1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/mmu_context.h> 31 #include <linux/percpu.h> 32 #include <linux/slab.h> 33 #include <linux/timer.h> 34 #include <linux/aio.h> 35 #include <linux/highmem.h> 36 #include <linux/workqueue.h> 37 #include <linux/security.h> 38 #include <linux/eventfd.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/migrate.h> 42 #include <linux/ramfs.h> 43 #include <linux/percpu-refcount.h> 44 #include <linux/mount.h> 45 46 #include <asm/kmap_types.h> 47 #include <linux/uaccess.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[0]; 70 }; /* 128 bytes + ring size */ 71 72 #define AIO_RING_PAGES 8 73 74 struct kioctx_table { 75 struct rcu_head rcu; 76 unsigned nr; 77 struct kioctx __rcu *table[]; 78 }; 79 80 struct kioctx_cpu { 81 unsigned reqs_available; 82 }; 83 84 struct ctx_rq_wait { 85 struct completion comp; 86 atomic_t count; 87 }; 88 89 struct kioctx { 90 struct percpu_ref users; 91 atomic_t dead; 92 93 struct percpu_ref reqs; 94 95 unsigned long user_id; 96 97 struct __percpu kioctx_cpu *cpu; 98 99 /* 100 * For percpu reqs_available, number of slots we move to/from global 101 * counter at a time: 102 */ 103 unsigned req_batch; 104 /* 105 * This is what userspace passed to io_setup(), it's not used for 106 * anything but counting against the global max_reqs quota. 107 * 108 * The real limit is nr_events - 1, which will be larger (see 109 * aio_setup_ring()) 110 */ 111 unsigned max_reqs; 112 113 /* Size of ringbuffer, in units of struct io_event */ 114 unsigned nr_events; 115 116 unsigned long mmap_base; 117 unsigned long mmap_size; 118 119 struct page **ring_pages; 120 long nr_pages; 121 122 struct rcu_work free_rwork; /* see free_ioctx() */ 123 124 /* 125 * signals when all in-flight requests are done 126 */ 127 struct ctx_rq_wait *rq_wait; 128 129 struct { 130 /* 131 * This counts the number of available slots in the ringbuffer, 132 * so we avoid overflowing it: it's decremented (if positive) 133 * when allocating a kiocb and incremented when the resulting 134 * io_event is pulled off the ringbuffer. 135 * 136 * We batch accesses to it with a percpu version. 137 */ 138 atomic_t reqs_available; 139 } ____cacheline_aligned_in_smp; 140 141 struct { 142 spinlock_t ctx_lock; 143 struct list_head active_reqs; /* used for cancellation */ 144 } ____cacheline_aligned_in_smp; 145 146 struct { 147 struct mutex ring_lock; 148 wait_queue_head_t wait; 149 } ____cacheline_aligned_in_smp; 150 151 struct { 152 unsigned tail; 153 unsigned completed_events; 154 spinlock_t completion_lock; 155 } ____cacheline_aligned_in_smp; 156 157 struct page *internal_pages[AIO_RING_PAGES]; 158 struct file *aio_ring_file; 159 160 unsigned id; 161 }; 162 163 struct fsync_iocb { 164 struct work_struct work; 165 struct file *file; 166 bool datasync; 167 }; 168 169 struct poll_iocb { 170 struct file *file; 171 struct wait_queue_head *head; 172 __poll_t events; 173 bool woken; 174 bool cancelled; 175 struct wait_queue_entry wait; 176 struct work_struct work; 177 }; 178 179 struct aio_kiocb { 180 union { 181 struct kiocb rw; 182 struct fsync_iocb fsync; 183 struct poll_iocb poll; 184 }; 185 186 struct kioctx *ki_ctx; 187 kiocb_cancel_fn *ki_cancel; 188 189 struct iocb __user *ki_user_iocb; /* user's aiocb */ 190 __u64 ki_user_data; /* user's data for completion */ 191 192 struct list_head ki_list; /* the aio core uses this 193 * for cancellation */ 194 refcount_t ki_refcnt; 195 196 /* 197 * If the aio_resfd field of the userspace iocb is not zero, 198 * this is the underlying eventfd context to deliver events to. 199 */ 200 struct eventfd_ctx *ki_eventfd; 201 }; 202 203 /*------ sysctl variables----*/ 204 static DEFINE_SPINLOCK(aio_nr_lock); 205 unsigned long aio_nr; /* current system wide number of aio requests */ 206 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 207 /*----end sysctl variables---*/ 208 209 static struct kmem_cache *kiocb_cachep; 210 static struct kmem_cache *kioctx_cachep; 211 212 static struct vfsmount *aio_mnt; 213 214 static const struct file_operations aio_ring_fops; 215 static const struct address_space_operations aio_ctx_aops; 216 217 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 218 { 219 struct file *file; 220 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 221 if (IS_ERR(inode)) 222 return ERR_CAST(inode); 223 224 inode->i_mapping->a_ops = &aio_ctx_aops; 225 inode->i_mapping->private_data = ctx; 226 inode->i_size = PAGE_SIZE * nr_pages; 227 228 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 229 O_RDWR, &aio_ring_fops); 230 if (IS_ERR(file)) 231 iput(inode); 232 return file; 233 } 234 235 static struct dentry *aio_mount(struct file_system_type *fs_type, 236 int flags, const char *dev_name, void *data) 237 { 238 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL, 239 AIO_RING_MAGIC); 240 241 if (!IS_ERR(root)) 242 root->d_sb->s_iflags |= SB_I_NOEXEC; 243 return root; 244 } 245 246 /* aio_setup 247 * Creates the slab caches used by the aio routines, panic on 248 * failure as this is done early during the boot sequence. 249 */ 250 static int __init aio_setup(void) 251 { 252 static struct file_system_type aio_fs = { 253 .name = "aio", 254 .mount = aio_mount, 255 .kill_sb = kill_anon_super, 256 }; 257 aio_mnt = kern_mount(&aio_fs); 258 if (IS_ERR(aio_mnt)) 259 panic("Failed to create aio fs mount."); 260 261 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 262 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 263 return 0; 264 } 265 __initcall(aio_setup); 266 267 static void put_aio_ring_file(struct kioctx *ctx) 268 { 269 struct file *aio_ring_file = ctx->aio_ring_file; 270 struct address_space *i_mapping; 271 272 if (aio_ring_file) { 273 truncate_setsize(file_inode(aio_ring_file), 0); 274 275 /* Prevent further access to the kioctx from migratepages */ 276 i_mapping = aio_ring_file->f_mapping; 277 spin_lock(&i_mapping->private_lock); 278 i_mapping->private_data = NULL; 279 ctx->aio_ring_file = NULL; 280 spin_unlock(&i_mapping->private_lock); 281 282 fput(aio_ring_file); 283 } 284 } 285 286 static void aio_free_ring(struct kioctx *ctx) 287 { 288 int i; 289 290 /* Disconnect the kiotx from the ring file. This prevents future 291 * accesses to the kioctx from page migration. 292 */ 293 put_aio_ring_file(ctx); 294 295 for (i = 0; i < ctx->nr_pages; i++) { 296 struct page *page; 297 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 298 page_count(ctx->ring_pages[i])); 299 page = ctx->ring_pages[i]; 300 if (!page) 301 continue; 302 ctx->ring_pages[i] = NULL; 303 put_page(page); 304 } 305 306 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 307 kfree(ctx->ring_pages); 308 ctx->ring_pages = NULL; 309 } 310 } 311 312 static int aio_ring_mremap(struct vm_area_struct *vma) 313 { 314 struct file *file = vma->vm_file; 315 struct mm_struct *mm = vma->vm_mm; 316 struct kioctx_table *table; 317 int i, res = -EINVAL; 318 319 spin_lock(&mm->ioctx_lock); 320 rcu_read_lock(); 321 table = rcu_dereference(mm->ioctx_table); 322 for (i = 0; i < table->nr; i++) { 323 struct kioctx *ctx; 324 325 ctx = rcu_dereference(table->table[i]); 326 if (ctx && ctx->aio_ring_file == file) { 327 if (!atomic_read(&ctx->dead)) { 328 ctx->user_id = ctx->mmap_base = vma->vm_start; 329 res = 0; 330 } 331 break; 332 } 333 } 334 335 rcu_read_unlock(); 336 spin_unlock(&mm->ioctx_lock); 337 return res; 338 } 339 340 static const struct vm_operations_struct aio_ring_vm_ops = { 341 .mremap = aio_ring_mremap, 342 #if IS_ENABLED(CONFIG_MMU) 343 .fault = filemap_fault, 344 .map_pages = filemap_map_pages, 345 .page_mkwrite = filemap_page_mkwrite, 346 #endif 347 }; 348 349 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 350 { 351 vma->vm_flags |= VM_DONTEXPAND; 352 vma->vm_ops = &aio_ring_vm_ops; 353 return 0; 354 } 355 356 static const struct file_operations aio_ring_fops = { 357 .mmap = aio_ring_mmap, 358 }; 359 360 #if IS_ENABLED(CONFIG_MIGRATION) 361 static int aio_migratepage(struct address_space *mapping, struct page *new, 362 struct page *old, enum migrate_mode mode) 363 { 364 struct kioctx *ctx; 365 unsigned long flags; 366 pgoff_t idx; 367 int rc; 368 369 /* 370 * We cannot support the _NO_COPY case here, because copy needs to 371 * happen under the ctx->completion_lock. That does not work with the 372 * migration workflow of MIGRATE_SYNC_NO_COPY. 373 */ 374 if (mode == MIGRATE_SYNC_NO_COPY) 375 return -EINVAL; 376 377 rc = 0; 378 379 /* mapping->private_lock here protects against the kioctx teardown. */ 380 spin_lock(&mapping->private_lock); 381 ctx = mapping->private_data; 382 if (!ctx) { 383 rc = -EINVAL; 384 goto out; 385 } 386 387 /* The ring_lock mutex. The prevents aio_read_events() from writing 388 * to the ring's head, and prevents page migration from mucking in 389 * a partially initialized kiotx. 390 */ 391 if (!mutex_trylock(&ctx->ring_lock)) { 392 rc = -EAGAIN; 393 goto out; 394 } 395 396 idx = old->index; 397 if (idx < (pgoff_t)ctx->nr_pages) { 398 /* Make sure the old page hasn't already been changed */ 399 if (ctx->ring_pages[idx] != old) 400 rc = -EAGAIN; 401 } else 402 rc = -EINVAL; 403 404 if (rc != 0) 405 goto out_unlock; 406 407 /* Writeback must be complete */ 408 BUG_ON(PageWriteback(old)); 409 get_page(new); 410 411 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 412 if (rc != MIGRATEPAGE_SUCCESS) { 413 put_page(new); 414 goto out_unlock; 415 } 416 417 /* Take completion_lock to prevent other writes to the ring buffer 418 * while the old page is copied to the new. This prevents new 419 * events from being lost. 420 */ 421 spin_lock_irqsave(&ctx->completion_lock, flags); 422 migrate_page_copy(new, old); 423 BUG_ON(ctx->ring_pages[idx] != old); 424 ctx->ring_pages[idx] = new; 425 spin_unlock_irqrestore(&ctx->completion_lock, flags); 426 427 /* The old page is no longer accessible. */ 428 put_page(old); 429 430 out_unlock: 431 mutex_unlock(&ctx->ring_lock); 432 out: 433 spin_unlock(&mapping->private_lock); 434 return rc; 435 } 436 #endif 437 438 static const struct address_space_operations aio_ctx_aops = { 439 .set_page_dirty = __set_page_dirty_no_writeback, 440 #if IS_ENABLED(CONFIG_MIGRATION) 441 .migratepage = aio_migratepage, 442 #endif 443 }; 444 445 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 446 { 447 struct aio_ring *ring; 448 struct mm_struct *mm = current->mm; 449 unsigned long size, unused; 450 int nr_pages; 451 int i; 452 struct file *file; 453 454 /* Compensate for the ring buffer's head/tail overlap entry */ 455 nr_events += 2; /* 1 is required, 2 for good luck */ 456 457 size = sizeof(struct aio_ring); 458 size += sizeof(struct io_event) * nr_events; 459 460 nr_pages = PFN_UP(size); 461 if (nr_pages < 0) 462 return -EINVAL; 463 464 file = aio_private_file(ctx, nr_pages); 465 if (IS_ERR(file)) { 466 ctx->aio_ring_file = NULL; 467 return -ENOMEM; 468 } 469 470 ctx->aio_ring_file = file; 471 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 472 / sizeof(struct io_event); 473 474 ctx->ring_pages = ctx->internal_pages; 475 if (nr_pages > AIO_RING_PAGES) { 476 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 477 GFP_KERNEL); 478 if (!ctx->ring_pages) { 479 put_aio_ring_file(ctx); 480 return -ENOMEM; 481 } 482 } 483 484 for (i = 0; i < nr_pages; i++) { 485 struct page *page; 486 page = find_or_create_page(file->f_mapping, 487 i, GFP_HIGHUSER | __GFP_ZERO); 488 if (!page) 489 break; 490 pr_debug("pid(%d) page[%d]->count=%d\n", 491 current->pid, i, page_count(page)); 492 SetPageUptodate(page); 493 unlock_page(page); 494 495 ctx->ring_pages[i] = page; 496 } 497 ctx->nr_pages = i; 498 499 if (unlikely(i != nr_pages)) { 500 aio_free_ring(ctx); 501 return -ENOMEM; 502 } 503 504 ctx->mmap_size = nr_pages * PAGE_SIZE; 505 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 506 507 if (down_write_killable(&mm->mmap_sem)) { 508 ctx->mmap_size = 0; 509 aio_free_ring(ctx); 510 return -EINTR; 511 } 512 513 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 514 PROT_READ | PROT_WRITE, 515 MAP_SHARED, 0, &unused, NULL); 516 up_write(&mm->mmap_sem); 517 if (IS_ERR((void *)ctx->mmap_base)) { 518 ctx->mmap_size = 0; 519 aio_free_ring(ctx); 520 return -ENOMEM; 521 } 522 523 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 524 525 ctx->user_id = ctx->mmap_base; 526 ctx->nr_events = nr_events; /* trusted copy */ 527 528 ring = kmap_atomic(ctx->ring_pages[0]); 529 ring->nr = nr_events; /* user copy */ 530 ring->id = ~0U; 531 ring->head = ring->tail = 0; 532 ring->magic = AIO_RING_MAGIC; 533 ring->compat_features = AIO_RING_COMPAT_FEATURES; 534 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 535 ring->header_length = sizeof(struct aio_ring); 536 kunmap_atomic(ring); 537 flush_dcache_page(ctx->ring_pages[0]); 538 539 return 0; 540 } 541 542 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 543 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 544 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 545 546 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 547 { 548 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 549 struct kioctx *ctx = req->ki_ctx; 550 unsigned long flags; 551 552 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 553 return; 554 555 spin_lock_irqsave(&ctx->ctx_lock, flags); 556 list_add_tail(&req->ki_list, &ctx->active_reqs); 557 req->ki_cancel = cancel; 558 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 559 } 560 EXPORT_SYMBOL(kiocb_set_cancel_fn); 561 562 /* 563 * free_ioctx() should be RCU delayed to synchronize against the RCU 564 * protected lookup_ioctx() and also needs process context to call 565 * aio_free_ring(). Use rcu_work. 566 */ 567 static void free_ioctx(struct work_struct *work) 568 { 569 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 570 free_rwork); 571 pr_debug("freeing %p\n", ctx); 572 573 aio_free_ring(ctx); 574 free_percpu(ctx->cpu); 575 percpu_ref_exit(&ctx->reqs); 576 percpu_ref_exit(&ctx->users); 577 kmem_cache_free(kioctx_cachep, ctx); 578 } 579 580 static void free_ioctx_reqs(struct percpu_ref *ref) 581 { 582 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 583 584 /* At this point we know that there are no any in-flight requests */ 585 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 586 complete(&ctx->rq_wait->comp); 587 588 /* Synchronize against RCU protected table->table[] dereferences */ 589 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 590 queue_rcu_work(system_wq, &ctx->free_rwork); 591 } 592 593 /* 594 * When this function runs, the kioctx has been removed from the "hash table" 595 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 596 * now it's safe to cancel any that need to be. 597 */ 598 static void free_ioctx_users(struct percpu_ref *ref) 599 { 600 struct kioctx *ctx = container_of(ref, struct kioctx, users); 601 struct aio_kiocb *req; 602 603 spin_lock_irq(&ctx->ctx_lock); 604 605 while (!list_empty(&ctx->active_reqs)) { 606 req = list_first_entry(&ctx->active_reqs, 607 struct aio_kiocb, ki_list); 608 req->ki_cancel(&req->rw); 609 list_del_init(&req->ki_list); 610 } 611 612 spin_unlock_irq(&ctx->ctx_lock); 613 614 percpu_ref_kill(&ctx->reqs); 615 percpu_ref_put(&ctx->reqs); 616 } 617 618 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 619 { 620 unsigned i, new_nr; 621 struct kioctx_table *table, *old; 622 struct aio_ring *ring; 623 624 spin_lock(&mm->ioctx_lock); 625 table = rcu_dereference_raw(mm->ioctx_table); 626 627 while (1) { 628 if (table) 629 for (i = 0; i < table->nr; i++) 630 if (!rcu_access_pointer(table->table[i])) { 631 ctx->id = i; 632 rcu_assign_pointer(table->table[i], ctx); 633 spin_unlock(&mm->ioctx_lock); 634 635 /* While kioctx setup is in progress, 636 * we are protected from page migration 637 * changes ring_pages by ->ring_lock. 638 */ 639 ring = kmap_atomic(ctx->ring_pages[0]); 640 ring->id = ctx->id; 641 kunmap_atomic(ring); 642 return 0; 643 } 644 645 new_nr = (table ? table->nr : 1) * 4; 646 spin_unlock(&mm->ioctx_lock); 647 648 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 649 new_nr, GFP_KERNEL); 650 if (!table) 651 return -ENOMEM; 652 653 table->nr = new_nr; 654 655 spin_lock(&mm->ioctx_lock); 656 old = rcu_dereference_raw(mm->ioctx_table); 657 658 if (!old) { 659 rcu_assign_pointer(mm->ioctx_table, table); 660 } else if (table->nr > old->nr) { 661 memcpy(table->table, old->table, 662 old->nr * sizeof(struct kioctx *)); 663 664 rcu_assign_pointer(mm->ioctx_table, table); 665 kfree_rcu(old, rcu); 666 } else { 667 kfree(table); 668 table = old; 669 } 670 } 671 } 672 673 static void aio_nr_sub(unsigned nr) 674 { 675 spin_lock(&aio_nr_lock); 676 if (WARN_ON(aio_nr - nr > aio_nr)) 677 aio_nr = 0; 678 else 679 aio_nr -= nr; 680 spin_unlock(&aio_nr_lock); 681 } 682 683 /* ioctx_alloc 684 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 685 */ 686 static struct kioctx *ioctx_alloc(unsigned nr_events) 687 { 688 struct mm_struct *mm = current->mm; 689 struct kioctx *ctx; 690 int err = -ENOMEM; 691 692 /* 693 * Store the original nr_events -- what userspace passed to io_setup(), 694 * for counting against the global limit -- before it changes. 695 */ 696 unsigned int max_reqs = nr_events; 697 698 /* 699 * We keep track of the number of available ringbuffer slots, to prevent 700 * overflow (reqs_available), and we also use percpu counters for this. 701 * 702 * So since up to half the slots might be on other cpu's percpu counters 703 * and unavailable, double nr_events so userspace sees what they 704 * expected: additionally, we move req_batch slots to/from percpu 705 * counters at a time, so make sure that isn't 0: 706 */ 707 nr_events = max(nr_events, num_possible_cpus() * 4); 708 nr_events *= 2; 709 710 /* Prevent overflows */ 711 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 712 pr_debug("ENOMEM: nr_events too high\n"); 713 return ERR_PTR(-EINVAL); 714 } 715 716 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 717 return ERR_PTR(-EAGAIN); 718 719 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 720 if (!ctx) 721 return ERR_PTR(-ENOMEM); 722 723 ctx->max_reqs = max_reqs; 724 725 spin_lock_init(&ctx->ctx_lock); 726 spin_lock_init(&ctx->completion_lock); 727 mutex_init(&ctx->ring_lock); 728 /* Protect against page migration throughout kiotx setup by keeping 729 * the ring_lock mutex held until setup is complete. */ 730 mutex_lock(&ctx->ring_lock); 731 init_waitqueue_head(&ctx->wait); 732 733 INIT_LIST_HEAD(&ctx->active_reqs); 734 735 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 736 goto err; 737 738 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 739 goto err; 740 741 ctx->cpu = alloc_percpu(struct kioctx_cpu); 742 if (!ctx->cpu) 743 goto err; 744 745 err = aio_setup_ring(ctx, nr_events); 746 if (err < 0) 747 goto err; 748 749 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 750 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 751 if (ctx->req_batch < 1) 752 ctx->req_batch = 1; 753 754 /* limit the number of system wide aios */ 755 spin_lock(&aio_nr_lock); 756 if (aio_nr + ctx->max_reqs > aio_max_nr || 757 aio_nr + ctx->max_reqs < aio_nr) { 758 spin_unlock(&aio_nr_lock); 759 err = -EAGAIN; 760 goto err_ctx; 761 } 762 aio_nr += ctx->max_reqs; 763 spin_unlock(&aio_nr_lock); 764 765 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 766 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 767 768 err = ioctx_add_table(ctx, mm); 769 if (err) 770 goto err_cleanup; 771 772 /* Release the ring_lock mutex now that all setup is complete. */ 773 mutex_unlock(&ctx->ring_lock); 774 775 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 776 ctx, ctx->user_id, mm, ctx->nr_events); 777 return ctx; 778 779 err_cleanup: 780 aio_nr_sub(ctx->max_reqs); 781 err_ctx: 782 atomic_set(&ctx->dead, 1); 783 if (ctx->mmap_size) 784 vm_munmap(ctx->mmap_base, ctx->mmap_size); 785 aio_free_ring(ctx); 786 err: 787 mutex_unlock(&ctx->ring_lock); 788 free_percpu(ctx->cpu); 789 percpu_ref_exit(&ctx->reqs); 790 percpu_ref_exit(&ctx->users); 791 kmem_cache_free(kioctx_cachep, ctx); 792 pr_debug("error allocating ioctx %d\n", err); 793 return ERR_PTR(err); 794 } 795 796 /* kill_ioctx 797 * Cancels all outstanding aio requests on an aio context. Used 798 * when the processes owning a context have all exited to encourage 799 * the rapid destruction of the kioctx. 800 */ 801 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 802 struct ctx_rq_wait *wait) 803 { 804 struct kioctx_table *table; 805 806 spin_lock(&mm->ioctx_lock); 807 if (atomic_xchg(&ctx->dead, 1)) { 808 spin_unlock(&mm->ioctx_lock); 809 return -EINVAL; 810 } 811 812 table = rcu_dereference_raw(mm->ioctx_table); 813 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 814 RCU_INIT_POINTER(table->table[ctx->id], NULL); 815 spin_unlock(&mm->ioctx_lock); 816 817 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 818 wake_up_all(&ctx->wait); 819 820 /* 821 * It'd be more correct to do this in free_ioctx(), after all 822 * the outstanding kiocbs have finished - but by then io_destroy 823 * has already returned, so io_setup() could potentially return 824 * -EAGAIN with no ioctxs actually in use (as far as userspace 825 * could tell). 826 */ 827 aio_nr_sub(ctx->max_reqs); 828 829 if (ctx->mmap_size) 830 vm_munmap(ctx->mmap_base, ctx->mmap_size); 831 832 ctx->rq_wait = wait; 833 percpu_ref_kill(&ctx->users); 834 return 0; 835 } 836 837 /* 838 * exit_aio: called when the last user of mm goes away. At this point, there is 839 * no way for any new requests to be submited or any of the io_* syscalls to be 840 * called on the context. 841 * 842 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 843 * them. 844 */ 845 void exit_aio(struct mm_struct *mm) 846 { 847 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 848 struct ctx_rq_wait wait; 849 int i, skipped; 850 851 if (!table) 852 return; 853 854 atomic_set(&wait.count, table->nr); 855 init_completion(&wait.comp); 856 857 skipped = 0; 858 for (i = 0; i < table->nr; ++i) { 859 struct kioctx *ctx = 860 rcu_dereference_protected(table->table[i], true); 861 862 if (!ctx) { 863 skipped++; 864 continue; 865 } 866 867 /* 868 * We don't need to bother with munmap() here - exit_mmap(mm) 869 * is coming and it'll unmap everything. And we simply can't, 870 * this is not necessarily our ->mm. 871 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 872 * that it needs to unmap the area, just set it to 0. 873 */ 874 ctx->mmap_size = 0; 875 kill_ioctx(mm, ctx, &wait); 876 } 877 878 if (!atomic_sub_and_test(skipped, &wait.count)) { 879 /* Wait until all IO for the context are done. */ 880 wait_for_completion(&wait.comp); 881 } 882 883 RCU_INIT_POINTER(mm->ioctx_table, NULL); 884 kfree(table); 885 } 886 887 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 888 { 889 struct kioctx_cpu *kcpu; 890 unsigned long flags; 891 892 local_irq_save(flags); 893 kcpu = this_cpu_ptr(ctx->cpu); 894 kcpu->reqs_available += nr; 895 896 while (kcpu->reqs_available >= ctx->req_batch * 2) { 897 kcpu->reqs_available -= ctx->req_batch; 898 atomic_add(ctx->req_batch, &ctx->reqs_available); 899 } 900 901 local_irq_restore(flags); 902 } 903 904 static bool get_reqs_available(struct kioctx *ctx) 905 { 906 struct kioctx_cpu *kcpu; 907 bool ret = false; 908 unsigned long flags; 909 910 local_irq_save(flags); 911 kcpu = this_cpu_ptr(ctx->cpu); 912 if (!kcpu->reqs_available) { 913 int old, avail = atomic_read(&ctx->reqs_available); 914 915 do { 916 if (avail < ctx->req_batch) 917 goto out; 918 919 old = avail; 920 avail = atomic_cmpxchg(&ctx->reqs_available, 921 avail, avail - ctx->req_batch); 922 } while (avail != old); 923 924 kcpu->reqs_available += ctx->req_batch; 925 } 926 927 ret = true; 928 kcpu->reqs_available--; 929 out: 930 local_irq_restore(flags); 931 return ret; 932 } 933 934 /* refill_reqs_available 935 * Updates the reqs_available reference counts used for tracking the 936 * number of free slots in the completion ring. This can be called 937 * from aio_complete() (to optimistically update reqs_available) or 938 * from aio_get_req() (the we're out of events case). It must be 939 * called holding ctx->completion_lock. 940 */ 941 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 942 unsigned tail) 943 { 944 unsigned events_in_ring, completed; 945 946 /* Clamp head since userland can write to it. */ 947 head %= ctx->nr_events; 948 if (head <= tail) 949 events_in_ring = tail - head; 950 else 951 events_in_ring = ctx->nr_events - (head - tail); 952 953 completed = ctx->completed_events; 954 if (events_in_ring < completed) 955 completed -= events_in_ring; 956 else 957 completed = 0; 958 959 if (!completed) 960 return; 961 962 ctx->completed_events -= completed; 963 put_reqs_available(ctx, completed); 964 } 965 966 /* user_refill_reqs_available 967 * Called to refill reqs_available when aio_get_req() encounters an 968 * out of space in the completion ring. 969 */ 970 static void user_refill_reqs_available(struct kioctx *ctx) 971 { 972 spin_lock_irq(&ctx->completion_lock); 973 if (ctx->completed_events) { 974 struct aio_ring *ring; 975 unsigned head; 976 977 /* Access of ring->head may race with aio_read_events_ring() 978 * here, but that's okay since whether we read the old version 979 * or the new version, and either will be valid. The important 980 * part is that head cannot pass tail since we prevent 981 * aio_complete() from updating tail by holding 982 * ctx->completion_lock. Even if head is invalid, the check 983 * against ctx->completed_events below will make sure we do the 984 * safe/right thing. 985 */ 986 ring = kmap_atomic(ctx->ring_pages[0]); 987 head = ring->head; 988 kunmap_atomic(ring); 989 990 refill_reqs_available(ctx, head, ctx->tail); 991 } 992 993 spin_unlock_irq(&ctx->completion_lock); 994 } 995 996 /* aio_get_req 997 * Allocate a slot for an aio request. 998 * Returns NULL if no requests are free. 999 */ 1000 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1001 { 1002 struct aio_kiocb *req; 1003 1004 if (!get_reqs_available(ctx)) { 1005 user_refill_reqs_available(ctx); 1006 if (!get_reqs_available(ctx)) 1007 return NULL; 1008 } 1009 1010 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1011 if (unlikely(!req)) 1012 goto out_put; 1013 1014 percpu_ref_get(&ctx->reqs); 1015 INIT_LIST_HEAD(&req->ki_list); 1016 refcount_set(&req->ki_refcnt, 0); 1017 req->ki_ctx = ctx; 1018 return req; 1019 out_put: 1020 put_reqs_available(ctx, 1); 1021 return NULL; 1022 } 1023 1024 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1025 { 1026 struct aio_ring __user *ring = (void __user *)ctx_id; 1027 struct mm_struct *mm = current->mm; 1028 struct kioctx *ctx, *ret = NULL; 1029 struct kioctx_table *table; 1030 unsigned id; 1031 1032 if (get_user(id, &ring->id)) 1033 return NULL; 1034 1035 rcu_read_lock(); 1036 table = rcu_dereference(mm->ioctx_table); 1037 1038 if (!table || id >= table->nr) 1039 goto out; 1040 1041 ctx = rcu_dereference(table->table[id]); 1042 if (ctx && ctx->user_id == ctx_id) { 1043 if (percpu_ref_tryget_live(&ctx->users)) 1044 ret = ctx; 1045 } 1046 out: 1047 rcu_read_unlock(); 1048 return ret; 1049 } 1050 1051 static inline void iocb_put(struct aio_kiocb *iocb) 1052 { 1053 if (refcount_read(&iocb->ki_refcnt) == 0 || 1054 refcount_dec_and_test(&iocb->ki_refcnt)) { 1055 percpu_ref_put(&iocb->ki_ctx->reqs); 1056 kmem_cache_free(kiocb_cachep, iocb); 1057 } 1058 } 1059 1060 /* aio_complete 1061 * Called when the io request on the given iocb is complete. 1062 */ 1063 static void aio_complete(struct aio_kiocb *iocb, long res, long res2) 1064 { 1065 struct kioctx *ctx = iocb->ki_ctx; 1066 struct aio_ring *ring; 1067 struct io_event *ev_page, *event; 1068 unsigned tail, pos, head; 1069 unsigned long flags; 1070 1071 /* 1072 * Add a completion event to the ring buffer. Must be done holding 1073 * ctx->completion_lock to prevent other code from messing with the tail 1074 * pointer since we might be called from irq context. 1075 */ 1076 spin_lock_irqsave(&ctx->completion_lock, flags); 1077 1078 tail = ctx->tail; 1079 pos = tail + AIO_EVENTS_OFFSET; 1080 1081 if (++tail >= ctx->nr_events) 1082 tail = 0; 1083 1084 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1085 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1086 1087 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1088 event->data = iocb->ki_user_data; 1089 event->res = res; 1090 event->res2 = res2; 1091 1092 kunmap_atomic(ev_page); 1093 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1094 1095 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1096 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1097 res, res2); 1098 1099 /* after flagging the request as done, we 1100 * must never even look at it again 1101 */ 1102 smp_wmb(); /* make event visible before updating tail */ 1103 1104 ctx->tail = tail; 1105 1106 ring = kmap_atomic(ctx->ring_pages[0]); 1107 head = ring->head; 1108 ring->tail = tail; 1109 kunmap_atomic(ring); 1110 flush_dcache_page(ctx->ring_pages[0]); 1111 1112 ctx->completed_events++; 1113 if (ctx->completed_events > 1) 1114 refill_reqs_available(ctx, head, tail); 1115 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1116 1117 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1118 1119 /* 1120 * Check if the user asked us to deliver the result through an 1121 * eventfd. The eventfd_signal() function is safe to be called 1122 * from IRQ context. 1123 */ 1124 if (iocb->ki_eventfd) { 1125 eventfd_signal(iocb->ki_eventfd, 1); 1126 eventfd_ctx_put(iocb->ki_eventfd); 1127 } 1128 1129 /* 1130 * We have to order our ring_info tail store above and test 1131 * of the wait list below outside the wait lock. This is 1132 * like in wake_up_bit() where clearing a bit has to be 1133 * ordered with the unlocked test. 1134 */ 1135 smp_mb(); 1136 1137 if (waitqueue_active(&ctx->wait)) 1138 wake_up(&ctx->wait); 1139 iocb_put(iocb); 1140 } 1141 1142 /* aio_read_events_ring 1143 * Pull an event off of the ioctx's event ring. Returns the number of 1144 * events fetched 1145 */ 1146 static long aio_read_events_ring(struct kioctx *ctx, 1147 struct io_event __user *event, long nr) 1148 { 1149 struct aio_ring *ring; 1150 unsigned head, tail, pos; 1151 long ret = 0; 1152 int copy_ret; 1153 1154 /* 1155 * The mutex can block and wake us up and that will cause 1156 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1157 * and repeat. This should be rare enough that it doesn't cause 1158 * peformance issues. See the comment in read_events() for more detail. 1159 */ 1160 sched_annotate_sleep(); 1161 mutex_lock(&ctx->ring_lock); 1162 1163 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1164 ring = kmap_atomic(ctx->ring_pages[0]); 1165 head = ring->head; 1166 tail = ring->tail; 1167 kunmap_atomic(ring); 1168 1169 /* 1170 * Ensure that once we've read the current tail pointer, that 1171 * we also see the events that were stored up to the tail. 1172 */ 1173 smp_rmb(); 1174 1175 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1176 1177 if (head == tail) 1178 goto out; 1179 1180 head %= ctx->nr_events; 1181 tail %= ctx->nr_events; 1182 1183 while (ret < nr) { 1184 long avail; 1185 struct io_event *ev; 1186 struct page *page; 1187 1188 avail = (head <= tail ? tail : ctx->nr_events) - head; 1189 if (head == tail) 1190 break; 1191 1192 pos = head + AIO_EVENTS_OFFSET; 1193 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1194 pos %= AIO_EVENTS_PER_PAGE; 1195 1196 avail = min(avail, nr - ret); 1197 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1198 1199 ev = kmap(page); 1200 copy_ret = copy_to_user(event + ret, ev + pos, 1201 sizeof(*ev) * avail); 1202 kunmap(page); 1203 1204 if (unlikely(copy_ret)) { 1205 ret = -EFAULT; 1206 goto out; 1207 } 1208 1209 ret += avail; 1210 head += avail; 1211 head %= ctx->nr_events; 1212 } 1213 1214 ring = kmap_atomic(ctx->ring_pages[0]); 1215 ring->head = head; 1216 kunmap_atomic(ring); 1217 flush_dcache_page(ctx->ring_pages[0]); 1218 1219 pr_debug("%li h%u t%u\n", ret, head, tail); 1220 out: 1221 mutex_unlock(&ctx->ring_lock); 1222 1223 return ret; 1224 } 1225 1226 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1227 struct io_event __user *event, long *i) 1228 { 1229 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1230 1231 if (ret > 0) 1232 *i += ret; 1233 1234 if (unlikely(atomic_read(&ctx->dead))) 1235 ret = -EINVAL; 1236 1237 if (!*i) 1238 *i = ret; 1239 1240 return ret < 0 || *i >= min_nr; 1241 } 1242 1243 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1244 struct io_event __user *event, 1245 ktime_t until) 1246 { 1247 long ret = 0; 1248 1249 /* 1250 * Note that aio_read_events() is being called as the conditional - i.e. 1251 * we're calling it after prepare_to_wait() has set task state to 1252 * TASK_INTERRUPTIBLE. 1253 * 1254 * But aio_read_events() can block, and if it blocks it's going to flip 1255 * the task state back to TASK_RUNNING. 1256 * 1257 * This should be ok, provided it doesn't flip the state back to 1258 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1259 * will only happen if the mutex_lock() call blocks, and we then find 1260 * the ringbuffer empty. So in practice we should be ok, but it's 1261 * something to be aware of when touching this code. 1262 */ 1263 if (until == 0) 1264 aio_read_events(ctx, min_nr, nr, event, &ret); 1265 else 1266 wait_event_interruptible_hrtimeout(ctx->wait, 1267 aio_read_events(ctx, min_nr, nr, event, &ret), 1268 until); 1269 return ret; 1270 } 1271 1272 /* sys_io_setup: 1273 * Create an aio_context capable of receiving at least nr_events. 1274 * ctxp must not point to an aio_context that already exists, and 1275 * must be initialized to 0 prior to the call. On successful 1276 * creation of the aio_context, *ctxp is filled in with the resulting 1277 * handle. May fail with -EINVAL if *ctxp is not initialized, 1278 * if the specified nr_events exceeds internal limits. May fail 1279 * with -EAGAIN if the specified nr_events exceeds the user's limit 1280 * of available events. May fail with -ENOMEM if insufficient kernel 1281 * resources are available. May fail with -EFAULT if an invalid 1282 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1283 * implemented. 1284 */ 1285 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1286 { 1287 struct kioctx *ioctx = NULL; 1288 unsigned long ctx; 1289 long ret; 1290 1291 ret = get_user(ctx, ctxp); 1292 if (unlikely(ret)) 1293 goto out; 1294 1295 ret = -EINVAL; 1296 if (unlikely(ctx || nr_events == 0)) { 1297 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1298 ctx, nr_events); 1299 goto out; 1300 } 1301 1302 ioctx = ioctx_alloc(nr_events); 1303 ret = PTR_ERR(ioctx); 1304 if (!IS_ERR(ioctx)) { 1305 ret = put_user(ioctx->user_id, ctxp); 1306 if (ret) 1307 kill_ioctx(current->mm, ioctx, NULL); 1308 percpu_ref_put(&ioctx->users); 1309 } 1310 1311 out: 1312 return ret; 1313 } 1314 1315 #ifdef CONFIG_COMPAT 1316 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1317 { 1318 struct kioctx *ioctx = NULL; 1319 unsigned long ctx; 1320 long ret; 1321 1322 ret = get_user(ctx, ctx32p); 1323 if (unlikely(ret)) 1324 goto out; 1325 1326 ret = -EINVAL; 1327 if (unlikely(ctx || nr_events == 0)) { 1328 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1329 ctx, nr_events); 1330 goto out; 1331 } 1332 1333 ioctx = ioctx_alloc(nr_events); 1334 ret = PTR_ERR(ioctx); 1335 if (!IS_ERR(ioctx)) { 1336 /* truncating is ok because it's a user address */ 1337 ret = put_user((u32)ioctx->user_id, ctx32p); 1338 if (ret) 1339 kill_ioctx(current->mm, ioctx, NULL); 1340 percpu_ref_put(&ioctx->users); 1341 } 1342 1343 out: 1344 return ret; 1345 } 1346 #endif 1347 1348 /* sys_io_destroy: 1349 * Destroy the aio_context specified. May cancel any outstanding 1350 * AIOs and block on completion. Will fail with -ENOSYS if not 1351 * implemented. May fail with -EINVAL if the context pointed to 1352 * is invalid. 1353 */ 1354 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1355 { 1356 struct kioctx *ioctx = lookup_ioctx(ctx); 1357 if (likely(NULL != ioctx)) { 1358 struct ctx_rq_wait wait; 1359 int ret; 1360 1361 init_completion(&wait.comp); 1362 atomic_set(&wait.count, 1); 1363 1364 /* Pass requests_done to kill_ioctx() where it can be set 1365 * in a thread-safe way. If we try to set it here then we have 1366 * a race condition if two io_destroy() called simultaneously. 1367 */ 1368 ret = kill_ioctx(current->mm, ioctx, &wait); 1369 percpu_ref_put(&ioctx->users); 1370 1371 /* Wait until all IO for the context are done. Otherwise kernel 1372 * keep using user-space buffers even if user thinks the context 1373 * is destroyed. 1374 */ 1375 if (!ret) 1376 wait_for_completion(&wait.comp); 1377 1378 return ret; 1379 } 1380 pr_debug("EINVAL: invalid context id\n"); 1381 return -EINVAL; 1382 } 1383 1384 static void aio_remove_iocb(struct aio_kiocb *iocb) 1385 { 1386 struct kioctx *ctx = iocb->ki_ctx; 1387 unsigned long flags; 1388 1389 spin_lock_irqsave(&ctx->ctx_lock, flags); 1390 list_del(&iocb->ki_list); 1391 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1392 } 1393 1394 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1395 { 1396 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1397 1398 if (!list_empty_careful(&iocb->ki_list)) 1399 aio_remove_iocb(iocb); 1400 1401 if (kiocb->ki_flags & IOCB_WRITE) { 1402 struct inode *inode = file_inode(kiocb->ki_filp); 1403 1404 /* 1405 * Tell lockdep we inherited freeze protection from submission 1406 * thread. 1407 */ 1408 if (S_ISREG(inode->i_mode)) 1409 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1410 file_end_write(kiocb->ki_filp); 1411 } 1412 1413 fput(kiocb->ki_filp); 1414 aio_complete(iocb, res, res2); 1415 } 1416 1417 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb) 1418 { 1419 int ret; 1420 1421 req->ki_filp = fget(iocb->aio_fildes); 1422 if (unlikely(!req->ki_filp)) 1423 return -EBADF; 1424 req->ki_complete = aio_complete_rw; 1425 req->ki_pos = iocb->aio_offset; 1426 req->ki_flags = iocb_flags(req->ki_filp); 1427 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1428 req->ki_flags |= IOCB_EVENTFD; 1429 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1430 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1431 /* 1432 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1433 * aio_reqprio is interpreted as an I/O scheduling 1434 * class and priority. 1435 */ 1436 ret = ioprio_check_cap(iocb->aio_reqprio); 1437 if (ret) { 1438 pr_debug("aio ioprio check cap error: %d\n", ret); 1439 return ret; 1440 } 1441 1442 req->ki_ioprio = iocb->aio_reqprio; 1443 } else 1444 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1445 1446 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1447 if (unlikely(ret)) 1448 fput(req->ki_filp); 1449 return ret; 1450 } 1451 1452 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec, 1453 bool vectored, bool compat, struct iov_iter *iter) 1454 { 1455 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1456 size_t len = iocb->aio_nbytes; 1457 1458 if (!vectored) { 1459 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1460 *iovec = NULL; 1461 return ret; 1462 } 1463 #ifdef CONFIG_COMPAT 1464 if (compat) 1465 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec, 1466 iter); 1467 #endif 1468 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter); 1469 } 1470 1471 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1472 { 1473 switch (ret) { 1474 case -EIOCBQUEUED: 1475 break; 1476 case -ERESTARTSYS: 1477 case -ERESTARTNOINTR: 1478 case -ERESTARTNOHAND: 1479 case -ERESTART_RESTARTBLOCK: 1480 /* 1481 * There's no easy way to restart the syscall since other AIO's 1482 * may be already running. Just fail this IO with EINTR. 1483 */ 1484 ret = -EINTR; 1485 /*FALLTHRU*/ 1486 default: 1487 aio_complete_rw(req, ret, 0); 1488 } 1489 } 1490 1491 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored, 1492 bool compat) 1493 { 1494 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1495 struct iov_iter iter; 1496 struct file *file; 1497 ssize_t ret; 1498 1499 ret = aio_prep_rw(req, iocb); 1500 if (ret) 1501 return ret; 1502 file = req->ki_filp; 1503 1504 ret = -EBADF; 1505 if (unlikely(!(file->f_mode & FMODE_READ))) 1506 goto out_fput; 1507 ret = -EINVAL; 1508 if (unlikely(!file->f_op->read_iter)) 1509 goto out_fput; 1510 1511 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1512 if (ret) 1513 goto out_fput; 1514 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1515 if (!ret) 1516 aio_rw_done(req, call_read_iter(file, req, &iter)); 1517 kfree(iovec); 1518 out_fput: 1519 if (unlikely(ret)) 1520 fput(file); 1521 return ret; 1522 } 1523 1524 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored, 1525 bool compat) 1526 { 1527 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1528 struct iov_iter iter; 1529 struct file *file; 1530 ssize_t ret; 1531 1532 ret = aio_prep_rw(req, iocb); 1533 if (ret) 1534 return ret; 1535 file = req->ki_filp; 1536 1537 ret = -EBADF; 1538 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1539 goto out_fput; 1540 ret = -EINVAL; 1541 if (unlikely(!file->f_op->write_iter)) 1542 goto out_fput; 1543 1544 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1545 if (ret) 1546 goto out_fput; 1547 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1548 if (!ret) { 1549 /* 1550 * Open-code file_start_write here to grab freeze protection, 1551 * which will be released by another thread in 1552 * aio_complete_rw(). Fool lockdep by telling it the lock got 1553 * released so that it doesn't complain about the held lock when 1554 * we return to userspace. 1555 */ 1556 if (S_ISREG(file_inode(file)->i_mode)) { 1557 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); 1558 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1559 } 1560 req->ki_flags |= IOCB_WRITE; 1561 aio_rw_done(req, call_write_iter(file, req, &iter)); 1562 } 1563 kfree(iovec); 1564 out_fput: 1565 if (unlikely(ret)) 1566 fput(file); 1567 return ret; 1568 } 1569 1570 static void aio_fsync_work(struct work_struct *work) 1571 { 1572 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work); 1573 int ret; 1574 1575 ret = vfs_fsync(req->file, req->datasync); 1576 fput(req->file); 1577 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0); 1578 } 1579 1580 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync) 1581 { 1582 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1583 iocb->aio_rw_flags)) 1584 return -EINVAL; 1585 1586 req->file = fget(iocb->aio_fildes); 1587 if (unlikely(!req->file)) 1588 return -EBADF; 1589 if (unlikely(!req->file->f_op->fsync)) { 1590 fput(req->file); 1591 return -EINVAL; 1592 } 1593 1594 req->datasync = datasync; 1595 INIT_WORK(&req->work, aio_fsync_work); 1596 schedule_work(&req->work); 1597 return 0; 1598 } 1599 1600 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask) 1601 { 1602 struct file *file = iocb->poll.file; 1603 1604 aio_complete(iocb, mangle_poll(mask), 0); 1605 fput(file); 1606 } 1607 1608 static void aio_poll_complete_work(struct work_struct *work) 1609 { 1610 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1611 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1612 struct poll_table_struct pt = { ._key = req->events }; 1613 struct kioctx *ctx = iocb->ki_ctx; 1614 __poll_t mask = 0; 1615 1616 if (!READ_ONCE(req->cancelled)) 1617 mask = vfs_poll(req->file, &pt) & req->events; 1618 1619 /* 1620 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1621 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1622 * synchronize with them. In the cancellation case the list_del_init 1623 * itself is not actually needed, but harmless so we keep it in to 1624 * avoid further branches in the fast path. 1625 */ 1626 spin_lock_irq(&ctx->ctx_lock); 1627 if (!mask && !READ_ONCE(req->cancelled)) { 1628 add_wait_queue(req->head, &req->wait); 1629 spin_unlock_irq(&ctx->ctx_lock); 1630 return; 1631 } 1632 list_del_init(&iocb->ki_list); 1633 spin_unlock_irq(&ctx->ctx_lock); 1634 1635 aio_poll_complete(iocb, mask); 1636 } 1637 1638 /* assumes we are called with irqs disabled */ 1639 static int aio_poll_cancel(struct kiocb *iocb) 1640 { 1641 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1642 struct poll_iocb *req = &aiocb->poll; 1643 1644 spin_lock(&req->head->lock); 1645 WRITE_ONCE(req->cancelled, true); 1646 if (!list_empty(&req->wait.entry)) { 1647 list_del_init(&req->wait.entry); 1648 schedule_work(&aiocb->poll.work); 1649 } 1650 spin_unlock(&req->head->lock); 1651 1652 return 0; 1653 } 1654 1655 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1656 void *key) 1657 { 1658 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1659 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1660 __poll_t mask = key_to_poll(key); 1661 1662 req->woken = true; 1663 1664 /* for instances that support it check for an event match first: */ 1665 if (mask) { 1666 if (!(mask & req->events)) 1667 return 0; 1668 1669 /* try to complete the iocb inline if we can: */ 1670 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) { 1671 list_del(&iocb->ki_list); 1672 spin_unlock(&iocb->ki_ctx->ctx_lock); 1673 1674 list_del_init(&req->wait.entry); 1675 aio_poll_complete(iocb, mask); 1676 return 1; 1677 } 1678 } 1679 1680 list_del_init(&req->wait.entry); 1681 schedule_work(&req->work); 1682 return 1; 1683 } 1684 1685 struct aio_poll_table { 1686 struct poll_table_struct pt; 1687 struct aio_kiocb *iocb; 1688 int error; 1689 }; 1690 1691 static void 1692 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1693 struct poll_table_struct *p) 1694 { 1695 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1696 1697 /* multiple wait queues per file are not supported */ 1698 if (unlikely(pt->iocb->poll.head)) { 1699 pt->error = -EINVAL; 1700 return; 1701 } 1702 1703 pt->error = 0; 1704 pt->iocb->poll.head = head; 1705 add_wait_queue(head, &pt->iocb->poll.wait); 1706 } 1707 1708 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb) 1709 { 1710 struct kioctx *ctx = aiocb->ki_ctx; 1711 struct poll_iocb *req = &aiocb->poll; 1712 struct aio_poll_table apt; 1713 __poll_t mask; 1714 1715 /* reject any unknown events outside the normal event mask. */ 1716 if ((u16)iocb->aio_buf != iocb->aio_buf) 1717 return -EINVAL; 1718 /* reject fields that are not defined for poll */ 1719 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1720 return -EINVAL; 1721 1722 INIT_WORK(&req->work, aio_poll_complete_work); 1723 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1724 req->file = fget(iocb->aio_fildes); 1725 if (unlikely(!req->file)) 1726 return -EBADF; 1727 1728 apt.pt._qproc = aio_poll_queue_proc; 1729 apt.pt._key = req->events; 1730 apt.iocb = aiocb; 1731 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1732 1733 /* initialized the list so that we can do list_empty checks */ 1734 INIT_LIST_HEAD(&req->wait.entry); 1735 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1736 1737 /* one for removal from waitqueue, one for this function */ 1738 refcount_set(&aiocb->ki_refcnt, 2); 1739 1740 mask = vfs_poll(req->file, &apt.pt) & req->events; 1741 if (unlikely(!req->head)) { 1742 /* we did not manage to set up a waitqueue, done */ 1743 goto out; 1744 } 1745 1746 spin_lock_irq(&ctx->ctx_lock); 1747 spin_lock(&req->head->lock); 1748 if (req->woken) { 1749 /* wake_up context handles the rest */ 1750 mask = 0; 1751 apt.error = 0; 1752 } else if (mask || apt.error) { 1753 /* if we get an error or a mask we are done */ 1754 WARN_ON_ONCE(list_empty(&req->wait.entry)); 1755 list_del_init(&req->wait.entry); 1756 } else { 1757 /* actually waiting for an event */ 1758 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1759 aiocb->ki_cancel = aio_poll_cancel; 1760 } 1761 spin_unlock(&req->head->lock); 1762 spin_unlock_irq(&ctx->ctx_lock); 1763 1764 out: 1765 if (unlikely(apt.error)) { 1766 fput(req->file); 1767 return apt.error; 1768 } 1769 1770 if (mask) 1771 aio_poll_complete(aiocb, mask); 1772 iocb_put(aiocb); 1773 return 0; 1774 } 1775 1776 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1777 bool compat) 1778 { 1779 struct aio_kiocb *req; 1780 struct iocb iocb; 1781 ssize_t ret; 1782 1783 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1784 return -EFAULT; 1785 1786 /* enforce forwards compatibility on users */ 1787 if (unlikely(iocb.aio_reserved2)) { 1788 pr_debug("EINVAL: reserve field set\n"); 1789 return -EINVAL; 1790 } 1791 1792 /* prevent overflows */ 1793 if (unlikely( 1794 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1795 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1796 ((ssize_t)iocb.aio_nbytes < 0) 1797 )) { 1798 pr_debug("EINVAL: overflow check\n"); 1799 return -EINVAL; 1800 } 1801 1802 req = aio_get_req(ctx); 1803 if (unlikely(!req)) 1804 return -EAGAIN; 1805 1806 if (iocb.aio_flags & IOCB_FLAG_RESFD) { 1807 /* 1808 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1809 * instance of the file* now. The file descriptor must be 1810 * an eventfd() fd, and will be signaled for each completed 1811 * event using the eventfd_signal() function. 1812 */ 1813 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd); 1814 if (IS_ERR(req->ki_eventfd)) { 1815 ret = PTR_ERR(req->ki_eventfd); 1816 req->ki_eventfd = NULL; 1817 goto out_put_req; 1818 } 1819 } 1820 1821 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1822 if (unlikely(ret)) { 1823 pr_debug("EFAULT: aio_key\n"); 1824 goto out_put_req; 1825 } 1826 1827 req->ki_user_iocb = user_iocb; 1828 req->ki_user_data = iocb.aio_data; 1829 1830 switch (iocb.aio_lio_opcode) { 1831 case IOCB_CMD_PREAD: 1832 ret = aio_read(&req->rw, &iocb, false, compat); 1833 break; 1834 case IOCB_CMD_PWRITE: 1835 ret = aio_write(&req->rw, &iocb, false, compat); 1836 break; 1837 case IOCB_CMD_PREADV: 1838 ret = aio_read(&req->rw, &iocb, true, compat); 1839 break; 1840 case IOCB_CMD_PWRITEV: 1841 ret = aio_write(&req->rw, &iocb, true, compat); 1842 break; 1843 case IOCB_CMD_FSYNC: 1844 ret = aio_fsync(&req->fsync, &iocb, false); 1845 break; 1846 case IOCB_CMD_FDSYNC: 1847 ret = aio_fsync(&req->fsync, &iocb, true); 1848 break; 1849 case IOCB_CMD_POLL: 1850 ret = aio_poll(req, &iocb); 1851 break; 1852 default: 1853 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode); 1854 ret = -EINVAL; 1855 break; 1856 } 1857 1858 /* 1859 * If ret is 0, we'd either done aio_complete() ourselves or have 1860 * arranged for that to be done asynchronously. Anything non-zero 1861 * means that we need to destroy req ourselves. 1862 */ 1863 if (ret) 1864 goto out_put_req; 1865 return 0; 1866 out_put_req: 1867 put_reqs_available(ctx, 1); 1868 percpu_ref_put(&ctx->reqs); 1869 if (req->ki_eventfd) 1870 eventfd_ctx_put(req->ki_eventfd); 1871 kmem_cache_free(kiocb_cachep, req); 1872 return ret; 1873 } 1874 1875 /* sys_io_submit: 1876 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1877 * the number of iocbs queued. May return -EINVAL if the aio_context 1878 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1879 * *iocbpp[0] is not properly initialized, if the operation specified 1880 * is invalid for the file descriptor in the iocb. May fail with 1881 * -EFAULT if any of the data structures point to invalid data. May 1882 * fail with -EBADF if the file descriptor specified in the first 1883 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1884 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1885 * fail with -ENOSYS if not implemented. 1886 */ 1887 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1888 struct iocb __user * __user *, iocbpp) 1889 { 1890 struct kioctx *ctx; 1891 long ret = 0; 1892 int i = 0; 1893 struct blk_plug plug; 1894 1895 if (unlikely(nr < 0)) 1896 return -EINVAL; 1897 1898 ctx = lookup_ioctx(ctx_id); 1899 if (unlikely(!ctx)) { 1900 pr_debug("EINVAL: invalid context id\n"); 1901 return -EINVAL; 1902 } 1903 1904 if (nr > ctx->nr_events) 1905 nr = ctx->nr_events; 1906 1907 blk_start_plug(&plug); 1908 for (i = 0; i < nr; i++) { 1909 struct iocb __user *user_iocb; 1910 1911 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1912 ret = -EFAULT; 1913 break; 1914 } 1915 1916 ret = io_submit_one(ctx, user_iocb, false); 1917 if (ret) 1918 break; 1919 } 1920 blk_finish_plug(&plug); 1921 1922 percpu_ref_put(&ctx->users); 1923 return i ? i : ret; 1924 } 1925 1926 #ifdef CONFIG_COMPAT 1927 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1928 int, nr, compat_uptr_t __user *, iocbpp) 1929 { 1930 struct kioctx *ctx; 1931 long ret = 0; 1932 int i = 0; 1933 struct blk_plug plug; 1934 1935 if (unlikely(nr < 0)) 1936 return -EINVAL; 1937 1938 ctx = lookup_ioctx(ctx_id); 1939 if (unlikely(!ctx)) { 1940 pr_debug("EINVAL: invalid context id\n"); 1941 return -EINVAL; 1942 } 1943 1944 if (nr > ctx->nr_events) 1945 nr = ctx->nr_events; 1946 1947 blk_start_plug(&plug); 1948 for (i = 0; i < nr; i++) { 1949 compat_uptr_t user_iocb; 1950 1951 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1952 ret = -EFAULT; 1953 break; 1954 } 1955 1956 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1957 if (ret) 1958 break; 1959 } 1960 blk_finish_plug(&plug); 1961 1962 percpu_ref_put(&ctx->users); 1963 return i ? i : ret; 1964 } 1965 #endif 1966 1967 /* lookup_kiocb 1968 * Finds a given iocb for cancellation. 1969 */ 1970 static struct aio_kiocb * 1971 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb) 1972 { 1973 struct aio_kiocb *kiocb; 1974 1975 assert_spin_locked(&ctx->ctx_lock); 1976 1977 /* TODO: use a hash or array, this sucks. */ 1978 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1979 if (kiocb->ki_user_iocb == iocb) 1980 return kiocb; 1981 } 1982 return NULL; 1983 } 1984 1985 /* sys_io_cancel: 1986 * Attempts to cancel an iocb previously passed to io_submit. If 1987 * the operation is successfully cancelled, the resulting event is 1988 * copied into the memory pointed to by result without being placed 1989 * into the completion queue and 0 is returned. May fail with 1990 * -EFAULT if any of the data structures pointed to are invalid. 1991 * May fail with -EINVAL if aio_context specified by ctx_id is 1992 * invalid. May fail with -EAGAIN if the iocb specified was not 1993 * cancelled. Will fail with -ENOSYS if not implemented. 1994 */ 1995 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1996 struct io_event __user *, result) 1997 { 1998 struct kioctx *ctx; 1999 struct aio_kiocb *kiocb; 2000 int ret = -EINVAL; 2001 u32 key; 2002 2003 if (unlikely(get_user(key, &iocb->aio_key))) 2004 return -EFAULT; 2005 if (unlikely(key != KIOCB_KEY)) 2006 return -EINVAL; 2007 2008 ctx = lookup_ioctx(ctx_id); 2009 if (unlikely(!ctx)) 2010 return -EINVAL; 2011 2012 spin_lock_irq(&ctx->ctx_lock); 2013 kiocb = lookup_kiocb(ctx, iocb); 2014 if (kiocb) { 2015 ret = kiocb->ki_cancel(&kiocb->rw); 2016 list_del_init(&kiocb->ki_list); 2017 } 2018 spin_unlock_irq(&ctx->ctx_lock); 2019 2020 if (!ret) { 2021 /* 2022 * The result argument is no longer used - the io_event is 2023 * always delivered via the ring buffer. -EINPROGRESS indicates 2024 * cancellation is progress: 2025 */ 2026 ret = -EINPROGRESS; 2027 } 2028 2029 percpu_ref_put(&ctx->users); 2030 2031 return ret; 2032 } 2033 2034 static long do_io_getevents(aio_context_t ctx_id, 2035 long min_nr, 2036 long nr, 2037 struct io_event __user *events, 2038 struct timespec64 *ts) 2039 { 2040 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2041 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2042 long ret = -EINVAL; 2043 2044 if (likely(ioctx)) { 2045 if (likely(min_nr <= nr && min_nr >= 0)) 2046 ret = read_events(ioctx, min_nr, nr, events, until); 2047 percpu_ref_put(&ioctx->users); 2048 } 2049 2050 return ret; 2051 } 2052 2053 /* io_getevents: 2054 * Attempts to read at least min_nr events and up to nr events from 2055 * the completion queue for the aio_context specified by ctx_id. If 2056 * it succeeds, the number of read events is returned. May fail with 2057 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2058 * out of range, if timeout is out of range. May fail with -EFAULT 2059 * if any of the memory specified is invalid. May return 0 or 2060 * < min_nr if the timeout specified by timeout has elapsed 2061 * before sufficient events are available, where timeout == NULL 2062 * specifies an infinite timeout. Note that the timeout pointed to by 2063 * timeout is relative. Will fail with -ENOSYS if not implemented. 2064 */ 2065 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2066 long, min_nr, 2067 long, nr, 2068 struct io_event __user *, events, 2069 struct timespec __user *, timeout) 2070 { 2071 struct timespec64 ts; 2072 int ret; 2073 2074 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2075 return -EFAULT; 2076 2077 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2078 if (!ret && signal_pending(current)) 2079 ret = -EINTR; 2080 return ret; 2081 } 2082 2083 struct __aio_sigset { 2084 const sigset_t __user *sigmask; 2085 size_t sigsetsize; 2086 }; 2087 2088 SYSCALL_DEFINE6(io_pgetevents, 2089 aio_context_t, ctx_id, 2090 long, min_nr, 2091 long, nr, 2092 struct io_event __user *, events, 2093 struct timespec __user *, timeout, 2094 const struct __aio_sigset __user *, usig) 2095 { 2096 struct __aio_sigset ksig = { NULL, }; 2097 sigset_t ksigmask, sigsaved; 2098 struct timespec64 ts; 2099 int ret; 2100 2101 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2102 return -EFAULT; 2103 2104 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2105 return -EFAULT; 2106 2107 if (ksig.sigmask) { 2108 if (ksig.sigsetsize != sizeof(sigset_t)) 2109 return -EINVAL; 2110 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask))) 2111 return -EFAULT; 2112 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2113 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 2114 } 2115 2116 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2117 if (signal_pending(current)) { 2118 if (ksig.sigmask) { 2119 current->saved_sigmask = sigsaved; 2120 set_restore_sigmask(); 2121 } 2122 2123 if (!ret) 2124 ret = -ERESTARTNOHAND; 2125 } else { 2126 if (ksig.sigmask) 2127 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2128 } 2129 2130 return ret; 2131 } 2132 2133 #ifdef CONFIG_COMPAT 2134 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id, 2135 compat_long_t, min_nr, 2136 compat_long_t, nr, 2137 struct io_event __user *, events, 2138 struct old_timespec32 __user *, timeout) 2139 { 2140 struct timespec64 t; 2141 int ret; 2142 2143 if (timeout && get_old_timespec32(&t, timeout)) 2144 return -EFAULT; 2145 2146 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2147 if (!ret && signal_pending(current)) 2148 ret = -EINTR; 2149 return ret; 2150 } 2151 2152 2153 struct __compat_aio_sigset { 2154 compat_sigset_t __user *sigmask; 2155 compat_size_t sigsetsize; 2156 }; 2157 2158 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2159 compat_aio_context_t, ctx_id, 2160 compat_long_t, min_nr, 2161 compat_long_t, nr, 2162 struct io_event __user *, events, 2163 struct old_timespec32 __user *, timeout, 2164 const struct __compat_aio_sigset __user *, usig) 2165 { 2166 struct __compat_aio_sigset ksig = { NULL, }; 2167 sigset_t ksigmask, sigsaved; 2168 struct timespec64 t; 2169 int ret; 2170 2171 if (timeout && get_old_timespec32(&t, timeout)) 2172 return -EFAULT; 2173 2174 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2175 return -EFAULT; 2176 2177 if (ksig.sigmask) { 2178 if (ksig.sigsetsize != sizeof(compat_sigset_t)) 2179 return -EINVAL; 2180 if (get_compat_sigset(&ksigmask, ksig.sigmask)) 2181 return -EFAULT; 2182 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2183 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 2184 } 2185 2186 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2187 if (signal_pending(current)) { 2188 if (ksig.sigmask) { 2189 current->saved_sigmask = sigsaved; 2190 set_restore_sigmask(); 2191 } 2192 if (!ret) 2193 ret = -ERESTARTNOHAND; 2194 } else { 2195 if (ksig.sigmask) 2196 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2197 } 2198 2199 return ret; 2200 } 2201 #endif 2202