xref: /openbmc/linux/fs/aio.c (revision e0bf6c5c)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		unsigned	completed_events;
145 		spinlock_t	completion_lock;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct page		*internal_pages[AIO_RING_PAGES];
149 	struct file		*aio_ring_file;
150 
151 	unsigned		id;
152 };
153 
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr;		/* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
159 
160 static struct kmem_cache	*kiocb_cachep;
161 static struct kmem_cache	*kioctx_cachep;
162 
163 static struct vfsmount *aio_mnt;
164 
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
167 
168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169 {
170 	struct qstr this = QSTR_INIT("[aio]", 5);
171 	struct file *file;
172 	struct path path;
173 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174 	if (IS_ERR(inode))
175 		return ERR_CAST(inode);
176 
177 	inode->i_mapping->a_ops = &aio_ctx_aops;
178 	inode->i_mapping->private_data = ctx;
179 	inode->i_size = PAGE_SIZE * nr_pages;
180 
181 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 	if (!path.dentry) {
183 		iput(inode);
184 		return ERR_PTR(-ENOMEM);
185 	}
186 	path.mnt = mntget(aio_mnt);
187 
188 	d_instantiate(path.dentry, inode);
189 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 	if (IS_ERR(file)) {
191 		path_put(&path);
192 		return file;
193 	}
194 
195 	file->f_flags = O_RDWR;
196 	return file;
197 }
198 
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 				int flags, const char *dev_name, void *data)
201 {
202 	static const struct dentry_operations ops = {
203 		.d_dname	= simple_dname,
204 	};
205 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
206 }
207 
208 /* aio_setup
209  *	Creates the slab caches used by the aio routines, panic on
210  *	failure as this is done early during the boot sequence.
211  */
212 static int __init aio_setup(void)
213 {
214 	static struct file_system_type aio_fs = {
215 		.name		= "aio",
216 		.mount		= aio_mount,
217 		.kill_sb	= kill_anon_super,
218 	};
219 	aio_mnt = kern_mount(&aio_fs);
220 	if (IS_ERR(aio_mnt))
221 		panic("Failed to create aio fs mount.");
222 
223 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225 
226 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227 
228 	return 0;
229 }
230 __initcall(aio_setup);
231 
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 	struct file *aio_ring_file = ctx->aio_ring_file;
235 	if (aio_ring_file) {
236 		truncate_setsize(aio_ring_file->f_inode, 0);
237 
238 		/* Prevent further access to the kioctx from migratepages */
239 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 		ctx->aio_ring_file = NULL;
242 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243 
244 		fput(aio_ring_file);
245 	}
246 }
247 
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 	int i;
251 
252 	/* Disconnect the kiotx from the ring file.  This prevents future
253 	 * accesses to the kioctx from page migration.
254 	 */
255 	put_aio_ring_file(ctx);
256 
257 	for (i = 0; i < ctx->nr_pages; i++) {
258 		struct page *page;
259 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 				page_count(ctx->ring_pages[i]));
261 		page = ctx->ring_pages[i];
262 		if (!page)
263 			continue;
264 		ctx->ring_pages[i] = NULL;
265 		put_page(page);
266 	}
267 
268 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 		kfree(ctx->ring_pages);
270 		ctx->ring_pages = NULL;
271 	}
272 }
273 
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 	vma->vm_flags |= VM_DONTEXPAND;
277 	vma->vm_ops = &generic_file_vm_ops;
278 	return 0;
279 }
280 
281 static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
282 {
283 	struct mm_struct *mm = vma->vm_mm;
284 	struct kioctx_table *table;
285 	int i, res = -EINVAL;
286 
287 	spin_lock(&mm->ioctx_lock);
288 	rcu_read_lock();
289 	table = rcu_dereference(mm->ioctx_table);
290 	for (i = 0; i < table->nr; i++) {
291 		struct kioctx *ctx;
292 
293 		ctx = table->table[i];
294 		if (ctx && ctx->aio_ring_file == file) {
295 			if (!atomic_read(&ctx->dead)) {
296 				ctx->user_id = ctx->mmap_base = vma->vm_start;
297 				res = 0;
298 			}
299 			break;
300 		}
301 	}
302 
303 	rcu_read_unlock();
304 	spin_unlock(&mm->ioctx_lock);
305 	return res;
306 }
307 
308 static const struct file_operations aio_ring_fops = {
309 	.mmap = aio_ring_mmap,
310 	.mremap = aio_ring_remap,
311 };
312 
313 #if IS_ENABLED(CONFIG_MIGRATION)
314 static int aio_migratepage(struct address_space *mapping, struct page *new,
315 			struct page *old, enum migrate_mode mode)
316 {
317 	struct kioctx *ctx;
318 	unsigned long flags;
319 	pgoff_t idx;
320 	int rc;
321 
322 	rc = 0;
323 
324 	/* mapping->private_lock here protects against the kioctx teardown.  */
325 	spin_lock(&mapping->private_lock);
326 	ctx = mapping->private_data;
327 	if (!ctx) {
328 		rc = -EINVAL;
329 		goto out;
330 	}
331 
332 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
333 	 * to the ring's head, and prevents page migration from mucking in
334 	 * a partially initialized kiotx.
335 	 */
336 	if (!mutex_trylock(&ctx->ring_lock)) {
337 		rc = -EAGAIN;
338 		goto out;
339 	}
340 
341 	idx = old->index;
342 	if (idx < (pgoff_t)ctx->nr_pages) {
343 		/* Make sure the old page hasn't already been changed */
344 		if (ctx->ring_pages[idx] != old)
345 			rc = -EAGAIN;
346 	} else
347 		rc = -EINVAL;
348 
349 	if (rc != 0)
350 		goto out_unlock;
351 
352 	/* Writeback must be complete */
353 	BUG_ON(PageWriteback(old));
354 	get_page(new);
355 
356 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
357 	if (rc != MIGRATEPAGE_SUCCESS) {
358 		put_page(new);
359 		goto out_unlock;
360 	}
361 
362 	/* Take completion_lock to prevent other writes to the ring buffer
363 	 * while the old page is copied to the new.  This prevents new
364 	 * events from being lost.
365 	 */
366 	spin_lock_irqsave(&ctx->completion_lock, flags);
367 	migrate_page_copy(new, old);
368 	BUG_ON(ctx->ring_pages[idx] != old);
369 	ctx->ring_pages[idx] = new;
370 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
371 
372 	/* The old page is no longer accessible. */
373 	put_page(old);
374 
375 out_unlock:
376 	mutex_unlock(&ctx->ring_lock);
377 out:
378 	spin_unlock(&mapping->private_lock);
379 	return rc;
380 }
381 #endif
382 
383 static const struct address_space_operations aio_ctx_aops = {
384 	.set_page_dirty = __set_page_dirty_no_writeback,
385 #if IS_ENABLED(CONFIG_MIGRATION)
386 	.migratepage	= aio_migratepage,
387 #endif
388 };
389 
390 static int aio_setup_ring(struct kioctx *ctx)
391 {
392 	struct aio_ring *ring;
393 	unsigned nr_events = ctx->max_reqs;
394 	struct mm_struct *mm = current->mm;
395 	unsigned long size, unused;
396 	int nr_pages;
397 	int i;
398 	struct file *file;
399 
400 	/* Compensate for the ring buffer's head/tail overlap entry */
401 	nr_events += 2;	/* 1 is required, 2 for good luck */
402 
403 	size = sizeof(struct aio_ring);
404 	size += sizeof(struct io_event) * nr_events;
405 
406 	nr_pages = PFN_UP(size);
407 	if (nr_pages < 0)
408 		return -EINVAL;
409 
410 	file = aio_private_file(ctx, nr_pages);
411 	if (IS_ERR(file)) {
412 		ctx->aio_ring_file = NULL;
413 		return -ENOMEM;
414 	}
415 
416 	ctx->aio_ring_file = file;
417 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
418 			/ sizeof(struct io_event);
419 
420 	ctx->ring_pages = ctx->internal_pages;
421 	if (nr_pages > AIO_RING_PAGES) {
422 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
423 					  GFP_KERNEL);
424 		if (!ctx->ring_pages) {
425 			put_aio_ring_file(ctx);
426 			return -ENOMEM;
427 		}
428 	}
429 
430 	for (i = 0; i < nr_pages; i++) {
431 		struct page *page;
432 		page = find_or_create_page(file->f_inode->i_mapping,
433 					   i, GFP_HIGHUSER | __GFP_ZERO);
434 		if (!page)
435 			break;
436 		pr_debug("pid(%d) page[%d]->count=%d\n",
437 			 current->pid, i, page_count(page));
438 		SetPageUptodate(page);
439 		unlock_page(page);
440 
441 		ctx->ring_pages[i] = page;
442 	}
443 	ctx->nr_pages = i;
444 
445 	if (unlikely(i != nr_pages)) {
446 		aio_free_ring(ctx);
447 		return -ENOMEM;
448 	}
449 
450 	ctx->mmap_size = nr_pages * PAGE_SIZE;
451 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
452 
453 	down_write(&mm->mmap_sem);
454 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
455 				       PROT_READ | PROT_WRITE,
456 				       MAP_SHARED, 0, &unused);
457 	up_write(&mm->mmap_sem);
458 	if (IS_ERR((void *)ctx->mmap_base)) {
459 		ctx->mmap_size = 0;
460 		aio_free_ring(ctx);
461 		return -ENOMEM;
462 	}
463 
464 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
465 
466 	ctx->user_id = ctx->mmap_base;
467 	ctx->nr_events = nr_events; /* trusted copy */
468 
469 	ring = kmap_atomic(ctx->ring_pages[0]);
470 	ring->nr = nr_events;	/* user copy */
471 	ring->id = ~0U;
472 	ring->head = ring->tail = 0;
473 	ring->magic = AIO_RING_MAGIC;
474 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
475 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
476 	ring->header_length = sizeof(struct aio_ring);
477 	kunmap_atomic(ring);
478 	flush_dcache_page(ctx->ring_pages[0]);
479 
480 	return 0;
481 }
482 
483 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
484 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
485 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
486 
487 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
488 {
489 	struct kioctx *ctx = req->ki_ctx;
490 	unsigned long flags;
491 
492 	spin_lock_irqsave(&ctx->ctx_lock, flags);
493 
494 	if (!req->ki_list.next)
495 		list_add(&req->ki_list, &ctx->active_reqs);
496 
497 	req->ki_cancel = cancel;
498 
499 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
500 }
501 EXPORT_SYMBOL(kiocb_set_cancel_fn);
502 
503 static int kiocb_cancel(struct kiocb *kiocb)
504 {
505 	kiocb_cancel_fn *old, *cancel;
506 
507 	/*
508 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
509 	 * actually has a cancel function, hence the cmpxchg()
510 	 */
511 
512 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
513 	do {
514 		if (!cancel || cancel == KIOCB_CANCELLED)
515 			return -EINVAL;
516 
517 		old = cancel;
518 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
519 	} while (cancel != old);
520 
521 	return cancel(kiocb);
522 }
523 
524 static void free_ioctx(struct work_struct *work)
525 {
526 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
527 
528 	pr_debug("freeing %p\n", ctx);
529 
530 	aio_free_ring(ctx);
531 	free_percpu(ctx->cpu);
532 	percpu_ref_exit(&ctx->reqs);
533 	percpu_ref_exit(&ctx->users);
534 	kmem_cache_free(kioctx_cachep, ctx);
535 }
536 
537 static void free_ioctx_reqs(struct percpu_ref *ref)
538 {
539 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
540 
541 	/* At this point we know that there are no any in-flight requests */
542 	if (ctx->requests_done)
543 		complete(ctx->requests_done);
544 
545 	INIT_WORK(&ctx->free_work, free_ioctx);
546 	schedule_work(&ctx->free_work);
547 }
548 
549 /*
550  * When this function runs, the kioctx has been removed from the "hash table"
551  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
552  * now it's safe to cancel any that need to be.
553  */
554 static void free_ioctx_users(struct percpu_ref *ref)
555 {
556 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
557 	struct kiocb *req;
558 
559 	spin_lock_irq(&ctx->ctx_lock);
560 
561 	while (!list_empty(&ctx->active_reqs)) {
562 		req = list_first_entry(&ctx->active_reqs,
563 				       struct kiocb, ki_list);
564 
565 		list_del_init(&req->ki_list);
566 		kiocb_cancel(req);
567 	}
568 
569 	spin_unlock_irq(&ctx->ctx_lock);
570 
571 	percpu_ref_kill(&ctx->reqs);
572 	percpu_ref_put(&ctx->reqs);
573 }
574 
575 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
576 {
577 	unsigned i, new_nr;
578 	struct kioctx_table *table, *old;
579 	struct aio_ring *ring;
580 
581 	spin_lock(&mm->ioctx_lock);
582 	table = rcu_dereference_raw(mm->ioctx_table);
583 
584 	while (1) {
585 		if (table)
586 			for (i = 0; i < table->nr; i++)
587 				if (!table->table[i]) {
588 					ctx->id = i;
589 					table->table[i] = ctx;
590 					spin_unlock(&mm->ioctx_lock);
591 
592 					/* While kioctx setup is in progress,
593 					 * we are protected from page migration
594 					 * changes ring_pages by ->ring_lock.
595 					 */
596 					ring = kmap_atomic(ctx->ring_pages[0]);
597 					ring->id = ctx->id;
598 					kunmap_atomic(ring);
599 					return 0;
600 				}
601 
602 		new_nr = (table ? table->nr : 1) * 4;
603 		spin_unlock(&mm->ioctx_lock);
604 
605 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
606 				new_nr, GFP_KERNEL);
607 		if (!table)
608 			return -ENOMEM;
609 
610 		table->nr = new_nr;
611 
612 		spin_lock(&mm->ioctx_lock);
613 		old = rcu_dereference_raw(mm->ioctx_table);
614 
615 		if (!old) {
616 			rcu_assign_pointer(mm->ioctx_table, table);
617 		} else if (table->nr > old->nr) {
618 			memcpy(table->table, old->table,
619 			       old->nr * sizeof(struct kioctx *));
620 
621 			rcu_assign_pointer(mm->ioctx_table, table);
622 			kfree_rcu(old, rcu);
623 		} else {
624 			kfree(table);
625 			table = old;
626 		}
627 	}
628 }
629 
630 static void aio_nr_sub(unsigned nr)
631 {
632 	spin_lock(&aio_nr_lock);
633 	if (WARN_ON(aio_nr - nr > aio_nr))
634 		aio_nr = 0;
635 	else
636 		aio_nr -= nr;
637 	spin_unlock(&aio_nr_lock);
638 }
639 
640 /* ioctx_alloc
641  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
642  */
643 static struct kioctx *ioctx_alloc(unsigned nr_events)
644 {
645 	struct mm_struct *mm = current->mm;
646 	struct kioctx *ctx;
647 	int err = -ENOMEM;
648 
649 	/*
650 	 * We keep track of the number of available ringbuffer slots, to prevent
651 	 * overflow (reqs_available), and we also use percpu counters for this.
652 	 *
653 	 * So since up to half the slots might be on other cpu's percpu counters
654 	 * and unavailable, double nr_events so userspace sees what they
655 	 * expected: additionally, we move req_batch slots to/from percpu
656 	 * counters at a time, so make sure that isn't 0:
657 	 */
658 	nr_events = max(nr_events, num_possible_cpus() * 4);
659 	nr_events *= 2;
660 
661 	/* Prevent overflows */
662 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
663 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
664 		pr_debug("ENOMEM: nr_events too high\n");
665 		return ERR_PTR(-EINVAL);
666 	}
667 
668 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
669 		return ERR_PTR(-EAGAIN);
670 
671 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
672 	if (!ctx)
673 		return ERR_PTR(-ENOMEM);
674 
675 	ctx->max_reqs = nr_events;
676 
677 	spin_lock_init(&ctx->ctx_lock);
678 	spin_lock_init(&ctx->completion_lock);
679 	mutex_init(&ctx->ring_lock);
680 	/* Protect against page migration throughout kiotx setup by keeping
681 	 * the ring_lock mutex held until setup is complete. */
682 	mutex_lock(&ctx->ring_lock);
683 	init_waitqueue_head(&ctx->wait);
684 
685 	INIT_LIST_HEAD(&ctx->active_reqs);
686 
687 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
688 		goto err;
689 
690 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
691 		goto err;
692 
693 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
694 	if (!ctx->cpu)
695 		goto err;
696 
697 	err = aio_setup_ring(ctx);
698 	if (err < 0)
699 		goto err;
700 
701 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
702 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
703 	if (ctx->req_batch < 1)
704 		ctx->req_batch = 1;
705 
706 	/* limit the number of system wide aios */
707 	spin_lock(&aio_nr_lock);
708 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
709 	    aio_nr + nr_events < aio_nr) {
710 		spin_unlock(&aio_nr_lock);
711 		err = -EAGAIN;
712 		goto err_ctx;
713 	}
714 	aio_nr += ctx->max_reqs;
715 	spin_unlock(&aio_nr_lock);
716 
717 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
718 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
719 
720 	err = ioctx_add_table(ctx, mm);
721 	if (err)
722 		goto err_cleanup;
723 
724 	/* Release the ring_lock mutex now that all setup is complete. */
725 	mutex_unlock(&ctx->ring_lock);
726 
727 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
728 		 ctx, ctx->user_id, mm, ctx->nr_events);
729 	return ctx;
730 
731 err_cleanup:
732 	aio_nr_sub(ctx->max_reqs);
733 err_ctx:
734 	atomic_set(&ctx->dead, 1);
735 	if (ctx->mmap_size)
736 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
737 	aio_free_ring(ctx);
738 err:
739 	mutex_unlock(&ctx->ring_lock);
740 	free_percpu(ctx->cpu);
741 	percpu_ref_exit(&ctx->reqs);
742 	percpu_ref_exit(&ctx->users);
743 	kmem_cache_free(kioctx_cachep, ctx);
744 	pr_debug("error allocating ioctx %d\n", err);
745 	return ERR_PTR(err);
746 }
747 
748 /* kill_ioctx
749  *	Cancels all outstanding aio requests on an aio context.  Used
750  *	when the processes owning a context have all exited to encourage
751  *	the rapid destruction of the kioctx.
752  */
753 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
754 		struct completion *requests_done)
755 {
756 	struct kioctx_table *table;
757 
758 	spin_lock(&mm->ioctx_lock);
759 	if (atomic_xchg(&ctx->dead, 1)) {
760 		spin_unlock(&mm->ioctx_lock);
761 		return -EINVAL;
762 	}
763 
764 	table = rcu_dereference_raw(mm->ioctx_table);
765 	WARN_ON(ctx != table->table[ctx->id]);
766 	table->table[ctx->id] = NULL;
767 	spin_unlock(&mm->ioctx_lock);
768 
769 	/* percpu_ref_kill() will do the necessary call_rcu() */
770 	wake_up_all(&ctx->wait);
771 
772 	/*
773 	 * It'd be more correct to do this in free_ioctx(), after all
774 	 * the outstanding kiocbs have finished - but by then io_destroy
775 	 * has already returned, so io_setup() could potentially return
776 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
777 	 *  could tell).
778 	 */
779 	aio_nr_sub(ctx->max_reqs);
780 
781 	if (ctx->mmap_size)
782 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
783 
784 	ctx->requests_done = requests_done;
785 	percpu_ref_kill(&ctx->users);
786 	return 0;
787 }
788 
789 /* wait_on_sync_kiocb:
790  *	Waits on the given sync kiocb to complete.
791  */
792 ssize_t wait_on_sync_kiocb(struct kiocb *req)
793 {
794 	while (!req->ki_ctx) {
795 		set_current_state(TASK_UNINTERRUPTIBLE);
796 		if (req->ki_ctx)
797 			break;
798 		io_schedule();
799 	}
800 	__set_current_state(TASK_RUNNING);
801 	return req->ki_user_data;
802 }
803 EXPORT_SYMBOL(wait_on_sync_kiocb);
804 
805 /*
806  * exit_aio: called when the last user of mm goes away.  At this point, there is
807  * no way for any new requests to be submited or any of the io_* syscalls to be
808  * called on the context.
809  *
810  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
811  * them.
812  */
813 void exit_aio(struct mm_struct *mm)
814 {
815 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
816 	int i;
817 
818 	if (!table)
819 		return;
820 
821 	for (i = 0; i < table->nr; ++i) {
822 		struct kioctx *ctx = table->table[i];
823 		struct completion requests_done =
824 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
825 
826 		if (!ctx)
827 			continue;
828 		/*
829 		 * We don't need to bother with munmap() here - exit_mmap(mm)
830 		 * is coming and it'll unmap everything. And we simply can't,
831 		 * this is not necessarily our ->mm.
832 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
833 		 * that it needs to unmap the area, just set it to 0.
834 		 */
835 		ctx->mmap_size = 0;
836 		kill_ioctx(mm, ctx, &requests_done);
837 
838 		/* Wait until all IO for the context are done. */
839 		wait_for_completion(&requests_done);
840 	}
841 
842 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
843 	kfree(table);
844 }
845 
846 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
847 {
848 	struct kioctx_cpu *kcpu;
849 	unsigned long flags;
850 
851 	local_irq_save(flags);
852 	kcpu = this_cpu_ptr(ctx->cpu);
853 	kcpu->reqs_available += nr;
854 
855 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
856 		kcpu->reqs_available -= ctx->req_batch;
857 		atomic_add(ctx->req_batch, &ctx->reqs_available);
858 	}
859 
860 	local_irq_restore(flags);
861 }
862 
863 static bool get_reqs_available(struct kioctx *ctx)
864 {
865 	struct kioctx_cpu *kcpu;
866 	bool ret = false;
867 	unsigned long flags;
868 
869 	local_irq_save(flags);
870 	kcpu = this_cpu_ptr(ctx->cpu);
871 	if (!kcpu->reqs_available) {
872 		int old, avail = atomic_read(&ctx->reqs_available);
873 
874 		do {
875 			if (avail < ctx->req_batch)
876 				goto out;
877 
878 			old = avail;
879 			avail = atomic_cmpxchg(&ctx->reqs_available,
880 					       avail, avail - ctx->req_batch);
881 		} while (avail != old);
882 
883 		kcpu->reqs_available += ctx->req_batch;
884 	}
885 
886 	ret = true;
887 	kcpu->reqs_available--;
888 out:
889 	local_irq_restore(flags);
890 	return ret;
891 }
892 
893 /* refill_reqs_available
894  *	Updates the reqs_available reference counts used for tracking the
895  *	number of free slots in the completion ring.  This can be called
896  *	from aio_complete() (to optimistically update reqs_available) or
897  *	from aio_get_req() (the we're out of events case).  It must be
898  *	called holding ctx->completion_lock.
899  */
900 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
901                                   unsigned tail)
902 {
903 	unsigned events_in_ring, completed;
904 
905 	/* Clamp head since userland can write to it. */
906 	head %= ctx->nr_events;
907 	if (head <= tail)
908 		events_in_ring = tail - head;
909 	else
910 		events_in_ring = ctx->nr_events - (head - tail);
911 
912 	completed = ctx->completed_events;
913 	if (events_in_ring < completed)
914 		completed -= events_in_ring;
915 	else
916 		completed = 0;
917 
918 	if (!completed)
919 		return;
920 
921 	ctx->completed_events -= completed;
922 	put_reqs_available(ctx, completed);
923 }
924 
925 /* user_refill_reqs_available
926  *	Called to refill reqs_available when aio_get_req() encounters an
927  *	out of space in the completion ring.
928  */
929 static void user_refill_reqs_available(struct kioctx *ctx)
930 {
931 	spin_lock_irq(&ctx->completion_lock);
932 	if (ctx->completed_events) {
933 		struct aio_ring *ring;
934 		unsigned head;
935 
936 		/* Access of ring->head may race with aio_read_events_ring()
937 		 * here, but that's okay since whether we read the old version
938 		 * or the new version, and either will be valid.  The important
939 		 * part is that head cannot pass tail since we prevent
940 		 * aio_complete() from updating tail by holding
941 		 * ctx->completion_lock.  Even if head is invalid, the check
942 		 * against ctx->completed_events below will make sure we do the
943 		 * safe/right thing.
944 		 */
945 		ring = kmap_atomic(ctx->ring_pages[0]);
946 		head = ring->head;
947 		kunmap_atomic(ring);
948 
949 		refill_reqs_available(ctx, head, ctx->tail);
950 	}
951 
952 	spin_unlock_irq(&ctx->completion_lock);
953 }
954 
955 /* aio_get_req
956  *	Allocate a slot for an aio request.
957  * Returns NULL if no requests are free.
958  */
959 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
960 {
961 	struct kiocb *req;
962 
963 	if (!get_reqs_available(ctx)) {
964 		user_refill_reqs_available(ctx);
965 		if (!get_reqs_available(ctx))
966 			return NULL;
967 	}
968 
969 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
970 	if (unlikely(!req))
971 		goto out_put;
972 
973 	percpu_ref_get(&ctx->reqs);
974 
975 	req->ki_ctx = ctx;
976 	return req;
977 out_put:
978 	put_reqs_available(ctx, 1);
979 	return NULL;
980 }
981 
982 static void kiocb_free(struct kiocb *req)
983 {
984 	if (req->ki_filp)
985 		fput(req->ki_filp);
986 	if (req->ki_eventfd != NULL)
987 		eventfd_ctx_put(req->ki_eventfd);
988 	kmem_cache_free(kiocb_cachep, req);
989 }
990 
991 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
992 {
993 	struct aio_ring __user *ring  = (void __user *)ctx_id;
994 	struct mm_struct *mm = current->mm;
995 	struct kioctx *ctx, *ret = NULL;
996 	struct kioctx_table *table;
997 	unsigned id;
998 
999 	if (get_user(id, &ring->id))
1000 		return NULL;
1001 
1002 	rcu_read_lock();
1003 	table = rcu_dereference(mm->ioctx_table);
1004 
1005 	if (!table || id >= table->nr)
1006 		goto out;
1007 
1008 	ctx = table->table[id];
1009 	if (ctx && ctx->user_id == ctx_id) {
1010 		percpu_ref_get(&ctx->users);
1011 		ret = ctx;
1012 	}
1013 out:
1014 	rcu_read_unlock();
1015 	return ret;
1016 }
1017 
1018 /* aio_complete
1019  *	Called when the io request on the given iocb is complete.
1020  */
1021 void aio_complete(struct kiocb *iocb, long res, long res2)
1022 {
1023 	struct kioctx	*ctx = iocb->ki_ctx;
1024 	struct aio_ring	*ring;
1025 	struct io_event	*ev_page, *event;
1026 	unsigned tail, pos, head;
1027 	unsigned long	flags;
1028 
1029 	/*
1030 	 * Special case handling for sync iocbs:
1031 	 *  - events go directly into the iocb for fast handling
1032 	 *  - the sync task with the iocb in its stack holds the single iocb
1033 	 *    ref, no other paths have a way to get another ref
1034 	 *  - the sync task helpfully left a reference to itself in the iocb
1035 	 */
1036 	if (is_sync_kiocb(iocb)) {
1037 		iocb->ki_user_data = res;
1038 		smp_wmb();
1039 		iocb->ki_ctx = ERR_PTR(-EXDEV);
1040 		wake_up_process(iocb->ki_obj.tsk);
1041 		return;
1042 	}
1043 
1044 	if (iocb->ki_list.next) {
1045 		unsigned long flags;
1046 
1047 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1048 		list_del(&iocb->ki_list);
1049 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1050 	}
1051 
1052 	/*
1053 	 * Add a completion event to the ring buffer. Must be done holding
1054 	 * ctx->completion_lock to prevent other code from messing with the tail
1055 	 * pointer since we might be called from irq context.
1056 	 */
1057 	spin_lock_irqsave(&ctx->completion_lock, flags);
1058 
1059 	tail = ctx->tail;
1060 	pos = tail + AIO_EVENTS_OFFSET;
1061 
1062 	if (++tail >= ctx->nr_events)
1063 		tail = 0;
1064 
1065 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1066 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1067 
1068 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1069 	event->data = iocb->ki_user_data;
1070 	event->res = res;
1071 	event->res2 = res2;
1072 
1073 	kunmap_atomic(ev_page);
1074 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1075 
1076 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1077 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1078 		 res, res2);
1079 
1080 	/* after flagging the request as done, we
1081 	 * must never even look at it again
1082 	 */
1083 	smp_wmb();	/* make event visible before updating tail */
1084 
1085 	ctx->tail = tail;
1086 
1087 	ring = kmap_atomic(ctx->ring_pages[0]);
1088 	head = ring->head;
1089 	ring->tail = tail;
1090 	kunmap_atomic(ring);
1091 	flush_dcache_page(ctx->ring_pages[0]);
1092 
1093 	ctx->completed_events++;
1094 	if (ctx->completed_events > 1)
1095 		refill_reqs_available(ctx, head, tail);
1096 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1097 
1098 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1099 
1100 	/*
1101 	 * Check if the user asked us to deliver the result through an
1102 	 * eventfd. The eventfd_signal() function is safe to be called
1103 	 * from IRQ context.
1104 	 */
1105 	if (iocb->ki_eventfd != NULL)
1106 		eventfd_signal(iocb->ki_eventfd, 1);
1107 
1108 	/* everything turned out well, dispose of the aiocb. */
1109 	kiocb_free(iocb);
1110 
1111 	/*
1112 	 * We have to order our ring_info tail store above and test
1113 	 * of the wait list below outside the wait lock.  This is
1114 	 * like in wake_up_bit() where clearing a bit has to be
1115 	 * ordered with the unlocked test.
1116 	 */
1117 	smp_mb();
1118 
1119 	if (waitqueue_active(&ctx->wait))
1120 		wake_up(&ctx->wait);
1121 
1122 	percpu_ref_put(&ctx->reqs);
1123 }
1124 EXPORT_SYMBOL(aio_complete);
1125 
1126 /* aio_read_events_ring
1127  *	Pull an event off of the ioctx's event ring.  Returns the number of
1128  *	events fetched
1129  */
1130 static long aio_read_events_ring(struct kioctx *ctx,
1131 				 struct io_event __user *event, long nr)
1132 {
1133 	struct aio_ring *ring;
1134 	unsigned head, tail, pos;
1135 	long ret = 0;
1136 	int copy_ret;
1137 
1138 	/*
1139 	 * The mutex can block and wake us up and that will cause
1140 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1141 	 * and repeat. This should be rare enough that it doesn't cause
1142 	 * peformance issues. See the comment in read_events() for more detail.
1143 	 */
1144 	sched_annotate_sleep();
1145 	mutex_lock(&ctx->ring_lock);
1146 
1147 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1148 	ring = kmap_atomic(ctx->ring_pages[0]);
1149 	head = ring->head;
1150 	tail = ring->tail;
1151 	kunmap_atomic(ring);
1152 
1153 	/*
1154 	 * Ensure that once we've read the current tail pointer, that
1155 	 * we also see the events that were stored up to the tail.
1156 	 */
1157 	smp_rmb();
1158 
1159 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1160 
1161 	if (head == tail)
1162 		goto out;
1163 
1164 	head %= ctx->nr_events;
1165 	tail %= ctx->nr_events;
1166 
1167 	while (ret < nr) {
1168 		long avail;
1169 		struct io_event *ev;
1170 		struct page *page;
1171 
1172 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1173 		if (head == tail)
1174 			break;
1175 
1176 		avail = min(avail, nr - ret);
1177 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1178 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1179 
1180 		pos = head + AIO_EVENTS_OFFSET;
1181 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1182 		pos %= AIO_EVENTS_PER_PAGE;
1183 
1184 		ev = kmap(page);
1185 		copy_ret = copy_to_user(event + ret, ev + pos,
1186 					sizeof(*ev) * avail);
1187 		kunmap(page);
1188 
1189 		if (unlikely(copy_ret)) {
1190 			ret = -EFAULT;
1191 			goto out;
1192 		}
1193 
1194 		ret += avail;
1195 		head += avail;
1196 		head %= ctx->nr_events;
1197 	}
1198 
1199 	ring = kmap_atomic(ctx->ring_pages[0]);
1200 	ring->head = head;
1201 	kunmap_atomic(ring);
1202 	flush_dcache_page(ctx->ring_pages[0]);
1203 
1204 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1205 out:
1206 	mutex_unlock(&ctx->ring_lock);
1207 
1208 	return ret;
1209 }
1210 
1211 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1212 			    struct io_event __user *event, long *i)
1213 {
1214 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1215 
1216 	if (ret > 0)
1217 		*i += ret;
1218 
1219 	if (unlikely(atomic_read(&ctx->dead)))
1220 		ret = -EINVAL;
1221 
1222 	if (!*i)
1223 		*i = ret;
1224 
1225 	return ret < 0 || *i >= min_nr;
1226 }
1227 
1228 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1229 			struct io_event __user *event,
1230 			struct timespec __user *timeout)
1231 {
1232 	ktime_t until = { .tv64 = KTIME_MAX };
1233 	long ret = 0;
1234 
1235 	if (timeout) {
1236 		struct timespec	ts;
1237 
1238 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1239 			return -EFAULT;
1240 
1241 		until = timespec_to_ktime(ts);
1242 	}
1243 
1244 	/*
1245 	 * Note that aio_read_events() is being called as the conditional - i.e.
1246 	 * we're calling it after prepare_to_wait() has set task state to
1247 	 * TASK_INTERRUPTIBLE.
1248 	 *
1249 	 * But aio_read_events() can block, and if it blocks it's going to flip
1250 	 * the task state back to TASK_RUNNING.
1251 	 *
1252 	 * This should be ok, provided it doesn't flip the state back to
1253 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 	 * will only happen if the mutex_lock() call blocks, and we then find
1255 	 * the ringbuffer empty. So in practice we should be ok, but it's
1256 	 * something to be aware of when touching this code.
1257 	 */
1258 	if (until.tv64 == 0)
1259 		aio_read_events(ctx, min_nr, nr, event, &ret);
1260 	else
1261 		wait_event_interruptible_hrtimeout(ctx->wait,
1262 				aio_read_events(ctx, min_nr, nr, event, &ret),
1263 				until);
1264 
1265 	if (!ret && signal_pending(current))
1266 		ret = -EINTR;
1267 
1268 	return ret;
1269 }
1270 
1271 /* sys_io_setup:
1272  *	Create an aio_context capable of receiving at least nr_events.
1273  *	ctxp must not point to an aio_context that already exists, and
1274  *	must be initialized to 0 prior to the call.  On successful
1275  *	creation of the aio_context, *ctxp is filled in with the resulting
1276  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1277  *	if the specified nr_events exceeds internal limits.  May fail
1278  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1279  *	of available events.  May fail with -ENOMEM if insufficient kernel
1280  *	resources are available.  May fail with -EFAULT if an invalid
1281  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1282  *	implemented.
1283  */
1284 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1285 {
1286 	struct kioctx *ioctx = NULL;
1287 	unsigned long ctx;
1288 	long ret;
1289 
1290 	ret = get_user(ctx, ctxp);
1291 	if (unlikely(ret))
1292 		goto out;
1293 
1294 	ret = -EINVAL;
1295 	if (unlikely(ctx || nr_events == 0)) {
1296 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1297 		         ctx, nr_events);
1298 		goto out;
1299 	}
1300 
1301 	ioctx = ioctx_alloc(nr_events);
1302 	ret = PTR_ERR(ioctx);
1303 	if (!IS_ERR(ioctx)) {
1304 		ret = put_user(ioctx->user_id, ctxp);
1305 		if (ret)
1306 			kill_ioctx(current->mm, ioctx, NULL);
1307 		percpu_ref_put(&ioctx->users);
1308 	}
1309 
1310 out:
1311 	return ret;
1312 }
1313 
1314 /* sys_io_destroy:
1315  *	Destroy the aio_context specified.  May cancel any outstanding
1316  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1317  *	implemented.  May fail with -EINVAL if the context pointed to
1318  *	is invalid.
1319  */
1320 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1321 {
1322 	struct kioctx *ioctx = lookup_ioctx(ctx);
1323 	if (likely(NULL != ioctx)) {
1324 		struct completion requests_done =
1325 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1326 		int ret;
1327 
1328 		/* Pass requests_done to kill_ioctx() where it can be set
1329 		 * in a thread-safe way. If we try to set it here then we have
1330 		 * a race condition if two io_destroy() called simultaneously.
1331 		 */
1332 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1333 		percpu_ref_put(&ioctx->users);
1334 
1335 		/* Wait until all IO for the context are done. Otherwise kernel
1336 		 * keep using user-space buffers even if user thinks the context
1337 		 * is destroyed.
1338 		 */
1339 		if (!ret)
1340 			wait_for_completion(&requests_done);
1341 
1342 		return ret;
1343 	}
1344 	pr_debug("EINVAL: invalid context id\n");
1345 	return -EINVAL;
1346 }
1347 
1348 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1349 			    unsigned long, loff_t);
1350 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1351 
1352 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1353 				     int rw, char __user *buf,
1354 				     unsigned long *nr_segs,
1355 				     struct iovec **iovec,
1356 				     bool compat)
1357 {
1358 	ssize_t ret;
1359 
1360 	*nr_segs = kiocb->ki_nbytes;
1361 
1362 #ifdef CONFIG_COMPAT
1363 	if (compat)
1364 		ret = compat_rw_copy_check_uvector(rw,
1365 				(struct compat_iovec __user *)buf,
1366 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1367 	else
1368 #endif
1369 		ret = rw_copy_check_uvector(rw,
1370 				(struct iovec __user *)buf,
1371 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	/* ki_nbytes now reflect bytes instead of segs */
1376 	kiocb->ki_nbytes = ret;
1377 	return 0;
1378 }
1379 
1380 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1381 				       int rw, char __user *buf,
1382 				       unsigned long *nr_segs,
1383 				       struct iovec *iovec)
1384 {
1385 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1386 		return -EFAULT;
1387 
1388 	iovec->iov_base = buf;
1389 	iovec->iov_len = kiocb->ki_nbytes;
1390 	*nr_segs = 1;
1391 	return 0;
1392 }
1393 
1394 /*
1395  * aio_run_iocb:
1396  *	Performs the initial checks and io submission.
1397  */
1398 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1399 			    char __user *buf, bool compat)
1400 {
1401 	struct file *file = req->ki_filp;
1402 	ssize_t ret;
1403 	unsigned long nr_segs;
1404 	int rw;
1405 	fmode_t mode;
1406 	aio_rw_op *rw_op;
1407 	rw_iter_op *iter_op;
1408 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1409 	struct iov_iter iter;
1410 
1411 	switch (opcode) {
1412 	case IOCB_CMD_PREAD:
1413 	case IOCB_CMD_PREADV:
1414 		mode	= FMODE_READ;
1415 		rw	= READ;
1416 		rw_op	= file->f_op->aio_read;
1417 		iter_op	= file->f_op->read_iter;
1418 		goto rw_common;
1419 
1420 	case IOCB_CMD_PWRITE:
1421 	case IOCB_CMD_PWRITEV:
1422 		mode	= FMODE_WRITE;
1423 		rw	= WRITE;
1424 		rw_op	= file->f_op->aio_write;
1425 		iter_op	= file->f_op->write_iter;
1426 		goto rw_common;
1427 rw_common:
1428 		if (unlikely(!(file->f_mode & mode)))
1429 			return -EBADF;
1430 
1431 		if (!rw_op && !iter_op)
1432 			return -EINVAL;
1433 
1434 		ret = (opcode == IOCB_CMD_PREADV ||
1435 		       opcode == IOCB_CMD_PWRITEV)
1436 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1437 						&iovec, compat)
1438 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1439 						  iovec);
1440 		if (!ret)
1441 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1442 		if (ret < 0) {
1443 			if (iovec != inline_vecs)
1444 				kfree(iovec);
1445 			return ret;
1446 		}
1447 
1448 		req->ki_nbytes = ret;
1449 
1450 		/* XXX: move/kill - rw_verify_area()? */
1451 		/* This matches the pread()/pwrite() logic */
1452 		if (req->ki_pos < 0) {
1453 			ret = -EINVAL;
1454 			break;
1455 		}
1456 
1457 		if (rw == WRITE)
1458 			file_start_write(file);
1459 
1460 		if (iter_op) {
1461 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1462 			ret = iter_op(req, &iter);
1463 		} else {
1464 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1465 		}
1466 
1467 		if (rw == WRITE)
1468 			file_end_write(file);
1469 		break;
1470 
1471 	case IOCB_CMD_FDSYNC:
1472 		if (!file->f_op->aio_fsync)
1473 			return -EINVAL;
1474 
1475 		ret = file->f_op->aio_fsync(req, 1);
1476 		break;
1477 
1478 	case IOCB_CMD_FSYNC:
1479 		if (!file->f_op->aio_fsync)
1480 			return -EINVAL;
1481 
1482 		ret = file->f_op->aio_fsync(req, 0);
1483 		break;
1484 
1485 	default:
1486 		pr_debug("EINVAL: no operation provided\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	if (iovec != inline_vecs)
1491 		kfree(iovec);
1492 
1493 	if (ret != -EIOCBQUEUED) {
1494 		/*
1495 		 * There's no easy way to restart the syscall since other AIO's
1496 		 * may be already running. Just fail this IO with EINTR.
1497 		 */
1498 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1499 			     ret == -ERESTARTNOHAND ||
1500 			     ret == -ERESTART_RESTARTBLOCK))
1501 			ret = -EINTR;
1502 		aio_complete(req, ret, 0);
1503 	}
1504 
1505 	return 0;
1506 }
1507 
1508 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1509 			 struct iocb *iocb, bool compat)
1510 {
1511 	struct kiocb *req;
1512 	ssize_t ret;
1513 
1514 	/* enforce forwards compatibility on users */
1515 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1516 		pr_debug("EINVAL: reserve field set\n");
1517 		return -EINVAL;
1518 	}
1519 
1520 	/* prevent overflows */
1521 	if (unlikely(
1522 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1523 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1524 	    ((ssize_t)iocb->aio_nbytes < 0)
1525 	   )) {
1526 		pr_debug("EINVAL: overflow check\n");
1527 		return -EINVAL;
1528 	}
1529 
1530 	req = aio_get_req(ctx);
1531 	if (unlikely(!req))
1532 		return -EAGAIN;
1533 
1534 	req->ki_filp = fget(iocb->aio_fildes);
1535 	if (unlikely(!req->ki_filp)) {
1536 		ret = -EBADF;
1537 		goto out_put_req;
1538 	}
1539 
1540 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1541 		/*
1542 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1543 		 * instance of the file* now. The file descriptor must be
1544 		 * an eventfd() fd, and will be signaled for each completed
1545 		 * event using the eventfd_signal() function.
1546 		 */
1547 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1548 		if (IS_ERR(req->ki_eventfd)) {
1549 			ret = PTR_ERR(req->ki_eventfd);
1550 			req->ki_eventfd = NULL;
1551 			goto out_put_req;
1552 		}
1553 	}
1554 
1555 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1556 	if (unlikely(ret)) {
1557 		pr_debug("EFAULT: aio_key\n");
1558 		goto out_put_req;
1559 	}
1560 
1561 	req->ki_obj.user = user_iocb;
1562 	req->ki_user_data = iocb->aio_data;
1563 	req->ki_pos = iocb->aio_offset;
1564 	req->ki_nbytes = iocb->aio_nbytes;
1565 
1566 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1567 			   (char __user *)(unsigned long)iocb->aio_buf,
1568 			   compat);
1569 	if (ret)
1570 		goto out_put_req;
1571 
1572 	return 0;
1573 out_put_req:
1574 	put_reqs_available(ctx, 1);
1575 	percpu_ref_put(&ctx->reqs);
1576 	kiocb_free(req);
1577 	return ret;
1578 }
1579 
1580 long do_io_submit(aio_context_t ctx_id, long nr,
1581 		  struct iocb __user *__user *iocbpp, bool compat)
1582 {
1583 	struct kioctx *ctx;
1584 	long ret = 0;
1585 	int i = 0;
1586 	struct blk_plug plug;
1587 
1588 	if (unlikely(nr < 0))
1589 		return -EINVAL;
1590 
1591 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592 		nr = LONG_MAX/sizeof(*iocbpp);
1593 
1594 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595 		return -EFAULT;
1596 
1597 	ctx = lookup_ioctx(ctx_id);
1598 	if (unlikely(!ctx)) {
1599 		pr_debug("EINVAL: invalid context id\n");
1600 		return -EINVAL;
1601 	}
1602 
1603 	blk_start_plug(&plug);
1604 
1605 	/*
1606 	 * AKPM: should this return a partial result if some of the IOs were
1607 	 * successfully submitted?
1608 	 */
1609 	for (i=0; i<nr; i++) {
1610 		struct iocb __user *user_iocb;
1611 		struct iocb tmp;
1612 
1613 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614 			ret = -EFAULT;
1615 			break;
1616 		}
1617 
1618 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619 			ret = -EFAULT;
1620 			break;
1621 		}
1622 
1623 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1624 		if (ret)
1625 			break;
1626 	}
1627 	blk_finish_plug(&plug);
1628 
1629 	percpu_ref_put(&ctx->users);
1630 	return i ? i : ret;
1631 }
1632 
1633 /* sys_io_submit:
1634  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1635  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1636  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637  *	*iocbpp[0] is not properly initialized, if the operation specified
1638  *	is invalid for the file descriptor in the iocb.  May fail with
1639  *	-EFAULT if any of the data structures point to invalid data.  May
1640  *	fail with -EBADF if the file descriptor specified in the first
1641  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1642  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1643  *	fail with -ENOSYS if not implemented.
1644  */
1645 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646 		struct iocb __user * __user *, iocbpp)
1647 {
1648 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1649 }
1650 
1651 /* lookup_kiocb
1652  *	Finds a given iocb for cancellation.
1653  */
1654 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1655 				  u32 key)
1656 {
1657 	struct list_head *pos;
1658 
1659 	assert_spin_locked(&ctx->ctx_lock);
1660 
1661 	if (key != KIOCB_KEY)
1662 		return NULL;
1663 
1664 	/* TODO: use a hash or array, this sucks. */
1665 	list_for_each(pos, &ctx->active_reqs) {
1666 		struct kiocb *kiocb = list_kiocb(pos);
1667 		if (kiocb->ki_obj.user == iocb)
1668 			return kiocb;
1669 	}
1670 	return NULL;
1671 }
1672 
1673 /* sys_io_cancel:
1674  *	Attempts to cancel an iocb previously passed to io_submit.  If
1675  *	the operation is successfully cancelled, the resulting event is
1676  *	copied into the memory pointed to by result without being placed
1677  *	into the completion queue and 0 is returned.  May fail with
1678  *	-EFAULT if any of the data structures pointed to are invalid.
1679  *	May fail with -EINVAL if aio_context specified by ctx_id is
1680  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1681  *	cancelled.  Will fail with -ENOSYS if not implemented.
1682  */
1683 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1684 		struct io_event __user *, result)
1685 {
1686 	struct kioctx *ctx;
1687 	struct kiocb *kiocb;
1688 	u32 key;
1689 	int ret;
1690 
1691 	ret = get_user(key, &iocb->aio_key);
1692 	if (unlikely(ret))
1693 		return -EFAULT;
1694 
1695 	ctx = lookup_ioctx(ctx_id);
1696 	if (unlikely(!ctx))
1697 		return -EINVAL;
1698 
1699 	spin_lock_irq(&ctx->ctx_lock);
1700 
1701 	kiocb = lookup_kiocb(ctx, iocb, key);
1702 	if (kiocb)
1703 		ret = kiocb_cancel(kiocb);
1704 	else
1705 		ret = -EINVAL;
1706 
1707 	spin_unlock_irq(&ctx->ctx_lock);
1708 
1709 	if (!ret) {
1710 		/*
1711 		 * The result argument is no longer used - the io_event is
1712 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1713 		 * cancellation is progress:
1714 		 */
1715 		ret = -EINPROGRESS;
1716 	}
1717 
1718 	percpu_ref_put(&ctx->users);
1719 
1720 	return ret;
1721 }
1722 
1723 /* io_getevents:
1724  *	Attempts to read at least min_nr events and up to nr events from
1725  *	the completion queue for the aio_context specified by ctx_id. If
1726  *	it succeeds, the number of read events is returned. May fail with
1727  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1728  *	out of range, if timeout is out of range.  May fail with -EFAULT
1729  *	if any of the memory specified is invalid.  May return 0 or
1730  *	< min_nr if the timeout specified by timeout has elapsed
1731  *	before sufficient events are available, where timeout == NULL
1732  *	specifies an infinite timeout. Note that the timeout pointed to by
1733  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1734  */
1735 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1736 		long, min_nr,
1737 		long, nr,
1738 		struct io_event __user *, events,
1739 		struct timespec __user *, timeout)
1740 {
1741 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1742 	long ret = -EINVAL;
1743 
1744 	if (likely(ioctx)) {
1745 		if (likely(min_nr <= nr && min_nr >= 0))
1746 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1747 		percpu_ref_put(&ioctx->users);
1748 	}
1749 	return ret;
1750 }
1751