
707 		table->nr = new_nr;
708 
709 		spin_lock(&mm->ioctx_lock);
710 		old = rcu_dereference_raw(mm->ioctx_table);
711 
712 		if (!old) {
713 			rcu_assign_pointer(mm->ioctx_table, table);
714 		} else if (table->nr > old->nr) {
715 			memcpy(table->table, old->table,
716 			       old->nr * sizeof(struct kioctx *));
717 
718 			rcu_assign_pointer(mm->ioctx_table, table);
719 			kfree_rcu(old, rcu);
720 		} else {
721 			kfree(table);
722 			table = old;
723 		}
724 	}
725 }
726 
727 static void aio_nr_sub(unsigned nr)
728 {
729 	spin_lock(&aio_nr_lock);
730 	if (WARN_ON(aio_nr - nr > aio_nr))
731 		aio_nr = 0;
732 	else
733 		aio_nr -= nr;
734 	spin_unlock(&aio_nr_lock);
735 }
736 
737 /* ioctx_alloc
738  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
739  */
740 static struct kioctx *ioctx_alloc(unsigned nr_events)
741 {
742 	struct mm_struct *mm = current->mm;
743 	struct kioctx *ctx;
744 	int err = -ENOMEM;
745 
746 	/*
747 	 * Store the original nr_events -- what userspace passed to io_setup(),
748 	 * for counting against the global limit -- before it changes.
749 	 */
750 	unsigned int max_reqs = nr_events;
751 
752 	/*
753 	 * We keep track of the number of available ringbuffer slots, to prevent
754 	 * overflow (reqs_available), and we also use percpu counters for this.
755 	 *
756 	 * So since up to half the slots might be on other cpu's percpu counters
757 	 * and unavailable, double nr_events so userspace sees what they
758 	 * expected: additionally, we move req_batch slots to/from percpu
759 	 * counters at a time, so make sure that isn't 0:
760 	 */
761 	nr_events = max(nr_events, num_possible_cpus() * 4);
762 	nr_events *= 2;
763 
764 	/* Prevent overflows */
765 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
766 		pr_debug("ENOMEM: nr_events too high\n");
767 		return ERR_PTR(-EINVAL);
768 	}
769 
770 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
771 		return ERR_PTR(-EAGAIN);
772 
773 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
774 	if (!ctx)
775 		return ERR_PTR(-ENOMEM);
776 
777 	ctx->max_reqs = max_reqs;
778 
779 	spin_lock_init(&ctx->ctx_lock);
780 	spin_lock_init(&ctx->completion_lock);
781 	mutex_init(&ctx->ring_lock);
782 	/* Protect against page migration throughout kiotx setup by keeping
783 	 * the ring_lock mutex held until setup is complete. */
784 	mutex_lock(&ctx->ring_lock);
785 	init_waitqueue_head(&ctx->wait);
786 
787 	INIT_LIST_HEAD(&ctx->active_reqs);
788 
789 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
790 		goto err;
791 
792 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
793 		goto err;
794 
795 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
796 	if (!ctx->cpu)
797 		goto err;
798 
799 	err = aio_setup_ring(ctx, nr_events);
800 	if (err < 0)
801 		goto err;
802 
803 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
804 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
805 	if (ctx->req_batch < 1)
806 		ctx->req_batch = 1;
807 
808 	/* limit the number of system wide aios */
809 	spin_lock(&aio_nr_lock);
810 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
811 	    aio_nr + ctx->max_reqs < aio_nr) {
812 		spin_unlock(&aio_nr_lock);
813 		err = -EAGAIN;
814 		goto err_ctx;
815 	}
816 	aio_nr += ctx->max_reqs;
817 	spin_unlock(&aio_nr_lock);
818 
819 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
820 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
821 
822 	err = ioctx_add_table(ctx, mm);
823 	if (err)
824 		goto err_cleanup;
825 
826 	/* Release the ring_lock mutex now that all setup is complete. */
827 	mutex_unlock(&ctx->ring_lock);
828 
829 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
830 		 ctx, ctx->user_id, mm, ctx->nr_events);
831 	return ctx;
832 
833 err_cleanup:
834 	aio_nr_sub(ctx->max_reqs);
835 err_ctx:
836 	atomic_set(&ctx->dead, 1);
837 	if (ctx->mmap_size)
838 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
839 	aio_free_ring(ctx);
840 err:
841 	mutex_unlock(&ctx->ring_lock);
842 	free_percpu(ctx->cpu);
843 	percpu_ref_exit(&ctx->reqs);
844 	percpu_ref_exit(&ctx->users);
845 	kmem_cache_free(kioctx_cachep, ctx);
846 	pr_debug("error allocating ioctx %d\n", err);
847 	return ERR_PTR(err);
848 }
849 
850 /* kill_ioctx
851  *	Cancels all outstanding aio requests on an aio context.  Used
852  *	when the processes owning a context have all exited to encourage
853  *	the rapid destruction of the kioctx.
854  */
855 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
856 		      struct ctx_rq_wait *wait)
857 {
858 	struct kioctx_table *table;
859 
860 	spin_lock(&mm->ioctx_lock);
861 	if (atomic_xchg(&ctx->dead, 1)) {
862 		spin_unlock(&mm->ioctx_lock);
863 		return -EINVAL;
864 	}
865 
866 	table = rcu_dereference_raw(mm->ioctx_table);
867 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
868 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
869 	spin_unlock(&mm->ioctx_lock);
870 
871 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
872 	wake_up_all(&ctx->wait);
873 
874 	/*
875 	 * It'd be more correct to do this in free_ioctx(), after all
876 	 * the outstanding kiocbs have finished - but by then io_destroy
877 	 * has already returned, so io_setup() could potentially return
878 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
879 	 *  could tell).
880 	 */
881 	aio_nr_sub(ctx->max_reqs);
882 
883 	if (ctx->mmap_size)
884 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
885 
886 	ctx->rq_wait = wait;
887 	percpu_ref_kill(&ctx->users);
888 	return 0;
889 }
890 
891 /*
892  * exit_aio: called when the last user of mm goes away.  At this point, there is
893  * no way for any new requests to be submited or any of the io_* syscalls to be
894  * called on the context.
895  *
896  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
897  * them.
898  */
899 void exit_aio(struct mm_struct *mm)
900 {
901 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
902 	struct ctx_rq_wait wait;
903 	int i, skipped;
904 
905 	if (!table)
906 		return;
907 
908 	atomic_set(&wait.count, table->nr);
909 	init_completion(&wait.comp);
910 
911 	skipped = 0;
912 	for (i = 0; i < table->nr; ++i) {
913 		struct kioctx *ctx =
914 			rcu_dereference_protected(table->table[i], true);
915 
916 		if (!ctx) {
917 			skipped++;
918 			continue;
919 		}
920 
921 		/*
922 		 * We don't need to bother with munmap() here - exit_mmap(mm)
923 		 * is coming and it'll unmap everything. And we simply can't,
924 		 * this is not necessarily our ->mm.
925 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
926 		 * that it needs to unmap the area, just set it to 0.
927 		 */
928 		ctx->mmap_size = 0;
929 		kill_ioctx(mm, ctx, &wait);
930 	}
931 
932 	if (!atomic_sub_and_test(skipped, &wait.count)) {
933 		/* Wait until all IO for the context are done. */
934 		wait_for_completion(&wait.comp);
935 	}
936 
937 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
938 	kfree(table);
939 }
940 
941 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
942 {
943 	struct kioctx_cpu *kcpu;
944 	unsigned long flags;
945 
946 	local_irq_save(flags);
947 	kcpu = this_cpu_ptr(ctx->cpu);
948 	kcpu->reqs_available += nr;
949 
950 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
951 		kcpu->reqs_available -= ctx->req_batch;
952 		atomic_add(ctx->req_batch, &ctx->reqs_available);
953 	}
954 
955 	local_irq_restore(flags);
956 }
957 
958 static bool __get_reqs_available(struct kioctx *ctx)
959 {
960 	struct kioctx_cpu *kcpu;
961 	bool ret = false;
962 	unsigned long flags;
963 
964 	local_irq_save(flags);
965 	kcpu = this_cpu_ptr(ctx->cpu);
966 	if (!kcpu->reqs_available) {
967 		int avail = atomic_read(&ctx->reqs_available);
968 
969 		do {
970 			if (avail < ctx->req_batch)
971 				goto out;
972 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
973 					     &avail, avail - ctx->req_batch));
974 
975 		kcpu->reqs_available += ctx->req_batch;
976 	}
977 
978 	ret = true;
979 	kcpu->reqs_available--;
980 out:
981 	local_irq_restore(flags);
982 	return ret;
983 }
984 
985 /* refill_reqs_available
986  *	Updates the reqs_available reference counts used for tracking the
987  *	number of free slots in the completion ring.  This can be called
988  *	from aio_complete() (to optimistically update reqs_available) or
989  *	from aio_get_req() (the we're out of events case).  It must be
990  *	called holding ctx->completion_lock.
991  */
992 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
993                                   unsigned tail)
994 {
995 	unsigned events_in_ring, completed;
996 
997 	/* Clamp head since userland can write to it. */
998 	head %= ctx->nr_events;
999 	if (head <= tail)
1000 		events_in_ring = tail - head;
1001 	else
1002 		events_in_ring = ctx->nr_events - (head - tail);
1003 
1004 	completed = ctx->completed_events;
1005 	if (events_in_ring < completed)
1006 		completed -= events_in_ring;
1007 	else
1008 		completed = 0;
1009 
1010 	if (!completed)
1011 		return;
1012 
1013 	ctx->completed_events -= completed;
1014 	put_reqs_available(ctx, completed);
1015 }
1016 
1017 /* user_refill_reqs_available
1018  *	Called to refill reqs_available when aio_get_req() encounters an
1019  *	out of space in the completion ring.
1020  */
1021 static void user_refill_reqs_available(struct kioctx *ctx)
1022 {
1023 	spin_lock_irq(&ctx->completion_lock);
1024 	if (ctx->completed_events) {
1025 		struct aio_ring *ring;
1026 		unsigned head;
1027 
1028 		/* Access of ring->head may race with aio_read_events_ring()
1029 		 * here, but that's okay since whether we read the old version
1030 		 * or the new version, and either will be valid.  The important
1031 		 * part is that head cannot pass tail since we prevent
1032 		 * aio_complete() from updating tail by holding
1033 		 * ctx->completion_lock.  Even if head is invalid, the check
1034 		 * against ctx->completed_events below will make sure we do the
1035 		 * safe/right thing.
1036 		 */
1037 		ring = page_address(ctx->ring_pages[0]);
1038 		head = ring->head;
1039 
1040 		refill_reqs_available(ctx, head, ctx->tail);
1041 	}
1042 
1043 	spin_unlock_irq(&ctx->completion_lock);
1044 }
1045 
1046 static bool get_reqs_available(struct kioctx *ctx)
1047 {
1048 	if (__get_reqs_available(ctx))
1049 		return true;
1050 	user_refill_reqs_available(ctx);
1051 	return __get_reqs_available(ctx);
1052 }
1053 
1054 /* aio_get_req
1055  *	Allocate a slot for an aio request.
1056  * Returns NULL if no requests are free.
1057  *
1058  * The refcount is initialized to 2 - one for the async op completion,
1059  * one for the synchronous code that does this.
1060  */
1061 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1062 {
1063 	struct aio_kiocb *req;
1064 
1065 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1066 	if (unlikely(!req))
1067 		return NULL;
1068 
1069 	if (unlikely(!get_reqs_available(ctx))) {
1070 		kmem_cache_free(kiocb_cachep, req);
1071 		return NULL;
1072 	}
1073 
1074 	percpu_ref_get(&ctx->reqs);
1075 	req->ki_ctx = ctx;
1076 	INIT_LIST_HEAD(&req->ki_list);
1077 	refcount_set(&req->ki_refcnt, 2);
1078 	req->ki_eventfd = NULL;
1079 	return req;
1080 }
1081 
1082 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1083 {
1084 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1085 	struct mm_struct *mm = current->mm;
1086 	struct kioctx *ctx, *ret = NULL;
1087 	struct kioctx_table *table;
1088 	unsigned id;
1089 
1090 	if (get_user(id, &ring->id))
1091 		return NULL;
1092 
1093 	rcu_read_lock();
1094 	table = rcu_dereference(mm->ioctx_table);
1095 
1096 	if (!table || id >= table->nr)
1097 		goto out;
1098 
1099 	id = array_index_nospec(id, table->nr);
1100 	ctx = rcu_dereference(table->table[id]);
1101 	if (ctx && ctx->user_id == ctx_id) {
1102 		if (percpu_ref_tryget_live(&ctx->users))
1103 			ret = ctx;
1104 	}
1105 out:
1106 	rcu_read_unlock();
1107 	return ret;
1108 }
1109 
1110 static inline void iocb_destroy(struct aio_kiocb *iocb)
1111 {
1112 	if (iocb->ki_eventfd)
1113 		eventfd_ctx_put(iocb->ki_eventfd);
1114 	if (iocb->ki_filp)
1115 		fput(iocb->ki_filp);
1116 	percpu_ref_put(&iocb->ki_ctx->reqs);
1117 	kmem_cache_free(kiocb_cachep, iocb);
1118 }
1119 
1120 /* aio_complete
1121  *	Called when the io request on the given iocb is complete.
1122  */
1123 static void aio_complete(struct aio_kiocb *iocb)
1124 {
1125 	struct kioctx	*ctx = iocb->ki_ctx;
1126 	struct aio_ring	*ring;
1127 	struct io_event	*ev_page, *event;
1128 	unsigned tail, pos, head;
1129 	unsigned long	flags;
1130 
1131 	/*
1132 	 * Add a completion event to the ring buffer. Must be done holding
1133 	 * ctx->completion_lock to prevent other code from messing with the tail
1134 	 * pointer since we might be called from irq context.
1135 	 */
1136 	spin_lock_irqsave(&ctx->completion_lock, flags);
1137 
1138 	tail = ctx->tail;
1139 	pos = tail + AIO_EVENTS_OFFSET;
1140 
1141 	if (++tail >= ctx->nr_events)
1142 		tail = 0;
1143 
1144 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1145 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1146 
1147 	*event = iocb->ki_res;
1148 
1149 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1150 
1151 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1152 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1153 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1154 
1155 	/* after flagging the request as done, we
1156 	 * must never even look at it again
1157 	 */
1158 	smp_wmb();	/* make event visible before updating tail */
1159 
1160 	ctx->tail = tail;
1161 
1162 	ring = page_address(ctx->ring_pages[0]);
1163 	head = ring->head;
1164 	ring->tail = tail;
1165 	flush_dcache_page(ctx->ring_pages[0]);
1166 
1167 	ctx->completed_events++;
1168 	if (ctx->completed_events > 1)
1169 		refill_reqs_available(ctx, head, tail);
1170 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1171 
1172 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1173 
1174 	/*
1175 	 * Check if the user asked us to deliver the result through an
1176 	 * eventfd. The eventfd_signal() function is safe to be called
1177 	 * from IRQ context.
1178 	 */
1179 	if (iocb->ki_eventfd)
1180 		eventfd_signal(iocb->ki_eventfd, 1);
1181 
1182 	/*
1183 	 * We have to order our ring_info tail store above and test
1184 	 * of the wait list below outside the wait lock.  This is
1185 	 * like in wake_up_bit() where clearing a bit has to be
1186 	 * ordered with the unlocked test.
1187 	 */
1188 	smp_mb();
1189 
1190 	if (waitqueue_active(&ctx->wait))
1191 		wake_up(&ctx->wait);
1192 }
1193 
1194 static inline void iocb_put(struct aio_kiocb *iocb)
1195 {
1196 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1197 		aio_complete(iocb);
1198 		iocb_destroy(iocb);
1199 	}
1200 }
1201 
1202 /* aio_read_events_ring
1203  *	Pull an event off of the ioctx's event ring.  Returns the number of
1204  *	events fetched
1205  */
1206 static long aio_read_events_ring(struct kioctx *ctx,
1207 				 struct io_event __user *event, long nr)
1208 {
1209 	struct aio_ring *ring;
1210 	unsigned head, tail, pos;
1211 	long ret = 0;
1212 	int copy_ret;
1213 
1214 	/*
1215 	 * The mutex can block and wake us up and that will cause
1216 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1217 	 * and repeat. This should be rare enough that it doesn't cause
1218 	 * peformance issues. See the comment in read_events() for more detail.
1219 	 */
1220 	sched_annotate_sleep();
1221 	mutex_lock(&ctx->ring_lock);
1222 
1223 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1224 	ring = page_address(ctx->ring_pages[0]);
1225 	head = ring->head;
1226 	tail = ring->tail;
1227 
1228 	/*
1229 	 * Ensure that once we've read the current tail pointer, that
1230 	 * we also see the events that were stored up to the tail.
1231 	 */
1232 	smp_rmb();
1233 
1234 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1235 
1236 	if (head == tail)
1237 		goto out;
1238 
1239 	head %= ctx->nr_events;
1240 	tail %= ctx->nr_events;
1241 
1242 	while (ret < nr) {
1243 		long avail;
1244 		struct io_event *ev;
1245 		struct page *page;
1246 
1247 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1248 		if (head == tail)
1249 			break;
1250 
1251 		pos = head + AIO_EVENTS_OFFSET;
1252 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1253 		pos %= AIO_EVENTS_PER_PAGE;
1254 
1255 		avail = min(avail, nr - ret);
1256 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1257 
1258 		ev = page_address(page);
1259 		copy_ret = copy_to_user(event + ret, ev + pos,
1260 					sizeof(*ev) * avail);
1261 
1262 		if (unlikely(copy_ret)) {
1263 			ret = -EFAULT;
1264 			goto out;
1265 		}
1266 
1267 		ret += avail;
1268 		head += avail;
1269 		head %= ctx->nr_events;
1270 	}
1271 
1272 	ring = page_address(ctx->ring_pages[0]);
1273 	ring->head = head;
1274 	flush_dcache_page(ctx->ring_pages[0]);
1275 
1276 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1277 out:
1278 	mutex_unlock(&ctx->ring_lock);
1279 
1280 	return ret;
1281 }
1282 
1283 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1284 			    struct io_event __user *event, long *i)
1285 {
1286 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1287 
1288 	if (ret > 0)
1289 		*i += ret;
1290 
1291 	if (unlikely(atomic_read(&ctx->dead)))
1292 		ret = -EINVAL;
1293 
1294 	if (!*i)
1295 		*i = ret;
1296 
1297 	return ret < 0 || *i >= min_nr;
1298 }
1299 
1300 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1301 			struct io_event __user *event,
1302 			ktime_t until)
1303 {
1304 	long ret = 0;
1305 
1306 	/*
1307 	 * Note that aio_read_events() is being called as the conditional - i.e.
1308 	 * we're calling it after prepare_to_wait() has set task state to
1309 	 * TASK_INTERRUPTIBLE.
1310 	 *
1311 	 * But aio_read_events() can block, and if it blocks it's going to flip
1312 	 * the task state back to TASK_RUNNING.
1313 	 *
1314 	 * This should be ok, provided it doesn't flip the state back to
1315 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1316 	 * will only happen if the mutex_lock() call blocks, and we then find
1317 	 * the ringbuffer empty. So in practice we should be ok, but it's
1318 	 * something to be aware of when touching this code.
1319 	 */
1320 	if (until == 0)
1321 		aio_read_events(ctx, min_nr, nr, event, &ret);
1322 	else
1323 		wait_event_interruptible_hrtimeout(ctx->wait,
1324 				aio_read_events(ctx, min_nr, nr, event, &ret),
1325 				until);
1326 	return ret;
1327 }
1328 
1329 /* sys_io_setup:
1330  *	Create an aio_context capable of receiving at least nr_events.
1331  *	ctxp must not point to an aio_context that already exists, and
1332  *	must be initialized to 0 prior to the call.  On successful
1333  *	creation of the aio_context, *ctxp is filled in with the resulting
1334  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1335  *	if the specified nr_events exceeds internal limits.  May fail
1336  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1337  *	of available events.  May fail with -ENOMEM if insufficient kernel
1338  *	resources are available.  May fail with -EFAULT if an invalid
1339  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1340  *	implemented.
1341  */
1342 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1343 {
1344 	struct kioctx *ioctx = NULL;
1345 	unsigned long ctx;
1346 	long ret;
1347 
1348 	ret = get_user(ctx, ctxp);
1349 	if (unlikely(ret))
1350 		goto out;
1351 
1352 	ret = -EINVAL;
1353 	if (unlikely(ctx || nr_events == 0)) {
1354 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1355 		         ctx, nr_events);
1356 		goto out;
1357 	}
1358 
1359 	ioctx = ioctx_alloc(nr_events);
1360 	ret = PTR_ERR(ioctx);
1361 	if (!IS_ERR(ioctx)) {
1362 		ret = put_user(ioctx->user_id, ctxp);
1363 		if (ret)
1364 			kill_ioctx(current->mm, ioctx, NULL);
1365 		percpu_ref_put(&ioctx->users);
1366 	}
1367 
1368 out:
1369 	return ret;
1370 }
1371 
1372 #ifdef CONFIG_COMPAT
1373 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1374 {
1375 	struct kioctx *ioctx = NULL;
1376 	unsigned long ctx;
1377 	long ret;
1378 
1379 	ret = get_user(ctx, ctx32p);
1380 	if (unlikely(ret))
1381 		goto out;
1382 
1383 	ret = -EINVAL;
1384 	if (unlikely(ctx || nr_events == 0)) {
1385 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1386 		         ctx, nr_events);
1387 		goto out;
1388 	}
1389 
1390 	ioctx = ioctx_alloc(nr_events);
1391 	ret = PTR_ERR(ioctx);
1392 	if (!IS_ERR(ioctx)) {
1393 		/* truncating is ok because it's a user address */
1394 		ret = put_user((u32)ioctx->user_id, ctx32p);
1395 		if (ret)
1396 			kill_ioctx(current->mm, ioctx, NULL);
1397 		percpu_ref_put(&ioctx->users);
1398 	}
1399 
1400 out:
1401 	return ret;
1402 }
1403 #endif
1404 
1405 /* sys_io_destroy:
1406  *	Destroy the aio_context specified.  May cancel any outstanding
1407  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1408  *	implemented.  May fail with -EINVAL if the context pointed to
1409  *	is invalid.
1410  */
1411 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1412 {
1413 	struct kioctx *ioctx = lookup_ioctx(ctx);
1414 	if (likely(NULL != ioctx)) {
1415 		struct ctx_rq_wait wait;
1416 		int ret;
1417 
1418 		init_completion(&wait.comp);
1419 		atomic_set(&wait.count, 1);
1420 
1421 		/* Pass requests_done to kill_ioctx() where it can be set
1422 		 * in a thread-safe way. If we try to set it here then we have
1423 		 * a race condition if two io_destroy() called simultaneously.
1424 		 */
1425 		ret = kill_ioctx(current->mm, ioctx, &wait);
1426 		percpu_ref_put(&ioctx->users);
1427 
1428 		/* Wait until all IO for the context are done. Otherwise kernel
1429 		 * keep using user-space buffers even if user thinks the context
1430 		 * is destroyed.
1431 		 */
1432 		if (!ret)
1433 			wait_for_completion(&wait.comp);
1434 
1435 		return ret;
1436 	}
1437 	pr_debug("EINVAL: invalid context id\n");
1438 	return -EINVAL;
1439 }
1440 
1441 static void aio_remove_iocb(struct aio_kiocb *iocb)
1442 {
1443 	struct kioctx *ctx = iocb->ki_ctx;
1444 	unsigned long flags;
1445 
1446 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1447 	list_del(&iocb->ki_list);
1448 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1449 }
1450 
1451 static void aio_complete_rw(struct kiocb *kiocb, long res)
1452 {
1453 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1454 
1455 	if (!list_empty_careful(&iocb->ki_list))
1456 		aio_remove_iocb(iocb);
1457 
1458 	if (kiocb->ki_flags & IOCB_WRITE) {
1459 		struct inode *inode = file_inode(kiocb->ki_filp);
1460 
1461 		if (S_ISREG(inode->i_mode))
1462 			kiocb_end_write(kiocb);
1463 	}
1464 
1465 	iocb->ki_res.res = res;
1466 	iocb->ki_res.res2 = 0;
1467 	iocb_put(iocb);
1468 }
1469 
1470 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1471 {
1472 	int ret;
1473 
1474 	req->ki_complete = aio_complete_rw;
1475 	req->private = NULL;
1476 	req->ki_pos = iocb->aio_offset;
1477 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1478 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1479 		req->ki_flags |= IOCB_EVENTFD;
1480 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1481 		/*
1482 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1483 		 * aio_reqprio is interpreted as an I/O scheduling
1484 		 * class and priority.
1485 		 */
1486 		ret = ioprio_check_cap(iocb->aio_reqprio);
1487 		if (ret) {
1488 			pr_debug("aio ioprio check cap error: %d\n", ret);
1489 			return ret;
1490 		}
1491 
1492 		req->ki_ioprio = iocb->aio_reqprio;
1493 	} else
1494 		req->ki_ioprio = get_current_ioprio();
1495 
1496 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1497 	if (unlikely(ret))
1498 		return ret;
1499 
1500 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1501 	return 0;
1502 }
1503 
1504 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1505 		struct iovec **iovec, bool vectored, bool compat,
1506 		struct iov_iter *iter)
1507 {
1508 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1509 	size_t len = iocb->aio_nbytes;
1510 
1511 	if (!vectored) {
1512 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1513 		*iovec = NULL;
1514 		return ret;
1515 	}
1516 
1517 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1518 }
1519 
1520 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1521 {
1522 	switch (ret) {
1523 	case -EIOCBQUEUED:
1524 		break;
1525 	case -ERESTARTSYS:
1526 	case -ERESTARTNOINTR:
1527 	case -ERESTARTNOHAND:
1528 	case -ERESTART_RESTARTBLOCK:
1529 		/*
1530 		 * There's no easy way to restart the syscall since other AIO's
1531 		 * may be already running. Just fail this IO with EINTR.
1532 		 */
1533 		ret = -EINTR;
1534 		fallthrough;
1535 	default:
1536 		req->ki_complete(req, ret);
1537 	}
1538 }
1539 
1540 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1541 			bool vectored, bool compat)
1542 {
1543 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1544 	struct iov_iter iter;
1545 	struct file *file;
1546 	int ret;
1547 
1548 	ret = aio_prep_rw(req, iocb);
1549 	if (ret)
1550 		return ret;
1551 	file = req->ki_filp;
1552 	if (unlikely(!(file->f_mode & FMODE_READ)))
1553 		return -EBADF;
1554 	if (unlikely(!file->f_op->read_iter))
1555 		return -EINVAL;
1556 
1557 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1558 	if (ret < 0)
1559 		return ret;
1560 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1561 	if (!ret)
1562 		aio_rw_done(req, call_read_iter(file, req, &iter));
1563 	kfree(iovec);
1564 	return ret;
1565 }
1566 
1567 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1568 			 bool vectored, bool compat)
1569 {
1570 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1571 	struct iov_iter iter;
1572 	struct file *file;
1573 	int ret;
1574 
1575 	ret = aio_prep_rw(req, iocb);
1576 	if (ret)
1577 		return ret;
1578 	file = req->ki_filp;
1579 
1580 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1581 		return -EBADF;
1582 	if (unlikely(!file->f_op->write_iter))
1583 		return -EINVAL;
1584 
1585 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1586 	if (ret < 0)
1587 		return ret;
1588 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1589 	if (!ret) {
1590 		if (S_ISREG(file_inode(file)->i_mode))
1591 			kiocb_start_write(req);
1592 		req->ki_flags |= IOCB_WRITE;
1593 		aio_rw_done(req, call_write_iter(file, req, &iter));
1594 	}
1595 	kfree(iovec);
1596 	return ret;
1597 }
1598 
1599 static void aio_fsync_work(struct work_struct *work)
1600 {
1601 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1602 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1603 
1604 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1605 	revert_creds(old_cred);
1606 	put_cred(iocb->fsync.creds);
1607 	iocb_put(iocb);
1608 }
1609 
1610 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1611 		     bool datasync)
1612 {
1613 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1614 			iocb->aio_rw_flags))
1615 		return -EINVAL;
1616 
1617 	if (unlikely(!req->file->f_op->fsync))
1618 		return -EINVAL;
1619 
1620 	req->creds = prepare_creds();
1621 	if (!req->creds)
1622 		return -ENOMEM;
1623 
1624 	req->datasync = datasync;
1625 	INIT_WORK(&req->work, aio_fsync_work);
1626 	schedule_work(&req->work);
1627 	return 0;
1628 }
1629 
1630 static void aio_poll_put_work(struct work_struct *work)
1631 {
1632 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1633 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1634 
1635 	iocb_put(iocb);
1636 }
1637 
1638 /*
1639  * Safely lock the waitqueue which the request is on, synchronizing with the
1640  * case where the ->poll() provider decides to free its waitqueue early.
1641  *
1642  * Returns true on success, meaning that req->head->lock was locked, req->wait
1643  * is on req->head, and an RCU read lock was taken.  Returns false if the
1644  * request was already removed from its waitqueue (which might no longer exist).
1645  */
1646 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1647 {
1648 	wait_queue_head_t *head;
1649 
1650 	/*
1651 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1652 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1653 	 * lock in the first place can race with the waitqueue being freed.
1654 	 *
1655 	 * We solve this as eventpoll does: by taking advantage of the fact that
1656 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1657 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1658 	 * non-NULL, we can then lock it without the memory being freed out from
1659 	 * under us, then check whether the request is still on the queue.
1660 	 *
1661 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1662 	 * case the caller deletes the entry from the queue, leaving it empty.
1663 	 * In that case, only RCU prevents the queue memory from being freed.
1664 	 */
1665 	rcu_read_lock();
1666 	head = smp_load_acquire(&req->head);
1667 	if (head) {
1668 		spin_lock(&head->lock);
1669 		if (!list_empty(&req->wait.entry))
1670 			return true;
1671 		spin_unlock(&head->lock);
1672 	}
1673 	rcu_read_unlock();
1674 	return false;
1675 }
1676 
1677 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1678 {
1679 	spin_unlock(&req->head->lock);
1680 	rcu_read_unlock();
1681 }
1682 
1683 static void aio_poll_complete_work(struct work_struct *work)
1684 {
1685 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1686 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1687 	struct poll_table_struct pt = { ._key = req->events };
1688 	struct kioctx *ctx = iocb->ki_ctx;
1689 	__poll_t mask = 0;
1690 
1691 	if (!READ_ONCE(req->cancelled))
1692 		mask = vfs_poll(req->file, &pt) & req->events;
1693 
1694 	/*
1695 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1696 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1697 	 * synchronize with them.  In the cancellation case the list_del_init
1698 	 * itself is not actually needed, but harmless so we keep it in to
1699 	 * avoid further branches in the fast path.
1700 	 */
1701 	spin_lock_irq(&ctx->ctx_lock);
1702 	if (poll_iocb_lock_wq(req)) {
1703 		if (!mask && !READ_ONCE(req->cancelled)) {
1704 			/*
1705 			 * The request isn't actually ready to be completed yet.
1706 			 * Reschedule completion if another wakeup came in.
1707 			 */
1708 			if (req->work_need_resched) {
1709 				schedule_work(&req->work);
1710 				req->work_need_resched = false;
1711 			} else {
1712 				req->work_scheduled = false;
1713 			}
1714 			poll_iocb_unlock_wq(req);
1715 			spin_unlock_irq(&ctx->ctx_lock);
1716 			return;
1717 		}
1718 		list_del_init(&req->wait.entry);
1719 		poll_iocb_unlock_wq(req);
1720 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1721 	list_del_init(&iocb->ki_list);
1722 	iocb->ki_res.res = mangle_poll(mask);
1723 	spin_unlock_irq(&ctx->ctx_lock);
1724 
1725 	iocb_put(iocb);
1726 }
1727 
1728 /* assumes we are called with irqs disabled */
1729 static int aio_poll_cancel(struct kiocb *iocb)
1730 {
1731 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1732 	struct poll_iocb *req = &aiocb->poll;
1733 
1734 	if (poll_iocb_lock_wq(req)) {
1735 		WRITE_ONCE(req->cancelled, true);
1736 		if (!req->work_scheduled) {
1737 			schedule_work(&aiocb->poll.work);
1738 			req->work_scheduled = true;
1739 		}
1740 		poll_iocb_unlock_wq(req);
1741 	} /* else, the request was force-cancelled by POLLFREE already */
1742 
1743 	return 0;
1744 }
1745 
1746 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1747 		void *key)
1748 {
1749 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1750 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1751 	__poll_t mask = key_to_poll(key);
1752 	unsigned long flags;
1753 
1754 	/* for instances that support it check for an event match first: */
1755 	if (mask && !(mask & req->events))
1756 		return 0;
1757 
1758 	/*
1759 	 * Complete the request inline if possible.  This requires that three
1760 	 * conditions be met:
1761 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1762 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1763 	 *	the events, so inline completion isn't possible.
1764 	 *   2. The completion work must not have already been scheduled.
1765 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1766 	 *	already hold the waitqueue lock, so this inverts the normal
1767 	 *	locking order.  Use irqsave/irqrestore because not all
1768 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1769 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1770 	 */
1771 	if (mask && !req->work_scheduled &&
1772 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1773 		struct kioctx *ctx = iocb->ki_ctx;
1774 
1775 		list_del_init(&req->wait.entry);
1776 		list_del(&iocb->ki_list);
1777 		iocb->ki_res.res = mangle_poll(mask);
1778 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1779 			iocb = NULL;
1780 			INIT_WORK(&req->work, aio_poll_put_work);
1781 			schedule_work(&req->work);
1782 		}
1783 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1784 		if (iocb)
1785 			iocb_put(iocb);
1786 	} else {
1787 		/*
1788 		 * Schedule the completion work if needed.  If it was already
1789 		 * scheduled, record that another wakeup came in.
1790 		 *
1791 		 * Don't remove the request from the waitqueue here, as it might
1792 		 * not actually be complete yet (we won't know until vfs_poll()
1793 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1794 		 * exception to this; see below.
1795 		 */
1796 		if (req->work_scheduled) {
1797 			req->work_need_resched = true;
1798 		} else {
1799 			schedule_work(&req->work);
1800 			req->work_scheduled = true;
1801 		}
1802 
1803 		/*
1804 		 * If the waitqueue is being freed early but we can't complete
1805 		 * the request inline, we have to tear down the request as best
1806 		 * we can.  That means immediately removing the request from its
1807 		 * waitqueue and preventing all further accesses to the
1808 		 * waitqueue via the request.  We also need to schedule the
1809 		 * completion work (done above).  Also mark the request as
1810 		 * cancelled, to potentially skip an unneeded call to ->poll().
1811 		 */
1812 		if (mask & POLLFREE) {
1813 			WRITE_ONCE(req->cancelled, true);
1814 			list_del_init(&req->wait.entry);
1815 
1816 			/*
1817 			 * Careful: this *must* be the last step, since as soon
1818 			 * as req->head is NULL'ed out, the request can be
1819 			 * completed and freed, since aio_poll_complete_work()
1820 			 * will no longer need to take the waitqueue lock.
1821 			 */
1822 			smp_store_release(&req->head, NULL);
1823 		}
1824 	}
1825 	return 1;
1826 }
1827 
1828 struct aio_poll_table {
1829 	struct poll_table_struct	pt;
1830 	struct aio_kiocb		*iocb;
1831 	bool				queued;
1832 	int				error;
1833 };
1834 
1835 static void
1836 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1837 		struct poll_table_struct *p)
1838 {
1839 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1840 
1841 	/* multiple wait queues per file are not supported */
1842 	if (unlikely(pt->queued)) {
1843 		pt->error = -EINVAL;
1844 		return;
1845 	}
1846 
1847 	pt->queued = true;
1848 	pt->error = 0;
1849 	pt->iocb->poll.head = head;
1850 	add_wait_queue(head, &pt->iocb->poll.wait);
1851 }
1852 
1853 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1854 {
1855 	struct kioctx *ctx = aiocb->ki_ctx;
1856 	struct poll_iocb *req = &aiocb->poll;
1857 	struct aio_poll_table apt;
1858 	bool cancel = false;
1859 	__poll_t mask;
1860 
1861 	/* reject any unknown events outside the normal event mask. */
1862 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1863 		return -EINVAL;
1864 	/* reject fields that are not defined for poll */
1865 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1866 		return -EINVAL;
1867 
1868 	INIT_WORK(&req->work, aio_poll_complete_work);
1869 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1870 
1871 	req->head = NULL;
1872 	req->cancelled = false;
1873 	req->work_scheduled = false;
1874 	req->work_need_resched = false;
1875 
1876 	apt.pt._qproc = aio_poll_queue_proc;
1877 	apt.pt._key = req->events;
1878 	apt.iocb = aiocb;
1879 	apt.queued = false;
1880 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1881 
1882 	/* initialized the list so that we can do list_empty checks */
1883 	INIT_LIST_HEAD(&req->wait.entry);
1884 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1885 
1886 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1887 	spin_lock_irq(&ctx->ctx_lock);
1888 	if (likely(apt.queued)) {
1889 		bool on_queue = poll_iocb_lock_wq(req);
1890 
1891 		if (!on_queue || req->work_scheduled) {
1892 			/*
1893 			 * aio_poll_wake() already either scheduled the async
1894 			 * completion work, or completed the request inline.
1895 			 */
1896 			if (apt.error) /* unsupported case: multiple queues */
1897 				cancel = true;
1898 			apt.error = 0;
1899 			mask = 0;
1900 		}
1901 		if (mask || apt.error) {
1902 			/* Steal to complete synchronously. */
1903 			list_del_init(&req->wait.entry);
1904 		} else if (cancel) {
1905 			/* Cancel if possible (may be too late though). */
1906 			WRITE_ONCE(req->cancelled, true);
1907 		} else if (on_queue) {
1908 			/*
1909 			 * Actually waiting for an event, so add the request to
1910 			 * active_reqs so that it can be cancelled if needed.
1911 			 */
1912 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1913 			aiocb->ki_cancel = aio_poll_cancel;
1914 		}
1915 		if (on_queue)
1916 			poll_iocb_unlock_wq(req);
1917 	}
1918 	if (mask) { /* no async, we'd stolen it */
1919 		aiocb->ki_res.res = mangle_poll(mask);
1920 		apt.error = 0;
1921 	}
1922 	spin_unlock_irq(&ctx->ctx_lock);
1923 	if (mask)
1924 		iocb_put(aiocb);
1925 	return apt.error;
1926 }
1927 
1928 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1929 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1930 			   bool compat)
1931 {
1932 	req->ki_filp = fget(iocb->aio_fildes);
1933 	if (unlikely(!req->ki_filp))
1934 		return -EBADF;
1935 
1936 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1937 		struct eventfd_ctx *eventfd;
1938 		/*
1939 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1940 		 * instance of the file* now. The file descriptor must be
1941 		 * an eventfd() fd, and will be signaled for each completed
1942 		 * event using the eventfd_signal() function.
1943 		 */
1944 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1945 		if (IS_ERR(eventfd))
1946 			return PTR_ERR(eventfd);
1947 
1948 		req->ki_eventfd = eventfd;
1949 	}
1950 
1951 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1952 		pr_debug("EFAULT: aio_key\n");
1953 		return -EFAULT;
1954 	}
1955 
1956 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1957 	req->ki_res.data = iocb->aio_data;
1958 	req->ki_res.res = 0;
1959 	req->ki_res.res2 = 0;
1960 
1961 	switch (iocb->aio_lio_opcode) {
1962 	case IOCB_CMD_PREAD:
1963 		return aio_read(&req->rw, iocb, false, compat);
1964 	case IOCB_CMD_PWRITE:
1965 		return aio_write(&req->rw, iocb, false, compat);
1966 	case IOCB_CMD_PREADV:
1967 		return aio_read(&req->rw, iocb, true, compat);
1968 	case IOCB_CMD_PWRITEV:
1969 		return aio_write(&req->rw, iocb, true, compat);
1970 	case IOCB_CMD_FSYNC:
1971 		return aio_fsync(&req->fsync, iocb, false);
1972 	case IOCB_CMD_FDSYNC:
1973 		return aio_fsync(&req->fsync, iocb, true);
1974 	case IOCB_CMD_POLL:
1975 		return aio_poll(req, iocb);
1976 	default:
1977 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1978 		return -EINVAL;
1979 	}
1980 }
1981 
1982 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1983 			 bool compat)
1984 {
1985 	struct aio_kiocb *req;
1986 	struct iocb iocb;
1987 	int err;
1988 
1989 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1990 		return -EFAULT;
1991 
1992 	/* enforce forwards compatibility on users */
1993 	if (unlikely(iocb.aio_reserved2)) {
1994 		pr_debug("EINVAL: reserve field set\n");
1995 		return -EINVAL;
1996 	}
1997 
1998 	/* prevent overflows */
1999 	if (unlikely(
2000 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2001 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2002 	    ((ssize_t)iocb.aio_nbytes < 0)
2003 	   )) {
2004 		pr_debug("EINVAL: overflow check\n");
2005 		return -EINVAL;
2006 	}
2007 
2008 	req = aio_get_req(ctx);
2009 	if (unlikely(!req))
2010 		return -EAGAIN;
2011 
2012 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2013 
2014 	/* Done with the synchronous reference */
2015 	iocb_put(req);
2016 
2017 	/*
2018 	 * If err is 0, we'd either done aio_complete() ourselves or have
2019 	 * arranged for that to be done asynchronously.  Anything non-zero
2020 	 * means that we need to destroy req ourselves.
2021 	 */
2022 	if (unlikely(err)) {
2023 		iocb_destroy(req);
2024 		put_reqs_available(ctx, 1);
2025 	}
2026 	return err;
2027 }
2028 
2029 /* sys_io_submit:
2030  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2031  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2032  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2033  *	*iocbpp[0] is not properly initialized, if the operation specified
2034  *	is invalid for the file descriptor in the iocb.  May fail with
2035  *	-EFAULT if any of the data structures point to invalid data.  May
2036  *	fail with -EBADF if the file descriptor specified in the first
2037  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2038  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2039  *	fail with -ENOSYS if not implemented.
2040  */
2041 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2042 		struct iocb __user * __user *, iocbpp)
2043 {
2044 	struct kioctx *ctx;
2045 	long ret = 0;
2046 	int i = 0;
2047 	struct blk_plug plug;
2048 
2049 	if (unlikely(nr < 0))
2050 		return -EINVAL;
2051 
2052 	ctx = lookup_ioctx(ctx_id);
2053 	if (unlikely(!ctx)) {
2054 		pr_debug("EINVAL: invalid context id\n");
2055 		return -EINVAL;
2056 	}
2057 
2058 	if (nr > ctx->nr_events)
2059 		nr = ctx->nr_events;
2060 
2061 	if (nr > AIO_PLUG_THRESHOLD)
2062 		blk_start_plug(&plug);
2063 	for (i = 0; i < nr; i++) {
2064 		struct iocb __user *user_iocb;
2065 
2066 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2067 			ret = -EFAULT;
2068 			break;
2069 		}
2070 
2071 		ret = io_submit_one(ctx, user_iocb, false);
2072 		if (ret)
2073 			break;
2074 	}
2075 	if (nr > AIO_PLUG_THRESHOLD)
2076 		blk_finish_plug(&plug);
2077 
2078 	percpu_ref_put(&ctx->users);
2079 	return i ? i : ret;
2080 }
2081 
2082 #ifdef CONFIG_COMPAT
2083 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2084 		       int, nr, compat_uptr_t __user *, iocbpp)
2085 {
2086 	struct kioctx *ctx;
2087 	long ret = 0;
2088 	int i = 0;
2089 	struct blk_plug plug;
2090 
2091 	if (unlikely(nr < 0))
2092 		return -EINVAL;
2093 
2094 	ctx = lookup_ioctx(ctx_id);
2095 	if (unlikely(!ctx)) {
2096 		pr_debug("EINVAL: invalid context id\n");
2097 		return -EINVAL;
2098 	}
2099 
2100 	if (nr > ctx->nr_events)
2101 		nr = ctx->nr_events;
2102 
2103 	if (nr > AIO_PLUG_THRESHOLD)
2104 		blk_start_plug(&plug);
2105 	for (i = 0; i < nr; i++) {
2106 		compat_uptr_t user_iocb;
2107 
2108 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2109 			ret = -EFAULT;
2110 			break;
2111 		}
2112 
2113 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2114 		if (ret)
2115 			break;
2116 	}
2117 	if (nr > AIO_PLUG_THRESHOLD)
2118 		blk_finish_plug(&plug);
2119 
2120 	percpu_ref_put(&ctx->users);
2121 	return i ? i : ret;
2122 }
2123 #endif
2124 
2125 /* sys_io_cancel:
2126  *	Attempts to cancel an iocb previously passed to io_submit.  If
2127  *	the operation is successfully cancelled, the resulting event is
2128  *	copied into the memory pointed to by result without being placed
2129  *	into the completion queue and 0 is returned.  May fail with
2130  *	-EFAULT if any of the data structures pointed to are invalid.
2131  *	May fail with -EINVAL if aio_context specified by ctx_id is
2132  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2133  *	cancelled.  Will fail with -ENOSYS if not implemented.
2134  */
2135 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2136 		struct io_event __user *, result)
2137 {
2138 	struct kioctx *ctx;
2139 	struct aio_kiocb *kiocb;
2140 	int ret = -EINVAL;
2141 	u32 key;
2142 	u64 obj = (u64)(unsigned long)iocb;
2143 
2144 	if (unlikely(get_user(key, &iocb->aio_key)))
2145 		return -EFAULT;
2146 	if (unlikely(key != KIOCB_KEY))
2147 		return -EINVAL;
2148 
2149 	ctx = lookup_ioctx(ctx_id);
2150 	if (unlikely(!ctx))
2151 		return -EINVAL;
2152 
2153 	spin_lock_irq(&ctx->ctx_lock);
2154 	/* TODO: use a hash or array, this sucks. */
2155 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2156 		if (kiocb->ki_res.obj == obj) {
2157 			ret = kiocb->ki_cancel(&kiocb->rw);
2158 			list_del_init(&kiocb->ki_list);
2159 			break;
2160 		}
2161 	}
2162 	spin_unlock_irq(&ctx->ctx_lock);
2163 
2164 	if (!ret) {
2165 		/*
2166 		 * The result argument is no longer used - the io_event is
2167 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2168 		 * cancellation is progress:
2169 		 */
2170 		ret = -EINPROGRESS;
2171 	}
2172 
2173 	percpu_ref_put(&ctx->users);
2174 
2175 	return ret;
2176 }
2177 
2178 static long do_io_getevents(aio_context_t ctx_id,
2179 		long min_nr,
2180 		long nr,
2181 		struct io_event __user *events,
2182 		struct timespec64 *ts)
2183 {
2184 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2185 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2186 	long ret = -EINVAL;
2187 
2188 	if (likely(ioctx)) {
2189 		if (likely(min_nr <= nr && min_nr >= 0))
2190 			ret = read_events(ioctx, min_nr, nr, events, until);
2191 		percpu_ref_put(&ioctx->users);
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 /* io_getevents:
2198  *	Attempts to read at least min_nr events and up to nr events from
2199  *	the completion queue for the aio_context specified by ctx_id. If
2200  *	it succeeds, the number of read events is returned. May fail with
2201  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2202  *	out of range, if timeout is out of range.  May fail with -EFAULT
2203  *	if any of the memory specified is invalid.  May return 0 or
2204  *	< min_nr if the timeout specified by timeout has elapsed
2205  *	before sufficient events are available, where timeout == NULL
2206  *	specifies an infinite timeout. Note that the timeout pointed to by
2207  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2208  */
2209 #ifdef CONFIG_64BIT
2210 
2211 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2212 		long, min_nr,
2213 		long, nr,
2214 		struct io_event __user *, events,
2215 		struct __kernel_timespec __user *, timeout)
2216 {
2217 	struct timespec64	ts;
2218 	int			ret;
2219 
2220 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2221 		return -EFAULT;
2222 
2223 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2224 	if (!ret && signal_pending(current))
2225 		ret = -EINTR;
2226 	return ret;
2227 }
2228 
2229 #endif
2230 
2231 struct __aio_sigset {
2232 	const sigset_t __user	*sigmask;
2233 	size_t		sigsetsize;
2234 };
2235 
2236 SYSCALL_DEFINE6(io_pgetevents,
2237 		aio_context_t, ctx_id,
2238 		long, min_nr,
2239 		long, nr,
2240 		struct io_event __user *, events,
2241 		struct __kernel_timespec __user *, timeout,
2242 		const struct __aio_sigset __user *, usig)
2243 {
2244 	struct __aio_sigset	ksig = { NULL, };
2245 	struct timespec64	ts;
2246 	bool interrupted;
2247 	int ret;
2248 
2249 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2250 		return -EFAULT;
2251 
2252 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2253 		return -EFAULT;
2254 
2255 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2256 	if (ret)
2257 		return ret;
2258 
2259 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2260 
2261 	interrupted = signal_pending(current);
2262 	restore_saved_sigmask_unless(interrupted);
2263 	if (interrupted && !ret)
2264 		ret = -ERESTARTNOHAND;
2265 
2266 	return ret;
2267 }
2268 
2269 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2270 
2271 SYSCALL_DEFINE6(io_pgetevents_time32,
2272 		aio_context_t, ctx_id,
2273 		long, min_nr,
2274 		long, nr,
2275 		struct io_event __user *, events,
2276 		struct old_timespec32 __user *, timeout,
2277 		const struct __aio_sigset __user *, usig)
2278 {
2279 	struct __aio_sigset	ksig = { NULL, };
2280 	struct timespec64	ts;
2281 	bool interrupted;
2282 	int ret;
2283 
2284 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2285 		return -EFAULT;
2286 
2287 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2288 		return -EFAULT;
2289 
2290 
2291 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2292 	if (ret)
2293 		return ret;
2294 
2295 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2296 
2297 	interrupted = signal_pending(current);
2298 	restore_saved_sigmask_unless(interrupted);
2299 	if (interrupted && !ret)
2300 		ret = -ERESTARTNOHAND;
2301 
2302 	return ret;
2303 }
2304 
2305 #endif
2306 
2307 #if defined(CONFIG_COMPAT_32BIT_TIME)
2308 
2309 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2310 		__s32, min_nr,
2311 		__s32, nr,
2312 		struct io_event __user *, events,
2313 		struct old_timespec32 __user *, timeout)
2314 {
2315 	struct timespec64 t;
2316 	int ret;
2317 
2318 	if (timeout && get_old_timespec32(&t, timeout))
2319 		return -EFAULT;
2320 
2321 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2322 	if (!ret && signal_pending(current))
2323 		ret = -EINTR;
2324 	return ret;
2325 }
2326 
2327 #endif
2328 
2329 #ifdef CONFIG_COMPAT
2330 
2331 struct __compat_aio_sigset {
2332 	compat_uptr_t		sigmask;
2333 	compat_size_t		sigsetsize;
2334 };
2335 
2336 #if defined(CONFIG_COMPAT_32BIT_TIME)
2337 
2338 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2339 		compat_aio_context_t, ctx_id,
2340 		compat_long_t, min_nr,
2341 		compat_long_t, nr,
2342 		struct io_event __user *, events,
2343 		struct old_timespec32 __user *, timeout,
2344 		const struct __compat_aio_sigset __user *, usig)
2345 {
2346 	struct __compat_aio_sigset ksig = { 0, };
2347 	struct timespec64 t;
2348 	bool interrupted;
2349 	int ret;
2350 
2351 	if (timeout && get_old_timespec32(&t, timeout))
2352 		return -EFAULT;
2353 
2354 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2355 		return -EFAULT;
2356 
2357 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2358 	if (ret)
2359 		return ret;
2360 
2361 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2362 
2363 	interrupted = signal_pending(current);
2364 	restore_saved_sigmask_unless(interrupted);
2365 	if (interrupted && !ret)
2366 		ret = -ERESTARTNOHAND;
2367 
2368 	return ret;
2369 }
2370 
2371 #endif
2372 
2373 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2374 		compat_aio_context_t, ctx_id,
2375 		compat_long_t, min_nr,
2376 		compat_long_t, nr,
2377 		struct io_event __user *, events,
2378 		struct __kernel_timespec __user *, timeout,
2379 		const struct __compat_aio_sigset __user *, usig)
2380 {
2381 	struct __compat_aio_sigset ksig = { 0, };
2382 	struct timespec64 t;
2383 	bool interrupted;
2384 	int ret;
2385 
2386 	if (timeout && get_timespec64(&t, timeout))
2387 		return -EFAULT;
2388 
2389 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2390 		return -EFAULT;
2391 
2392 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2393 	if (ret)
2394 		return ret;
2395 
2396 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2397 
2398 	interrupted = signal_pending(current);
2399 	restore_saved_sigmask_unless(interrupted);
2400 	if (interrupted && !ret)
2401 		ret = -ERESTARTNOHAND;
2402 
2403 	return ret;
2404 }
2405 #endif
2406