xref: /openbmc/linux/fs/aio.c (revision ecefa105)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->private_lock);
320 		i_mapping->private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->private_lock);
427 	ctx = mapping->private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_pages[idx] != &src->page)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_pages[idx] != &src->page);
470 	ctx->ring_pages[idx] = &dst->page;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_pages = ctx->internal_pages;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 					  GFP_KERNEL);
524 		if (!ctx->ring_pages) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct page *page;
532 		page = find_or_create_page(file->f_mapping,
533 					   i, GFP_HIGHUSER | __GFP_ZERO);
534 		if (!page)
535 			break;
536 		pr_debug("pid(%d) page[%d]->count=%d\n",
537 			 current->pid, i, page_count(page));
538 		SetPageUptodate(page);
539 		unlock_page(page);
540 
541 		ctx->ring_pages[i] = page;
542 	}
543 	ctx->nr_pages = i;
544 
545 	if (unlikely(i != nr_pages)) {
546 		aio_free_ring(ctx);
547 		return -ENOMEM;
548 	}
549 
550 	ctx->mmap_size = nr_pages * PAGE_SIZE;
551 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
552 
553 	if (mmap_write_lock_killable(mm)) {
554 		ctx->mmap_size = 0;
555 		aio_free_ring(ctx);
556 		return -EINTR;
557 	}
558 
559 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 				 PROT_READ | PROT_WRITE,
561 				 MAP_SHARED, 0, &unused, NULL);
562 	mmap_write_unlock(mm);
563 	if (IS_ERR((void *)ctx->mmap_base)) {
564 		ctx->mmap_size = 0;
565 		aio_free_ring(ctx);
566 		return -ENOMEM;
567 	}
568 
569 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
570 
571 	ctx->user_id = ctx->mmap_base;
572 	ctx->nr_events = nr_events; /* trusted copy */
573 
574 	ring = kmap_atomic(ctx->ring_pages[0]);
575 	ring->nr = nr_events;	/* user copy */
576 	ring->id = ~0U;
577 	ring->head = ring->tail = 0;
578 	ring->magic = AIO_RING_MAGIC;
579 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 	ring->header_length = sizeof(struct aio_ring);
582 	kunmap_atomic(ring);
583 	flush_dcache_page(ctx->ring_pages[0]);
584 
585 	return 0;
586 }
587 
588 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
589 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
590 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
591 
592 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
593 {
594 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
595 	struct kioctx *ctx = req->ki_ctx;
596 	unsigned long flags;
597 
598 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
599 		return;
600 
601 	spin_lock_irqsave(&ctx->ctx_lock, flags);
602 	list_add_tail(&req->ki_list, &ctx->active_reqs);
603 	req->ki_cancel = cancel;
604 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
605 }
606 EXPORT_SYMBOL(kiocb_set_cancel_fn);
607 
608 /*
609  * free_ioctx() should be RCU delayed to synchronize against the RCU
610  * protected lookup_ioctx() and also needs process context to call
611  * aio_free_ring().  Use rcu_work.
612  */
613 static void free_ioctx(struct work_struct *work)
614 {
615 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
616 					  free_rwork);
617 	pr_debug("freeing %p\n", ctx);
618 
619 	aio_free_ring(ctx);
620 	free_percpu(ctx->cpu);
621 	percpu_ref_exit(&ctx->reqs);
622 	percpu_ref_exit(&ctx->users);
623 	kmem_cache_free(kioctx_cachep, ctx);
624 }
625 
626 static void free_ioctx_reqs(struct percpu_ref *ref)
627 {
628 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
629 
630 	/* At this point we know that there are no any in-flight requests */
631 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
632 		complete(&ctx->rq_wait->comp);
633 
634 	/* Synchronize against RCU protected table->table[] dereferences */
635 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
636 	queue_rcu_work(system_wq, &ctx->free_rwork);
637 }
638 
639 /*
640  * When this function runs, the kioctx has been removed from the "hash table"
641  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
642  * now it's safe to cancel any that need to be.
643  */
644 static void free_ioctx_users(struct percpu_ref *ref)
645 {
646 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
647 	struct aio_kiocb *req;
648 
649 	spin_lock_irq(&ctx->ctx_lock);
650 
651 	while (!list_empty(&ctx->active_reqs)) {
652 		req = list_first_entry(&ctx->active_reqs,
653 				       struct aio_kiocb, ki_list);
654 		req->ki_cancel(&req->rw);
655 		list_del_init(&req->ki_list);
656 	}
657 
658 	spin_unlock_irq(&ctx->ctx_lock);
659 
660 	percpu_ref_kill(&ctx->reqs);
661 	percpu_ref_put(&ctx->reqs);
662 }
663 
664 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
665 {
666 	unsigned i, new_nr;
667 	struct kioctx_table *table, *old;
668 	struct aio_ring *ring;
669 
670 	spin_lock(&mm->ioctx_lock);
671 	table = rcu_dereference_raw(mm->ioctx_table);
672 
673 	while (1) {
674 		if (table)
675 			for (i = 0; i < table->nr; i++)
676 				if (!rcu_access_pointer(table->table[i])) {
677 					ctx->id = i;
678 					rcu_assign_pointer(table->table[i], ctx);
679 					spin_unlock(&mm->ioctx_lock);
680 
681 					/* While kioctx setup is in progress,
682 					 * we are protected from page migration
683 					 * changes ring_pages by ->ring_lock.
684 					 */
685 					ring = kmap_atomic(ctx->ring_pages[0]);
686 					ring->id = ctx->id;
687 					kunmap_atomic(ring);
688 					return 0;
689 				}
690 
691 		new_nr = (table ? table->nr : 1) * 4;
692 		spin_unlock(&mm->ioctx_lock);
693 
694 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
695 		if (!table)
696 			return -ENOMEM;
697 
698 		table->nr = new_nr;
699 
700 		spin_lock(&mm->ioctx_lock);
701 		old = rcu_dereference_raw(mm->ioctx_table);
702 
703 		if (!old) {
704 			rcu_assign_pointer(mm->ioctx_table, table);
705 		} else if (table->nr > old->nr) {
706 			memcpy(table->table, old->table,
707 			       old->nr * sizeof(struct kioctx *));
708 
709 			rcu_assign_pointer(mm->ioctx_table, table);
710 			kfree_rcu(old, rcu);
711 		} else {
712 			kfree(table);
713 			table = old;
714 		}
715 	}
716 }
717 
718 static void aio_nr_sub(unsigned nr)
719 {
720 	spin_lock(&aio_nr_lock);
721 	if (WARN_ON(aio_nr - nr > aio_nr))
722 		aio_nr = 0;
723 	else
724 		aio_nr -= nr;
725 	spin_unlock(&aio_nr_lock);
726 }
727 
728 /* ioctx_alloc
729  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
730  */
731 static struct kioctx *ioctx_alloc(unsigned nr_events)
732 {
733 	struct mm_struct *mm = current->mm;
734 	struct kioctx *ctx;
735 	int err = -ENOMEM;
736 
737 	/*
738 	 * Store the original nr_events -- what userspace passed to io_setup(),
739 	 * for counting against the global limit -- before it changes.
740 	 */
741 	unsigned int max_reqs = nr_events;
742 
743 	/*
744 	 * We keep track of the number of available ringbuffer slots, to prevent
745 	 * overflow (reqs_available), and we also use percpu counters for this.
746 	 *
747 	 * So since up to half the slots might be on other cpu's percpu counters
748 	 * and unavailable, double nr_events so userspace sees what they
749 	 * expected: additionally, we move req_batch slots to/from percpu
750 	 * counters at a time, so make sure that isn't 0:
751 	 */
752 	nr_events = max(nr_events, num_possible_cpus() * 4);
753 	nr_events *= 2;
754 
755 	/* Prevent overflows */
756 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
757 		pr_debug("ENOMEM: nr_events too high\n");
758 		return ERR_PTR(-EINVAL);
759 	}
760 
761 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
762 		return ERR_PTR(-EAGAIN);
763 
764 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
765 	if (!ctx)
766 		return ERR_PTR(-ENOMEM);
767 
768 	ctx->max_reqs = max_reqs;
769 
770 	spin_lock_init(&ctx->ctx_lock);
771 	spin_lock_init(&ctx->completion_lock);
772 	mutex_init(&ctx->ring_lock);
773 	/* Protect against page migration throughout kiotx setup by keeping
774 	 * the ring_lock mutex held until setup is complete. */
775 	mutex_lock(&ctx->ring_lock);
776 	init_waitqueue_head(&ctx->wait);
777 
778 	INIT_LIST_HEAD(&ctx->active_reqs);
779 
780 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
781 		goto err;
782 
783 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
784 		goto err;
785 
786 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
787 	if (!ctx->cpu)
788 		goto err;
789 
790 	err = aio_setup_ring(ctx, nr_events);
791 	if (err < 0)
792 		goto err;
793 
794 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
795 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
796 	if (ctx->req_batch < 1)
797 		ctx->req_batch = 1;
798 
799 	/* limit the number of system wide aios */
800 	spin_lock(&aio_nr_lock);
801 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
802 	    aio_nr + ctx->max_reqs < aio_nr) {
803 		spin_unlock(&aio_nr_lock);
804 		err = -EAGAIN;
805 		goto err_ctx;
806 	}
807 	aio_nr += ctx->max_reqs;
808 	spin_unlock(&aio_nr_lock);
809 
810 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
811 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
812 
813 	err = ioctx_add_table(ctx, mm);
814 	if (err)
815 		goto err_cleanup;
816 
817 	/* Release the ring_lock mutex now that all setup is complete. */
818 	mutex_unlock(&ctx->ring_lock);
819 
820 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
821 		 ctx, ctx->user_id, mm, ctx->nr_events);
822 	return ctx;
823 
824 err_cleanup:
825 	aio_nr_sub(ctx->max_reqs);
826 err_ctx:
827 	atomic_set(&ctx->dead, 1);
828 	if (ctx->mmap_size)
829 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
830 	aio_free_ring(ctx);
831 err:
832 	mutex_unlock(&ctx->ring_lock);
833 	free_percpu(ctx->cpu);
834 	percpu_ref_exit(&ctx->reqs);
835 	percpu_ref_exit(&ctx->users);
836 	kmem_cache_free(kioctx_cachep, ctx);
837 	pr_debug("error allocating ioctx %d\n", err);
838 	return ERR_PTR(err);
839 }
840 
841 /* kill_ioctx
842  *	Cancels all outstanding aio requests on an aio context.  Used
843  *	when the processes owning a context have all exited to encourage
844  *	the rapid destruction of the kioctx.
845  */
846 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
847 		      struct ctx_rq_wait *wait)
848 {
849 	struct kioctx_table *table;
850 
851 	spin_lock(&mm->ioctx_lock);
852 	if (atomic_xchg(&ctx->dead, 1)) {
853 		spin_unlock(&mm->ioctx_lock);
854 		return -EINVAL;
855 	}
856 
857 	table = rcu_dereference_raw(mm->ioctx_table);
858 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
859 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
860 	spin_unlock(&mm->ioctx_lock);
861 
862 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
863 	wake_up_all(&ctx->wait);
864 
865 	/*
866 	 * It'd be more correct to do this in free_ioctx(), after all
867 	 * the outstanding kiocbs have finished - but by then io_destroy
868 	 * has already returned, so io_setup() could potentially return
869 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
870 	 *  could tell).
871 	 */
872 	aio_nr_sub(ctx->max_reqs);
873 
874 	if (ctx->mmap_size)
875 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
876 
877 	ctx->rq_wait = wait;
878 	percpu_ref_kill(&ctx->users);
879 	return 0;
880 }
881 
882 /*
883  * exit_aio: called when the last user of mm goes away.  At this point, there is
884  * no way for any new requests to be submited or any of the io_* syscalls to be
885  * called on the context.
886  *
887  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
888  * them.
889  */
890 void exit_aio(struct mm_struct *mm)
891 {
892 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
893 	struct ctx_rq_wait wait;
894 	int i, skipped;
895 
896 	if (!table)
897 		return;
898 
899 	atomic_set(&wait.count, table->nr);
900 	init_completion(&wait.comp);
901 
902 	skipped = 0;
903 	for (i = 0; i < table->nr; ++i) {
904 		struct kioctx *ctx =
905 			rcu_dereference_protected(table->table[i], true);
906 
907 		if (!ctx) {
908 			skipped++;
909 			continue;
910 		}
911 
912 		/*
913 		 * We don't need to bother with munmap() here - exit_mmap(mm)
914 		 * is coming and it'll unmap everything. And we simply can't,
915 		 * this is not necessarily our ->mm.
916 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
917 		 * that it needs to unmap the area, just set it to 0.
918 		 */
919 		ctx->mmap_size = 0;
920 		kill_ioctx(mm, ctx, &wait);
921 	}
922 
923 	if (!atomic_sub_and_test(skipped, &wait.count)) {
924 		/* Wait until all IO for the context are done. */
925 		wait_for_completion(&wait.comp);
926 	}
927 
928 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
929 	kfree(table);
930 }
931 
932 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
933 {
934 	struct kioctx_cpu *kcpu;
935 	unsigned long flags;
936 
937 	local_irq_save(flags);
938 	kcpu = this_cpu_ptr(ctx->cpu);
939 	kcpu->reqs_available += nr;
940 
941 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
942 		kcpu->reqs_available -= ctx->req_batch;
943 		atomic_add(ctx->req_batch, &ctx->reqs_available);
944 	}
945 
946 	local_irq_restore(flags);
947 }
948 
949 static bool __get_reqs_available(struct kioctx *ctx)
950 {
951 	struct kioctx_cpu *kcpu;
952 	bool ret = false;
953 	unsigned long flags;
954 
955 	local_irq_save(flags);
956 	kcpu = this_cpu_ptr(ctx->cpu);
957 	if (!kcpu->reqs_available) {
958 		int avail = atomic_read(&ctx->reqs_available);
959 
960 		do {
961 			if (avail < ctx->req_batch)
962 				goto out;
963 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
964 					     &avail, avail - ctx->req_batch));
965 
966 		kcpu->reqs_available += ctx->req_batch;
967 	}
968 
969 	ret = true;
970 	kcpu->reqs_available--;
971 out:
972 	local_irq_restore(flags);
973 	return ret;
974 }
975 
976 /* refill_reqs_available
977  *	Updates the reqs_available reference counts used for tracking the
978  *	number of free slots in the completion ring.  This can be called
979  *	from aio_complete() (to optimistically update reqs_available) or
980  *	from aio_get_req() (the we're out of events case).  It must be
981  *	called holding ctx->completion_lock.
982  */
983 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
984                                   unsigned tail)
985 {
986 	unsigned events_in_ring, completed;
987 
988 	/* Clamp head since userland can write to it. */
989 	head %= ctx->nr_events;
990 	if (head <= tail)
991 		events_in_ring = tail - head;
992 	else
993 		events_in_ring = ctx->nr_events - (head - tail);
994 
995 	completed = ctx->completed_events;
996 	if (events_in_ring < completed)
997 		completed -= events_in_ring;
998 	else
999 		completed = 0;
1000 
1001 	if (!completed)
1002 		return;
1003 
1004 	ctx->completed_events -= completed;
1005 	put_reqs_available(ctx, completed);
1006 }
1007 
1008 /* user_refill_reqs_available
1009  *	Called to refill reqs_available when aio_get_req() encounters an
1010  *	out of space in the completion ring.
1011  */
1012 static void user_refill_reqs_available(struct kioctx *ctx)
1013 {
1014 	spin_lock_irq(&ctx->completion_lock);
1015 	if (ctx->completed_events) {
1016 		struct aio_ring *ring;
1017 		unsigned head;
1018 
1019 		/* Access of ring->head may race with aio_read_events_ring()
1020 		 * here, but that's okay since whether we read the old version
1021 		 * or the new version, and either will be valid.  The important
1022 		 * part is that head cannot pass tail since we prevent
1023 		 * aio_complete() from updating tail by holding
1024 		 * ctx->completion_lock.  Even if head is invalid, the check
1025 		 * against ctx->completed_events below will make sure we do the
1026 		 * safe/right thing.
1027 		 */
1028 		ring = kmap_atomic(ctx->ring_pages[0]);
1029 		head = ring->head;
1030 		kunmap_atomic(ring);
1031 
1032 		refill_reqs_available(ctx, head, ctx->tail);
1033 	}
1034 
1035 	spin_unlock_irq(&ctx->completion_lock);
1036 }
1037 
1038 static bool get_reqs_available(struct kioctx *ctx)
1039 {
1040 	if (__get_reqs_available(ctx))
1041 		return true;
1042 	user_refill_reqs_available(ctx);
1043 	return __get_reqs_available(ctx);
1044 }
1045 
1046 /* aio_get_req
1047  *	Allocate a slot for an aio request.
1048  * Returns NULL if no requests are free.
1049  *
1050  * The refcount is initialized to 2 - one for the async op completion,
1051  * one for the synchronous code that does this.
1052  */
1053 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1054 {
1055 	struct aio_kiocb *req;
1056 
1057 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1058 	if (unlikely(!req))
1059 		return NULL;
1060 
1061 	if (unlikely(!get_reqs_available(ctx))) {
1062 		kmem_cache_free(kiocb_cachep, req);
1063 		return NULL;
1064 	}
1065 
1066 	percpu_ref_get(&ctx->reqs);
1067 	req->ki_ctx = ctx;
1068 	INIT_LIST_HEAD(&req->ki_list);
1069 	refcount_set(&req->ki_refcnt, 2);
1070 	req->ki_eventfd = NULL;
1071 	return req;
1072 }
1073 
1074 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1075 {
1076 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1077 	struct mm_struct *mm = current->mm;
1078 	struct kioctx *ctx, *ret = NULL;
1079 	struct kioctx_table *table;
1080 	unsigned id;
1081 
1082 	if (get_user(id, &ring->id))
1083 		return NULL;
1084 
1085 	rcu_read_lock();
1086 	table = rcu_dereference(mm->ioctx_table);
1087 
1088 	if (!table || id >= table->nr)
1089 		goto out;
1090 
1091 	id = array_index_nospec(id, table->nr);
1092 	ctx = rcu_dereference(table->table[id]);
1093 	if (ctx && ctx->user_id == ctx_id) {
1094 		if (percpu_ref_tryget_live(&ctx->users))
1095 			ret = ctx;
1096 	}
1097 out:
1098 	rcu_read_unlock();
1099 	return ret;
1100 }
1101 
1102 static inline void iocb_destroy(struct aio_kiocb *iocb)
1103 {
1104 	if (iocb->ki_eventfd)
1105 		eventfd_ctx_put(iocb->ki_eventfd);
1106 	if (iocb->ki_filp)
1107 		fput(iocb->ki_filp);
1108 	percpu_ref_put(&iocb->ki_ctx->reqs);
1109 	kmem_cache_free(kiocb_cachep, iocb);
1110 }
1111 
1112 /* aio_complete
1113  *	Called when the io request on the given iocb is complete.
1114  */
1115 static void aio_complete(struct aio_kiocb *iocb)
1116 {
1117 	struct kioctx	*ctx = iocb->ki_ctx;
1118 	struct aio_ring	*ring;
1119 	struct io_event	*ev_page, *event;
1120 	unsigned tail, pos, head;
1121 	unsigned long	flags;
1122 
1123 	/*
1124 	 * Add a completion event to the ring buffer. Must be done holding
1125 	 * ctx->completion_lock to prevent other code from messing with the tail
1126 	 * pointer since we might be called from irq context.
1127 	 */
1128 	spin_lock_irqsave(&ctx->completion_lock, flags);
1129 
1130 	tail = ctx->tail;
1131 	pos = tail + AIO_EVENTS_OFFSET;
1132 
1133 	if (++tail >= ctx->nr_events)
1134 		tail = 0;
1135 
1136 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1137 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1138 
1139 	*event = iocb->ki_res;
1140 
1141 	kunmap_atomic(ev_page);
1142 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143 
1144 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1145 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1146 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1147 
1148 	/* after flagging the request as done, we
1149 	 * must never even look at it again
1150 	 */
1151 	smp_wmb();	/* make event visible before updating tail */
1152 
1153 	ctx->tail = tail;
1154 
1155 	ring = kmap_atomic(ctx->ring_pages[0]);
1156 	head = ring->head;
1157 	ring->tail = tail;
1158 	kunmap_atomic(ring);
1159 	flush_dcache_page(ctx->ring_pages[0]);
1160 
1161 	ctx->completed_events++;
1162 	if (ctx->completed_events > 1)
1163 		refill_reqs_available(ctx, head, tail);
1164 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1165 
1166 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1167 
1168 	/*
1169 	 * Check if the user asked us to deliver the result through an
1170 	 * eventfd. The eventfd_signal() function is safe to be called
1171 	 * from IRQ context.
1172 	 */
1173 	if (iocb->ki_eventfd)
1174 		eventfd_signal(iocb->ki_eventfd, 1);
1175 
1176 	/*
1177 	 * We have to order our ring_info tail store above and test
1178 	 * of the wait list below outside the wait lock.  This is
1179 	 * like in wake_up_bit() where clearing a bit has to be
1180 	 * ordered with the unlocked test.
1181 	 */
1182 	smp_mb();
1183 
1184 	if (waitqueue_active(&ctx->wait))
1185 		wake_up(&ctx->wait);
1186 }
1187 
1188 static inline void iocb_put(struct aio_kiocb *iocb)
1189 {
1190 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1191 		aio_complete(iocb);
1192 		iocb_destroy(iocb);
1193 	}
1194 }
1195 
1196 /* aio_read_events_ring
1197  *	Pull an event off of the ioctx's event ring.  Returns the number of
1198  *	events fetched
1199  */
1200 static long aio_read_events_ring(struct kioctx *ctx,
1201 				 struct io_event __user *event, long nr)
1202 {
1203 	struct aio_ring *ring;
1204 	unsigned head, tail, pos;
1205 	long ret = 0;
1206 	int copy_ret;
1207 
1208 	/*
1209 	 * The mutex can block and wake us up and that will cause
1210 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1211 	 * and repeat. This should be rare enough that it doesn't cause
1212 	 * peformance issues. See the comment in read_events() for more detail.
1213 	 */
1214 	sched_annotate_sleep();
1215 	mutex_lock(&ctx->ring_lock);
1216 
1217 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1218 	ring = kmap_atomic(ctx->ring_pages[0]);
1219 	head = ring->head;
1220 	tail = ring->tail;
1221 	kunmap_atomic(ring);
1222 
1223 	/*
1224 	 * Ensure that once we've read the current tail pointer, that
1225 	 * we also see the events that were stored up to the tail.
1226 	 */
1227 	smp_rmb();
1228 
1229 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1230 
1231 	if (head == tail)
1232 		goto out;
1233 
1234 	head %= ctx->nr_events;
1235 	tail %= ctx->nr_events;
1236 
1237 	while (ret < nr) {
1238 		long avail;
1239 		struct io_event *ev;
1240 		struct page *page;
1241 
1242 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1243 		if (head == tail)
1244 			break;
1245 
1246 		pos = head + AIO_EVENTS_OFFSET;
1247 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1248 		pos %= AIO_EVENTS_PER_PAGE;
1249 
1250 		avail = min(avail, nr - ret);
1251 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1252 
1253 		ev = kmap(page);
1254 		copy_ret = copy_to_user(event + ret, ev + pos,
1255 					sizeof(*ev) * avail);
1256 		kunmap(page);
1257 
1258 		if (unlikely(copy_ret)) {
1259 			ret = -EFAULT;
1260 			goto out;
1261 		}
1262 
1263 		ret += avail;
1264 		head += avail;
1265 		head %= ctx->nr_events;
1266 	}
1267 
1268 	ring = kmap_atomic(ctx->ring_pages[0]);
1269 	ring->head = head;
1270 	kunmap_atomic(ring);
1271 	flush_dcache_page(ctx->ring_pages[0]);
1272 
1273 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1274 out:
1275 	mutex_unlock(&ctx->ring_lock);
1276 
1277 	return ret;
1278 }
1279 
1280 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1281 			    struct io_event __user *event, long *i)
1282 {
1283 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1284 
1285 	if (ret > 0)
1286 		*i += ret;
1287 
1288 	if (unlikely(atomic_read(&ctx->dead)))
1289 		ret = -EINVAL;
1290 
1291 	if (!*i)
1292 		*i = ret;
1293 
1294 	return ret < 0 || *i >= min_nr;
1295 }
1296 
1297 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1298 			struct io_event __user *event,
1299 			ktime_t until)
1300 {
1301 	long ret = 0;
1302 
1303 	/*
1304 	 * Note that aio_read_events() is being called as the conditional - i.e.
1305 	 * we're calling it after prepare_to_wait() has set task state to
1306 	 * TASK_INTERRUPTIBLE.
1307 	 *
1308 	 * But aio_read_events() can block, and if it blocks it's going to flip
1309 	 * the task state back to TASK_RUNNING.
1310 	 *
1311 	 * This should be ok, provided it doesn't flip the state back to
1312 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1313 	 * will only happen if the mutex_lock() call blocks, and we then find
1314 	 * the ringbuffer empty. So in practice we should be ok, but it's
1315 	 * something to be aware of when touching this code.
1316 	 */
1317 	if (until == 0)
1318 		aio_read_events(ctx, min_nr, nr, event, &ret);
1319 	else
1320 		wait_event_interruptible_hrtimeout(ctx->wait,
1321 				aio_read_events(ctx, min_nr, nr, event, &ret),
1322 				until);
1323 	return ret;
1324 }
1325 
1326 /* sys_io_setup:
1327  *	Create an aio_context capable of receiving at least nr_events.
1328  *	ctxp must not point to an aio_context that already exists, and
1329  *	must be initialized to 0 prior to the call.  On successful
1330  *	creation of the aio_context, *ctxp is filled in with the resulting
1331  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1332  *	if the specified nr_events exceeds internal limits.  May fail
1333  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1334  *	of available events.  May fail with -ENOMEM if insufficient kernel
1335  *	resources are available.  May fail with -EFAULT if an invalid
1336  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1337  *	implemented.
1338  */
1339 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1340 {
1341 	struct kioctx *ioctx = NULL;
1342 	unsigned long ctx;
1343 	long ret;
1344 
1345 	ret = get_user(ctx, ctxp);
1346 	if (unlikely(ret))
1347 		goto out;
1348 
1349 	ret = -EINVAL;
1350 	if (unlikely(ctx || nr_events == 0)) {
1351 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1352 		         ctx, nr_events);
1353 		goto out;
1354 	}
1355 
1356 	ioctx = ioctx_alloc(nr_events);
1357 	ret = PTR_ERR(ioctx);
1358 	if (!IS_ERR(ioctx)) {
1359 		ret = put_user(ioctx->user_id, ctxp);
1360 		if (ret)
1361 			kill_ioctx(current->mm, ioctx, NULL);
1362 		percpu_ref_put(&ioctx->users);
1363 	}
1364 
1365 out:
1366 	return ret;
1367 }
1368 
1369 #ifdef CONFIG_COMPAT
1370 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1371 {
1372 	struct kioctx *ioctx = NULL;
1373 	unsigned long ctx;
1374 	long ret;
1375 
1376 	ret = get_user(ctx, ctx32p);
1377 	if (unlikely(ret))
1378 		goto out;
1379 
1380 	ret = -EINVAL;
1381 	if (unlikely(ctx || nr_events == 0)) {
1382 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1383 		         ctx, nr_events);
1384 		goto out;
1385 	}
1386 
1387 	ioctx = ioctx_alloc(nr_events);
1388 	ret = PTR_ERR(ioctx);
1389 	if (!IS_ERR(ioctx)) {
1390 		/* truncating is ok because it's a user address */
1391 		ret = put_user((u32)ioctx->user_id, ctx32p);
1392 		if (ret)
1393 			kill_ioctx(current->mm, ioctx, NULL);
1394 		percpu_ref_put(&ioctx->users);
1395 	}
1396 
1397 out:
1398 	return ret;
1399 }
1400 #endif
1401 
1402 /* sys_io_destroy:
1403  *	Destroy the aio_context specified.  May cancel any outstanding
1404  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1405  *	implemented.  May fail with -EINVAL if the context pointed to
1406  *	is invalid.
1407  */
1408 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1409 {
1410 	struct kioctx *ioctx = lookup_ioctx(ctx);
1411 	if (likely(NULL != ioctx)) {
1412 		struct ctx_rq_wait wait;
1413 		int ret;
1414 
1415 		init_completion(&wait.comp);
1416 		atomic_set(&wait.count, 1);
1417 
1418 		/* Pass requests_done to kill_ioctx() where it can be set
1419 		 * in a thread-safe way. If we try to set it here then we have
1420 		 * a race condition if two io_destroy() called simultaneously.
1421 		 */
1422 		ret = kill_ioctx(current->mm, ioctx, &wait);
1423 		percpu_ref_put(&ioctx->users);
1424 
1425 		/* Wait until all IO for the context are done. Otherwise kernel
1426 		 * keep using user-space buffers even if user thinks the context
1427 		 * is destroyed.
1428 		 */
1429 		if (!ret)
1430 			wait_for_completion(&wait.comp);
1431 
1432 		return ret;
1433 	}
1434 	pr_debug("EINVAL: invalid context id\n");
1435 	return -EINVAL;
1436 }
1437 
1438 static void aio_remove_iocb(struct aio_kiocb *iocb)
1439 {
1440 	struct kioctx *ctx = iocb->ki_ctx;
1441 	unsigned long flags;
1442 
1443 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1444 	list_del(&iocb->ki_list);
1445 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1446 }
1447 
1448 static void aio_complete_rw(struct kiocb *kiocb, long res)
1449 {
1450 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1451 
1452 	if (!list_empty_careful(&iocb->ki_list))
1453 		aio_remove_iocb(iocb);
1454 
1455 	if (kiocb->ki_flags & IOCB_WRITE) {
1456 		struct inode *inode = file_inode(kiocb->ki_filp);
1457 
1458 		/*
1459 		 * Tell lockdep we inherited freeze protection from submission
1460 		 * thread.
1461 		 */
1462 		if (S_ISREG(inode->i_mode))
1463 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1464 		file_end_write(kiocb->ki_filp);
1465 	}
1466 
1467 	iocb->ki_res.res = res;
1468 	iocb->ki_res.res2 = 0;
1469 	iocb_put(iocb);
1470 }
1471 
1472 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1473 {
1474 	int ret;
1475 
1476 	req->ki_complete = aio_complete_rw;
1477 	req->private = NULL;
1478 	req->ki_pos = iocb->aio_offset;
1479 	req->ki_flags = req->ki_filp->f_iocb_flags;
1480 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1481 		req->ki_flags |= IOCB_EVENTFD;
1482 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1483 		/*
1484 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1485 		 * aio_reqprio is interpreted as an I/O scheduling
1486 		 * class and priority.
1487 		 */
1488 		ret = ioprio_check_cap(iocb->aio_reqprio);
1489 		if (ret) {
1490 			pr_debug("aio ioprio check cap error: %d\n", ret);
1491 			return ret;
1492 		}
1493 
1494 		req->ki_ioprio = iocb->aio_reqprio;
1495 	} else
1496 		req->ki_ioprio = get_current_ioprio();
1497 
1498 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1499 	if (unlikely(ret))
1500 		return ret;
1501 
1502 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1503 	return 0;
1504 }
1505 
1506 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1507 		struct iovec **iovec, bool vectored, bool compat,
1508 		struct iov_iter *iter)
1509 {
1510 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1511 	size_t len = iocb->aio_nbytes;
1512 
1513 	if (!vectored) {
1514 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1515 		*iovec = NULL;
1516 		return ret;
1517 	}
1518 
1519 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1520 }
1521 
1522 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1523 {
1524 	switch (ret) {
1525 	case -EIOCBQUEUED:
1526 		break;
1527 	case -ERESTARTSYS:
1528 	case -ERESTARTNOINTR:
1529 	case -ERESTARTNOHAND:
1530 	case -ERESTART_RESTARTBLOCK:
1531 		/*
1532 		 * There's no easy way to restart the syscall since other AIO's
1533 		 * may be already running. Just fail this IO with EINTR.
1534 		 */
1535 		ret = -EINTR;
1536 		fallthrough;
1537 	default:
1538 		req->ki_complete(req, ret);
1539 	}
1540 }
1541 
1542 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1543 			bool vectored, bool compat)
1544 {
1545 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1546 	struct iov_iter iter;
1547 	struct file *file;
1548 	int ret;
1549 
1550 	ret = aio_prep_rw(req, iocb);
1551 	if (ret)
1552 		return ret;
1553 	file = req->ki_filp;
1554 	if (unlikely(!(file->f_mode & FMODE_READ)))
1555 		return -EBADF;
1556 	if (unlikely(!file->f_op->read_iter))
1557 		return -EINVAL;
1558 
1559 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1560 	if (ret < 0)
1561 		return ret;
1562 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1563 	if (!ret)
1564 		aio_rw_done(req, call_read_iter(file, req, &iter));
1565 	kfree(iovec);
1566 	return ret;
1567 }
1568 
1569 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1570 			 bool vectored, bool compat)
1571 {
1572 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1573 	struct iov_iter iter;
1574 	struct file *file;
1575 	int ret;
1576 
1577 	ret = aio_prep_rw(req, iocb);
1578 	if (ret)
1579 		return ret;
1580 	file = req->ki_filp;
1581 
1582 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1583 		return -EBADF;
1584 	if (unlikely(!file->f_op->write_iter))
1585 		return -EINVAL;
1586 
1587 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1588 	if (ret < 0)
1589 		return ret;
1590 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1591 	if (!ret) {
1592 		/*
1593 		 * Open-code file_start_write here to grab freeze protection,
1594 		 * which will be released by another thread in
1595 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1596 		 * released so that it doesn't complain about the held lock when
1597 		 * we return to userspace.
1598 		 */
1599 		if (S_ISREG(file_inode(file)->i_mode)) {
1600 			sb_start_write(file_inode(file)->i_sb);
1601 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1602 		}
1603 		req->ki_flags |= IOCB_WRITE;
1604 		aio_rw_done(req, call_write_iter(file, req, &iter));
1605 	}
1606 	kfree(iovec);
1607 	return ret;
1608 }
1609 
1610 static void aio_fsync_work(struct work_struct *work)
1611 {
1612 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1613 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1614 
1615 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1616 	revert_creds(old_cred);
1617 	put_cred(iocb->fsync.creds);
1618 	iocb_put(iocb);
1619 }
1620 
1621 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1622 		     bool datasync)
1623 {
1624 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1625 			iocb->aio_rw_flags))
1626 		return -EINVAL;
1627 
1628 	if (unlikely(!req->file->f_op->fsync))
1629 		return -EINVAL;
1630 
1631 	req->creds = prepare_creds();
1632 	if (!req->creds)
1633 		return -ENOMEM;
1634 
1635 	req->datasync = datasync;
1636 	INIT_WORK(&req->work, aio_fsync_work);
1637 	schedule_work(&req->work);
1638 	return 0;
1639 }
1640 
1641 static void aio_poll_put_work(struct work_struct *work)
1642 {
1643 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1644 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1645 
1646 	iocb_put(iocb);
1647 }
1648 
1649 /*
1650  * Safely lock the waitqueue which the request is on, synchronizing with the
1651  * case where the ->poll() provider decides to free its waitqueue early.
1652  *
1653  * Returns true on success, meaning that req->head->lock was locked, req->wait
1654  * is on req->head, and an RCU read lock was taken.  Returns false if the
1655  * request was already removed from its waitqueue (which might no longer exist).
1656  */
1657 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1658 {
1659 	wait_queue_head_t *head;
1660 
1661 	/*
1662 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1663 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1664 	 * lock in the first place can race with the waitqueue being freed.
1665 	 *
1666 	 * We solve this as eventpoll does: by taking advantage of the fact that
1667 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1668 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1669 	 * non-NULL, we can then lock it without the memory being freed out from
1670 	 * under us, then check whether the request is still on the queue.
1671 	 *
1672 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1673 	 * case the caller deletes the entry from the queue, leaving it empty.
1674 	 * In that case, only RCU prevents the queue memory from being freed.
1675 	 */
1676 	rcu_read_lock();
1677 	head = smp_load_acquire(&req->head);
1678 	if (head) {
1679 		spin_lock(&head->lock);
1680 		if (!list_empty(&req->wait.entry))
1681 			return true;
1682 		spin_unlock(&head->lock);
1683 	}
1684 	rcu_read_unlock();
1685 	return false;
1686 }
1687 
1688 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1689 {
1690 	spin_unlock(&req->head->lock);
1691 	rcu_read_unlock();
1692 }
1693 
1694 static void aio_poll_complete_work(struct work_struct *work)
1695 {
1696 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1697 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1698 	struct poll_table_struct pt = { ._key = req->events };
1699 	struct kioctx *ctx = iocb->ki_ctx;
1700 	__poll_t mask = 0;
1701 
1702 	if (!READ_ONCE(req->cancelled))
1703 		mask = vfs_poll(req->file, &pt) & req->events;
1704 
1705 	/*
1706 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1707 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1708 	 * synchronize with them.  In the cancellation case the list_del_init
1709 	 * itself is not actually needed, but harmless so we keep it in to
1710 	 * avoid further branches in the fast path.
1711 	 */
1712 	spin_lock_irq(&ctx->ctx_lock);
1713 	if (poll_iocb_lock_wq(req)) {
1714 		if (!mask && !READ_ONCE(req->cancelled)) {
1715 			/*
1716 			 * The request isn't actually ready to be completed yet.
1717 			 * Reschedule completion if another wakeup came in.
1718 			 */
1719 			if (req->work_need_resched) {
1720 				schedule_work(&req->work);
1721 				req->work_need_resched = false;
1722 			} else {
1723 				req->work_scheduled = false;
1724 			}
1725 			poll_iocb_unlock_wq(req);
1726 			spin_unlock_irq(&ctx->ctx_lock);
1727 			return;
1728 		}
1729 		list_del_init(&req->wait.entry);
1730 		poll_iocb_unlock_wq(req);
1731 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1732 	list_del_init(&iocb->ki_list);
1733 	iocb->ki_res.res = mangle_poll(mask);
1734 	spin_unlock_irq(&ctx->ctx_lock);
1735 
1736 	iocb_put(iocb);
1737 }
1738 
1739 /* assumes we are called with irqs disabled */
1740 static int aio_poll_cancel(struct kiocb *iocb)
1741 {
1742 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1743 	struct poll_iocb *req = &aiocb->poll;
1744 
1745 	if (poll_iocb_lock_wq(req)) {
1746 		WRITE_ONCE(req->cancelled, true);
1747 		if (!req->work_scheduled) {
1748 			schedule_work(&aiocb->poll.work);
1749 			req->work_scheduled = true;
1750 		}
1751 		poll_iocb_unlock_wq(req);
1752 	} /* else, the request was force-cancelled by POLLFREE already */
1753 
1754 	return 0;
1755 }
1756 
1757 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1758 		void *key)
1759 {
1760 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1761 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1762 	__poll_t mask = key_to_poll(key);
1763 	unsigned long flags;
1764 
1765 	/* for instances that support it check for an event match first: */
1766 	if (mask && !(mask & req->events))
1767 		return 0;
1768 
1769 	/*
1770 	 * Complete the request inline if possible.  This requires that three
1771 	 * conditions be met:
1772 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1773 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1774 	 *	the events, so inline completion isn't possible.
1775 	 *   2. The completion work must not have already been scheduled.
1776 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1777 	 *	already hold the waitqueue lock, so this inverts the normal
1778 	 *	locking order.  Use irqsave/irqrestore because not all
1779 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1780 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1781 	 */
1782 	if (mask && !req->work_scheduled &&
1783 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1784 		struct kioctx *ctx = iocb->ki_ctx;
1785 
1786 		list_del_init(&req->wait.entry);
1787 		list_del(&iocb->ki_list);
1788 		iocb->ki_res.res = mangle_poll(mask);
1789 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1790 			iocb = NULL;
1791 			INIT_WORK(&req->work, aio_poll_put_work);
1792 			schedule_work(&req->work);
1793 		}
1794 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1795 		if (iocb)
1796 			iocb_put(iocb);
1797 	} else {
1798 		/*
1799 		 * Schedule the completion work if needed.  If it was already
1800 		 * scheduled, record that another wakeup came in.
1801 		 *
1802 		 * Don't remove the request from the waitqueue here, as it might
1803 		 * not actually be complete yet (we won't know until vfs_poll()
1804 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1805 		 * exception to this; see below.
1806 		 */
1807 		if (req->work_scheduled) {
1808 			req->work_need_resched = true;
1809 		} else {
1810 			schedule_work(&req->work);
1811 			req->work_scheduled = true;
1812 		}
1813 
1814 		/*
1815 		 * If the waitqueue is being freed early but we can't complete
1816 		 * the request inline, we have to tear down the request as best
1817 		 * we can.  That means immediately removing the request from its
1818 		 * waitqueue and preventing all further accesses to the
1819 		 * waitqueue via the request.  We also need to schedule the
1820 		 * completion work (done above).  Also mark the request as
1821 		 * cancelled, to potentially skip an unneeded call to ->poll().
1822 		 */
1823 		if (mask & POLLFREE) {
1824 			WRITE_ONCE(req->cancelled, true);
1825 			list_del_init(&req->wait.entry);
1826 
1827 			/*
1828 			 * Careful: this *must* be the last step, since as soon
1829 			 * as req->head is NULL'ed out, the request can be
1830 			 * completed and freed, since aio_poll_complete_work()
1831 			 * will no longer need to take the waitqueue lock.
1832 			 */
1833 			smp_store_release(&req->head, NULL);
1834 		}
1835 	}
1836 	return 1;
1837 }
1838 
1839 struct aio_poll_table {
1840 	struct poll_table_struct	pt;
1841 	struct aio_kiocb		*iocb;
1842 	bool				queued;
1843 	int				error;
1844 };
1845 
1846 static void
1847 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1848 		struct poll_table_struct *p)
1849 {
1850 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1851 
1852 	/* multiple wait queues per file are not supported */
1853 	if (unlikely(pt->queued)) {
1854 		pt->error = -EINVAL;
1855 		return;
1856 	}
1857 
1858 	pt->queued = true;
1859 	pt->error = 0;
1860 	pt->iocb->poll.head = head;
1861 	add_wait_queue(head, &pt->iocb->poll.wait);
1862 }
1863 
1864 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1865 {
1866 	struct kioctx *ctx = aiocb->ki_ctx;
1867 	struct poll_iocb *req = &aiocb->poll;
1868 	struct aio_poll_table apt;
1869 	bool cancel = false;
1870 	__poll_t mask;
1871 
1872 	/* reject any unknown events outside the normal event mask. */
1873 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1874 		return -EINVAL;
1875 	/* reject fields that are not defined for poll */
1876 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1877 		return -EINVAL;
1878 
1879 	INIT_WORK(&req->work, aio_poll_complete_work);
1880 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1881 
1882 	req->head = NULL;
1883 	req->cancelled = false;
1884 	req->work_scheduled = false;
1885 	req->work_need_resched = false;
1886 
1887 	apt.pt._qproc = aio_poll_queue_proc;
1888 	apt.pt._key = req->events;
1889 	apt.iocb = aiocb;
1890 	apt.queued = false;
1891 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1892 
1893 	/* initialized the list so that we can do list_empty checks */
1894 	INIT_LIST_HEAD(&req->wait.entry);
1895 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1896 
1897 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1898 	spin_lock_irq(&ctx->ctx_lock);
1899 	if (likely(apt.queued)) {
1900 		bool on_queue = poll_iocb_lock_wq(req);
1901 
1902 		if (!on_queue || req->work_scheduled) {
1903 			/*
1904 			 * aio_poll_wake() already either scheduled the async
1905 			 * completion work, or completed the request inline.
1906 			 */
1907 			if (apt.error) /* unsupported case: multiple queues */
1908 				cancel = true;
1909 			apt.error = 0;
1910 			mask = 0;
1911 		}
1912 		if (mask || apt.error) {
1913 			/* Steal to complete synchronously. */
1914 			list_del_init(&req->wait.entry);
1915 		} else if (cancel) {
1916 			/* Cancel if possible (may be too late though). */
1917 			WRITE_ONCE(req->cancelled, true);
1918 		} else if (on_queue) {
1919 			/*
1920 			 * Actually waiting for an event, so add the request to
1921 			 * active_reqs so that it can be cancelled if needed.
1922 			 */
1923 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1924 			aiocb->ki_cancel = aio_poll_cancel;
1925 		}
1926 		if (on_queue)
1927 			poll_iocb_unlock_wq(req);
1928 	}
1929 	if (mask) { /* no async, we'd stolen it */
1930 		aiocb->ki_res.res = mangle_poll(mask);
1931 		apt.error = 0;
1932 	}
1933 	spin_unlock_irq(&ctx->ctx_lock);
1934 	if (mask)
1935 		iocb_put(aiocb);
1936 	return apt.error;
1937 }
1938 
1939 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1940 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1941 			   bool compat)
1942 {
1943 	req->ki_filp = fget(iocb->aio_fildes);
1944 	if (unlikely(!req->ki_filp))
1945 		return -EBADF;
1946 
1947 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1948 		struct eventfd_ctx *eventfd;
1949 		/*
1950 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1951 		 * instance of the file* now. The file descriptor must be
1952 		 * an eventfd() fd, and will be signaled for each completed
1953 		 * event using the eventfd_signal() function.
1954 		 */
1955 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1956 		if (IS_ERR(eventfd))
1957 			return PTR_ERR(eventfd);
1958 
1959 		req->ki_eventfd = eventfd;
1960 	}
1961 
1962 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1963 		pr_debug("EFAULT: aio_key\n");
1964 		return -EFAULT;
1965 	}
1966 
1967 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1968 	req->ki_res.data = iocb->aio_data;
1969 	req->ki_res.res = 0;
1970 	req->ki_res.res2 = 0;
1971 
1972 	switch (iocb->aio_lio_opcode) {
1973 	case IOCB_CMD_PREAD:
1974 		return aio_read(&req->rw, iocb, false, compat);
1975 	case IOCB_CMD_PWRITE:
1976 		return aio_write(&req->rw, iocb, false, compat);
1977 	case IOCB_CMD_PREADV:
1978 		return aio_read(&req->rw, iocb, true, compat);
1979 	case IOCB_CMD_PWRITEV:
1980 		return aio_write(&req->rw, iocb, true, compat);
1981 	case IOCB_CMD_FSYNC:
1982 		return aio_fsync(&req->fsync, iocb, false);
1983 	case IOCB_CMD_FDSYNC:
1984 		return aio_fsync(&req->fsync, iocb, true);
1985 	case IOCB_CMD_POLL:
1986 		return aio_poll(req, iocb);
1987 	default:
1988 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1989 		return -EINVAL;
1990 	}
1991 }
1992 
1993 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1994 			 bool compat)
1995 {
1996 	struct aio_kiocb *req;
1997 	struct iocb iocb;
1998 	int err;
1999 
2000 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2001 		return -EFAULT;
2002 
2003 	/* enforce forwards compatibility on users */
2004 	if (unlikely(iocb.aio_reserved2)) {
2005 		pr_debug("EINVAL: reserve field set\n");
2006 		return -EINVAL;
2007 	}
2008 
2009 	/* prevent overflows */
2010 	if (unlikely(
2011 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2012 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2013 	    ((ssize_t)iocb.aio_nbytes < 0)
2014 	   )) {
2015 		pr_debug("EINVAL: overflow check\n");
2016 		return -EINVAL;
2017 	}
2018 
2019 	req = aio_get_req(ctx);
2020 	if (unlikely(!req))
2021 		return -EAGAIN;
2022 
2023 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2024 
2025 	/* Done with the synchronous reference */
2026 	iocb_put(req);
2027 
2028 	/*
2029 	 * If err is 0, we'd either done aio_complete() ourselves or have
2030 	 * arranged for that to be done asynchronously.  Anything non-zero
2031 	 * means that we need to destroy req ourselves.
2032 	 */
2033 	if (unlikely(err)) {
2034 		iocb_destroy(req);
2035 		put_reqs_available(ctx, 1);
2036 	}
2037 	return err;
2038 }
2039 
2040 /* sys_io_submit:
2041  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2042  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2043  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2044  *	*iocbpp[0] is not properly initialized, if the operation specified
2045  *	is invalid for the file descriptor in the iocb.  May fail with
2046  *	-EFAULT if any of the data structures point to invalid data.  May
2047  *	fail with -EBADF if the file descriptor specified in the first
2048  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2049  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2050  *	fail with -ENOSYS if not implemented.
2051  */
2052 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2053 		struct iocb __user * __user *, iocbpp)
2054 {
2055 	struct kioctx *ctx;
2056 	long ret = 0;
2057 	int i = 0;
2058 	struct blk_plug plug;
2059 
2060 	if (unlikely(nr < 0))
2061 		return -EINVAL;
2062 
2063 	ctx = lookup_ioctx(ctx_id);
2064 	if (unlikely(!ctx)) {
2065 		pr_debug("EINVAL: invalid context id\n");
2066 		return -EINVAL;
2067 	}
2068 
2069 	if (nr > ctx->nr_events)
2070 		nr = ctx->nr_events;
2071 
2072 	if (nr > AIO_PLUG_THRESHOLD)
2073 		blk_start_plug(&plug);
2074 	for (i = 0; i < nr; i++) {
2075 		struct iocb __user *user_iocb;
2076 
2077 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2078 			ret = -EFAULT;
2079 			break;
2080 		}
2081 
2082 		ret = io_submit_one(ctx, user_iocb, false);
2083 		if (ret)
2084 			break;
2085 	}
2086 	if (nr > AIO_PLUG_THRESHOLD)
2087 		blk_finish_plug(&plug);
2088 
2089 	percpu_ref_put(&ctx->users);
2090 	return i ? i : ret;
2091 }
2092 
2093 #ifdef CONFIG_COMPAT
2094 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2095 		       int, nr, compat_uptr_t __user *, iocbpp)
2096 {
2097 	struct kioctx *ctx;
2098 	long ret = 0;
2099 	int i = 0;
2100 	struct blk_plug plug;
2101 
2102 	if (unlikely(nr < 0))
2103 		return -EINVAL;
2104 
2105 	ctx = lookup_ioctx(ctx_id);
2106 	if (unlikely(!ctx)) {
2107 		pr_debug("EINVAL: invalid context id\n");
2108 		return -EINVAL;
2109 	}
2110 
2111 	if (nr > ctx->nr_events)
2112 		nr = ctx->nr_events;
2113 
2114 	if (nr > AIO_PLUG_THRESHOLD)
2115 		blk_start_plug(&plug);
2116 	for (i = 0; i < nr; i++) {
2117 		compat_uptr_t user_iocb;
2118 
2119 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2120 			ret = -EFAULT;
2121 			break;
2122 		}
2123 
2124 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2125 		if (ret)
2126 			break;
2127 	}
2128 	if (nr > AIO_PLUG_THRESHOLD)
2129 		blk_finish_plug(&plug);
2130 
2131 	percpu_ref_put(&ctx->users);
2132 	return i ? i : ret;
2133 }
2134 #endif
2135 
2136 /* sys_io_cancel:
2137  *	Attempts to cancel an iocb previously passed to io_submit.  If
2138  *	the operation is successfully cancelled, the resulting event is
2139  *	copied into the memory pointed to by result without being placed
2140  *	into the completion queue and 0 is returned.  May fail with
2141  *	-EFAULT if any of the data structures pointed to are invalid.
2142  *	May fail with -EINVAL if aio_context specified by ctx_id is
2143  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2144  *	cancelled.  Will fail with -ENOSYS if not implemented.
2145  */
2146 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2147 		struct io_event __user *, result)
2148 {
2149 	struct kioctx *ctx;
2150 	struct aio_kiocb *kiocb;
2151 	int ret = -EINVAL;
2152 	u32 key;
2153 	u64 obj = (u64)(unsigned long)iocb;
2154 
2155 	if (unlikely(get_user(key, &iocb->aio_key)))
2156 		return -EFAULT;
2157 	if (unlikely(key != KIOCB_KEY))
2158 		return -EINVAL;
2159 
2160 	ctx = lookup_ioctx(ctx_id);
2161 	if (unlikely(!ctx))
2162 		return -EINVAL;
2163 
2164 	spin_lock_irq(&ctx->ctx_lock);
2165 	/* TODO: use a hash or array, this sucks. */
2166 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2167 		if (kiocb->ki_res.obj == obj) {
2168 			ret = kiocb->ki_cancel(&kiocb->rw);
2169 			list_del_init(&kiocb->ki_list);
2170 			break;
2171 		}
2172 	}
2173 	spin_unlock_irq(&ctx->ctx_lock);
2174 
2175 	if (!ret) {
2176 		/*
2177 		 * The result argument is no longer used - the io_event is
2178 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2179 		 * cancellation is progress:
2180 		 */
2181 		ret = -EINPROGRESS;
2182 	}
2183 
2184 	percpu_ref_put(&ctx->users);
2185 
2186 	return ret;
2187 }
2188 
2189 static long do_io_getevents(aio_context_t ctx_id,
2190 		long min_nr,
2191 		long nr,
2192 		struct io_event __user *events,
2193 		struct timespec64 *ts)
2194 {
2195 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2196 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2197 	long ret = -EINVAL;
2198 
2199 	if (likely(ioctx)) {
2200 		if (likely(min_nr <= nr && min_nr >= 0))
2201 			ret = read_events(ioctx, min_nr, nr, events, until);
2202 		percpu_ref_put(&ioctx->users);
2203 	}
2204 
2205 	return ret;
2206 }
2207 
2208 /* io_getevents:
2209  *	Attempts to read at least min_nr events and up to nr events from
2210  *	the completion queue for the aio_context specified by ctx_id. If
2211  *	it succeeds, the number of read events is returned. May fail with
2212  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2213  *	out of range, if timeout is out of range.  May fail with -EFAULT
2214  *	if any of the memory specified is invalid.  May return 0 or
2215  *	< min_nr if the timeout specified by timeout has elapsed
2216  *	before sufficient events are available, where timeout == NULL
2217  *	specifies an infinite timeout. Note that the timeout pointed to by
2218  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2219  */
2220 #ifdef CONFIG_64BIT
2221 
2222 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2223 		long, min_nr,
2224 		long, nr,
2225 		struct io_event __user *, events,
2226 		struct __kernel_timespec __user *, timeout)
2227 {
2228 	struct timespec64	ts;
2229 	int			ret;
2230 
2231 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2232 		return -EFAULT;
2233 
2234 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2235 	if (!ret && signal_pending(current))
2236 		ret = -EINTR;
2237 	return ret;
2238 }
2239 
2240 #endif
2241 
2242 struct __aio_sigset {
2243 	const sigset_t __user	*sigmask;
2244 	size_t		sigsetsize;
2245 };
2246 
2247 SYSCALL_DEFINE6(io_pgetevents,
2248 		aio_context_t, ctx_id,
2249 		long, min_nr,
2250 		long, nr,
2251 		struct io_event __user *, events,
2252 		struct __kernel_timespec __user *, timeout,
2253 		const struct __aio_sigset __user *, usig)
2254 {
2255 	struct __aio_sigset	ksig = { NULL, };
2256 	struct timespec64	ts;
2257 	bool interrupted;
2258 	int ret;
2259 
2260 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261 		return -EFAULT;
2262 
2263 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2264 		return -EFAULT;
2265 
2266 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2267 	if (ret)
2268 		return ret;
2269 
2270 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2271 
2272 	interrupted = signal_pending(current);
2273 	restore_saved_sigmask_unless(interrupted);
2274 	if (interrupted && !ret)
2275 		ret = -ERESTARTNOHAND;
2276 
2277 	return ret;
2278 }
2279 
2280 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2281 
2282 SYSCALL_DEFINE6(io_pgetevents_time32,
2283 		aio_context_t, ctx_id,
2284 		long, min_nr,
2285 		long, nr,
2286 		struct io_event __user *, events,
2287 		struct old_timespec32 __user *, timeout,
2288 		const struct __aio_sigset __user *, usig)
2289 {
2290 	struct __aio_sigset	ksig = { NULL, };
2291 	struct timespec64	ts;
2292 	bool interrupted;
2293 	int ret;
2294 
2295 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2296 		return -EFAULT;
2297 
2298 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299 		return -EFAULT;
2300 
2301 
2302 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2303 	if (ret)
2304 		return ret;
2305 
2306 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2307 
2308 	interrupted = signal_pending(current);
2309 	restore_saved_sigmask_unless(interrupted);
2310 	if (interrupted && !ret)
2311 		ret = -ERESTARTNOHAND;
2312 
2313 	return ret;
2314 }
2315 
2316 #endif
2317 
2318 #if defined(CONFIG_COMPAT_32BIT_TIME)
2319 
2320 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2321 		__s32, min_nr,
2322 		__s32, nr,
2323 		struct io_event __user *, events,
2324 		struct old_timespec32 __user *, timeout)
2325 {
2326 	struct timespec64 t;
2327 	int ret;
2328 
2329 	if (timeout && get_old_timespec32(&t, timeout))
2330 		return -EFAULT;
2331 
2332 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2333 	if (!ret && signal_pending(current))
2334 		ret = -EINTR;
2335 	return ret;
2336 }
2337 
2338 #endif
2339 
2340 #ifdef CONFIG_COMPAT
2341 
2342 struct __compat_aio_sigset {
2343 	compat_uptr_t		sigmask;
2344 	compat_size_t		sigsetsize;
2345 };
2346 
2347 #if defined(CONFIG_COMPAT_32BIT_TIME)
2348 
2349 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2350 		compat_aio_context_t, ctx_id,
2351 		compat_long_t, min_nr,
2352 		compat_long_t, nr,
2353 		struct io_event __user *, events,
2354 		struct old_timespec32 __user *, timeout,
2355 		const struct __compat_aio_sigset __user *, usig)
2356 {
2357 	struct __compat_aio_sigset ksig = { 0, };
2358 	struct timespec64 t;
2359 	bool interrupted;
2360 	int ret;
2361 
2362 	if (timeout && get_old_timespec32(&t, timeout))
2363 		return -EFAULT;
2364 
2365 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2366 		return -EFAULT;
2367 
2368 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2369 	if (ret)
2370 		return ret;
2371 
2372 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2373 
2374 	interrupted = signal_pending(current);
2375 	restore_saved_sigmask_unless(interrupted);
2376 	if (interrupted && !ret)
2377 		ret = -ERESTARTNOHAND;
2378 
2379 	return ret;
2380 }
2381 
2382 #endif
2383 
2384 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2385 		compat_aio_context_t, ctx_id,
2386 		compat_long_t, min_nr,
2387 		compat_long_t, nr,
2388 		struct io_event __user *, events,
2389 		struct __kernel_timespec __user *, timeout,
2390 		const struct __compat_aio_sigset __user *, usig)
2391 {
2392 	struct __compat_aio_sigset ksig = { 0, };
2393 	struct timespec64 t;
2394 	bool interrupted;
2395 	int ret;
2396 
2397 	if (timeout && get_timespec64(&t, timeout))
2398 		return -EFAULT;
2399 
2400 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401 		return -EFAULT;
2402 
2403 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2404 	if (ret)
2405 		return ret;
2406 
2407 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2408 
2409 	interrupted = signal_pending(current);
2410 	restore_saved_sigmask_unless(interrupted);
2411 	if (interrupted && !ret)
2412 		ret = -ERESTARTNOHAND;
2413 
2414 	return ret;
2415 }
2416 #endif
2417