1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/anon_inodes.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_table { 70 struct rcu_head rcu; 71 unsigned nr; 72 struct kioctx *table[]; 73 }; 74 75 struct kioctx_cpu { 76 unsigned reqs_available; 77 }; 78 79 struct kioctx { 80 struct percpu_ref users; 81 atomic_t dead; 82 83 unsigned long user_id; 84 85 struct __percpu kioctx_cpu *cpu; 86 87 /* 88 * For percpu reqs_available, number of slots we move to/from global 89 * counter at a time: 90 */ 91 unsigned req_batch; 92 /* 93 * This is what userspace passed to io_setup(), it's not used for 94 * anything but counting against the global max_reqs quota. 95 * 96 * The real limit is nr_events - 1, which will be larger (see 97 * aio_setup_ring()) 98 */ 99 unsigned max_reqs; 100 101 /* Size of ringbuffer, in units of struct io_event */ 102 unsigned nr_events; 103 104 unsigned long mmap_base; 105 unsigned long mmap_size; 106 107 struct page **ring_pages; 108 long nr_pages; 109 110 struct rcu_head rcu_head; 111 struct work_struct free_work; 112 113 struct { 114 /* 115 * This counts the number of available slots in the ringbuffer, 116 * so we avoid overflowing it: it's decremented (if positive) 117 * when allocating a kiocb and incremented when the resulting 118 * io_event is pulled off the ringbuffer. 119 * 120 * We batch accesses to it with a percpu version. 121 */ 122 atomic_t reqs_available; 123 } ____cacheline_aligned_in_smp; 124 125 struct { 126 spinlock_t ctx_lock; 127 struct list_head active_reqs; /* used for cancellation */ 128 } ____cacheline_aligned_in_smp; 129 130 struct { 131 struct mutex ring_lock; 132 wait_queue_head_t wait; 133 } ____cacheline_aligned_in_smp; 134 135 struct { 136 unsigned tail; 137 spinlock_t completion_lock; 138 } ____cacheline_aligned_in_smp; 139 140 struct page *internal_pages[AIO_RING_PAGES]; 141 struct file *aio_ring_file; 142 143 unsigned id; 144 }; 145 146 /*------ sysctl variables----*/ 147 static DEFINE_SPINLOCK(aio_nr_lock); 148 unsigned long aio_nr; /* current system wide number of aio requests */ 149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 150 /*----end sysctl variables---*/ 151 152 static struct kmem_cache *kiocb_cachep; 153 static struct kmem_cache *kioctx_cachep; 154 155 /* aio_setup 156 * Creates the slab caches used by the aio routines, panic on 157 * failure as this is done early during the boot sequence. 158 */ 159 static int __init aio_setup(void) 160 { 161 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 162 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 163 164 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 165 166 return 0; 167 } 168 __initcall(aio_setup); 169 170 static void put_aio_ring_file(struct kioctx *ctx) 171 { 172 struct file *aio_ring_file = ctx->aio_ring_file; 173 if (aio_ring_file) { 174 truncate_setsize(aio_ring_file->f_inode, 0); 175 176 /* Prevent further access to the kioctx from migratepages */ 177 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 178 aio_ring_file->f_inode->i_mapping->private_data = NULL; 179 ctx->aio_ring_file = NULL; 180 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 181 182 fput(aio_ring_file); 183 } 184 } 185 186 static void aio_free_ring(struct kioctx *ctx) 187 { 188 int i; 189 190 for (i = 0; i < ctx->nr_pages; i++) { 191 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 192 page_count(ctx->ring_pages[i])); 193 put_page(ctx->ring_pages[i]); 194 } 195 196 put_aio_ring_file(ctx); 197 198 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 199 kfree(ctx->ring_pages); 200 } 201 202 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 203 { 204 vma->vm_ops = &generic_file_vm_ops; 205 return 0; 206 } 207 208 static const struct file_operations aio_ring_fops = { 209 .mmap = aio_ring_mmap, 210 }; 211 212 static int aio_set_page_dirty(struct page *page) 213 { 214 return 0; 215 } 216 217 #if IS_ENABLED(CONFIG_MIGRATION) 218 static int aio_migratepage(struct address_space *mapping, struct page *new, 219 struct page *old, enum migrate_mode mode) 220 { 221 struct kioctx *ctx; 222 unsigned long flags; 223 int rc; 224 225 /* Writeback must be complete */ 226 BUG_ON(PageWriteback(old)); 227 put_page(old); 228 229 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode); 230 if (rc != MIGRATEPAGE_SUCCESS) { 231 get_page(old); 232 return rc; 233 } 234 235 get_page(new); 236 237 /* We can potentially race against kioctx teardown here. Use the 238 * address_space's private data lock to protect the mapping's 239 * private_data. 240 */ 241 spin_lock(&mapping->private_lock); 242 ctx = mapping->private_data; 243 if (ctx) { 244 pgoff_t idx; 245 spin_lock_irqsave(&ctx->completion_lock, flags); 246 migrate_page_copy(new, old); 247 idx = old->index; 248 if (idx < (pgoff_t)ctx->nr_pages) 249 ctx->ring_pages[idx] = new; 250 spin_unlock_irqrestore(&ctx->completion_lock, flags); 251 } else 252 rc = -EBUSY; 253 spin_unlock(&mapping->private_lock); 254 255 return rc; 256 } 257 #endif 258 259 static const struct address_space_operations aio_ctx_aops = { 260 .set_page_dirty = aio_set_page_dirty, 261 #if IS_ENABLED(CONFIG_MIGRATION) 262 .migratepage = aio_migratepage, 263 #endif 264 }; 265 266 static int aio_setup_ring(struct kioctx *ctx) 267 { 268 struct aio_ring *ring; 269 unsigned nr_events = ctx->max_reqs; 270 struct mm_struct *mm = current->mm; 271 unsigned long size, populate; 272 int nr_pages; 273 int i; 274 struct file *file; 275 276 /* Compensate for the ring buffer's head/tail overlap entry */ 277 nr_events += 2; /* 1 is required, 2 for good luck */ 278 279 size = sizeof(struct aio_ring); 280 size += sizeof(struct io_event) * nr_events; 281 282 nr_pages = PFN_UP(size); 283 if (nr_pages < 0) 284 return -EINVAL; 285 286 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR); 287 if (IS_ERR(file)) { 288 ctx->aio_ring_file = NULL; 289 return -EAGAIN; 290 } 291 292 file->f_inode->i_mapping->a_ops = &aio_ctx_aops; 293 file->f_inode->i_mapping->private_data = ctx; 294 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages; 295 296 for (i = 0; i < nr_pages; i++) { 297 struct page *page; 298 page = find_or_create_page(file->f_inode->i_mapping, 299 i, GFP_HIGHUSER | __GFP_ZERO); 300 if (!page) 301 break; 302 pr_debug("pid(%d) page[%d]->count=%d\n", 303 current->pid, i, page_count(page)); 304 SetPageUptodate(page); 305 SetPageDirty(page); 306 unlock_page(page); 307 } 308 ctx->aio_ring_file = file; 309 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 310 / sizeof(struct io_event); 311 312 ctx->ring_pages = ctx->internal_pages; 313 if (nr_pages > AIO_RING_PAGES) { 314 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 315 GFP_KERNEL); 316 if (!ctx->ring_pages) 317 return -ENOMEM; 318 } 319 320 ctx->mmap_size = nr_pages * PAGE_SIZE; 321 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 322 323 down_write(&mm->mmap_sem); 324 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 325 PROT_READ | PROT_WRITE, 326 MAP_SHARED | MAP_POPULATE, 0, &populate); 327 if (IS_ERR((void *)ctx->mmap_base)) { 328 up_write(&mm->mmap_sem); 329 ctx->mmap_size = 0; 330 aio_free_ring(ctx); 331 return -EAGAIN; 332 } 333 334 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 335 336 /* We must do this while still holding mmap_sem for write, as we 337 * need to be protected against userspace attempting to mremap() 338 * or munmap() the ring buffer. 339 */ 340 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 341 1, 0, ctx->ring_pages, NULL); 342 343 /* Dropping the reference here is safe as the page cache will hold 344 * onto the pages for us. It is also required so that page migration 345 * can unmap the pages and get the right reference count. 346 */ 347 for (i = 0; i < ctx->nr_pages; i++) 348 put_page(ctx->ring_pages[i]); 349 350 up_write(&mm->mmap_sem); 351 352 if (unlikely(ctx->nr_pages != nr_pages)) { 353 aio_free_ring(ctx); 354 return -EAGAIN; 355 } 356 357 ctx->user_id = ctx->mmap_base; 358 ctx->nr_events = nr_events; /* trusted copy */ 359 360 ring = kmap_atomic(ctx->ring_pages[0]); 361 ring->nr = nr_events; /* user copy */ 362 ring->id = ~0U; 363 ring->head = ring->tail = 0; 364 ring->magic = AIO_RING_MAGIC; 365 ring->compat_features = AIO_RING_COMPAT_FEATURES; 366 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 367 ring->header_length = sizeof(struct aio_ring); 368 kunmap_atomic(ring); 369 flush_dcache_page(ctx->ring_pages[0]); 370 371 return 0; 372 } 373 374 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 375 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 376 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 377 378 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 379 { 380 struct kioctx *ctx = req->ki_ctx; 381 unsigned long flags; 382 383 spin_lock_irqsave(&ctx->ctx_lock, flags); 384 385 if (!req->ki_list.next) 386 list_add(&req->ki_list, &ctx->active_reqs); 387 388 req->ki_cancel = cancel; 389 390 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 391 } 392 EXPORT_SYMBOL(kiocb_set_cancel_fn); 393 394 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 395 { 396 kiocb_cancel_fn *old, *cancel; 397 398 /* 399 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 400 * actually has a cancel function, hence the cmpxchg() 401 */ 402 403 cancel = ACCESS_ONCE(kiocb->ki_cancel); 404 do { 405 if (!cancel || cancel == KIOCB_CANCELLED) 406 return -EINVAL; 407 408 old = cancel; 409 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 410 } while (cancel != old); 411 412 return cancel(kiocb); 413 } 414 415 static void free_ioctx_rcu(struct rcu_head *head) 416 { 417 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 418 419 free_percpu(ctx->cpu); 420 kmem_cache_free(kioctx_cachep, ctx); 421 } 422 423 /* 424 * When this function runs, the kioctx has been removed from the "hash table" 425 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 426 * now it's safe to cancel any that need to be. 427 */ 428 static void free_ioctx(struct work_struct *work) 429 { 430 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 431 struct aio_ring *ring; 432 struct kiocb *req; 433 unsigned cpu, avail; 434 DEFINE_WAIT(wait); 435 436 spin_lock_irq(&ctx->ctx_lock); 437 438 while (!list_empty(&ctx->active_reqs)) { 439 req = list_first_entry(&ctx->active_reqs, 440 struct kiocb, ki_list); 441 442 list_del_init(&req->ki_list); 443 kiocb_cancel(ctx, req); 444 } 445 446 spin_unlock_irq(&ctx->ctx_lock); 447 448 for_each_possible_cpu(cpu) { 449 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu); 450 451 atomic_add(kcpu->reqs_available, &ctx->reqs_available); 452 kcpu->reqs_available = 0; 453 } 454 455 while (1) { 456 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE); 457 458 ring = kmap_atomic(ctx->ring_pages[0]); 459 avail = (ring->head <= ring->tail) 460 ? ring->tail - ring->head 461 : ctx->nr_events - ring->head + ring->tail; 462 463 atomic_add(avail, &ctx->reqs_available); 464 ring->head = ring->tail; 465 kunmap_atomic(ring); 466 467 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1) 468 break; 469 470 schedule(); 471 } 472 finish_wait(&ctx->wait, &wait); 473 474 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1); 475 476 aio_free_ring(ctx); 477 478 pr_debug("freeing %p\n", ctx); 479 480 /* 481 * Here the call_rcu() is between the wait_event() for reqs_active to 482 * hit 0, and freeing the ioctx. 483 * 484 * aio_complete() decrements reqs_active, but it has to touch the ioctx 485 * after to issue a wakeup so we use rcu. 486 */ 487 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 488 } 489 490 static void free_ioctx_ref(struct percpu_ref *ref) 491 { 492 struct kioctx *ctx = container_of(ref, struct kioctx, users); 493 494 INIT_WORK(&ctx->free_work, free_ioctx); 495 schedule_work(&ctx->free_work); 496 } 497 498 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 499 { 500 unsigned i, new_nr; 501 struct kioctx_table *table, *old; 502 struct aio_ring *ring; 503 504 spin_lock(&mm->ioctx_lock); 505 rcu_read_lock(); 506 table = rcu_dereference(mm->ioctx_table); 507 508 while (1) { 509 if (table) 510 for (i = 0; i < table->nr; i++) 511 if (!table->table[i]) { 512 ctx->id = i; 513 table->table[i] = ctx; 514 rcu_read_unlock(); 515 spin_unlock(&mm->ioctx_lock); 516 517 ring = kmap_atomic(ctx->ring_pages[0]); 518 ring->id = ctx->id; 519 kunmap_atomic(ring); 520 return 0; 521 } 522 523 new_nr = (table ? table->nr : 1) * 4; 524 525 rcu_read_unlock(); 526 spin_unlock(&mm->ioctx_lock); 527 528 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 529 new_nr, GFP_KERNEL); 530 if (!table) 531 return -ENOMEM; 532 533 table->nr = new_nr; 534 535 spin_lock(&mm->ioctx_lock); 536 rcu_read_lock(); 537 old = rcu_dereference(mm->ioctx_table); 538 539 if (!old) { 540 rcu_assign_pointer(mm->ioctx_table, table); 541 } else if (table->nr > old->nr) { 542 memcpy(table->table, old->table, 543 old->nr * sizeof(struct kioctx *)); 544 545 rcu_assign_pointer(mm->ioctx_table, table); 546 kfree_rcu(old, rcu); 547 } else { 548 kfree(table); 549 table = old; 550 } 551 } 552 } 553 554 /* ioctx_alloc 555 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 556 */ 557 static struct kioctx *ioctx_alloc(unsigned nr_events) 558 { 559 struct mm_struct *mm = current->mm; 560 struct kioctx *ctx; 561 int err = -ENOMEM; 562 563 /* 564 * We keep track of the number of available ringbuffer slots, to prevent 565 * overflow (reqs_available), and we also use percpu counters for this. 566 * 567 * So since up to half the slots might be on other cpu's percpu counters 568 * and unavailable, double nr_events so userspace sees what they 569 * expected: additionally, we move req_batch slots to/from percpu 570 * counters at a time, so make sure that isn't 0: 571 */ 572 nr_events = max(nr_events, num_possible_cpus() * 4); 573 nr_events *= 2; 574 575 /* Prevent overflows */ 576 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 577 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 578 pr_debug("ENOMEM: nr_events too high\n"); 579 return ERR_PTR(-EINVAL); 580 } 581 582 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 583 return ERR_PTR(-EAGAIN); 584 585 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 586 if (!ctx) 587 return ERR_PTR(-ENOMEM); 588 589 ctx->max_reqs = nr_events; 590 591 if (percpu_ref_init(&ctx->users, free_ioctx_ref)) 592 goto out_freectx; 593 594 spin_lock_init(&ctx->ctx_lock); 595 spin_lock_init(&ctx->completion_lock); 596 mutex_init(&ctx->ring_lock); 597 init_waitqueue_head(&ctx->wait); 598 599 INIT_LIST_HEAD(&ctx->active_reqs); 600 601 ctx->cpu = alloc_percpu(struct kioctx_cpu); 602 if (!ctx->cpu) 603 goto out_freeref; 604 605 if (aio_setup_ring(ctx) < 0) 606 goto out_freepcpu; 607 608 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 609 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 610 if (ctx->req_batch < 1) 611 ctx->req_batch = 1; 612 613 /* limit the number of system wide aios */ 614 spin_lock(&aio_nr_lock); 615 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 616 aio_nr + nr_events < aio_nr) { 617 spin_unlock(&aio_nr_lock); 618 goto out_cleanup; 619 } 620 aio_nr += ctx->max_reqs; 621 spin_unlock(&aio_nr_lock); 622 623 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 624 625 err = ioctx_add_table(ctx, mm); 626 if (err) 627 goto out_cleanup_put; 628 629 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 630 ctx, ctx->user_id, mm, ctx->nr_events); 631 return ctx; 632 633 out_cleanup_put: 634 percpu_ref_put(&ctx->users); 635 out_cleanup: 636 err = -EAGAIN; 637 aio_free_ring(ctx); 638 out_freepcpu: 639 free_percpu(ctx->cpu); 640 out_freeref: 641 free_percpu(ctx->users.pcpu_count); 642 out_freectx: 643 put_aio_ring_file(ctx); 644 kmem_cache_free(kioctx_cachep, ctx); 645 pr_debug("error allocating ioctx %d\n", err); 646 return ERR_PTR(err); 647 } 648 649 /* kill_ioctx 650 * Cancels all outstanding aio requests on an aio context. Used 651 * when the processes owning a context have all exited to encourage 652 * the rapid destruction of the kioctx. 653 */ 654 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 655 { 656 if (!atomic_xchg(&ctx->dead, 1)) { 657 struct kioctx_table *table; 658 659 spin_lock(&mm->ioctx_lock); 660 rcu_read_lock(); 661 table = rcu_dereference(mm->ioctx_table); 662 663 WARN_ON(ctx != table->table[ctx->id]); 664 table->table[ctx->id] = NULL; 665 rcu_read_unlock(); 666 spin_unlock(&mm->ioctx_lock); 667 668 /* percpu_ref_kill() will do the necessary call_rcu() */ 669 wake_up_all(&ctx->wait); 670 671 /* 672 * It'd be more correct to do this in free_ioctx(), after all 673 * the outstanding kiocbs have finished - but by then io_destroy 674 * has already returned, so io_setup() could potentially return 675 * -EAGAIN with no ioctxs actually in use (as far as userspace 676 * could tell). 677 */ 678 spin_lock(&aio_nr_lock); 679 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 680 aio_nr -= ctx->max_reqs; 681 spin_unlock(&aio_nr_lock); 682 683 if (ctx->mmap_size) 684 vm_munmap(ctx->mmap_base, ctx->mmap_size); 685 686 percpu_ref_kill(&ctx->users); 687 } 688 } 689 690 /* wait_on_sync_kiocb: 691 * Waits on the given sync kiocb to complete. 692 */ 693 ssize_t wait_on_sync_kiocb(struct kiocb *req) 694 { 695 while (!req->ki_ctx) { 696 set_current_state(TASK_UNINTERRUPTIBLE); 697 if (req->ki_ctx) 698 break; 699 io_schedule(); 700 } 701 __set_current_state(TASK_RUNNING); 702 return req->ki_user_data; 703 } 704 EXPORT_SYMBOL(wait_on_sync_kiocb); 705 706 /* 707 * exit_aio: called when the last user of mm goes away. At this point, there is 708 * no way for any new requests to be submited or any of the io_* syscalls to be 709 * called on the context. 710 * 711 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 712 * them. 713 */ 714 void exit_aio(struct mm_struct *mm) 715 { 716 struct kioctx_table *table; 717 struct kioctx *ctx; 718 unsigned i = 0; 719 720 while (1) { 721 rcu_read_lock(); 722 table = rcu_dereference(mm->ioctx_table); 723 724 do { 725 if (!table || i >= table->nr) { 726 rcu_read_unlock(); 727 rcu_assign_pointer(mm->ioctx_table, NULL); 728 if (table) 729 kfree(table); 730 return; 731 } 732 733 ctx = table->table[i++]; 734 } while (!ctx); 735 736 rcu_read_unlock(); 737 738 /* 739 * We don't need to bother with munmap() here - 740 * exit_mmap(mm) is coming and it'll unmap everything. 741 * Since aio_free_ring() uses non-zero ->mmap_size 742 * as indicator that it needs to unmap the area, 743 * just set it to 0; aio_free_ring() is the only 744 * place that uses ->mmap_size, so it's safe. 745 */ 746 ctx->mmap_size = 0; 747 748 kill_ioctx(mm, ctx); 749 } 750 } 751 752 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 753 { 754 struct kioctx_cpu *kcpu; 755 756 preempt_disable(); 757 kcpu = this_cpu_ptr(ctx->cpu); 758 759 kcpu->reqs_available += nr; 760 while (kcpu->reqs_available >= ctx->req_batch * 2) { 761 kcpu->reqs_available -= ctx->req_batch; 762 atomic_add(ctx->req_batch, &ctx->reqs_available); 763 } 764 765 preempt_enable(); 766 } 767 768 static bool get_reqs_available(struct kioctx *ctx) 769 { 770 struct kioctx_cpu *kcpu; 771 bool ret = false; 772 773 preempt_disable(); 774 kcpu = this_cpu_ptr(ctx->cpu); 775 776 if (!kcpu->reqs_available) { 777 int old, avail = atomic_read(&ctx->reqs_available); 778 779 do { 780 if (avail < ctx->req_batch) 781 goto out; 782 783 old = avail; 784 avail = atomic_cmpxchg(&ctx->reqs_available, 785 avail, avail - ctx->req_batch); 786 } while (avail != old); 787 788 kcpu->reqs_available += ctx->req_batch; 789 } 790 791 ret = true; 792 kcpu->reqs_available--; 793 out: 794 preempt_enable(); 795 return ret; 796 } 797 798 /* aio_get_req 799 * Allocate a slot for an aio request. 800 * Returns NULL if no requests are free. 801 */ 802 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 803 { 804 struct kiocb *req; 805 806 if (!get_reqs_available(ctx)) 807 return NULL; 808 809 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 810 if (unlikely(!req)) 811 goto out_put; 812 813 req->ki_ctx = ctx; 814 return req; 815 out_put: 816 put_reqs_available(ctx, 1); 817 return NULL; 818 } 819 820 static void kiocb_free(struct kiocb *req) 821 { 822 if (req->ki_filp) 823 fput(req->ki_filp); 824 if (req->ki_eventfd != NULL) 825 eventfd_ctx_put(req->ki_eventfd); 826 kmem_cache_free(kiocb_cachep, req); 827 } 828 829 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 830 { 831 struct aio_ring __user *ring = (void __user *)ctx_id; 832 struct mm_struct *mm = current->mm; 833 struct kioctx *ctx, *ret = NULL; 834 struct kioctx_table *table; 835 unsigned id; 836 837 if (get_user(id, &ring->id)) 838 return NULL; 839 840 rcu_read_lock(); 841 table = rcu_dereference(mm->ioctx_table); 842 843 if (!table || id >= table->nr) 844 goto out; 845 846 ctx = table->table[id]; 847 if (ctx && ctx->user_id == ctx_id) { 848 percpu_ref_get(&ctx->users); 849 ret = ctx; 850 } 851 out: 852 rcu_read_unlock(); 853 return ret; 854 } 855 856 /* aio_complete 857 * Called when the io request on the given iocb is complete. 858 */ 859 void aio_complete(struct kiocb *iocb, long res, long res2) 860 { 861 struct kioctx *ctx = iocb->ki_ctx; 862 struct aio_ring *ring; 863 struct io_event *ev_page, *event; 864 unsigned long flags; 865 unsigned tail, pos; 866 867 /* 868 * Special case handling for sync iocbs: 869 * - events go directly into the iocb for fast handling 870 * - the sync task with the iocb in its stack holds the single iocb 871 * ref, no other paths have a way to get another ref 872 * - the sync task helpfully left a reference to itself in the iocb 873 */ 874 if (is_sync_kiocb(iocb)) { 875 iocb->ki_user_data = res; 876 smp_wmb(); 877 iocb->ki_ctx = ERR_PTR(-EXDEV); 878 wake_up_process(iocb->ki_obj.tsk); 879 return; 880 } 881 882 /* 883 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 884 * need to issue a wakeup after incrementing reqs_available. 885 */ 886 rcu_read_lock(); 887 888 if (iocb->ki_list.next) { 889 unsigned long flags; 890 891 spin_lock_irqsave(&ctx->ctx_lock, flags); 892 list_del(&iocb->ki_list); 893 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 894 } 895 896 /* 897 * Add a completion event to the ring buffer. Must be done holding 898 * ctx->completion_lock to prevent other code from messing with the tail 899 * pointer since we might be called from irq context. 900 */ 901 spin_lock_irqsave(&ctx->completion_lock, flags); 902 903 tail = ctx->tail; 904 pos = tail + AIO_EVENTS_OFFSET; 905 906 if (++tail >= ctx->nr_events) 907 tail = 0; 908 909 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 910 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 911 912 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 913 event->data = iocb->ki_user_data; 914 event->res = res; 915 event->res2 = res2; 916 917 kunmap_atomic(ev_page); 918 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 919 920 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 921 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 922 res, res2); 923 924 /* after flagging the request as done, we 925 * must never even look at it again 926 */ 927 smp_wmb(); /* make event visible before updating tail */ 928 929 ctx->tail = tail; 930 931 ring = kmap_atomic(ctx->ring_pages[0]); 932 ring->tail = tail; 933 kunmap_atomic(ring); 934 flush_dcache_page(ctx->ring_pages[0]); 935 936 spin_unlock_irqrestore(&ctx->completion_lock, flags); 937 938 pr_debug("added to ring %p at [%u]\n", iocb, tail); 939 940 /* 941 * Check if the user asked us to deliver the result through an 942 * eventfd. The eventfd_signal() function is safe to be called 943 * from IRQ context. 944 */ 945 if (iocb->ki_eventfd != NULL) 946 eventfd_signal(iocb->ki_eventfd, 1); 947 948 /* everything turned out well, dispose of the aiocb. */ 949 kiocb_free(iocb); 950 951 /* 952 * We have to order our ring_info tail store above and test 953 * of the wait list below outside the wait lock. This is 954 * like in wake_up_bit() where clearing a bit has to be 955 * ordered with the unlocked test. 956 */ 957 smp_mb(); 958 959 if (waitqueue_active(&ctx->wait)) 960 wake_up(&ctx->wait); 961 962 rcu_read_unlock(); 963 } 964 EXPORT_SYMBOL(aio_complete); 965 966 /* aio_read_events 967 * Pull an event off of the ioctx's event ring. Returns the number of 968 * events fetched 969 */ 970 static long aio_read_events_ring(struct kioctx *ctx, 971 struct io_event __user *event, long nr) 972 { 973 struct aio_ring *ring; 974 unsigned head, tail, pos; 975 long ret = 0; 976 int copy_ret; 977 978 mutex_lock(&ctx->ring_lock); 979 980 ring = kmap_atomic(ctx->ring_pages[0]); 981 head = ring->head; 982 tail = ring->tail; 983 kunmap_atomic(ring); 984 985 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 986 987 if (head == tail) 988 goto out; 989 990 while (ret < nr) { 991 long avail; 992 struct io_event *ev; 993 struct page *page; 994 995 avail = (head <= tail ? tail : ctx->nr_events) - head; 996 if (head == tail) 997 break; 998 999 avail = min(avail, nr - ret); 1000 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1001 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1002 1003 pos = head + AIO_EVENTS_OFFSET; 1004 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1005 pos %= AIO_EVENTS_PER_PAGE; 1006 1007 ev = kmap(page); 1008 copy_ret = copy_to_user(event + ret, ev + pos, 1009 sizeof(*ev) * avail); 1010 kunmap(page); 1011 1012 if (unlikely(copy_ret)) { 1013 ret = -EFAULT; 1014 goto out; 1015 } 1016 1017 ret += avail; 1018 head += avail; 1019 head %= ctx->nr_events; 1020 } 1021 1022 ring = kmap_atomic(ctx->ring_pages[0]); 1023 ring->head = head; 1024 kunmap_atomic(ring); 1025 flush_dcache_page(ctx->ring_pages[0]); 1026 1027 pr_debug("%li h%u t%u\n", ret, head, tail); 1028 1029 put_reqs_available(ctx, ret); 1030 out: 1031 mutex_unlock(&ctx->ring_lock); 1032 1033 return ret; 1034 } 1035 1036 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1037 struct io_event __user *event, long *i) 1038 { 1039 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1040 1041 if (ret > 0) 1042 *i += ret; 1043 1044 if (unlikely(atomic_read(&ctx->dead))) 1045 ret = -EINVAL; 1046 1047 if (!*i) 1048 *i = ret; 1049 1050 return ret < 0 || *i >= min_nr; 1051 } 1052 1053 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1054 struct io_event __user *event, 1055 struct timespec __user *timeout) 1056 { 1057 ktime_t until = { .tv64 = KTIME_MAX }; 1058 long ret = 0; 1059 1060 if (timeout) { 1061 struct timespec ts; 1062 1063 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1064 return -EFAULT; 1065 1066 until = timespec_to_ktime(ts); 1067 } 1068 1069 /* 1070 * Note that aio_read_events() is being called as the conditional - i.e. 1071 * we're calling it after prepare_to_wait() has set task state to 1072 * TASK_INTERRUPTIBLE. 1073 * 1074 * But aio_read_events() can block, and if it blocks it's going to flip 1075 * the task state back to TASK_RUNNING. 1076 * 1077 * This should be ok, provided it doesn't flip the state back to 1078 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1079 * will only happen if the mutex_lock() call blocks, and we then find 1080 * the ringbuffer empty. So in practice we should be ok, but it's 1081 * something to be aware of when touching this code. 1082 */ 1083 wait_event_interruptible_hrtimeout(ctx->wait, 1084 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1085 1086 if (!ret && signal_pending(current)) 1087 ret = -EINTR; 1088 1089 return ret; 1090 } 1091 1092 /* sys_io_setup: 1093 * Create an aio_context capable of receiving at least nr_events. 1094 * ctxp must not point to an aio_context that already exists, and 1095 * must be initialized to 0 prior to the call. On successful 1096 * creation of the aio_context, *ctxp is filled in with the resulting 1097 * handle. May fail with -EINVAL if *ctxp is not initialized, 1098 * if the specified nr_events exceeds internal limits. May fail 1099 * with -EAGAIN if the specified nr_events exceeds the user's limit 1100 * of available events. May fail with -ENOMEM if insufficient kernel 1101 * resources are available. May fail with -EFAULT if an invalid 1102 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1103 * implemented. 1104 */ 1105 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1106 { 1107 struct kioctx *ioctx = NULL; 1108 unsigned long ctx; 1109 long ret; 1110 1111 ret = get_user(ctx, ctxp); 1112 if (unlikely(ret)) 1113 goto out; 1114 1115 ret = -EINVAL; 1116 if (unlikely(ctx || nr_events == 0)) { 1117 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1118 ctx, nr_events); 1119 goto out; 1120 } 1121 1122 ioctx = ioctx_alloc(nr_events); 1123 ret = PTR_ERR(ioctx); 1124 if (!IS_ERR(ioctx)) { 1125 ret = put_user(ioctx->user_id, ctxp); 1126 if (ret) 1127 kill_ioctx(current->mm, ioctx); 1128 percpu_ref_put(&ioctx->users); 1129 } 1130 1131 out: 1132 return ret; 1133 } 1134 1135 /* sys_io_destroy: 1136 * Destroy the aio_context specified. May cancel any outstanding 1137 * AIOs and block on completion. Will fail with -ENOSYS if not 1138 * implemented. May fail with -EINVAL if the context pointed to 1139 * is invalid. 1140 */ 1141 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1142 { 1143 struct kioctx *ioctx = lookup_ioctx(ctx); 1144 if (likely(NULL != ioctx)) { 1145 kill_ioctx(current->mm, ioctx); 1146 percpu_ref_put(&ioctx->users); 1147 return 0; 1148 } 1149 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1150 return -EINVAL; 1151 } 1152 1153 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1154 unsigned long, loff_t); 1155 1156 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1157 int rw, char __user *buf, 1158 unsigned long *nr_segs, 1159 struct iovec **iovec, 1160 bool compat) 1161 { 1162 ssize_t ret; 1163 1164 *nr_segs = kiocb->ki_nbytes; 1165 1166 #ifdef CONFIG_COMPAT 1167 if (compat) 1168 ret = compat_rw_copy_check_uvector(rw, 1169 (struct compat_iovec __user *)buf, 1170 *nr_segs, 1, *iovec, iovec); 1171 else 1172 #endif 1173 ret = rw_copy_check_uvector(rw, 1174 (struct iovec __user *)buf, 1175 *nr_segs, 1, *iovec, iovec); 1176 if (ret < 0) 1177 return ret; 1178 1179 /* ki_nbytes now reflect bytes instead of segs */ 1180 kiocb->ki_nbytes = ret; 1181 return 0; 1182 } 1183 1184 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1185 int rw, char __user *buf, 1186 unsigned long *nr_segs, 1187 struct iovec *iovec) 1188 { 1189 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1190 return -EFAULT; 1191 1192 iovec->iov_base = buf; 1193 iovec->iov_len = kiocb->ki_nbytes; 1194 *nr_segs = 1; 1195 return 0; 1196 } 1197 1198 /* 1199 * aio_setup_iocb: 1200 * Performs the initial checks and aio retry method 1201 * setup for the kiocb at the time of io submission. 1202 */ 1203 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1204 char __user *buf, bool compat) 1205 { 1206 struct file *file = req->ki_filp; 1207 ssize_t ret; 1208 unsigned long nr_segs; 1209 int rw; 1210 fmode_t mode; 1211 aio_rw_op *rw_op; 1212 struct iovec inline_vec, *iovec = &inline_vec; 1213 1214 switch (opcode) { 1215 case IOCB_CMD_PREAD: 1216 case IOCB_CMD_PREADV: 1217 mode = FMODE_READ; 1218 rw = READ; 1219 rw_op = file->f_op->aio_read; 1220 goto rw_common; 1221 1222 case IOCB_CMD_PWRITE: 1223 case IOCB_CMD_PWRITEV: 1224 mode = FMODE_WRITE; 1225 rw = WRITE; 1226 rw_op = file->f_op->aio_write; 1227 goto rw_common; 1228 rw_common: 1229 if (unlikely(!(file->f_mode & mode))) 1230 return -EBADF; 1231 1232 if (!rw_op) 1233 return -EINVAL; 1234 1235 ret = (opcode == IOCB_CMD_PREADV || 1236 opcode == IOCB_CMD_PWRITEV) 1237 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1238 &iovec, compat) 1239 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1240 iovec); 1241 if (ret) 1242 return ret; 1243 1244 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1245 if (ret < 0) { 1246 if (iovec != &inline_vec) 1247 kfree(iovec); 1248 return ret; 1249 } 1250 1251 req->ki_nbytes = ret; 1252 1253 /* XXX: move/kill - rw_verify_area()? */ 1254 /* This matches the pread()/pwrite() logic */ 1255 if (req->ki_pos < 0) { 1256 ret = -EINVAL; 1257 break; 1258 } 1259 1260 if (rw == WRITE) 1261 file_start_write(file); 1262 1263 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1264 1265 if (rw == WRITE) 1266 file_end_write(file); 1267 break; 1268 1269 case IOCB_CMD_FDSYNC: 1270 if (!file->f_op->aio_fsync) 1271 return -EINVAL; 1272 1273 ret = file->f_op->aio_fsync(req, 1); 1274 break; 1275 1276 case IOCB_CMD_FSYNC: 1277 if (!file->f_op->aio_fsync) 1278 return -EINVAL; 1279 1280 ret = file->f_op->aio_fsync(req, 0); 1281 break; 1282 1283 default: 1284 pr_debug("EINVAL: no operation provided\n"); 1285 return -EINVAL; 1286 } 1287 1288 if (iovec != &inline_vec) 1289 kfree(iovec); 1290 1291 if (ret != -EIOCBQUEUED) { 1292 /* 1293 * There's no easy way to restart the syscall since other AIO's 1294 * may be already running. Just fail this IO with EINTR. 1295 */ 1296 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1297 ret == -ERESTARTNOHAND || 1298 ret == -ERESTART_RESTARTBLOCK)) 1299 ret = -EINTR; 1300 aio_complete(req, ret, 0); 1301 } 1302 1303 return 0; 1304 } 1305 1306 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1307 struct iocb *iocb, bool compat) 1308 { 1309 struct kiocb *req; 1310 ssize_t ret; 1311 1312 /* enforce forwards compatibility on users */ 1313 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1314 pr_debug("EINVAL: reserve field set\n"); 1315 return -EINVAL; 1316 } 1317 1318 /* prevent overflows */ 1319 if (unlikely( 1320 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1321 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1322 ((ssize_t)iocb->aio_nbytes < 0) 1323 )) { 1324 pr_debug("EINVAL: io_submit: overflow check\n"); 1325 return -EINVAL; 1326 } 1327 1328 req = aio_get_req(ctx); 1329 if (unlikely(!req)) 1330 return -EAGAIN; 1331 1332 req->ki_filp = fget(iocb->aio_fildes); 1333 if (unlikely(!req->ki_filp)) { 1334 ret = -EBADF; 1335 goto out_put_req; 1336 } 1337 1338 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1339 /* 1340 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1341 * instance of the file* now. The file descriptor must be 1342 * an eventfd() fd, and will be signaled for each completed 1343 * event using the eventfd_signal() function. 1344 */ 1345 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1346 if (IS_ERR(req->ki_eventfd)) { 1347 ret = PTR_ERR(req->ki_eventfd); 1348 req->ki_eventfd = NULL; 1349 goto out_put_req; 1350 } 1351 } 1352 1353 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1354 if (unlikely(ret)) { 1355 pr_debug("EFAULT: aio_key\n"); 1356 goto out_put_req; 1357 } 1358 1359 req->ki_obj.user = user_iocb; 1360 req->ki_user_data = iocb->aio_data; 1361 req->ki_pos = iocb->aio_offset; 1362 req->ki_nbytes = iocb->aio_nbytes; 1363 1364 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1365 (char __user *)(unsigned long)iocb->aio_buf, 1366 compat); 1367 if (ret) 1368 goto out_put_req; 1369 1370 return 0; 1371 out_put_req: 1372 put_reqs_available(ctx, 1); 1373 kiocb_free(req); 1374 return ret; 1375 } 1376 1377 long do_io_submit(aio_context_t ctx_id, long nr, 1378 struct iocb __user *__user *iocbpp, bool compat) 1379 { 1380 struct kioctx *ctx; 1381 long ret = 0; 1382 int i = 0; 1383 struct blk_plug plug; 1384 1385 if (unlikely(nr < 0)) 1386 return -EINVAL; 1387 1388 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1389 nr = LONG_MAX/sizeof(*iocbpp); 1390 1391 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1392 return -EFAULT; 1393 1394 ctx = lookup_ioctx(ctx_id); 1395 if (unlikely(!ctx)) { 1396 pr_debug("EINVAL: invalid context id\n"); 1397 return -EINVAL; 1398 } 1399 1400 blk_start_plug(&plug); 1401 1402 /* 1403 * AKPM: should this return a partial result if some of the IOs were 1404 * successfully submitted? 1405 */ 1406 for (i=0; i<nr; i++) { 1407 struct iocb __user *user_iocb; 1408 struct iocb tmp; 1409 1410 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1411 ret = -EFAULT; 1412 break; 1413 } 1414 1415 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1416 ret = -EFAULT; 1417 break; 1418 } 1419 1420 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1421 if (ret) 1422 break; 1423 } 1424 blk_finish_plug(&plug); 1425 1426 percpu_ref_put(&ctx->users); 1427 return i ? i : ret; 1428 } 1429 1430 /* sys_io_submit: 1431 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1432 * the number of iocbs queued. May return -EINVAL if the aio_context 1433 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1434 * *iocbpp[0] is not properly initialized, if the operation specified 1435 * is invalid for the file descriptor in the iocb. May fail with 1436 * -EFAULT if any of the data structures point to invalid data. May 1437 * fail with -EBADF if the file descriptor specified in the first 1438 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1439 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1440 * fail with -ENOSYS if not implemented. 1441 */ 1442 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1443 struct iocb __user * __user *, iocbpp) 1444 { 1445 return do_io_submit(ctx_id, nr, iocbpp, 0); 1446 } 1447 1448 /* lookup_kiocb 1449 * Finds a given iocb for cancellation. 1450 */ 1451 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1452 u32 key) 1453 { 1454 struct list_head *pos; 1455 1456 assert_spin_locked(&ctx->ctx_lock); 1457 1458 if (key != KIOCB_KEY) 1459 return NULL; 1460 1461 /* TODO: use a hash or array, this sucks. */ 1462 list_for_each(pos, &ctx->active_reqs) { 1463 struct kiocb *kiocb = list_kiocb(pos); 1464 if (kiocb->ki_obj.user == iocb) 1465 return kiocb; 1466 } 1467 return NULL; 1468 } 1469 1470 /* sys_io_cancel: 1471 * Attempts to cancel an iocb previously passed to io_submit. If 1472 * the operation is successfully cancelled, the resulting event is 1473 * copied into the memory pointed to by result without being placed 1474 * into the completion queue and 0 is returned. May fail with 1475 * -EFAULT if any of the data structures pointed to are invalid. 1476 * May fail with -EINVAL if aio_context specified by ctx_id is 1477 * invalid. May fail with -EAGAIN if the iocb specified was not 1478 * cancelled. Will fail with -ENOSYS if not implemented. 1479 */ 1480 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1481 struct io_event __user *, result) 1482 { 1483 struct kioctx *ctx; 1484 struct kiocb *kiocb; 1485 u32 key; 1486 int ret; 1487 1488 ret = get_user(key, &iocb->aio_key); 1489 if (unlikely(ret)) 1490 return -EFAULT; 1491 1492 ctx = lookup_ioctx(ctx_id); 1493 if (unlikely(!ctx)) 1494 return -EINVAL; 1495 1496 spin_lock_irq(&ctx->ctx_lock); 1497 1498 kiocb = lookup_kiocb(ctx, iocb, key); 1499 if (kiocb) 1500 ret = kiocb_cancel(ctx, kiocb); 1501 else 1502 ret = -EINVAL; 1503 1504 spin_unlock_irq(&ctx->ctx_lock); 1505 1506 if (!ret) { 1507 /* 1508 * The result argument is no longer used - the io_event is 1509 * always delivered via the ring buffer. -EINPROGRESS indicates 1510 * cancellation is progress: 1511 */ 1512 ret = -EINPROGRESS; 1513 } 1514 1515 percpu_ref_put(&ctx->users); 1516 1517 return ret; 1518 } 1519 1520 /* io_getevents: 1521 * Attempts to read at least min_nr events and up to nr events from 1522 * the completion queue for the aio_context specified by ctx_id. If 1523 * it succeeds, the number of read events is returned. May fail with 1524 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1525 * out of range, if timeout is out of range. May fail with -EFAULT 1526 * if any of the memory specified is invalid. May return 0 or 1527 * < min_nr if the timeout specified by timeout has elapsed 1528 * before sufficient events are available, where timeout == NULL 1529 * specifies an infinite timeout. Note that the timeout pointed to by 1530 * timeout is relative. Will fail with -ENOSYS if not implemented. 1531 */ 1532 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1533 long, min_nr, 1534 long, nr, 1535 struct io_event __user *, events, 1536 struct timespec __user *, timeout) 1537 { 1538 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1539 long ret = -EINVAL; 1540 1541 if (likely(ioctx)) { 1542 if (likely(min_nr <= nr && min_nr >= 0)) 1543 ret = read_events(ioctx, min_nr, nr, events, timeout); 1544 percpu_ref_put(&ioctx->users); 1545 } 1546 return ret; 1547 } 1548