1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[] __counted_by(nr); 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 {} 243 }; 244 245 static void __init aio_sysctl_init(void) 246 { 247 register_sysctl_init("fs", aio_sysctls); 248 } 249 #else 250 #define aio_sysctl_init() do { } while (0) 251 #endif 252 253 static struct kmem_cache *kiocb_cachep; 254 static struct kmem_cache *kioctx_cachep; 255 256 static struct vfsmount *aio_mnt; 257 258 static const struct file_operations aio_ring_fops; 259 static const struct address_space_operations aio_ctx_aops; 260 261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 262 { 263 struct file *file; 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 265 if (IS_ERR(inode)) 266 return ERR_CAST(inode); 267 268 inode->i_mapping->a_ops = &aio_ctx_aops; 269 inode->i_mapping->private_data = ctx; 270 inode->i_size = PAGE_SIZE * nr_pages; 271 272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 273 O_RDWR, &aio_ring_fops); 274 if (IS_ERR(file)) 275 iput(inode); 276 return file; 277 } 278 279 static int aio_init_fs_context(struct fs_context *fc) 280 { 281 if (!init_pseudo(fc, AIO_RING_MAGIC)) 282 return -ENOMEM; 283 fc->s_iflags |= SB_I_NOEXEC; 284 return 0; 285 } 286 287 /* aio_setup 288 * Creates the slab caches used by the aio routines, panic on 289 * failure as this is done early during the boot sequence. 290 */ 291 static int __init aio_setup(void) 292 { 293 static struct file_system_type aio_fs = { 294 .name = "aio", 295 .init_fs_context = aio_init_fs_context, 296 .kill_sb = kill_anon_super, 297 }; 298 aio_mnt = kern_mount(&aio_fs); 299 if (IS_ERR(aio_mnt)) 300 panic("Failed to create aio fs mount."); 301 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 304 aio_sysctl_init(); 305 return 0; 306 } 307 __initcall(aio_setup); 308 309 static void put_aio_ring_file(struct kioctx *ctx) 310 { 311 struct file *aio_ring_file = ctx->aio_ring_file; 312 struct address_space *i_mapping; 313 314 if (aio_ring_file) { 315 truncate_setsize(file_inode(aio_ring_file), 0); 316 317 /* Prevent further access to the kioctx from migratepages */ 318 i_mapping = aio_ring_file->f_mapping; 319 spin_lock(&i_mapping->private_lock); 320 i_mapping->private_data = NULL; 321 ctx->aio_ring_file = NULL; 322 spin_unlock(&i_mapping->private_lock); 323 324 fput(aio_ring_file); 325 } 326 } 327 328 static void aio_free_ring(struct kioctx *ctx) 329 { 330 int i; 331 332 /* Disconnect the kiotx from the ring file. This prevents future 333 * accesses to the kioctx from page migration. 334 */ 335 put_aio_ring_file(ctx); 336 337 for (i = 0; i < ctx->nr_pages; i++) { 338 struct page *page; 339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 340 page_count(ctx->ring_pages[i])); 341 page = ctx->ring_pages[i]; 342 if (!page) 343 continue; 344 ctx->ring_pages[i] = NULL; 345 put_page(page); 346 } 347 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 349 kfree(ctx->ring_pages); 350 ctx->ring_pages = NULL; 351 } 352 } 353 354 static int aio_ring_mremap(struct vm_area_struct *vma) 355 { 356 struct file *file = vma->vm_file; 357 struct mm_struct *mm = vma->vm_mm; 358 struct kioctx_table *table; 359 int i, res = -EINVAL; 360 361 spin_lock(&mm->ioctx_lock); 362 rcu_read_lock(); 363 table = rcu_dereference(mm->ioctx_table); 364 if (!table) 365 goto out_unlock; 366 367 for (i = 0; i < table->nr; i++) { 368 struct kioctx *ctx; 369 370 ctx = rcu_dereference(table->table[i]); 371 if (ctx && ctx->aio_ring_file == file) { 372 if (!atomic_read(&ctx->dead)) { 373 ctx->user_id = ctx->mmap_base = vma->vm_start; 374 res = 0; 375 } 376 break; 377 } 378 } 379 380 out_unlock: 381 rcu_read_unlock(); 382 spin_unlock(&mm->ioctx_lock); 383 return res; 384 } 385 386 static const struct vm_operations_struct aio_ring_vm_ops = { 387 .mremap = aio_ring_mremap, 388 #if IS_ENABLED(CONFIG_MMU) 389 .fault = filemap_fault, 390 .map_pages = filemap_map_pages, 391 .page_mkwrite = filemap_page_mkwrite, 392 #endif 393 }; 394 395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 396 { 397 vm_flags_set(vma, VM_DONTEXPAND); 398 vma->vm_ops = &aio_ring_vm_ops; 399 return 0; 400 } 401 402 static const struct file_operations aio_ring_fops = { 403 .mmap = aio_ring_mmap, 404 }; 405 406 #if IS_ENABLED(CONFIG_MIGRATION) 407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 408 struct folio *src, enum migrate_mode mode) 409 { 410 struct kioctx *ctx; 411 unsigned long flags; 412 pgoff_t idx; 413 int rc; 414 415 /* 416 * We cannot support the _NO_COPY case here, because copy needs to 417 * happen under the ctx->completion_lock. That does not work with the 418 * migration workflow of MIGRATE_SYNC_NO_COPY. 419 */ 420 if (mode == MIGRATE_SYNC_NO_COPY) 421 return -EINVAL; 422 423 rc = 0; 424 425 /* mapping->private_lock here protects against the kioctx teardown. */ 426 spin_lock(&mapping->private_lock); 427 ctx = mapping->private_data; 428 if (!ctx) { 429 rc = -EINVAL; 430 goto out; 431 } 432 433 /* The ring_lock mutex. The prevents aio_read_events() from writing 434 * to the ring's head, and prevents page migration from mucking in 435 * a partially initialized kiotx. 436 */ 437 if (!mutex_trylock(&ctx->ring_lock)) { 438 rc = -EAGAIN; 439 goto out; 440 } 441 442 idx = src->index; 443 if (idx < (pgoff_t)ctx->nr_pages) { 444 /* Make sure the old folio hasn't already been changed */ 445 if (ctx->ring_pages[idx] != &src->page) 446 rc = -EAGAIN; 447 } else 448 rc = -EINVAL; 449 450 if (rc != 0) 451 goto out_unlock; 452 453 /* Writeback must be complete */ 454 BUG_ON(folio_test_writeback(src)); 455 folio_get(dst); 456 457 rc = folio_migrate_mapping(mapping, dst, src, 1); 458 if (rc != MIGRATEPAGE_SUCCESS) { 459 folio_put(dst); 460 goto out_unlock; 461 } 462 463 /* Take completion_lock to prevent other writes to the ring buffer 464 * while the old folio is copied to the new. This prevents new 465 * events from being lost. 466 */ 467 spin_lock_irqsave(&ctx->completion_lock, flags); 468 folio_migrate_copy(dst, src); 469 BUG_ON(ctx->ring_pages[idx] != &src->page); 470 ctx->ring_pages[idx] = &dst->page; 471 spin_unlock_irqrestore(&ctx->completion_lock, flags); 472 473 /* The old folio is no longer accessible. */ 474 folio_put(src); 475 476 out_unlock: 477 mutex_unlock(&ctx->ring_lock); 478 out: 479 spin_unlock(&mapping->private_lock); 480 return rc; 481 } 482 #else 483 #define aio_migrate_folio NULL 484 #endif 485 486 static const struct address_space_operations aio_ctx_aops = { 487 .dirty_folio = noop_dirty_folio, 488 .migrate_folio = aio_migrate_folio, 489 }; 490 491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 492 { 493 struct aio_ring *ring; 494 struct mm_struct *mm = current->mm; 495 unsigned long size, unused; 496 int nr_pages; 497 int i; 498 struct file *file; 499 500 /* Compensate for the ring buffer's head/tail overlap entry */ 501 nr_events += 2; /* 1 is required, 2 for good luck */ 502 503 size = sizeof(struct aio_ring); 504 size += sizeof(struct io_event) * nr_events; 505 506 nr_pages = PFN_UP(size); 507 if (nr_pages < 0) 508 return -EINVAL; 509 510 file = aio_private_file(ctx, nr_pages); 511 if (IS_ERR(file)) { 512 ctx->aio_ring_file = NULL; 513 return -ENOMEM; 514 } 515 516 ctx->aio_ring_file = file; 517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 518 / sizeof(struct io_event); 519 520 ctx->ring_pages = ctx->internal_pages; 521 if (nr_pages > AIO_RING_PAGES) { 522 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 523 GFP_KERNEL); 524 if (!ctx->ring_pages) { 525 put_aio_ring_file(ctx); 526 return -ENOMEM; 527 } 528 } 529 530 for (i = 0; i < nr_pages; i++) { 531 struct page *page; 532 page = find_or_create_page(file->f_mapping, 533 i, GFP_USER | __GFP_ZERO); 534 if (!page) 535 break; 536 pr_debug("pid(%d) page[%d]->count=%d\n", 537 current->pid, i, page_count(page)); 538 SetPageUptodate(page); 539 unlock_page(page); 540 541 ctx->ring_pages[i] = page; 542 } 543 ctx->nr_pages = i; 544 545 if (unlikely(i != nr_pages)) { 546 aio_free_ring(ctx); 547 return -ENOMEM; 548 } 549 550 ctx->mmap_size = nr_pages * PAGE_SIZE; 551 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 552 553 if (mmap_write_lock_killable(mm)) { 554 ctx->mmap_size = 0; 555 aio_free_ring(ctx); 556 return -EINTR; 557 } 558 559 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 560 PROT_READ | PROT_WRITE, 561 MAP_SHARED, 0, 0, &unused, NULL); 562 mmap_write_unlock(mm); 563 if (IS_ERR((void *)ctx->mmap_base)) { 564 ctx->mmap_size = 0; 565 aio_free_ring(ctx); 566 return -ENOMEM; 567 } 568 569 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 570 571 ctx->user_id = ctx->mmap_base; 572 ctx->nr_events = nr_events; /* trusted copy */ 573 574 ring = page_address(ctx->ring_pages[0]); 575 ring->nr = nr_events; /* user copy */ 576 ring->id = ~0U; 577 ring->head = ring->tail = 0; 578 ring->magic = AIO_RING_MAGIC; 579 ring->compat_features = AIO_RING_COMPAT_FEATURES; 580 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 581 ring->header_length = sizeof(struct aio_ring); 582 flush_dcache_page(ctx->ring_pages[0]); 583 584 return 0; 585 } 586 587 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 588 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 589 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 590 591 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 592 { 593 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 594 struct kioctx *ctx = req->ki_ctx; 595 unsigned long flags; 596 597 /* 598 * kiocb didn't come from aio or is neither a read nor a write, hence 599 * ignore it. 600 */ 601 if (!(iocb->ki_flags & IOCB_AIO_RW)) 602 return; 603 604 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 605 return; 606 607 spin_lock_irqsave(&ctx->ctx_lock, flags); 608 list_add_tail(&req->ki_list, &ctx->active_reqs); 609 req->ki_cancel = cancel; 610 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 611 } 612 EXPORT_SYMBOL(kiocb_set_cancel_fn); 613 614 /* 615 * free_ioctx() should be RCU delayed to synchronize against the RCU 616 * protected lookup_ioctx() and also needs process context to call 617 * aio_free_ring(). Use rcu_work. 618 */ 619 static void free_ioctx(struct work_struct *work) 620 { 621 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 622 free_rwork); 623 pr_debug("freeing %p\n", ctx); 624 625 aio_free_ring(ctx); 626 free_percpu(ctx->cpu); 627 percpu_ref_exit(&ctx->reqs); 628 percpu_ref_exit(&ctx->users); 629 kmem_cache_free(kioctx_cachep, ctx); 630 } 631 632 static void free_ioctx_reqs(struct percpu_ref *ref) 633 { 634 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 635 636 /* At this point we know that there are no any in-flight requests */ 637 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 638 complete(&ctx->rq_wait->comp); 639 640 /* Synchronize against RCU protected table->table[] dereferences */ 641 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 642 queue_rcu_work(system_wq, &ctx->free_rwork); 643 } 644 645 /* 646 * When this function runs, the kioctx has been removed from the "hash table" 647 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 648 * now it's safe to cancel any that need to be. 649 */ 650 static void free_ioctx_users(struct percpu_ref *ref) 651 { 652 struct kioctx *ctx = container_of(ref, struct kioctx, users); 653 struct aio_kiocb *req; 654 655 spin_lock_irq(&ctx->ctx_lock); 656 657 while (!list_empty(&ctx->active_reqs)) { 658 req = list_first_entry(&ctx->active_reqs, 659 struct aio_kiocb, ki_list); 660 req->ki_cancel(&req->rw); 661 list_del_init(&req->ki_list); 662 } 663 664 spin_unlock_irq(&ctx->ctx_lock); 665 666 percpu_ref_kill(&ctx->reqs); 667 percpu_ref_put(&ctx->reqs); 668 } 669 670 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 671 { 672 unsigned i, new_nr; 673 struct kioctx_table *table, *old; 674 struct aio_ring *ring; 675 676 spin_lock(&mm->ioctx_lock); 677 table = rcu_dereference_raw(mm->ioctx_table); 678 679 while (1) { 680 if (table) 681 for (i = 0; i < table->nr; i++) 682 if (!rcu_access_pointer(table->table[i])) { 683 ctx->id = i; 684 rcu_assign_pointer(table->table[i], ctx); 685 spin_unlock(&mm->ioctx_lock); 686 687 /* While kioctx setup is in progress, 688 * we are protected from page migration 689 * changes ring_pages by ->ring_lock. 690 */ 691 ring = page_address(ctx->ring_pages[0]); 692 ring->id = ctx->id; 693 return 0; 694 } 695 696 new_nr = (table ? table->nr : 1) * 4; 697 spin_unlock(&mm->ioctx_lock); 698 699 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 700 if (!table) 701 return -ENOMEM; 702 703 table->nr = new_nr; 704 705 spin_lock(&mm->ioctx_lock); 706 old = rcu_dereference_raw(mm->ioctx_table); 707 708 if (!old) { 709 rcu_assign_pointer(mm->ioctx_table, table); 710 } else if (table->nr > old->nr) { 711 memcpy(table->table, old->table, 712 old->nr * sizeof(struct kioctx *)); 713 714 rcu_assign_pointer(mm->ioctx_table, table); 715 kfree_rcu(old, rcu); 716 } else { 717 kfree(table); 718 table = old; 719 } 720 } 721 } 722 723 static void aio_nr_sub(unsigned nr) 724 { 725 spin_lock(&aio_nr_lock); 726 if (WARN_ON(aio_nr - nr > aio_nr)) 727 aio_nr = 0; 728 else 729 aio_nr -= nr; 730 spin_unlock(&aio_nr_lock); 731 } 732 733 /* ioctx_alloc 734 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 735 */ 736 static struct kioctx *ioctx_alloc(unsigned nr_events) 737 { 738 struct mm_struct *mm = current->mm; 739 struct kioctx *ctx; 740 int err = -ENOMEM; 741 742 /* 743 * Store the original nr_events -- what userspace passed to io_setup(), 744 * for counting against the global limit -- before it changes. 745 */ 746 unsigned int max_reqs = nr_events; 747 748 /* 749 * We keep track of the number of available ringbuffer slots, to prevent 750 * overflow (reqs_available), and we also use percpu counters for this. 751 * 752 * So since up to half the slots might be on other cpu's percpu counters 753 * and unavailable, double nr_events so userspace sees what they 754 * expected: additionally, we move req_batch slots to/from percpu 755 * counters at a time, so make sure that isn't 0: 756 */ 757 nr_events = max(nr_events, num_possible_cpus() * 4); 758 nr_events *= 2; 759 760 /* Prevent overflows */ 761 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 762 pr_debug("ENOMEM: nr_events too high\n"); 763 return ERR_PTR(-EINVAL); 764 } 765 766 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 767 return ERR_PTR(-EAGAIN); 768 769 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 770 if (!ctx) 771 return ERR_PTR(-ENOMEM); 772 773 ctx->max_reqs = max_reqs; 774 775 spin_lock_init(&ctx->ctx_lock); 776 spin_lock_init(&ctx->completion_lock); 777 mutex_init(&ctx->ring_lock); 778 /* Protect against page migration throughout kiotx setup by keeping 779 * the ring_lock mutex held until setup is complete. */ 780 mutex_lock(&ctx->ring_lock); 781 init_waitqueue_head(&ctx->wait); 782 783 INIT_LIST_HEAD(&ctx->active_reqs); 784 785 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 786 goto err; 787 788 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 789 goto err; 790 791 ctx->cpu = alloc_percpu(struct kioctx_cpu); 792 if (!ctx->cpu) 793 goto err; 794 795 err = aio_setup_ring(ctx, nr_events); 796 if (err < 0) 797 goto err; 798 799 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 800 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 801 if (ctx->req_batch < 1) 802 ctx->req_batch = 1; 803 804 /* limit the number of system wide aios */ 805 spin_lock(&aio_nr_lock); 806 if (aio_nr + ctx->max_reqs > aio_max_nr || 807 aio_nr + ctx->max_reqs < aio_nr) { 808 spin_unlock(&aio_nr_lock); 809 err = -EAGAIN; 810 goto err_ctx; 811 } 812 aio_nr += ctx->max_reqs; 813 spin_unlock(&aio_nr_lock); 814 815 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 816 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 817 818 err = ioctx_add_table(ctx, mm); 819 if (err) 820 goto err_cleanup; 821 822 /* Release the ring_lock mutex now that all setup is complete. */ 823 mutex_unlock(&ctx->ring_lock); 824 825 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 826 ctx, ctx->user_id, mm, ctx->nr_events); 827 return ctx; 828 829 err_cleanup: 830 aio_nr_sub(ctx->max_reqs); 831 err_ctx: 832 atomic_set(&ctx->dead, 1); 833 if (ctx->mmap_size) 834 vm_munmap(ctx->mmap_base, ctx->mmap_size); 835 aio_free_ring(ctx); 836 err: 837 mutex_unlock(&ctx->ring_lock); 838 free_percpu(ctx->cpu); 839 percpu_ref_exit(&ctx->reqs); 840 percpu_ref_exit(&ctx->users); 841 kmem_cache_free(kioctx_cachep, ctx); 842 pr_debug("error allocating ioctx %d\n", err); 843 return ERR_PTR(err); 844 } 845 846 /* kill_ioctx 847 * Cancels all outstanding aio requests on an aio context. Used 848 * when the processes owning a context have all exited to encourage 849 * the rapid destruction of the kioctx. 850 */ 851 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 852 struct ctx_rq_wait *wait) 853 { 854 struct kioctx_table *table; 855 856 spin_lock(&mm->ioctx_lock); 857 if (atomic_xchg(&ctx->dead, 1)) { 858 spin_unlock(&mm->ioctx_lock); 859 return -EINVAL; 860 } 861 862 table = rcu_dereference_raw(mm->ioctx_table); 863 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 864 RCU_INIT_POINTER(table->table[ctx->id], NULL); 865 spin_unlock(&mm->ioctx_lock); 866 867 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 868 wake_up_all(&ctx->wait); 869 870 /* 871 * It'd be more correct to do this in free_ioctx(), after all 872 * the outstanding kiocbs have finished - but by then io_destroy 873 * has already returned, so io_setup() could potentially return 874 * -EAGAIN with no ioctxs actually in use (as far as userspace 875 * could tell). 876 */ 877 aio_nr_sub(ctx->max_reqs); 878 879 if (ctx->mmap_size) 880 vm_munmap(ctx->mmap_base, ctx->mmap_size); 881 882 ctx->rq_wait = wait; 883 percpu_ref_kill(&ctx->users); 884 return 0; 885 } 886 887 /* 888 * exit_aio: called when the last user of mm goes away. At this point, there is 889 * no way for any new requests to be submited or any of the io_* syscalls to be 890 * called on the context. 891 * 892 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 893 * them. 894 */ 895 void exit_aio(struct mm_struct *mm) 896 { 897 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 898 struct ctx_rq_wait wait; 899 int i, skipped; 900 901 if (!table) 902 return; 903 904 atomic_set(&wait.count, table->nr); 905 init_completion(&wait.comp); 906 907 skipped = 0; 908 for (i = 0; i < table->nr; ++i) { 909 struct kioctx *ctx = 910 rcu_dereference_protected(table->table[i], true); 911 912 if (!ctx) { 913 skipped++; 914 continue; 915 } 916 917 /* 918 * We don't need to bother with munmap() here - exit_mmap(mm) 919 * is coming and it'll unmap everything. And we simply can't, 920 * this is not necessarily our ->mm. 921 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 922 * that it needs to unmap the area, just set it to 0. 923 */ 924 ctx->mmap_size = 0; 925 kill_ioctx(mm, ctx, &wait); 926 } 927 928 if (!atomic_sub_and_test(skipped, &wait.count)) { 929 /* Wait until all IO for the context are done. */ 930 wait_for_completion(&wait.comp); 931 } 932 933 RCU_INIT_POINTER(mm->ioctx_table, NULL); 934 kfree(table); 935 } 936 937 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 938 { 939 struct kioctx_cpu *kcpu; 940 unsigned long flags; 941 942 local_irq_save(flags); 943 kcpu = this_cpu_ptr(ctx->cpu); 944 kcpu->reqs_available += nr; 945 946 while (kcpu->reqs_available >= ctx->req_batch * 2) { 947 kcpu->reqs_available -= ctx->req_batch; 948 atomic_add(ctx->req_batch, &ctx->reqs_available); 949 } 950 951 local_irq_restore(flags); 952 } 953 954 static bool __get_reqs_available(struct kioctx *ctx) 955 { 956 struct kioctx_cpu *kcpu; 957 bool ret = false; 958 unsigned long flags; 959 960 local_irq_save(flags); 961 kcpu = this_cpu_ptr(ctx->cpu); 962 if (!kcpu->reqs_available) { 963 int avail = atomic_read(&ctx->reqs_available); 964 965 do { 966 if (avail < ctx->req_batch) 967 goto out; 968 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 969 &avail, avail - ctx->req_batch)); 970 971 kcpu->reqs_available += ctx->req_batch; 972 } 973 974 ret = true; 975 kcpu->reqs_available--; 976 out: 977 local_irq_restore(flags); 978 return ret; 979 } 980 981 /* refill_reqs_available 982 * Updates the reqs_available reference counts used for tracking the 983 * number of free slots in the completion ring. This can be called 984 * from aio_complete() (to optimistically update reqs_available) or 985 * from aio_get_req() (the we're out of events case). It must be 986 * called holding ctx->completion_lock. 987 */ 988 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 989 unsigned tail) 990 { 991 unsigned events_in_ring, completed; 992 993 /* Clamp head since userland can write to it. */ 994 head %= ctx->nr_events; 995 if (head <= tail) 996 events_in_ring = tail - head; 997 else 998 events_in_ring = ctx->nr_events - (head - tail); 999 1000 completed = ctx->completed_events; 1001 if (events_in_ring < completed) 1002 completed -= events_in_ring; 1003 else 1004 completed = 0; 1005 1006 if (!completed) 1007 return; 1008 1009 ctx->completed_events -= completed; 1010 put_reqs_available(ctx, completed); 1011 } 1012 1013 /* user_refill_reqs_available 1014 * Called to refill reqs_available when aio_get_req() encounters an 1015 * out of space in the completion ring. 1016 */ 1017 static void user_refill_reqs_available(struct kioctx *ctx) 1018 { 1019 spin_lock_irq(&ctx->completion_lock); 1020 if (ctx->completed_events) { 1021 struct aio_ring *ring; 1022 unsigned head; 1023 1024 /* Access of ring->head may race with aio_read_events_ring() 1025 * here, but that's okay since whether we read the old version 1026 * or the new version, and either will be valid. The important 1027 * part is that head cannot pass tail since we prevent 1028 * aio_complete() from updating tail by holding 1029 * ctx->completion_lock. Even if head is invalid, the check 1030 * against ctx->completed_events below will make sure we do the 1031 * safe/right thing. 1032 */ 1033 ring = page_address(ctx->ring_pages[0]); 1034 head = ring->head; 1035 1036 refill_reqs_available(ctx, head, ctx->tail); 1037 } 1038 1039 spin_unlock_irq(&ctx->completion_lock); 1040 } 1041 1042 static bool get_reqs_available(struct kioctx *ctx) 1043 { 1044 if (__get_reqs_available(ctx)) 1045 return true; 1046 user_refill_reqs_available(ctx); 1047 return __get_reqs_available(ctx); 1048 } 1049 1050 /* aio_get_req 1051 * Allocate a slot for an aio request. 1052 * Returns NULL if no requests are free. 1053 * 1054 * The refcount is initialized to 2 - one for the async op completion, 1055 * one for the synchronous code that does this. 1056 */ 1057 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1058 { 1059 struct aio_kiocb *req; 1060 1061 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1062 if (unlikely(!req)) 1063 return NULL; 1064 1065 if (unlikely(!get_reqs_available(ctx))) { 1066 kmem_cache_free(kiocb_cachep, req); 1067 return NULL; 1068 } 1069 1070 percpu_ref_get(&ctx->reqs); 1071 req->ki_ctx = ctx; 1072 INIT_LIST_HEAD(&req->ki_list); 1073 refcount_set(&req->ki_refcnt, 2); 1074 req->ki_eventfd = NULL; 1075 return req; 1076 } 1077 1078 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1079 { 1080 struct aio_ring __user *ring = (void __user *)ctx_id; 1081 struct mm_struct *mm = current->mm; 1082 struct kioctx *ctx, *ret = NULL; 1083 struct kioctx_table *table; 1084 unsigned id; 1085 1086 if (get_user(id, &ring->id)) 1087 return NULL; 1088 1089 rcu_read_lock(); 1090 table = rcu_dereference(mm->ioctx_table); 1091 1092 if (!table || id >= table->nr) 1093 goto out; 1094 1095 id = array_index_nospec(id, table->nr); 1096 ctx = rcu_dereference(table->table[id]); 1097 if (ctx && ctx->user_id == ctx_id) { 1098 if (percpu_ref_tryget_live(&ctx->users)) 1099 ret = ctx; 1100 } 1101 out: 1102 rcu_read_unlock(); 1103 return ret; 1104 } 1105 1106 static inline void iocb_destroy(struct aio_kiocb *iocb) 1107 { 1108 if (iocb->ki_eventfd) 1109 eventfd_ctx_put(iocb->ki_eventfd); 1110 if (iocb->ki_filp) 1111 fput(iocb->ki_filp); 1112 percpu_ref_put(&iocb->ki_ctx->reqs); 1113 kmem_cache_free(kiocb_cachep, iocb); 1114 } 1115 1116 /* aio_complete 1117 * Called when the io request on the given iocb is complete. 1118 */ 1119 static void aio_complete(struct aio_kiocb *iocb) 1120 { 1121 struct kioctx *ctx = iocb->ki_ctx; 1122 struct aio_ring *ring; 1123 struct io_event *ev_page, *event; 1124 unsigned tail, pos, head; 1125 unsigned long flags; 1126 1127 /* 1128 * Add a completion event to the ring buffer. Must be done holding 1129 * ctx->completion_lock to prevent other code from messing with the tail 1130 * pointer since we might be called from irq context. 1131 */ 1132 spin_lock_irqsave(&ctx->completion_lock, flags); 1133 1134 tail = ctx->tail; 1135 pos = tail + AIO_EVENTS_OFFSET; 1136 1137 if (++tail >= ctx->nr_events) 1138 tail = 0; 1139 1140 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1141 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1142 1143 *event = iocb->ki_res; 1144 1145 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1146 1147 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1148 (void __user *)(unsigned long)iocb->ki_res.obj, 1149 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1150 1151 /* after flagging the request as done, we 1152 * must never even look at it again 1153 */ 1154 smp_wmb(); /* make event visible before updating tail */ 1155 1156 ctx->tail = tail; 1157 1158 ring = page_address(ctx->ring_pages[0]); 1159 head = ring->head; 1160 ring->tail = tail; 1161 flush_dcache_page(ctx->ring_pages[0]); 1162 1163 ctx->completed_events++; 1164 if (ctx->completed_events > 1) 1165 refill_reqs_available(ctx, head, tail); 1166 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1167 1168 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1169 1170 /* 1171 * Check if the user asked us to deliver the result through an 1172 * eventfd. The eventfd_signal() function is safe to be called 1173 * from IRQ context. 1174 */ 1175 if (iocb->ki_eventfd) 1176 eventfd_signal(iocb->ki_eventfd, 1); 1177 1178 /* 1179 * We have to order our ring_info tail store above and test 1180 * of the wait list below outside the wait lock. This is 1181 * like in wake_up_bit() where clearing a bit has to be 1182 * ordered with the unlocked test. 1183 */ 1184 smp_mb(); 1185 1186 if (waitqueue_active(&ctx->wait)) 1187 wake_up(&ctx->wait); 1188 } 1189 1190 static inline void iocb_put(struct aio_kiocb *iocb) 1191 { 1192 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1193 aio_complete(iocb); 1194 iocb_destroy(iocb); 1195 } 1196 } 1197 1198 /* aio_read_events_ring 1199 * Pull an event off of the ioctx's event ring. Returns the number of 1200 * events fetched 1201 */ 1202 static long aio_read_events_ring(struct kioctx *ctx, 1203 struct io_event __user *event, long nr) 1204 { 1205 struct aio_ring *ring; 1206 unsigned head, tail, pos; 1207 long ret = 0; 1208 int copy_ret; 1209 1210 /* 1211 * The mutex can block and wake us up and that will cause 1212 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1213 * and repeat. This should be rare enough that it doesn't cause 1214 * peformance issues. See the comment in read_events() for more detail. 1215 */ 1216 sched_annotate_sleep(); 1217 mutex_lock(&ctx->ring_lock); 1218 1219 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1220 ring = page_address(ctx->ring_pages[0]); 1221 head = ring->head; 1222 tail = ring->tail; 1223 1224 /* 1225 * Ensure that once we've read the current tail pointer, that 1226 * we also see the events that were stored up to the tail. 1227 */ 1228 smp_rmb(); 1229 1230 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1231 1232 if (head == tail) 1233 goto out; 1234 1235 head %= ctx->nr_events; 1236 tail %= ctx->nr_events; 1237 1238 while (ret < nr) { 1239 long avail; 1240 struct io_event *ev; 1241 struct page *page; 1242 1243 avail = (head <= tail ? tail : ctx->nr_events) - head; 1244 if (head == tail) 1245 break; 1246 1247 pos = head + AIO_EVENTS_OFFSET; 1248 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1249 pos %= AIO_EVENTS_PER_PAGE; 1250 1251 avail = min(avail, nr - ret); 1252 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1253 1254 ev = page_address(page); 1255 copy_ret = copy_to_user(event + ret, ev + pos, 1256 sizeof(*ev) * avail); 1257 1258 if (unlikely(copy_ret)) { 1259 ret = -EFAULT; 1260 goto out; 1261 } 1262 1263 ret += avail; 1264 head += avail; 1265 head %= ctx->nr_events; 1266 } 1267 1268 ring = page_address(ctx->ring_pages[0]); 1269 ring->head = head; 1270 flush_dcache_page(ctx->ring_pages[0]); 1271 1272 pr_debug("%li h%u t%u\n", ret, head, tail); 1273 out: 1274 mutex_unlock(&ctx->ring_lock); 1275 1276 return ret; 1277 } 1278 1279 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1280 struct io_event __user *event, long *i) 1281 { 1282 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1283 1284 if (ret > 0) 1285 *i += ret; 1286 1287 if (unlikely(atomic_read(&ctx->dead))) 1288 ret = -EINVAL; 1289 1290 if (!*i) 1291 *i = ret; 1292 1293 return ret < 0 || *i >= min_nr; 1294 } 1295 1296 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1297 struct io_event __user *event, 1298 ktime_t until) 1299 { 1300 long ret = 0; 1301 1302 /* 1303 * Note that aio_read_events() is being called as the conditional - i.e. 1304 * we're calling it after prepare_to_wait() has set task state to 1305 * TASK_INTERRUPTIBLE. 1306 * 1307 * But aio_read_events() can block, and if it blocks it's going to flip 1308 * the task state back to TASK_RUNNING. 1309 * 1310 * This should be ok, provided it doesn't flip the state back to 1311 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1312 * will only happen if the mutex_lock() call blocks, and we then find 1313 * the ringbuffer empty. So in practice we should be ok, but it's 1314 * something to be aware of when touching this code. 1315 */ 1316 if (until == 0) 1317 aio_read_events(ctx, min_nr, nr, event, &ret); 1318 else 1319 wait_event_interruptible_hrtimeout(ctx->wait, 1320 aio_read_events(ctx, min_nr, nr, event, &ret), 1321 until); 1322 return ret; 1323 } 1324 1325 /* sys_io_setup: 1326 * Create an aio_context capable of receiving at least nr_events. 1327 * ctxp must not point to an aio_context that already exists, and 1328 * must be initialized to 0 prior to the call. On successful 1329 * creation of the aio_context, *ctxp is filled in with the resulting 1330 * handle. May fail with -EINVAL if *ctxp is not initialized, 1331 * if the specified nr_events exceeds internal limits. May fail 1332 * with -EAGAIN if the specified nr_events exceeds the user's limit 1333 * of available events. May fail with -ENOMEM if insufficient kernel 1334 * resources are available. May fail with -EFAULT if an invalid 1335 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1336 * implemented. 1337 */ 1338 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1339 { 1340 struct kioctx *ioctx = NULL; 1341 unsigned long ctx; 1342 long ret; 1343 1344 ret = get_user(ctx, ctxp); 1345 if (unlikely(ret)) 1346 goto out; 1347 1348 ret = -EINVAL; 1349 if (unlikely(ctx || nr_events == 0)) { 1350 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1351 ctx, nr_events); 1352 goto out; 1353 } 1354 1355 ioctx = ioctx_alloc(nr_events); 1356 ret = PTR_ERR(ioctx); 1357 if (!IS_ERR(ioctx)) { 1358 ret = put_user(ioctx->user_id, ctxp); 1359 if (ret) 1360 kill_ioctx(current->mm, ioctx, NULL); 1361 percpu_ref_put(&ioctx->users); 1362 } 1363 1364 out: 1365 return ret; 1366 } 1367 1368 #ifdef CONFIG_COMPAT 1369 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1370 { 1371 struct kioctx *ioctx = NULL; 1372 unsigned long ctx; 1373 long ret; 1374 1375 ret = get_user(ctx, ctx32p); 1376 if (unlikely(ret)) 1377 goto out; 1378 1379 ret = -EINVAL; 1380 if (unlikely(ctx || nr_events == 0)) { 1381 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1382 ctx, nr_events); 1383 goto out; 1384 } 1385 1386 ioctx = ioctx_alloc(nr_events); 1387 ret = PTR_ERR(ioctx); 1388 if (!IS_ERR(ioctx)) { 1389 /* truncating is ok because it's a user address */ 1390 ret = put_user((u32)ioctx->user_id, ctx32p); 1391 if (ret) 1392 kill_ioctx(current->mm, ioctx, NULL); 1393 percpu_ref_put(&ioctx->users); 1394 } 1395 1396 out: 1397 return ret; 1398 } 1399 #endif 1400 1401 /* sys_io_destroy: 1402 * Destroy the aio_context specified. May cancel any outstanding 1403 * AIOs and block on completion. Will fail with -ENOSYS if not 1404 * implemented. May fail with -EINVAL if the context pointed to 1405 * is invalid. 1406 */ 1407 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1408 { 1409 struct kioctx *ioctx = lookup_ioctx(ctx); 1410 if (likely(NULL != ioctx)) { 1411 struct ctx_rq_wait wait; 1412 int ret; 1413 1414 init_completion(&wait.comp); 1415 atomic_set(&wait.count, 1); 1416 1417 /* Pass requests_done to kill_ioctx() where it can be set 1418 * in a thread-safe way. If we try to set it here then we have 1419 * a race condition if two io_destroy() called simultaneously. 1420 */ 1421 ret = kill_ioctx(current->mm, ioctx, &wait); 1422 percpu_ref_put(&ioctx->users); 1423 1424 /* Wait until all IO for the context are done. Otherwise kernel 1425 * keep using user-space buffers even if user thinks the context 1426 * is destroyed. 1427 */ 1428 if (!ret) 1429 wait_for_completion(&wait.comp); 1430 1431 return ret; 1432 } 1433 pr_debug("EINVAL: invalid context id\n"); 1434 return -EINVAL; 1435 } 1436 1437 static void aio_remove_iocb(struct aio_kiocb *iocb) 1438 { 1439 struct kioctx *ctx = iocb->ki_ctx; 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&ctx->ctx_lock, flags); 1443 list_del(&iocb->ki_list); 1444 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1445 } 1446 1447 static void aio_complete_rw(struct kiocb *kiocb, long res) 1448 { 1449 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1450 1451 if (!list_empty_careful(&iocb->ki_list)) 1452 aio_remove_iocb(iocb); 1453 1454 if (kiocb->ki_flags & IOCB_WRITE) { 1455 struct inode *inode = file_inode(kiocb->ki_filp); 1456 1457 if (S_ISREG(inode->i_mode)) 1458 kiocb_end_write(kiocb); 1459 } 1460 1461 iocb->ki_res.res = res; 1462 iocb->ki_res.res2 = 0; 1463 iocb_put(iocb); 1464 } 1465 1466 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1467 { 1468 int ret; 1469 1470 req->ki_complete = aio_complete_rw; 1471 req->private = NULL; 1472 req->ki_pos = iocb->aio_offset; 1473 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; 1474 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1475 req->ki_flags |= IOCB_EVENTFD; 1476 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1477 /* 1478 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1479 * aio_reqprio is interpreted as an I/O scheduling 1480 * class and priority. 1481 */ 1482 ret = ioprio_check_cap(iocb->aio_reqprio); 1483 if (ret) { 1484 pr_debug("aio ioprio check cap error: %d\n", ret); 1485 return ret; 1486 } 1487 1488 req->ki_ioprio = iocb->aio_reqprio; 1489 } else 1490 req->ki_ioprio = get_current_ioprio(); 1491 1492 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1493 if (unlikely(ret)) 1494 return ret; 1495 1496 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1497 return 0; 1498 } 1499 1500 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1501 struct iovec **iovec, bool vectored, bool compat, 1502 struct iov_iter *iter) 1503 { 1504 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1505 size_t len = iocb->aio_nbytes; 1506 1507 if (!vectored) { 1508 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1509 *iovec = NULL; 1510 return ret; 1511 } 1512 1513 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1514 } 1515 1516 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1517 { 1518 switch (ret) { 1519 case -EIOCBQUEUED: 1520 break; 1521 case -ERESTARTSYS: 1522 case -ERESTARTNOINTR: 1523 case -ERESTARTNOHAND: 1524 case -ERESTART_RESTARTBLOCK: 1525 /* 1526 * There's no easy way to restart the syscall since other AIO's 1527 * may be already running. Just fail this IO with EINTR. 1528 */ 1529 ret = -EINTR; 1530 fallthrough; 1531 default: 1532 req->ki_complete(req, ret); 1533 } 1534 } 1535 1536 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1537 bool vectored, bool compat) 1538 { 1539 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1540 struct iov_iter iter; 1541 struct file *file; 1542 int ret; 1543 1544 ret = aio_prep_rw(req, iocb); 1545 if (ret) 1546 return ret; 1547 file = req->ki_filp; 1548 if (unlikely(!(file->f_mode & FMODE_READ))) 1549 return -EBADF; 1550 if (unlikely(!file->f_op->read_iter)) 1551 return -EINVAL; 1552 1553 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1554 if (ret < 0) 1555 return ret; 1556 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1557 if (!ret) 1558 aio_rw_done(req, call_read_iter(file, req, &iter)); 1559 kfree(iovec); 1560 return ret; 1561 } 1562 1563 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1564 bool vectored, bool compat) 1565 { 1566 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1567 struct iov_iter iter; 1568 struct file *file; 1569 int ret; 1570 1571 ret = aio_prep_rw(req, iocb); 1572 if (ret) 1573 return ret; 1574 file = req->ki_filp; 1575 1576 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1577 return -EBADF; 1578 if (unlikely(!file->f_op->write_iter)) 1579 return -EINVAL; 1580 1581 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1582 if (ret < 0) 1583 return ret; 1584 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1585 if (!ret) { 1586 if (S_ISREG(file_inode(file)->i_mode)) 1587 kiocb_start_write(req); 1588 req->ki_flags |= IOCB_WRITE; 1589 aio_rw_done(req, call_write_iter(file, req, &iter)); 1590 } 1591 kfree(iovec); 1592 return ret; 1593 } 1594 1595 static void aio_fsync_work(struct work_struct *work) 1596 { 1597 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1598 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1599 1600 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1601 revert_creds(old_cred); 1602 put_cred(iocb->fsync.creds); 1603 iocb_put(iocb); 1604 } 1605 1606 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1607 bool datasync) 1608 { 1609 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1610 iocb->aio_rw_flags)) 1611 return -EINVAL; 1612 1613 if (unlikely(!req->file->f_op->fsync)) 1614 return -EINVAL; 1615 1616 req->creds = prepare_creds(); 1617 if (!req->creds) 1618 return -ENOMEM; 1619 1620 req->datasync = datasync; 1621 INIT_WORK(&req->work, aio_fsync_work); 1622 schedule_work(&req->work); 1623 return 0; 1624 } 1625 1626 static void aio_poll_put_work(struct work_struct *work) 1627 { 1628 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1629 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1630 1631 iocb_put(iocb); 1632 } 1633 1634 /* 1635 * Safely lock the waitqueue which the request is on, synchronizing with the 1636 * case where the ->poll() provider decides to free its waitqueue early. 1637 * 1638 * Returns true on success, meaning that req->head->lock was locked, req->wait 1639 * is on req->head, and an RCU read lock was taken. Returns false if the 1640 * request was already removed from its waitqueue (which might no longer exist). 1641 */ 1642 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1643 { 1644 wait_queue_head_t *head; 1645 1646 /* 1647 * While we hold the waitqueue lock and the waitqueue is nonempty, 1648 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1649 * lock in the first place can race with the waitqueue being freed. 1650 * 1651 * We solve this as eventpoll does: by taking advantage of the fact that 1652 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1653 * we enter rcu_read_lock() and see that the pointer to the queue is 1654 * non-NULL, we can then lock it without the memory being freed out from 1655 * under us, then check whether the request is still on the queue. 1656 * 1657 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1658 * case the caller deletes the entry from the queue, leaving it empty. 1659 * In that case, only RCU prevents the queue memory from being freed. 1660 */ 1661 rcu_read_lock(); 1662 head = smp_load_acquire(&req->head); 1663 if (head) { 1664 spin_lock(&head->lock); 1665 if (!list_empty(&req->wait.entry)) 1666 return true; 1667 spin_unlock(&head->lock); 1668 } 1669 rcu_read_unlock(); 1670 return false; 1671 } 1672 1673 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1674 { 1675 spin_unlock(&req->head->lock); 1676 rcu_read_unlock(); 1677 } 1678 1679 static void aio_poll_complete_work(struct work_struct *work) 1680 { 1681 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1682 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1683 struct poll_table_struct pt = { ._key = req->events }; 1684 struct kioctx *ctx = iocb->ki_ctx; 1685 __poll_t mask = 0; 1686 1687 if (!READ_ONCE(req->cancelled)) 1688 mask = vfs_poll(req->file, &pt) & req->events; 1689 1690 /* 1691 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1692 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1693 * synchronize with them. In the cancellation case the list_del_init 1694 * itself is not actually needed, but harmless so we keep it in to 1695 * avoid further branches in the fast path. 1696 */ 1697 spin_lock_irq(&ctx->ctx_lock); 1698 if (poll_iocb_lock_wq(req)) { 1699 if (!mask && !READ_ONCE(req->cancelled)) { 1700 /* 1701 * The request isn't actually ready to be completed yet. 1702 * Reschedule completion if another wakeup came in. 1703 */ 1704 if (req->work_need_resched) { 1705 schedule_work(&req->work); 1706 req->work_need_resched = false; 1707 } else { 1708 req->work_scheduled = false; 1709 } 1710 poll_iocb_unlock_wq(req); 1711 spin_unlock_irq(&ctx->ctx_lock); 1712 return; 1713 } 1714 list_del_init(&req->wait.entry); 1715 poll_iocb_unlock_wq(req); 1716 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1717 list_del_init(&iocb->ki_list); 1718 iocb->ki_res.res = mangle_poll(mask); 1719 spin_unlock_irq(&ctx->ctx_lock); 1720 1721 iocb_put(iocb); 1722 } 1723 1724 /* assumes we are called with irqs disabled */ 1725 static int aio_poll_cancel(struct kiocb *iocb) 1726 { 1727 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1728 struct poll_iocb *req = &aiocb->poll; 1729 1730 if (poll_iocb_lock_wq(req)) { 1731 WRITE_ONCE(req->cancelled, true); 1732 if (!req->work_scheduled) { 1733 schedule_work(&aiocb->poll.work); 1734 req->work_scheduled = true; 1735 } 1736 poll_iocb_unlock_wq(req); 1737 } /* else, the request was force-cancelled by POLLFREE already */ 1738 1739 return 0; 1740 } 1741 1742 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1743 void *key) 1744 { 1745 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1746 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1747 __poll_t mask = key_to_poll(key); 1748 unsigned long flags; 1749 1750 /* for instances that support it check for an event match first: */ 1751 if (mask && !(mask & req->events)) 1752 return 0; 1753 1754 /* 1755 * Complete the request inline if possible. This requires that three 1756 * conditions be met: 1757 * 1. An event mask must have been passed. If a plain wakeup was done 1758 * instead, then mask == 0 and we have to call vfs_poll() to get 1759 * the events, so inline completion isn't possible. 1760 * 2. The completion work must not have already been scheduled. 1761 * 3. ctx_lock must not be busy. We have to use trylock because we 1762 * already hold the waitqueue lock, so this inverts the normal 1763 * locking order. Use irqsave/irqrestore because not all 1764 * filesystems (e.g. fuse) call this function with IRQs disabled, 1765 * yet IRQs have to be disabled before ctx_lock is obtained. 1766 */ 1767 if (mask && !req->work_scheduled && 1768 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1769 struct kioctx *ctx = iocb->ki_ctx; 1770 1771 list_del_init(&req->wait.entry); 1772 list_del(&iocb->ki_list); 1773 iocb->ki_res.res = mangle_poll(mask); 1774 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1775 iocb = NULL; 1776 INIT_WORK(&req->work, aio_poll_put_work); 1777 schedule_work(&req->work); 1778 } 1779 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1780 if (iocb) 1781 iocb_put(iocb); 1782 } else { 1783 /* 1784 * Schedule the completion work if needed. If it was already 1785 * scheduled, record that another wakeup came in. 1786 * 1787 * Don't remove the request from the waitqueue here, as it might 1788 * not actually be complete yet (we won't know until vfs_poll() 1789 * is called), and we must not miss any wakeups. POLLFREE is an 1790 * exception to this; see below. 1791 */ 1792 if (req->work_scheduled) { 1793 req->work_need_resched = true; 1794 } else { 1795 schedule_work(&req->work); 1796 req->work_scheduled = true; 1797 } 1798 1799 /* 1800 * If the waitqueue is being freed early but we can't complete 1801 * the request inline, we have to tear down the request as best 1802 * we can. That means immediately removing the request from its 1803 * waitqueue and preventing all further accesses to the 1804 * waitqueue via the request. We also need to schedule the 1805 * completion work (done above). Also mark the request as 1806 * cancelled, to potentially skip an unneeded call to ->poll(). 1807 */ 1808 if (mask & POLLFREE) { 1809 WRITE_ONCE(req->cancelled, true); 1810 list_del_init(&req->wait.entry); 1811 1812 /* 1813 * Careful: this *must* be the last step, since as soon 1814 * as req->head is NULL'ed out, the request can be 1815 * completed and freed, since aio_poll_complete_work() 1816 * will no longer need to take the waitqueue lock. 1817 */ 1818 smp_store_release(&req->head, NULL); 1819 } 1820 } 1821 return 1; 1822 } 1823 1824 struct aio_poll_table { 1825 struct poll_table_struct pt; 1826 struct aio_kiocb *iocb; 1827 bool queued; 1828 int error; 1829 }; 1830 1831 static void 1832 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1833 struct poll_table_struct *p) 1834 { 1835 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1836 1837 /* multiple wait queues per file are not supported */ 1838 if (unlikely(pt->queued)) { 1839 pt->error = -EINVAL; 1840 return; 1841 } 1842 1843 pt->queued = true; 1844 pt->error = 0; 1845 pt->iocb->poll.head = head; 1846 add_wait_queue(head, &pt->iocb->poll.wait); 1847 } 1848 1849 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1850 { 1851 struct kioctx *ctx = aiocb->ki_ctx; 1852 struct poll_iocb *req = &aiocb->poll; 1853 struct aio_poll_table apt; 1854 bool cancel = false; 1855 __poll_t mask; 1856 1857 /* reject any unknown events outside the normal event mask. */ 1858 if ((u16)iocb->aio_buf != iocb->aio_buf) 1859 return -EINVAL; 1860 /* reject fields that are not defined for poll */ 1861 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1862 return -EINVAL; 1863 1864 INIT_WORK(&req->work, aio_poll_complete_work); 1865 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1866 1867 req->head = NULL; 1868 req->cancelled = false; 1869 req->work_scheduled = false; 1870 req->work_need_resched = false; 1871 1872 apt.pt._qproc = aio_poll_queue_proc; 1873 apt.pt._key = req->events; 1874 apt.iocb = aiocb; 1875 apt.queued = false; 1876 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1877 1878 /* initialized the list so that we can do list_empty checks */ 1879 INIT_LIST_HEAD(&req->wait.entry); 1880 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1881 1882 mask = vfs_poll(req->file, &apt.pt) & req->events; 1883 spin_lock_irq(&ctx->ctx_lock); 1884 if (likely(apt.queued)) { 1885 bool on_queue = poll_iocb_lock_wq(req); 1886 1887 if (!on_queue || req->work_scheduled) { 1888 /* 1889 * aio_poll_wake() already either scheduled the async 1890 * completion work, or completed the request inline. 1891 */ 1892 if (apt.error) /* unsupported case: multiple queues */ 1893 cancel = true; 1894 apt.error = 0; 1895 mask = 0; 1896 } 1897 if (mask || apt.error) { 1898 /* Steal to complete synchronously. */ 1899 list_del_init(&req->wait.entry); 1900 } else if (cancel) { 1901 /* Cancel if possible (may be too late though). */ 1902 WRITE_ONCE(req->cancelled, true); 1903 } else if (on_queue) { 1904 /* 1905 * Actually waiting for an event, so add the request to 1906 * active_reqs so that it can be cancelled if needed. 1907 */ 1908 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1909 aiocb->ki_cancel = aio_poll_cancel; 1910 } 1911 if (on_queue) 1912 poll_iocb_unlock_wq(req); 1913 } 1914 if (mask) { /* no async, we'd stolen it */ 1915 aiocb->ki_res.res = mangle_poll(mask); 1916 apt.error = 0; 1917 } 1918 spin_unlock_irq(&ctx->ctx_lock); 1919 if (mask) 1920 iocb_put(aiocb); 1921 return apt.error; 1922 } 1923 1924 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1925 struct iocb __user *user_iocb, struct aio_kiocb *req, 1926 bool compat) 1927 { 1928 req->ki_filp = fget(iocb->aio_fildes); 1929 if (unlikely(!req->ki_filp)) 1930 return -EBADF; 1931 1932 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1933 struct eventfd_ctx *eventfd; 1934 /* 1935 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1936 * instance of the file* now. The file descriptor must be 1937 * an eventfd() fd, and will be signaled for each completed 1938 * event using the eventfd_signal() function. 1939 */ 1940 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1941 if (IS_ERR(eventfd)) 1942 return PTR_ERR(eventfd); 1943 1944 req->ki_eventfd = eventfd; 1945 } 1946 1947 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1948 pr_debug("EFAULT: aio_key\n"); 1949 return -EFAULT; 1950 } 1951 1952 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1953 req->ki_res.data = iocb->aio_data; 1954 req->ki_res.res = 0; 1955 req->ki_res.res2 = 0; 1956 1957 switch (iocb->aio_lio_opcode) { 1958 case IOCB_CMD_PREAD: 1959 return aio_read(&req->rw, iocb, false, compat); 1960 case IOCB_CMD_PWRITE: 1961 return aio_write(&req->rw, iocb, false, compat); 1962 case IOCB_CMD_PREADV: 1963 return aio_read(&req->rw, iocb, true, compat); 1964 case IOCB_CMD_PWRITEV: 1965 return aio_write(&req->rw, iocb, true, compat); 1966 case IOCB_CMD_FSYNC: 1967 return aio_fsync(&req->fsync, iocb, false); 1968 case IOCB_CMD_FDSYNC: 1969 return aio_fsync(&req->fsync, iocb, true); 1970 case IOCB_CMD_POLL: 1971 return aio_poll(req, iocb); 1972 default: 1973 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1974 return -EINVAL; 1975 } 1976 } 1977 1978 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1979 bool compat) 1980 { 1981 struct aio_kiocb *req; 1982 struct iocb iocb; 1983 int err; 1984 1985 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1986 return -EFAULT; 1987 1988 /* enforce forwards compatibility on users */ 1989 if (unlikely(iocb.aio_reserved2)) { 1990 pr_debug("EINVAL: reserve field set\n"); 1991 return -EINVAL; 1992 } 1993 1994 /* prevent overflows */ 1995 if (unlikely( 1996 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1997 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1998 ((ssize_t)iocb.aio_nbytes < 0) 1999 )) { 2000 pr_debug("EINVAL: overflow check\n"); 2001 return -EINVAL; 2002 } 2003 2004 req = aio_get_req(ctx); 2005 if (unlikely(!req)) 2006 return -EAGAIN; 2007 2008 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2009 2010 /* Done with the synchronous reference */ 2011 iocb_put(req); 2012 2013 /* 2014 * If err is 0, we'd either done aio_complete() ourselves or have 2015 * arranged for that to be done asynchronously. Anything non-zero 2016 * means that we need to destroy req ourselves. 2017 */ 2018 if (unlikely(err)) { 2019 iocb_destroy(req); 2020 put_reqs_available(ctx, 1); 2021 } 2022 return err; 2023 } 2024 2025 /* sys_io_submit: 2026 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2027 * the number of iocbs queued. May return -EINVAL if the aio_context 2028 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2029 * *iocbpp[0] is not properly initialized, if the operation specified 2030 * is invalid for the file descriptor in the iocb. May fail with 2031 * -EFAULT if any of the data structures point to invalid data. May 2032 * fail with -EBADF if the file descriptor specified in the first 2033 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2034 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2035 * fail with -ENOSYS if not implemented. 2036 */ 2037 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2038 struct iocb __user * __user *, iocbpp) 2039 { 2040 struct kioctx *ctx; 2041 long ret = 0; 2042 int i = 0; 2043 struct blk_plug plug; 2044 2045 if (unlikely(nr < 0)) 2046 return -EINVAL; 2047 2048 ctx = lookup_ioctx(ctx_id); 2049 if (unlikely(!ctx)) { 2050 pr_debug("EINVAL: invalid context id\n"); 2051 return -EINVAL; 2052 } 2053 2054 if (nr > ctx->nr_events) 2055 nr = ctx->nr_events; 2056 2057 if (nr > AIO_PLUG_THRESHOLD) 2058 blk_start_plug(&plug); 2059 for (i = 0; i < nr; i++) { 2060 struct iocb __user *user_iocb; 2061 2062 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2063 ret = -EFAULT; 2064 break; 2065 } 2066 2067 ret = io_submit_one(ctx, user_iocb, false); 2068 if (ret) 2069 break; 2070 } 2071 if (nr > AIO_PLUG_THRESHOLD) 2072 blk_finish_plug(&plug); 2073 2074 percpu_ref_put(&ctx->users); 2075 return i ? i : ret; 2076 } 2077 2078 #ifdef CONFIG_COMPAT 2079 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2080 int, nr, compat_uptr_t __user *, iocbpp) 2081 { 2082 struct kioctx *ctx; 2083 long ret = 0; 2084 int i = 0; 2085 struct blk_plug plug; 2086 2087 if (unlikely(nr < 0)) 2088 return -EINVAL; 2089 2090 ctx = lookup_ioctx(ctx_id); 2091 if (unlikely(!ctx)) { 2092 pr_debug("EINVAL: invalid context id\n"); 2093 return -EINVAL; 2094 } 2095 2096 if (nr > ctx->nr_events) 2097 nr = ctx->nr_events; 2098 2099 if (nr > AIO_PLUG_THRESHOLD) 2100 blk_start_plug(&plug); 2101 for (i = 0; i < nr; i++) { 2102 compat_uptr_t user_iocb; 2103 2104 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2105 ret = -EFAULT; 2106 break; 2107 } 2108 2109 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2110 if (ret) 2111 break; 2112 } 2113 if (nr > AIO_PLUG_THRESHOLD) 2114 blk_finish_plug(&plug); 2115 2116 percpu_ref_put(&ctx->users); 2117 return i ? i : ret; 2118 } 2119 #endif 2120 2121 /* sys_io_cancel: 2122 * Attempts to cancel an iocb previously passed to io_submit. If 2123 * the operation is successfully cancelled, the resulting event is 2124 * copied into the memory pointed to by result without being placed 2125 * into the completion queue and 0 is returned. May fail with 2126 * -EFAULT if any of the data structures pointed to are invalid. 2127 * May fail with -EINVAL if aio_context specified by ctx_id is 2128 * invalid. May fail with -EAGAIN if the iocb specified was not 2129 * cancelled. Will fail with -ENOSYS if not implemented. 2130 */ 2131 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2132 struct io_event __user *, result) 2133 { 2134 struct kioctx *ctx; 2135 struct aio_kiocb *kiocb; 2136 int ret = -EINVAL; 2137 u32 key; 2138 u64 obj = (u64)(unsigned long)iocb; 2139 2140 if (unlikely(get_user(key, &iocb->aio_key))) 2141 return -EFAULT; 2142 if (unlikely(key != KIOCB_KEY)) 2143 return -EINVAL; 2144 2145 ctx = lookup_ioctx(ctx_id); 2146 if (unlikely(!ctx)) 2147 return -EINVAL; 2148 2149 spin_lock_irq(&ctx->ctx_lock); 2150 /* TODO: use a hash or array, this sucks. */ 2151 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2152 if (kiocb->ki_res.obj == obj) { 2153 ret = kiocb->ki_cancel(&kiocb->rw); 2154 list_del_init(&kiocb->ki_list); 2155 break; 2156 } 2157 } 2158 spin_unlock_irq(&ctx->ctx_lock); 2159 2160 if (!ret) { 2161 /* 2162 * The result argument is no longer used - the io_event is 2163 * always delivered via the ring buffer. -EINPROGRESS indicates 2164 * cancellation is progress: 2165 */ 2166 ret = -EINPROGRESS; 2167 } 2168 2169 percpu_ref_put(&ctx->users); 2170 2171 return ret; 2172 } 2173 2174 static long do_io_getevents(aio_context_t ctx_id, 2175 long min_nr, 2176 long nr, 2177 struct io_event __user *events, 2178 struct timespec64 *ts) 2179 { 2180 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2181 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2182 long ret = -EINVAL; 2183 2184 if (likely(ioctx)) { 2185 if (likely(min_nr <= nr && min_nr >= 0)) 2186 ret = read_events(ioctx, min_nr, nr, events, until); 2187 percpu_ref_put(&ioctx->users); 2188 } 2189 2190 return ret; 2191 } 2192 2193 /* io_getevents: 2194 * Attempts to read at least min_nr events and up to nr events from 2195 * the completion queue for the aio_context specified by ctx_id. If 2196 * it succeeds, the number of read events is returned. May fail with 2197 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2198 * out of range, if timeout is out of range. May fail with -EFAULT 2199 * if any of the memory specified is invalid. May return 0 or 2200 * < min_nr if the timeout specified by timeout has elapsed 2201 * before sufficient events are available, where timeout == NULL 2202 * specifies an infinite timeout. Note that the timeout pointed to by 2203 * timeout is relative. Will fail with -ENOSYS if not implemented. 2204 */ 2205 #ifdef CONFIG_64BIT 2206 2207 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2208 long, min_nr, 2209 long, nr, 2210 struct io_event __user *, events, 2211 struct __kernel_timespec __user *, timeout) 2212 { 2213 struct timespec64 ts; 2214 int ret; 2215 2216 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2217 return -EFAULT; 2218 2219 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2220 if (!ret && signal_pending(current)) 2221 ret = -EINTR; 2222 return ret; 2223 } 2224 2225 #endif 2226 2227 struct __aio_sigset { 2228 const sigset_t __user *sigmask; 2229 size_t sigsetsize; 2230 }; 2231 2232 SYSCALL_DEFINE6(io_pgetevents, 2233 aio_context_t, ctx_id, 2234 long, min_nr, 2235 long, nr, 2236 struct io_event __user *, events, 2237 struct __kernel_timespec __user *, timeout, 2238 const struct __aio_sigset __user *, usig) 2239 { 2240 struct __aio_sigset ksig = { NULL, }; 2241 struct timespec64 ts; 2242 bool interrupted; 2243 int ret; 2244 2245 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2246 return -EFAULT; 2247 2248 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2249 return -EFAULT; 2250 2251 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2252 if (ret) 2253 return ret; 2254 2255 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2256 2257 interrupted = signal_pending(current); 2258 restore_saved_sigmask_unless(interrupted); 2259 if (interrupted && !ret) 2260 ret = -ERESTARTNOHAND; 2261 2262 return ret; 2263 } 2264 2265 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2266 2267 SYSCALL_DEFINE6(io_pgetevents_time32, 2268 aio_context_t, ctx_id, 2269 long, min_nr, 2270 long, nr, 2271 struct io_event __user *, events, 2272 struct old_timespec32 __user *, timeout, 2273 const struct __aio_sigset __user *, usig) 2274 { 2275 struct __aio_sigset ksig = { NULL, }; 2276 struct timespec64 ts; 2277 bool interrupted; 2278 int ret; 2279 2280 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2281 return -EFAULT; 2282 2283 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2284 return -EFAULT; 2285 2286 2287 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2288 if (ret) 2289 return ret; 2290 2291 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2292 2293 interrupted = signal_pending(current); 2294 restore_saved_sigmask_unless(interrupted); 2295 if (interrupted && !ret) 2296 ret = -ERESTARTNOHAND; 2297 2298 return ret; 2299 } 2300 2301 #endif 2302 2303 #if defined(CONFIG_COMPAT_32BIT_TIME) 2304 2305 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2306 __s32, min_nr, 2307 __s32, nr, 2308 struct io_event __user *, events, 2309 struct old_timespec32 __user *, timeout) 2310 { 2311 struct timespec64 t; 2312 int ret; 2313 2314 if (timeout && get_old_timespec32(&t, timeout)) 2315 return -EFAULT; 2316 2317 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2318 if (!ret && signal_pending(current)) 2319 ret = -EINTR; 2320 return ret; 2321 } 2322 2323 #endif 2324 2325 #ifdef CONFIG_COMPAT 2326 2327 struct __compat_aio_sigset { 2328 compat_uptr_t sigmask; 2329 compat_size_t sigsetsize; 2330 }; 2331 2332 #if defined(CONFIG_COMPAT_32BIT_TIME) 2333 2334 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2335 compat_aio_context_t, ctx_id, 2336 compat_long_t, min_nr, 2337 compat_long_t, nr, 2338 struct io_event __user *, events, 2339 struct old_timespec32 __user *, timeout, 2340 const struct __compat_aio_sigset __user *, usig) 2341 { 2342 struct __compat_aio_sigset ksig = { 0, }; 2343 struct timespec64 t; 2344 bool interrupted; 2345 int ret; 2346 2347 if (timeout && get_old_timespec32(&t, timeout)) 2348 return -EFAULT; 2349 2350 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2351 return -EFAULT; 2352 2353 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2354 if (ret) 2355 return ret; 2356 2357 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2358 2359 interrupted = signal_pending(current); 2360 restore_saved_sigmask_unless(interrupted); 2361 if (interrupted && !ret) 2362 ret = -ERESTARTNOHAND; 2363 2364 return ret; 2365 } 2366 2367 #endif 2368 2369 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2370 compat_aio_context_t, ctx_id, 2371 compat_long_t, min_nr, 2372 compat_long_t, nr, 2373 struct io_event __user *, events, 2374 struct __kernel_timespec __user *, timeout, 2375 const struct __compat_aio_sigset __user *, usig) 2376 { 2377 struct __compat_aio_sigset ksig = { 0, }; 2378 struct timespec64 t; 2379 bool interrupted; 2380 int ret; 2381 2382 if (timeout && get_timespec64(&t, timeout)) 2383 return -EFAULT; 2384 2385 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2386 return -EFAULT; 2387 2388 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2389 if (ret) 2390 return ret; 2391 2392 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2393 2394 interrupted = signal_pending(current); 2395 restore_saved_sigmask_unless(interrupted); 2396 if (interrupted && !ret) 2397 ret = -ERESTARTNOHAND; 2398 2399 return ret; 2400 } 2401 #endif 2402