xref: /openbmc/linux/fs/aio.c (revision e0f6d1a5)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head		rcu;
72 	unsigned		nr;
73 	struct kioctx __rcu	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct rcu_work		free_rwork;	/* see free_ioctx() */
119 
120 	/*
121 	 * signals when all in-flight requests are done
122 	 */
123 	struct ctx_rq_wait	*rq_wait;
124 
125 	struct {
126 		/*
127 		 * This counts the number of available slots in the ringbuffer,
128 		 * so we avoid overflowing it: it's decremented (if positive)
129 		 * when allocating a kiocb and incremented when the resulting
130 		 * io_event is pulled off the ringbuffer.
131 		 *
132 		 * We batch accesses to it with a percpu version.
133 		 */
134 		atomic_t	reqs_available;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		spinlock_t	ctx_lock;
139 		struct list_head active_reqs;	/* used for cancellation */
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		struct mutex	ring_lock;
144 		wait_queue_head_t wait;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		unsigned	tail;
149 		unsigned	completed_events;
150 		spinlock_t	completion_lock;
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct page		*internal_pages[AIO_RING_PAGES];
154 	struct file		*aio_ring_file;
155 
156 	unsigned		id;
157 };
158 
159 /*
160  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161  * cancelled or completed (this makes a certain amount of sense because
162  * successful cancellation - io_cancel() - does deliver the completion to
163  * userspace).
164  *
165  * And since most things don't implement kiocb cancellation and we'd really like
166  * kiocb completion to be lockless when possible, we use ki_cancel to
167  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169  */
170 #define KIOCB_CANCELLED		((void *) (~0ULL))
171 
172 struct aio_kiocb {
173 	struct kiocb		common;
174 
175 	struct kioctx		*ki_ctx;
176 	kiocb_cancel_fn		*ki_cancel;
177 
178 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179 	__u64			ki_user_data;	/* user's data for completion */
180 
181 	struct list_head	ki_list;	/* the aio core uses this
182 						 * for cancellation */
183 
184 	/*
185 	 * If the aio_resfd field of the userspace iocb is not zero,
186 	 * this is the underlying eventfd context to deliver events to.
187 	 */
188 	struct eventfd_ctx	*ki_eventfd;
189 };
190 
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr;		/* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196 
197 static struct kmem_cache	*kiocb_cachep;
198 static struct kmem_cache	*kioctx_cachep;
199 
200 static struct vfsmount *aio_mnt;
201 
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204 
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 	struct qstr this = QSTR_INIT("[aio]", 5);
208 	struct file *file;
209 	struct path path;
210 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 	if (IS_ERR(inode))
212 		return ERR_CAST(inode);
213 
214 	inode->i_mapping->a_ops = &aio_ctx_aops;
215 	inode->i_mapping->private_data = ctx;
216 	inode->i_size = PAGE_SIZE * nr_pages;
217 
218 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 	if (!path.dentry) {
220 		iput(inode);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	path.mnt = mntget(aio_mnt);
224 
225 	d_instantiate(path.dentry, inode);
226 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 	if (IS_ERR(file)) {
228 		path_put(&path);
229 		return file;
230 	}
231 
232 	file->f_flags = O_RDWR;
233 	return file;
234 }
235 
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 				int flags, const char *dev_name, void *data)
238 {
239 	static const struct dentry_operations ops = {
240 		.d_dname	= simple_dname,
241 	};
242 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 					   AIO_RING_MAGIC);
244 
245 	if (!IS_ERR(root))
246 		root->d_sb->s_iflags |= SB_I_NOEXEC;
247 	return root;
248 }
249 
250 /* aio_setup
251  *	Creates the slab caches used by the aio routines, panic on
252  *	failure as this is done early during the boot sequence.
253  */
254 static int __init aio_setup(void)
255 {
256 	static struct file_system_type aio_fs = {
257 		.name		= "aio",
258 		.mount		= aio_mount,
259 		.kill_sb	= kill_anon_super,
260 	};
261 	aio_mnt = kern_mount(&aio_fs);
262 	if (IS_ERR(aio_mnt))
263 		panic("Failed to create aio fs mount.");
264 
265 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 
268 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269 
270 	return 0;
271 }
272 __initcall(aio_setup);
273 
274 static void put_aio_ring_file(struct kioctx *ctx)
275 {
276 	struct file *aio_ring_file = ctx->aio_ring_file;
277 	struct address_space *i_mapping;
278 
279 	if (aio_ring_file) {
280 		truncate_setsize(file_inode(aio_ring_file), 0);
281 
282 		/* Prevent further access to the kioctx from migratepages */
283 		i_mapping = aio_ring_file->f_mapping;
284 		spin_lock(&i_mapping->private_lock);
285 		i_mapping->private_data = NULL;
286 		ctx->aio_ring_file = NULL;
287 		spin_unlock(&i_mapping->private_lock);
288 
289 		fput(aio_ring_file);
290 	}
291 }
292 
293 static void aio_free_ring(struct kioctx *ctx)
294 {
295 	int i;
296 
297 	/* Disconnect the kiotx from the ring file.  This prevents future
298 	 * accesses to the kioctx from page migration.
299 	 */
300 	put_aio_ring_file(ctx);
301 
302 	for (i = 0; i < ctx->nr_pages; i++) {
303 		struct page *page;
304 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 				page_count(ctx->ring_pages[i]));
306 		page = ctx->ring_pages[i];
307 		if (!page)
308 			continue;
309 		ctx->ring_pages[i] = NULL;
310 		put_page(page);
311 	}
312 
313 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 		kfree(ctx->ring_pages);
315 		ctx->ring_pages = NULL;
316 	}
317 }
318 
319 static int aio_ring_mremap(struct vm_area_struct *vma)
320 {
321 	struct file *file = vma->vm_file;
322 	struct mm_struct *mm = vma->vm_mm;
323 	struct kioctx_table *table;
324 	int i, res = -EINVAL;
325 
326 	spin_lock(&mm->ioctx_lock);
327 	rcu_read_lock();
328 	table = rcu_dereference(mm->ioctx_table);
329 	for (i = 0; i < table->nr; i++) {
330 		struct kioctx *ctx;
331 
332 		ctx = rcu_dereference(table->table[i]);
333 		if (ctx && ctx->aio_ring_file == file) {
334 			if (!atomic_read(&ctx->dead)) {
335 				ctx->user_id = ctx->mmap_base = vma->vm_start;
336 				res = 0;
337 			}
338 			break;
339 		}
340 	}
341 
342 	rcu_read_unlock();
343 	spin_unlock(&mm->ioctx_lock);
344 	return res;
345 }
346 
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 	.mremap		= aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 	.fault		= filemap_fault,
351 	.map_pages	= filemap_map_pages,
352 	.page_mkwrite	= filemap_page_mkwrite,
353 #endif
354 };
355 
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358 	vma->vm_flags |= VM_DONTEXPAND;
359 	vma->vm_ops = &aio_ring_vm_ops;
360 	return 0;
361 }
362 
363 static const struct file_operations aio_ring_fops = {
364 	.mmap = aio_ring_mmap,
365 };
366 
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 			struct page *old, enum migrate_mode mode)
370 {
371 	struct kioctx *ctx;
372 	unsigned long flags;
373 	pgoff_t idx;
374 	int rc;
375 
376 	/*
377 	 * We cannot support the _NO_COPY case here, because copy needs to
378 	 * happen under the ctx->completion_lock. That does not work with the
379 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 	 */
381 	if (mode == MIGRATE_SYNC_NO_COPY)
382 		return -EINVAL;
383 
384 	rc = 0;
385 
386 	/* mapping->private_lock here protects against the kioctx teardown.  */
387 	spin_lock(&mapping->private_lock);
388 	ctx = mapping->private_data;
389 	if (!ctx) {
390 		rc = -EINVAL;
391 		goto out;
392 	}
393 
394 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
395 	 * to the ring's head, and prevents page migration from mucking in
396 	 * a partially initialized kiotx.
397 	 */
398 	if (!mutex_trylock(&ctx->ring_lock)) {
399 		rc = -EAGAIN;
400 		goto out;
401 	}
402 
403 	idx = old->index;
404 	if (idx < (pgoff_t)ctx->nr_pages) {
405 		/* Make sure the old page hasn't already been changed */
406 		if (ctx->ring_pages[idx] != old)
407 			rc = -EAGAIN;
408 	} else
409 		rc = -EINVAL;
410 
411 	if (rc != 0)
412 		goto out_unlock;
413 
414 	/* Writeback must be complete */
415 	BUG_ON(PageWriteback(old));
416 	get_page(new);
417 
418 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
419 	if (rc != MIGRATEPAGE_SUCCESS) {
420 		put_page(new);
421 		goto out_unlock;
422 	}
423 
424 	/* Take completion_lock to prevent other writes to the ring buffer
425 	 * while the old page is copied to the new.  This prevents new
426 	 * events from being lost.
427 	 */
428 	spin_lock_irqsave(&ctx->completion_lock, flags);
429 	migrate_page_copy(new, old);
430 	BUG_ON(ctx->ring_pages[idx] != old);
431 	ctx->ring_pages[idx] = new;
432 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
433 
434 	/* The old page is no longer accessible. */
435 	put_page(old);
436 
437 out_unlock:
438 	mutex_unlock(&ctx->ring_lock);
439 out:
440 	spin_unlock(&mapping->private_lock);
441 	return rc;
442 }
443 #endif
444 
445 static const struct address_space_operations aio_ctx_aops = {
446 	.set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 	.migratepage	= aio_migratepage,
449 #endif
450 };
451 
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453 {
454 	struct aio_ring *ring;
455 	struct mm_struct *mm = current->mm;
456 	unsigned long size, unused;
457 	int nr_pages;
458 	int i;
459 	struct file *file;
460 
461 	/* Compensate for the ring buffer's head/tail overlap entry */
462 	nr_events += 2;	/* 1 is required, 2 for good luck */
463 
464 	size = sizeof(struct aio_ring);
465 	size += sizeof(struct io_event) * nr_events;
466 
467 	nr_pages = PFN_UP(size);
468 	if (nr_pages < 0)
469 		return -EINVAL;
470 
471 	file = aio_private_file(ctx, nr_pages);
472 	if (IS_ERR(file)) {
473 		ctx->aio_ring_file = NULL;
474 		return -ENOMEM;
475 	}
476 
477 	ctx->aio_ring_file = file;
478 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 			/ sizeof(struct io_event);
480 
481 	ctx->ring_pages = ctx->internal_pages;
482 	if (nr_pages > AIO_RING_PAGES) {
483 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 					  GFP_KERNEL);
485 		if (!ctx->ring_pages) {
486 			put_aio_ring_file(ctx);
487 			return -ENOMEM;
488 		}
489 	}
490 
491 	for (i = 0; i < nr_pages; i++) {
492 		struct page *page;
493 		page = find_or_create_page(file->f_mapping,
494 					   i, GFP_HIGHUSER | __GFP_ZERO);
495 		if (!page)
496 			break;
497 		pr_debug("pid(%d) page[%d]->count=%d\n",
498 			 current->pid, i, page_count(page));
499 		SetPageUptodate(page);
500 		unlock_page(page);
501 
502 		ctx->ring_pages[i] = page;
503 	}
504 	ctx->nr_pages = i;
505 
506 	if (unlikely(i != nr_pages)) {
507 		aio_free_ring(ctx);
508 		return -ENOMEM;
509 	}
510 
511 	ctx->mmap_size = nr_pages * PAGE_SIZE;
512 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513 
514 	if (down_write_killable(&mm->mmap_sem)) {
515 		ctx->mmap_size = 0;
516 		aio_free_ring(ctx);
517 		return -EINTR;
518 	}
519 
520 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 				       PROT_READ | PROT_WRITE,
522 				       MAP_SHARED, 0, &unused, NULL);
523 	up_write(&mm->mmap_sem);
524 	if (IS_ERR((void *)ctx->mmap_base)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -ENOMEM;
528 	}
529 
530 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531 
532 	ctx->user_id = ctx->mmap_base;
533 	ctx->nr_events = nr_events; /* trusted copy */
534 
535 	ring = kmap_atomic(ctx->ring_pages[0]);
536 	ring->nr = nr_events;	/* user copy */
537 	ring->id = ~0U;
538 	ring->head = ring->tail = 0;
539 	ring->magic = AIO_RING_MAGIC;
540 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 	ring->header_length = sizeof(struct aio_ring);
543 	kunmap_atomic(ring);
544 	flush_dcache_page(ctx->ring_pages[0]);
545 
546 	return 0;
547 }
548 
549 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552 
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554 {
555 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
556 	struct kioctx *ctx = req->ki_ctx;
557 	unsigned long flags;
558 
559 	spin_lock_irqsave(&ctx->ctx_lock, flags);
560 
561 	if (!req->ki_list.next)
562 		list_add(&req->ki_list, &ctx->active_reqs);
563 
564 	req->ki_cancel = cancel;
565 
566 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
567 }
568 EXPORT_SYMBOL(kiocb_set_cancel_fn);
569 
570 static int kiocb_cancel(struct aio_kiocb *kiocb)
571 {
572 	kiocb_cancel_fn *old, *cancel;
573 
574 	/*
575 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
576 	 * actually has a cancel function, hence the cmpxchg()
577 	 */
578 
579 	cancel = READ_ONCE(kiocb->ki_cancel);
580 	do {
581 		if (!cancel || cancel == KIOCB_CANCELLED)
582 			return -EINVAL;
583 
584 		old = cancel;
585 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
586 	} while (cancel != old);
587 
588 	return cancel(&kiocb->common);
589 }
590 
591 /*
592  * free_ioctx() should be RCU delayed to synchronize against the RCU
593  * protected lookup_ioctx() and also needs process context to call
594  * aio_free_ring().  Use rcu_work.
595  */
596 static void free_ioctx(struct work_struct *work)
597 {
598 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
599 					  free_rwork);
600 	pr_debug("freeing %p\n", ctx);
601 
602 	aio_free_ring(ctx);
603 	free_percpu(ctx->cpu);
604 	percpu_ref_exit(&ctx->reqs);
605 	percpu_ref_exit(&ctx->users);
606 	kmem_cache_free(kioctx_cachep, ctx);
607 }
608 
609 static void free_ioctx_reqs(struct percpu_ref *ref)
610 {
611 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
612 
613 	/* At this point we know that there are no any in-flight requests */
614 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
615 		complete(&ctx->rq_wait->comp);
616 
617 	/* Synchronize against RCU protected table->table[] dereferences */
618 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
619 	queue_rcu_work(system_wq, &ctx->free_rwork);
620 }
621 
622 /*
623  * When this function runs, the kioctx has been removed from the "hash table"
624  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
625  * now it's safe to cancel any that need to be.
626  */
627 static void free_ioctx_users(struct percpu_ref *ref)
628 {
629 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
630 	struct aio_kiocb *req;
631 
632 	spin_lock_irq(&ctx->ctx_lock);
633 
634 	while (!list_empty(&ctx->active_reqs)) {
635 		req = list_first_entry(&ctx->active_reqs,
636 				       struct aio_kiocb, ki_list);
637 
638 		list_del_init(&req->ki_list);
639 		kiocb_cancel(req);
640 	}
641 
642 	spin_unlock_irq(&ctx->ctx_lock);
643 
644 	percpu_ref_kill(&ctx->reqs);
645 	percpu_ref_put(&ctx->reqs);
646 }
647 
648 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
649 {
650 	unsigned i, new_nr;
651 	struct kioctx_table *table, *old;
652 	struct aio_ring *ring;
653 
654 	spin_lock(&mm->ioctx_lock);
655 	table = rcu_dereference_raw(mm->ioctx_table);
656 
657 	while (1) {
658 		if (table)
659 			for (i = 0; i < table->nr; i++)
660 				if (!rcu_access_pointer(table->table[i])) {
661 					ctx->id = i;
662 					rcu_assign_pointer(table->table[i], ctx);
663 					spin_unlock(&mm->ioctx_lock);
664 
665 					/* While kioctx setup is in progress,
666 					 * we are protected from page migration
667 					 * changes ring_pages by ->ring_lock.
668 					 */
669 					ring = kmap_atomic(ctx->ring_pages[0]);
670 					ring->id = ctx->id;
671 					kunmap_atomic(ring);
672 					return 0;
673 				}
674 
675 		new_nr = (table ? table->nr : 1) * 4;
676 		spin_unlock(&mm->ioctx_lock);
677 
678 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
679 				new_nr, GFP_KERNEL);
680 		if (!table)
681 			return -ENOMEM;
682 
683 		table->nr = new_nr;
684 
685 		spin_lock(&mm->ioctx_lock);
686 		old = rcu_dereference_raw(mm->ioctx_table);
687 
688 		if (!old) {
689 			rcu_assign_pointer(mm->ioctx_table, table);
690 		} else if (table->nr > old->nr) {
691 			memcpy(table->table, old->table,
692 			       old->nr * sizeof(struct kioctx *));
693 
694 			rcu_assign_pointer(mm->ioctx_table, table);
695 			kfree_rcu(old, rcu);
696 		} else {
697 			kfree(table);
698 			table = old;
699 		}
700 	}
701 }
702 
703 static void aio_nr_sub(unsigned nr)
704 {
705 	spin_lock(&aio_nr_lock);
706 	if (WARN_ON(aio_nr - nr > aio_nr))
707 		aio_nr = 0;
708 	else
709 		aio_nr -= nr;
710 	spin_unlock(&aio_nr_lock);
711 }
712 
713 /* ioctx_alloc
714  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
715  */
716 static struct kioctx *ioctx_alloc(unsigned nr_events)
717 {
718 	struct mm_struct *mm = current->mm;
719 	struct kioctx *ctx;
720 	int err = -ENOMEM;
721 
722 	/*
723 	 * Store the original nr_events -- what userspace passed to io_setup(),
724 	 * for counting against the global limit -- before it changes.
725 	 */
726 	unsigned int max_reqs = nr_events;
727 
728 	/*
729 	 * We keep track of the number of available ringbuffer slots, to prevent
730 	 * overflow (reqs_available), and we also use percpu counters for this.
731 	 *
732 	 * So since up to half the slots might be on other cpu's percpu counters
733 	 * and unavailable, double nr_events so userspace sees what they
734 	 * expected: additionally, we move req_batch slots to/from percpu
735 	 * counters at a time, so make sure that isn't 0:
736 	 */
737 	nr_events = max(nr_events, num_possible_cpus() * 4);
738 	nr_events *= 2;
739 
740 	/* Prevent overflows */
741 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
742 		pr_debug("ENOMEM: nr_events too high\n");
743 		return ERR_PTR(-EINVAL);
744 	}
745 
746 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
747 		return ERR_PTR(-EAGAIN);
748 
749 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
750 	if (!ctx)
751 		return ERR_PTR(-ENOMEM);
752 
753 	ctx->max_reqs = max_reqs;
754 
755 	spin_lock_init(&ctx->ctx_lock);
756 	spin_lock_init(&ctx->completion_lock);
757 	mutex_init(&ctx->ring_lock);
758 	/* Protect against page migration throughout kiotx setup by keeping
759 	 * the ring_lock mutex held until setup is complete. */
760 	mutex_lock(&ctx->ring_lock);
761 	init_waitqueue_head(&ctx->wait);
762 
763 	INIT_LIST_HEAD(&ctx->active_reqs);
764 
765 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
766 		goto err;
767 
768 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
769 		goto err;
770 
771 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
772 	if (!ctx->cpu)
773 		goto err;
774 
775 	err = aio_setup_ring(ctx, nr_events);
776 	if (err < 0)
777 		goto err;
778 
779 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
780 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
781 	if (ctx->req_batch < 1)
782 		ctx->req_batch = 1;
783 
784 	/* limit the number of system wide aios */
785 	spin_lock(&aio_nr_lock);
786 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
787 	    aio_nr + ctx->max_reqs < aio_nr) {
788 		spin_unlock(&aio_nr_lock);
789 		err = -EAGAIN;
790 		goto err_ctx;
791 	}
792 	aio_nr += ctx->max_reqs;
793 	spin_unlock(&aio_nr_lock);
794 
795 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
796 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
797 
798 	err = ioctx_add_table(ctx, mm);
799 	if (err)
800 		goto err_cleanup;
801 
802 	/* Release the ring_lock mutex now that all setup is complete. */
803 	mutex_unlock(&ctx->ring_lock);
804 
805 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
806 		 ctx, ctx->user_id, mm, ctx->nr_events);
807 	return ctx;
808 
809 err_cleanup:
810 	aio_nr_sub(ctx->max_reqs);
811 err_ctx:
812 	atomic_set(&ctx->dead, 1);
813 	if (ctx->mmap_size)
814 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
815 	aio_free_ring(ctx);
816 err:
817 	mutex_unlock(&ctx->ring_lock);
818 	free_percpu(ctx->cpu);
819 	percpu_ref_exit(&ctx->reqs);
820 	percpu_ref_exit(&ctx->users);
821 	kmem_cache_free(kioctx_cachep, ctx);
822 	pr_debug("error allocating ioctx %d\n", err);
823 	return ERR_PTR(err);
824 }
825 
826 /* kill_ioctx
827  *	Cancels all outstanding aio requests on an aio context.  Used
828  *	when the processes owning a context have all exited to encourage
829  *	the rapid destruction of the kioctx.
830  */
831 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
832 		      struct ctx_rq_wait *wait)
833 {
834 	struct kioctx_table *table;
835 
836 	spin_lock(&mm->ioctx_lock);
837 	if (atomic_xchg(&ctx->dead, 1)) {
838 		spin_unlock(&mm->ioctx_lock);
839 		return -EINVAL;
840 	}
841 
842 	table = rcu_dereference_raw(mm->ioctx_table);
843 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
844 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
845 	spin_unlock(&mm->ioctx_lock);
846 
847 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
848 	wake_up_all(&ctx->wait);
849 
850 	/*
851 	 * It'd be more correct to do this in free_ioctx(), after all
852 	 * the outstanding kiocbs have finished - but by then io_destroy
853 	 * has already returned, so io_setup() could potentially return
854 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
855 	 *  could tell).
856 	 */
857 	aio_nr_sub(ctx->max_reqs);
858 
859 	if (ctx->mmap_size)
860 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
861 
862 	ctx->rq_wait = wait;
863 	percpu_ref_kill(&ctx->users);
864 	return 0;
865 }
866 
867 /*
868  * exit_aio: called when the last user of mm goes away.  At this point, there is
869  * no way for any new requests to be submited or any of the io_* syscalls to be
870  * called on the context.
871  *
872  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
873  * them.
874  */
875 void exit_aio(struct mm_struct *mm)
876 {
877 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
878 	struct ctx_rq_wait wait;
879 	int i, skipped;
880 
881 	if (!table)
882 		return;
883 
884 	atomic_set(&wait.count, table->nr);
885 	init_completion(&wait.comp);
886 
887 	skipped = 0;
888 	for (i = 0; i < table->nr; ++i) {
889 		struct kioctx *ctx =
890 			rcu_dereference_protected(table->table[i], true);
891 
892 		if (!ctx) {
893 			skipped++;
894 			continue;
895 		}
896 
897 		/*
898 		 * We don't need to bother with munmap() here - exit_mmap(mm)
899 		 * is coming and it'll unmap everything. And we simply can't,
900 		 * this is not necessarily our ->mm.
901 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
902 		 * that it needs to unmap the area, just set it to 0.
903 		 */
904 		ctx->mmap_size = 0;
905 		kill_ioctx(mm, ctx, &wait);
906 	}
907 
908 	if (!atomic_sub_and_test(skipped, &wait.count)) {
909 		/* Wait until all IO for the context are done. */
910 		wait_for_completion(&wait.comp);
911 	}
912 
913 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
914 	kfree(table);
915 }
916 
917 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
918 {
919 	struct kioctx_cpu *kcpu;
920 	unsigned long flags;
921 
922 	local_irq_save(flags);
923 	kcpu = this_cpu_ptr(ctx->cpu);
924 	kcpu->reqs_available += nr;
925 
926 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
927 		kcpu->reqs_available -= ctx->req_batch;
928 		atomic_add(ctx->req_batch, &ctx->reqs_available);
929 	}
930 
931 	local_irq_restore(flags);
932 }
933 
934 static bool get_reqs_available(struct kioctx *ctx)
935 {
936 	struct kioctx_cpu *kcpu;
937 	bool ret = false;
938 	unsigned long flags;
939 
940 	local_irq_save(flags);
941 	kcpu = this_cpu_ptr(ctx->cpu);
942 	if (!kcpu->reqs_available) {
943 		int old, avail = atomic_read(&ctx->reqs_available);
944 
945 		do {
946 			if (avail < ctx->req_batch)
947 				goto out;
948 
949 			old = avail;
950 			avail = atomic_cmpxchg(&ctx->reqs_available,
951 					       avail, avail - ctx->req_batch);
952 		} while (avail != old);
953 
954 		kcpu->reqs_available += ctx->req_batch;
955 	}
956 
957 	ret = true;
958 	kcpu->reqs_available--;
959 out:
960 	local_irq_restore(flags);
961 	return ret;
962 }
963 
964 /* refill_reqs_available
965  *	Updates the reqs_available reference counts used for tracking the
966  *	number of free slots in the completion ring.  This can be called
967  *	from aio_complete() (to optimistically update reqs_available) or
968  *	from aio_get_req() (the we're out of events case).  It must be
969  *	called holding ctx->completion_lock.
970  */
971 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
972                                   unsigned tail)
973 {
974 	unsigned events_in_ring, completed;
975 
976 	/* Clamp head since userland can write to it. */
977 	head %= ctx->nr_events;
978 	if (head <= tail)
979 		events_in_ring = tail - head;
980 	else
981 		events_in_ring = ctx->nr_events - (head - tail);
982 
983 	completed = ctx->completed_events;
984 	if (events_in_ring < completed)
985 		completed -= events_in_ring;
986 	else
987 		completed = 0;
988 
989 	if (!completed)
990 		return;
991 
992 	ctx->completed_events -= completed;
993 	put_reqs_available(ctx, completed);
994 }
995 
996 /* user_refill_reqs_available
997  *	Called to refill reqs_available when aio_get_req() encounters an
998  *	out of space in the completion ring.
999  */
1000 static void user_refill_reqs_available(struct kioctx *ctx)
1001 {
1002 	spin_lock_irq(&ctx->completion_lock);
1003 	if (ctx->completed_events) {
1004 		struct aio_ring *ring;
1005 		unsigned head;
1006 
1007 		/* Access of ring->head may race with aio_read_events_ring()
1008 		 * here, but that's okay since whether we read the old version
1009 		 * or the new version, and either will be valid.  The important
1010 		 * part is that head cannot pass tail since we prevent
1011 		 * aio_complete() from updating tail by holding
1012 		 * ctx->completion_lock.  Even if head is invalid, the check
1013 		 * against ctx->completed_events below will make sure we do the
1014 		 * safe/right thing.
1015 		 */
1016 		ring = kmap_atomic(ctx->ring_pages[0]);
1017 		head = ring->head;
1018 		kunmap_atomic(ring);
1019 
1020 		refill_reqs_available(ctx, head, ctx->tail);
1021 	}
1022 
1023 	spin_unlock_irq(&ctx->completion_lock);
1024 }
1025 
1026 /* aio_get_req
1027  *	Allocate a slot for an aio request.
1028  * Returns NULL if no requests are free.
1029  */
1030 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1031 {
1032 	struct aio_kiocb *req;
1033 
1034 	if (!get_reqs_available(ctx)) {
1035 		user_refill_reqs_available(ctx);
1036 		if (!get_reqs_available(ctx))
1037 			return NULL;
1038 	}
1039 
1040 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1041 	if (unlikely(!req))
1042 		goto out_put;
1043 
1044 	percpu_ref_get(&ctx->reqs);
1045 
1046 	req->ki_ctx = ctx;
1047 	return req;
1048 out_put:
1049 	put_reqs_available(ctx, 1);
1050 	return NULL;
1051 }
1052 
1053 static void kiocb_free(struct aio_kiocb *req)
1054 {
1055 	if (req->common.ki_filp)
1056 		fput(req->common.ki_filp);
1057 	if (req->ki_eventfd != NULL)
1058 		eventfd_ctx_put(req->ki_eventfd);
1059 	kmem_cache_free(kiocb_cachep, req);
1060 }
1061 
1062 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1063 {
1064 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1065 	struct mm_struct *mm = current->mm;
1066 	struct kioctx *ctx, *ret = NULL;
1067 	struct kioctx_table *table;
1068 	unsigned id;
1069 
1070 	if (get_user(id, &ring->id))
1071 		return NULL;
1072 
1073 	rcu_read_lock();
1074 	table = rcu_dereference(mm->ioctx_table);
1075 
1076 	if (!table || id >= table->nr)
1077 		goto out;
1078 
1079 	ctx = rcu_dereference(table->table[id]);
1080 	if (ctx && ctx->user_id == ctx_id) {
1081 		percpu_ref_get(&ctx->users);
1082 		ret = ctx;
1083 	}
1084 out:
1085 	rcu_read_unlock();
1086 	return ret;
1087 }
1088 
1089 /* aio_complete
1090  *	Called when the io request on the given iocb is complete.
1091  */
1092 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1093 {
1094 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1095 	struct kioctx	*ctx = iocb->ki_ctx;
1096 	struct aio_ring	*ring;
1097 	struct io_event	*ev_page, *event;
1098 	unsigned tail, pos, head;
1099 	unsigned long	flags;
1100 
1101 	if (kiocb->ki_flags & IOCB_WRITE) {
1102 		struct file *file = kiocb->ki_filp;
1103 
1104 		/*
1105 		 * Tell lockdep we inherited freeze protection from submission
1106 		 * thread.
1107 		 */
1108 		if (S_ISREG(file_inode(file)->i_mode))
1109 			__sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1110 		file_end_write(file);
1111 	}
1112 
1113 	/*
1114 	 * Special case handling for sync iocbs:
1115 	 *  - events go directly into the iocb for fast handling
1116 	 *  - the sync task with the iocb in its stack holds the single iocb
1117 	 *    ref, no other paths have a way to get another ref
1118 	 *  - the sync task helpfully left a reference to itself in the iocb
1119 	 */
1120 	BUG_ON(is_sync_kiocb(kiocb));
1121 
1122 	if (iocb->ki_list.next) {
1123 		unsigned long flags;
1124 
1125 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1126 		list_del(&iocb->ki_list);
1127 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1128 	}
1129 
1130 	/*
1131 	 * Add a completion event to the ring buffer. Must be done holding
1132 	 * ctx->completion_lock to prevent other code from messing with the tail
1133 	 * pointer since we might be called from irq context.
1134 	 */
1135 	spin_lock_irqsave(&ctx->completion_lock, flags);
1136 
1137 	tail = ctx->tail;
1138 	pos = tail + AIO_EVENTS_OFFSET;
1139 
1140 	if (++tail >= ctx->nr_events)
1141 		tail = 0;
1142 
1143 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1144 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1145 
1146 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1147 	event->data = iocb->ki_user_data;
1148 	event->res = res;
1149 	event->res2 = res2;
1150 
1151 	kunmap_atomic(ev_page);
1152 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1153 
1154 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1155 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1156 		 res, res2);
1157 
1158 	/* after flagging the request as done, we
1159 	 * must never even look at it again
1160 	 */
1161 	smp_wmb();	/* make event visible before updating tail */
1162 
1163 	ctx->tail = tail;
1164 
1165 	ring = kmap_atomic(ctx->ring_pages[0]);
1166 	head = ring->head;
1167 	ring->tail = tail;
1168 	kunmap_atomic(ring);
1169 	flush_dcache_page(ctx->ring_pages[0]);
1170 
1171 	ctx->completed_events++;
1172 	if (ctx->completed_events > 1)
1173 		refill_reqs_available(ctx, head, tail);
1174 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1175 
1176 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1177 
1178 	/*
1179 	 * Check if the user asked us to deliver the result through an
1180 	 * eventfd. The eventfd_signal() function is safe to be called
1181 	 * from IRQ context.
1182 	 */
1183 	if (iocb->ki_eventfd != NULL)
1184 		eventfd_signal(iocb->ki_eventfd, 1);
1185 
1186 	/* everything turned out well, dispose of the aiocb. */
1187 	kiocb_free(iocb);
1188 
1189 	/*
1190 	 * We have to order our ring_info tail store above and test
1191 	 * of the wait list below outside the wait lock.  This is
1192 	 * like in wake_up_bit() where clearing a bit has to be
1193 	 * ordered with the unlocked test.
1194 	 */
1195 	smp_mb();
1196 
1197 	if (waitqueue_active(&ctx->wait))
1198 		wake_up(&ctx->wait);
1199 
1200 	percpu_ref_put(&ctx->reqs);
1201 }
1202 
1203 /* aio_read_events_ring
1204  *	Pull an event off of the ioctx's event ring.  Returns the number of
1205  *	events fetched
1206  */
1207 static long aio_read_events_ring(struct kioctx *ctx,
1208 				 struct io_event __user *event, long nr)
1209 {
1210 	struct aio_ring *ring;
1211 	unsigned head, tail, pos;
1212 	long ret = 0;
1213 	int copy_ret;
1214 
1215 	/*
1216 	 * The mutex can block and wake us up and that will cause
1217 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1218 	 * and repeat. This should be rare enough that it doesn't cause
1219 	 * peformance issues. See the comment in read_events() for more detail.
1220 	 */
1221 	sched_annotate_sleep();
1222 	mutex_lock(&ctx->ring_lock);
1223 
1224 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1225 	ring = kmap_atomic(ctx->ring_pages[0]);
1226 	head = ring->head;
1227 	tail = ring->tail;
1228 	kunmap_atomic(ring);
1229 
1230 	/*
1231 	 * Ensure that once we've read the current tail pointer, that
1232 	 * we also see the events that were stored up to the tail.
1233 	 */
1234 	smp_rmb();
1235 
1236 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1237 
1238 	if (head == tail)
1239 		goto out;
1240 
1241 	head %= ctx->nr_events;
1242 	tail %= ctx->nr_events;
1243 
1244 	while (ret < nr) {
1245 		long avail;
1246 		struct io_event *ev;
1247 		struct page *page;
1248 
1249 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1250 		if (head == tail)
1251 			break;
1252 
1253 		avail = min(avail, nr - ret);
1254 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1255 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1256 
1257 		pos = head + AIO_EVENTS_OFFSET;
1258 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1259 		pos %= AIO_EVENTS_PER_PAGE;
1260 
1261 		ev = kmap(page);
1262 		copy_ret = copy_to_user(event + ret, ev + pos,
1263 					sizeof(*ev) * avail);
1264 		kunmap(page);
1265 
1266 		if (unlikely(copy_ret)) {
1267 			ret = -EFAULT;
1268 			goto out;
1269 		}
1270 
1271 		ret += avail;
1272 		head += avail;
1273 		head %= ctx->nr_events;
1274 	}
1275 
1276 	ring = kmap_atomic(ctx->ring_pages[0]);
1277 	ring->head = head;
1278 	kunmap_atomic(ring);
1279 	flush_dcache_page(ctx->ring_pages[0]);
1280 
1281 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1282 out:
1283 	mutex_unlock(&ctx->ring_lock);
1284 
1285 	return ret;
1286 }
1287 
1288 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1289 			    struct io_event __user *event, long *i)
1290 {
1291 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1292 
1293 	if (ret > 0)
1294 		*i += ret;
1295 
1296 	if (unlikely(atomic_read(&ctx->dead)))
1297 		ret = -EINVAL;
1298 
1299 	if (!*i)
1300 		*i = ret;
1301 
1302 	return ret < 0 || *i >= min_nr;
1303 }
1304 
1305 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1306 			struct io_event __user *event,
1307 			ktime_t until)
1308 {
1309 	long ret = 0;
1310 
1311 	/*
1312 	 * Note that aio_read_events() is being called as the conditional - i.e.
1313 	 * we're calling it after prepare_to_wait() has set task state to
1314 	 * TASK_INTERRUPTIBLE.
1315 	 *
1316 	 * But aio_read_events() can block, and if it blocks it's going to flip
1317 	 * the task state back to TASK_RUNNING.
1318 	 *
1319 	 * This should be ok, provided it doesn't flip the state back to
1320 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1321 	 * will only happen if the mutex_lock() call blocks, and we then find
1322 	 * the ringbuffer empty. So in practice we should be ok, but it's
1323 	 * something to be aware of when touching this code.
1324 	 */
1325 	if (until == 0)
1326 		aio_read_events(ctx, min_nr, nr, event, &ret);
1327 	else
1328 		wait_event_interruptible_hrtimeout(ctx->wait,
1329 				aio_read_events(ctx, min_nr, nr, event, &ret),
1330 				until);
1331 
1332 	if (!ret && signal_pending(current))
1333 		ret = -EINTR;
1334 
1335 	return ret;
1336 }
1337 
1338 /* sys_io_setup:
1339  *	Create an aio_context capable of receiving at least nr_events.
1340  *	ctxp must not point to an aio_context that already exists, and
1341  *	must be initialized to 0 prior to the call.  On successful
1342  *	creation of the aio_context, *ctxp is filled in with the resulting
1343  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1344  *	if the specified nr_events exceeds internal limits.  May fail
1345  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1346  *	of available events.  May fail with -ENOMEM if insufficient kernel
1347  *	resources are available.  May fail with -EFAULT if an invalid
1348  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1349  *	implemented.
1350  */
1351 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1352 {
1353 	struct kioctx *ioctx = NULL;
1354 	unsigned long ctx;
1355 	long ret;
1356 
1357 	ret = get_user(ctx, ctxp);
1358 	if (unlikely(ret))
1359 		goto out;
1360 
1361 	ret = -EINVAL;
1362 	if (unlikely(ctx || nr_events == 0)) {
1363 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1364 		         ctx, nr_events);
1365 		goto out;
1366 	}
1367 
1368 	ioctx = ioctx_alloc(nr_events);
1369 	ret = PTR_ERR(ioctx);
1370 	if (!IS_ERR(ioctx)) {
1371 		ret = put_user(ioctx->user_id, ctxp);
1372 		if (ret)
1373 			kill_ioctx(current->mm, ioctx, NULL);
1374 		percpu_ref_put(&ioctx->users);
1375 	}
1376 
1377 out:
1378 	return ret;
1379 }
1380 
1381 #ifdef CONFIG_COMPAT
1382 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1383 {
1384 	struct kioctx *ioctx = NULL;
1385 	unsigned long ctx;
1386 	long ret;
1387 
1388 	ret = get_user(ctx, ctx32p);
1389 	if (unlikely(ret))
1390 		goto out;
1391 
1392 	ret = -EINVAL;
1393 	if (unlikely(ctx || nr_events == 0)) {
1394 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1395 		         ctx, nr_events);
1396 		goto out;
1397 	}
1398 
1399 	ioctx = ioctx_alloc(nr_events);
1400 	ret = PTR_ERR(ioctx);
1401 	if (!IS_ERR(ioctx)) {
1402 		/* truncating is ok because it's a user address */
1403 		ret = put_user((u32)ioctx->user_id, ctx32p);
1404 		if (ret)
1405 			kill_ioctx(current->mm, ioctx, NULL);
1406 		percpu_ref_put(&ioctx->users);
1407 	}
1408 
1409 out:
1410 	return ret;
1411 }
1412 #endif
1413 
1414 /* sys_io_destroy:
1415  *	Destroy the aio_context specified.  May cancel any outstanding
1416  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1417  *	implemented.  May fail with -EINVAL if the context pointed to
1418  *	is invalid.
1419  */
1420 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1421 {
1422 	struct kioctx *ioctx = lookup_ioctx(ctx);
1423 	if (likely(NULL != ioctx)) {
1424 		struct ctx_rq_wait wait;
1425 		int ret;
1426 
1427 		init_completion(&wait.comp);
1428 		atomic_set(&wait.count, 1);
1429 
1430 		/* Pass requests_done to kill_ioctx() where it can be set
1431 		 * in a thread-safe way. If we try to set it here then we have
1432 		 * a race condition if two io_destroy() called simultaneously.
1433 		 */
1434 		ret = kill_ioctx(current->mm, ioctx, &wait);
1435 		percpu_ref_put(&ioctx->users);
1436 
1437 		/* Wait until all IO for the context are done. Otherwise kernel
1438 		 * keep using user-space buffers even if user thinks the context
1439 		 * is destroyed.
1440 		 */
1441 		if (!ret)
1442 			wait_for_completion(&wait.comp);
1443 
1444 		return ret;
1445 	}
1446 	pr_debug("EINVAL: invalid context id\n");
1447 	return -EINVAL;
1448 }
1449 
1450 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1451 		bool vectored, bool compat, struct iov_iter *iter)
1452 {
1453 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1454 	size_t len = iocb->aio_nbytes;
1455 
1456 	if (!vectored) {
1457 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1458 		*iovec = NULL;
1459 		return ret;
1460 	}
1461 #ifdef CONFIG_COMPAT
1462 	if (compat)
1463 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1464 				iter);
1465 #endif
1466 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1467 }
1468 
1469 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1470 {
1471 	switch (ret) {
1472 	case -EIOCBQUEUED:
1473 		return ret;
1474 	case -ERESTARTSYS:
1475 	case -ERESTARTNOINTR:
1476 	case -ERESTARTNOHAND:
1477 	case -ERESTART_RESTARTBLOCK:
1478 		/*
1479 		 * There's no easy way to restart the syscall since other AIO's
1480 		 * may be already running. Just fail this IO with EINTR.
1481 		 */
1482 		ret = -EINTR;
1483 		/*FALLTHRU*/
1484 	default:
1485 		aio_complete(req, ret, 0);
1486 		return 0;
1487 	}
1488 }
1489 
1490 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1491 		bool compat)
1492 {
1493 	struct file *file = req->ki_filp;
1494 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1495 	struct iov_iter iter;
1496 	ssize_t ret;
1497 
1498 	if (unlikely(!(file->f_mode & FMODE_READ)))
1499 		return -EBADF;
1500 	if (unlikely(!file->f_op->read_iter))
1501 		return -EINVAL;
1502 
1503 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1504 	if (ret)
1505 		return ret;
1506 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1507 	if (!ret)
1508 		ret = aio_ret(req, call_read_iter(file, req, &iter));
1509 	kfree(iovec);
1510 	return ret;
1511 }
1512 
1513 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1514 		bool compat)
1515 {
1516 	struct file *file = req->ki_filp;
1517 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1518 	struct iov_iter iter;
1519 	ssize_t ret;
1520 
1521 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1522 		return -EBADF;
1523 	if (unlikely(!file->f_op->write_iter))
1524 		return -EINVAL;
1525 
1526 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1527 	if (ret)
1528 		return ret;
1529 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1530 	if (!ret) {
1531 		req->ki_flags |= IOCB_WRITE;
1532 		file_start_write(file);
1533 		ret = aio_ret(req, call_write_iter(file, req, &iter));
1534 		/*
1535 		 * We release freeze protection in aio_complete().  Fool lockdep
1536 		 * by telling it the lock got released so that it doesn't
1537 		 * complain about held lock when we return to userspace.
1538 		 */
1539 		if (S_ISREG(file_inode(file)->i_mode))
1540 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1541 	}
1542 	kfree(iovec);
1543 	return ret;
1544 }
1545 
1546 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1547 			 struct iocb *iocb, bool compat)
1548 {
1549 	struct aio_kiocb *req;
1550 	struct file *file;
1551 	ssize_t ret;
1552 
1553 	/* enforce forwards compatibility on users */
1554 	if (unlikely(iocb->aio_reserved2)) {
1555 		pr_debug("EINVAL: reserve field set\n");
1556 		return -EINVAL;
1557 	}
1558 
1559 	/* prevent overflows */
1560 	if (unlikely(
1561 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1562 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1563 	    ((ssize_t)iocb->aio_nbytes < 0)
1564 	   )) {
1565 		pr_debug("EINVAL: overflow check\n");
1566 		return -EINVAL;
1567 	}
1568 
1569 	req = aio_get_req(ctx);
1570 	if (unlikely(!req))
1571 		return -EAGAIN;
1572 
1573 	req->common.ki_filp = file = fget(iocb->aio_fildes);
1574 	if (unlikely(!req->common.ki_filp)) {
1575 		ret = -EBADF;
1576 		goto out_put_req;
1577 	}
1578 	req->common.ki_pos = iocb->aio_offset;
1579 	req->common.ki_complete = aio_complete;
1580 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1581 	req->common.ki_hint = file_write_hint(file);
1582 
1583 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1584 		/*
1585 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1586 		 * instance of the file* now. The file descriptor must be
1587 		 * an eventfd() fd, and will be signaled for each completed
1588 		 * event using the eventfd_signal() function.
1589 		 */
1590 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1591 		if (IS_ERR(req->ki_eventfd)) {
1592 			ret = PTR_ERR(req->ki_eventfd);
1593 			req->ki_eventfd = NULL;
1594 			goto out_put_req;
1595 		}
1596 
1597 		req->common.ki_flags |= IOCB_EVENTFD;
1598 	}
1599 
1600 	ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1601 	if (unlikely(ret)) {
1602 		pr_debug("EINVAL: aio_rw_flags\n");
1603 		goto out_put_req;
1604 	}
1605 
1606 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1607 	if (unlikely(ret)) {
1608 		pr_debug("EFAULT: aio_key\n");
1609 		goto out_put_req;
1610 	}
1611 
1612 	req->ki_user_iocb = user_iocb;
1613 	req->ki_user_data = iocb->aio_data;
1614 
1615 	get_file(file);
1616 	switch (iocb->aio_lio_opcode) {
1617 	case IOCB_CMD_PREAD:
1618 		ret = aio_read(&req->common, iocb, false, compat);
1619 		break;
1620 	case IOCB_CMD_PWRITE:
1621 		ret = aio_write(&req->common, iocb, false, compat);
1622 		break;
1623 	case IOCB_CMD_PREADV:
1624 		ret = aio_read(&req->common, iocb, true, compat);
1625 		break;
1626 	case IOCB_CMD_PWRITEV:
1627 		ret = aio_write(&req->common, iocb, true, compat);
1628 		break;
1629 	default:
1630 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1631 		ret = -EINVAL;
1632 		break;
1633 	}
1634 	fput(file);
1635 
1636 	if (ret && ret != -EIOCBQUEUED)
1637 		goto out_put_req;
1638 	return 0;
1639 out_put_req:
1640 	put_reqs_available(ctx, 1);
1641 	percpu_ref_put(&ctx->reqs);
1642 	kiocb_free(req);
1643 	return ret;
1644 }
1645 
1646 static long do_io_submit(aio_context_t ctx_id, long nr,
1647 			  struct iocb __user *__user *iocbpp, bool compat)
1648 {
1649 	struct kioctx *ctx;
1650 	long ret = 0;
1651 	int i = 0;
1652 	struct blk_plug plug;
1653 
1654 	if (unlikely(nr < 0))
1655 		return -EINVAL;
1656 
1657 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1658 		nr = LONG_MAX/sizeof(*iocbpp);
1659 
1660 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1661 		return -EFAULT;
1662 
1663 	ctx = lookup_ioctx(ctx_id);
1664 	if (unlikely(!ctx)) {
1665 		pr_debug("EINVAL: invalid context id\n");
1666 		return -EINVAL;
1667 	}
1668 
1669 	blk_start_plug(&plug);
1670 
1671 	/*
1672 	 * AKPM: should this return a partial result if some of the IOs were
1673 	 * successfully submitted?
1674 	 */
1675 	for (i=0; i<nr; i++) {
1676 		struct iocb __user *user_iocb;
1677 		struct iocb tmp;
1678 
1679 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1680 			ret = -EFAULT;
1681 			break;
1682 		}
1683 
1684 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1685 			ret = -EFAULT;
1686 			break;
1687 		}
1688 
1689 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1690 		if (ret)
1691 			break;
1692 	}
1693 	blk_finish_plug(&plug);
1694 
1695 	percpu_ref_put(&ctx->users);
1696 	return i ? i : ret;
1697 }
1698 
1699 /* sys_io_submit:
1700  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1701  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1702  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1703  *	*iocbpp[0] is not properly initialized, if the operation specified
1704  *	is invalid for the file descriptor in the iocb.  May fail with
1705  *	-EFAULT if any of the data structures point to invalid data.  May
1706  *	fail with -EBADF if the file descriptor specified in the first
1707  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1708  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1709  *	fail with -ENOSYS if not implemented.
1710  */
1711 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1712 		struct iocb __user * __user *, iocbpp)
1713 {
1714 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1715 }
1716 
1717 #ifdef CONFIG_COMPAT
1718 static inline long
1719 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1720 {
1721 	compat_uptr_t uptr;
1722 	int i;
1723 
1724 	for (i = 0; i < nr; ++i) {
1725 		if (get_user(uptr, ptr32 + i))
1726 			return -EFAULT;
1727 		if (put_user(compat_ptr(uptr), ptr64 + i))
1728 			return -EFAULT;
1729 	}
1730 	return 0;
1731 }
1732 
1733 #define MAX_AIO_SUBMITS 	(PAGE_SIZE/sizeof(struct iocb *))
1734 
1735 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1736 		       int, nr, u32 __user *, iocb)
1737 {
1738 	struct iocb __user * __user *iocb64;
1739 	long ret;
1740 
1741 	if (unlikely(nr < 0))
1742 		return -EINVAL;
1743 
1744 	if (nr > MAX_AIO_SUBMITS)
1745 		nr = MAX_AIO_SUBMITS;
1746 
1747 	iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1748 	ret = copy_iocb(nr, iocb, iocb64);
1749 	if (!ret)
1750 		ret = do_io_submit(ctx_id, nr, iocb64, 1);
1751 	return ret;
1752 }
1753 #endif
1754 
1755 /* lookup_kiocb
1756  *	Finds a given iocb for cancellation.
1757  */
1758 static struct aio_kiocb *
1759 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1760 {
1761 	struct aio_kiocb *kiocb;
1762 
1763 	assert_spin_locked(&ctx->ctx_lock);
1764 
1765 	if (key != KIOCB_KEY)
1766 		return NULL;
1767 
1768 	/* TODO: use a hash or array, this sucks. */
1769 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1770 		if (kiocb->ki_user_iocb == iocb)
1771 			return kiocb;
1772 	}
1773 	return NULL;
1774 }
1775 
1776 /* sys_io_cancel:
1777  *	Attempts to cancel an iocb previously passed to io_submit.  If
1778  *	the operation is successfully cancelled, the resulting event is
1779  *	copied into the memory pointed to by result without being placed
1780  *	into the completion queue and 0 is returned.  May fail with
1781  *	-EFAULT if any of the data structures pointed to are invalid.
1782  *	May fail with -EINVAL if aio_context specified by ctx_id is
1783  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1784  *	cancelled.  Will fail with -ENOSYS if not implemented.
1785  */
1786 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1787 		struct io_event __user *, result)
1788 {
1789 	struct kioctx *ctx;
1790 	struct aio_kiocb *kiocb;
1791 	u32 key;
1792 	int ret;
1793 
1794 	ret = get_user(key, &iocb->aio_key);
1795 	if (unlikely(ret))
1796 		return -EFAULT;
1797 
1798 	ctx = lookup_ioctx(ctx_id);
1799 	if (unlikely(!ctx))
1800 		return -EINVAL;
1801 
1802 	spin_lock_irq(&ctx->ctx_lock);
1803 
1804 	kiocb = lookup_kiocb(ctx, iocb, key);
1805 	if (kiocb)
1806 		ret = kiocb_cancel(kiocb);
1807 	else
1808 		ret = -EINVAL;
1809 
1810 	spin_unlock_irq(&ctx->ctx_lock);
1811 
1812 	if (!ret) {
1813 		/*
1814 		 * The result argument is no longer used - the io_event is
1815 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1816 		 * cancellation is progress:
1817 		 */
1818 		ret = -EINPROGRESS;
1819 	}
1820 
1821 	percpu_ref_put(&ctx->users);
1822 
1823 	return ret;
1824 }
1825 
1826 static long do_io_getevents(aio_context_t ctx_id,
1827 		long min_nr,
1828 		long nr,
1829 		struct io_event __user *events,
1830 		struct timespec64 *ts)
1831 {
1832 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1833 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1834 	long ret = -EINVAL;
1835 
1836 	if (likely(ioctx)) {
1837 		if (likely(min_nr <= nr && min_nr >= 0))
1838 			ret = read_events(ioctx, min_nr, nr, events, until);
1839 		percpu_ref_put(&ioctx->users);
1840 	}
1841 
1842 	return ret;
1843 }
1844 
1845 /* io_getevents:
1846  *	Attempts to read at least min_nr events and up to nr events from
1847  *	the completion queue for the aio_context specified by ctx_id. If
1848  *	it succeeds, the number of read events is returned. May fail with
1849  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1850  *	out of range, if timeout is out of range.  May fail with -EFAULT
1851  *	if any of the memory specified is invalid.  May return 0 or
1852  *	< min_nr if the timeout specified by timeout has elapsed
1853  *	before sufficient events are available, where timeout == NULL
1854  *	specifies an infinite timeout. Note that the timeout pointed to by
1855  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1856  */
1857 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1858 		long, min_nr,
1859 		long, nr,
1860 		struct io_event __user *, events,
1861 		struct timespec __user *, timeout)
1862 {
1863 	struct timespec64	ts;
1864 
1865 	if (timeout) {
1866 		if (unlikely(get_timespec64(&ts, timeout)))
1867 			return -EFAULT;
1868 	}
1869 
1870 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1871 }
1872 
1873 #ifdef CONFIG_COMPAT
1874 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1875 		       compat_long_t, min_nr,
1876 		       compat_long_t, nr,
1877 		       struct io_event __user *, events,
1878 		       struct compat_timespec __user *, timeout)
1879 {
1880 	struct timespec64 t;
1881 
1882 	if (timeout) {
1883 		if (compat_get_timespec64(&t, timeout))
1884 			return -EFAULT;
1885 
1886 	}
1887 
1888 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1889 }
1890 #endif
1891