xref: /openbmc/linux/fs/aio.c (revision d623f60d)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define KIOCB_KEY		0
50 
51 #define AIO_RING_MAGIC			0xa10a10a1
52 #define AIO_RING_COMPAT_FEATURES	1
53 #define AIO_RING_INCOMPAT_FEATURES	0
54 struct aio_ring {
55 	unsigned	id;	/* kernel internal index number */
56 	unsigned	nr;	/* number of io_events */
57 	unsigned	head;	/* Written to by userland or under ring_lock
58 				 * mutex by aio_read_events_ring(). */
59 	unsigned	tail;
60 
61 	unsigned	magic;
62 	unsigned	compat_features;
63 	unsigned	incompat_features;
64 	unsigned	header_length;	/* size of aio_ring */
65 
66 
67 	struct io_event		io_events[0];
68 }; /* 128 bytes + ring size */
69 
70 #define AIO_RING_PAGES	8
71 
72 struct kioctx_table {
73 	struct rcu_head		rcu;
74 	unsigned		nr;
75 	struct kioctx __rcu	*table[];
76 };
77 
78 struct kioctx_cpu {
79 	unsigned		reqs_available;
80 };
81 
82 struct ctx_rq_wait {
83 	struct completion comp;
84 	atomic_t count;
85 };
86 
87 struct kioctx {
88 	struct percpu_ref	users;
89 	atomic_t		dead;
90 
91 	struct percpu_ref	reqs;
92 
93 	unsigned long		user_id;
94 
95 	struct __percpu kioctx_cpu *cpu;
96 
97 	/*
98 	 * For percpu reqs_available, number of slots we move to/from global
99 	 * counter at a time:
100 	 */
101 	unsigned		req_batch;
102 	/*
103 	 * This is what userspace passed to io_setup(), it's not used for
104 	 * anything but counting against the global max_reqs quota.
105 	 *
106 	 * The real limit is nr_events - 1, which will be larger (see
107 	 * aio_setup_ring())
108 	 */
109 	unsigned		max_reqs;
110 
111 	/* Size of ringbuffer, in units of struct io_event */
112 	unsigned		nr_events;
113 
114 	unsigned long		mmap_base;
115 	unsigned long		mmap_size;
116 
117 	struct page		**ring_pages;
118 	long			nr_pages;
119 
120 	struct rcu_work		free_rwork;	/* see free_ioctx() */
121 
122 	/*
123 	 * signals when all in-flight requests are done
124 	 */
125 	struct ctx_rq_wait	*rq_wait;
126 
127 	struct {
128 		/*
129 		 * This counts the number of available slots in the ringbuffer,
130 		 * so we avoid overflowing it: it's decremented (if positive)
131 		 * when allocating a kiocb and incremented when the resulting
132 		 * io_event is pulled off the ringbuffer.
133 		 *
134 		 * We batch accesses to it with a percpu version.
135 		 */
136 		atomic_t	reqs_available;
137 	} ____cacheline_aligned_in_smp;
138 
139 	struct {
140 		spinlock_t	ctx_lock;
141 		struct list_head active_reqs;	/* used for cancellation */
142 	} ____cacheline_aligned_in_smp;
143 
144 	struct {
145 		struct mutex	ring_lock;
146 		wait_queue_head_t wait;
147 	} ____cacheline_aligned_in_smp;
148 
149 	struct {
150 		unsigned	tail;
151 		unsigned	completed_events;
152 		spinlock_t	completion_lock;
153 	} ____cacheline_aligned_in_smp;
154 
155 	struct page		*internal_pages[AIO_RING_PAGES];
156 	struct file		*aio_ring_file;
157 
158 	unsigned		id;
159 };
160 
161 struct fsync_iocb {
162 	struct work_struct	work;
163 	struct file		*file;
164 	bool			datasync;
165 };
166 
167 struct aio_kiocb {
168 	union {
169 		struct kiocb		rw;
170 		struct fsync_iocb	fsync;
171 	};
172 
173 	struct kioctx		*ki_ctx;
174 	kiocb_cancel_fn		*ki_cancel;
175 
176 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
177 	__u64			ki_user_data;	/* user's data for completion */
178 
179 	struct list_head	ki_list;	/* the aio core uses this
180 						 * for cancellation */
181 
182 	/*
183 	 * If the aio_resfd field of the userspace iocb is not zero,
184 	 * this is the underlying eventfd context to deliver events to.
185 	 */
186 	struct eventfd_ctx	*ki_eventfd;
187 };
188 
189 /*------ sysctl variables----*/
190 static DEFINE_SPINLOCK(aio_nr_lock);
191 unsigned long aio_nr;		/* current system wide number of aio requests */
192 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
193 /*----end sysctl variables---*/
194 
195 static struct kmem_cache	*kiocb_cachep;
196 static struct kmem_cache	*kioctx_cachep;
197 
198 static struct vfsmount *aio_mnt;
199 
200 static const struct file_operations aio_ring_fops;
201 static const struct address_space_operations aio_ctx_aops;
202 
203 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
204 {
205 	struct qstr this = QSTR_INIT("[aio]", 5);
206 	struct file *file;
207 	struct path path;
208 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
209 	if (IS_ERR(inode))
210 		return ERR_CAST(inode);
211 
212 	inode->i_mapping->a_ops = &aio_ctx_aops;
213 	inode->i_mapping->private_data = ctx;
214 	inode->i_size = PAGE_SIZE * nr_pages;
215 
216 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
217 	if (!path.dentry) {
218 		iput(inode);
219 		return ERR_PTR(-ENOMEM);
220 	}
221 	path.mnt = mntget(aio_mnt);
222 
223 	d_instantiate(path.dentry, inode);
224 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
225 	if (IS_ERR(file)) {
226 		path_put(&path);
227 		return file;
228 	}
229 
230 	file->f_flags = O_RDWR;
231 	return file;
232 }
233 
234 static struct dentry *aio_mount(struct file_system_type *fs_type,
235 				int flags, const char *dev_name, void *data)
236 {
237 	static const struct dentry_operations ops = {
238 		.d_dname	= simple_dname,
239 	};
240 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
241 					   AIO_RING_MAGIC);
242 
243 	if (!IS_ERR(root))
244 		root->d_sb->s_iflags |= SB_I_NOEXEC;
245 	return root;
246 }
247 
248 /* aio_setup
249  *	Creates the slab caches used by the aio routines, panic on
250  *	failure as this is done early during the boot sequence.
251  */
252 static int __init aio_setup(void)
253 {
254 	static struct file_system_type aio_fs = {
255 		.name		= "aio",
256 		.mount		= aio_mount,
257 		.kill_sb	= kill_anon_super,
258 	};
259 	aio_mnt = kern_mount(&aio_fs);
260 	if (IS_ERR(aio_mnt))
261 		panic("Failed to create aio fs mount.");
262 
263 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
264 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
265 	return 0;
266 }
267 __initcall(aio_setup);
268 
269 static void put_aio_ring_file(struct kioctx *ctx)
270 {
271 	struct file *aio_ring_file = ctx->aio_ring_file;
272 	struct address_space *i_mapping;
273 
274 	if (aio_ring_file) {
275 		truncate_setsize(file_inode(aio_ring_file), 0);
276 
277 		/* Prevent further access to the kioctx from migratepages */
278 		i_mapping = aio_ring_file->f_mapping;
279 		spin_lock(&i_mapping->private_lock);
280 		i_mapping->private_data = NULL;
281 		ctx->aio_ring_file = NULL;
282 		spin_unlock(&i_mapping->private_lock);
283 
284 		fput(aio_ring_file);
285 	}
286 }
287 
288 static void aio_free_ring(struct kioctx *ctx)
289 {
290 	int i;
291 
292 	/* Disconnect the kiotx from the ring file.  This prevents future
293 	 * accesses to the kioctx from page migration.
294 	 */
295 	put_aio_ring_file(ctx);
296 
297 	for (i = 0; i < ctx->nr_pages; i++) {
298 		struct page *page;
299 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
300 				page_count(ctx->ring_pages[i]));
301 		page = ctx->ring_pages[i];
302 		if (!page)
303 			continue;
304 		ctx->ring_pages[i] = NULL;
305 		put_page(page);
306 	}
307 
308 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
309 		kfree(ctx->ring_pages);
310 		ctx->ring_pages = NULL;
311 	}
312 }
313 
314 static int aio_ring_mremap(struct vm_area_struct *vma)
315 {
316 	struct file *file = vma->vm_file;
317 	struct mm_struct *mm = vma->vm_mm;
318 	struct kioctx_table *table;
319 	int i, res = -EINVAL;
320 
321 	spin_lock(&mm->ioctx_lock);
322 	rcu_read_lock();
323 	table = rcu_dereference(mm->ioctx_table);
324 	for (i = 0; i < table->nr; i++) {
325 		struct kioctx *ctx;
326 
327 		ctx = rcu_dereference(table->table[i]);
328 		if (ctx && ctx->aio_ring_file == file) {
329 			if (!atomic_read(&ctx->dead)) {
330 				ctx->user_id = ctx->mmap_base = vma->vm_start;
331 				res = 0;
332 			}
333 			break;
334 		}
335 	}
336 
337 	rcu_read_unlock();
338 	spin_unlock(&mm->ioctx_lock);
339 	return res;
340 }
341 
342 static const struct vm_operations_struct aio_ring_vm_ops = {
343 	.mremap		= aio_ring_mremap,
344 #if IS_ENABLED(CONFIG_MMU)
345 	.fault		= filemap_fault,
346 	.map_pages	= filemap_map_pages,
347 	.page_mkwrite	= filemap_page_mkwrite,
348 #endif
349 };
350 
351 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
352 {
353 	vma->vm_flags |= VM_DONTEXPAND;
354 	vma->vm_ops = &aio_ring_vm_ops;
355 	return 0;
356 }
357 
358 static const struct file_operations aio_ring_fops = {
359 	.mmap = aio_ring_mmap,
360 };
361 
362 #if IS_ENABLED(CONFIG_MIGRATION)
363 static int aio_migratepage(struct address_space *mapping, struct page *new,
364 			struct page *old, enum migrate_mode mode)
365 {
366 	struct kioctx *ctx;
367 	unsigned long flags;
368 	pgoff_t idx;
369 	int rc;
370 
371 	/*
372 	 * We cannot support the _NO_COPY case here, because copy needs to
373 	 * happen under the ctx->completion_lock. That does not work with the
374 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
375 	 */
376 	if (mode == MIGRATE_SYNC_NO_COPY)
377 		return -EINVAL;
378 
379 	rc = 0;
380 
381 	/* mapping->private_lock here protects against the kioctx teardown.  */
382 	spin_lock(&mapping->private_lock);
383 	ctx = mapping->private_data;
384 	if (!ctx) {
385 		rc = -EINVAL;
386 		goto out;
387 	}
388 
389 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
390 	 * to the ring's head, and prevents page migration from mucking in
391 	 * a partially initialized kiotx.
392 	 */
393 	if (!mutex_trylock(&ctx->ring_lock)) {
394 		rc = -EAGAIN;
395 		goto out;
396 	}
397 
398 	idx = old->index;
399 	if (idx < (pgoff_t)ctx->nr_pages) {
400 		/* Make sure the old page hasn't already been changed */
401 		if (ctx->ring_pages[idx] != old)
402 			rc = -EAGAIN;
403 	} else
404 		rc = -EINVAL;
405 
406 	if (rc != 0)
407 		goto out_unlock;
408 
409 	/* Writeback must be complete */
410 	BUG_ON(PageWriteback(old));
411 	get_page(new);
412 
413 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
414 	if (rc != MIGRATEPAGE_SUCCESS) {
415 		put_page(new);
416 		goto out_unlock;
417 	}
418 
419 	/* Take completion_lock to prevent other writes to the ring buffer
420 	 * while the old page is copied to the new.  This prevents new
421 	 * events from being lost.
422 	 */
423 	spin_lock_irqsave(&ctx->completion_lock, flags);
424 	migrate_page_copy(new, old);
425 	BUG_ON(ctx->ring_pages[idx] != old);
426 	ctx->ring_pages[idx] = new;
427 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
428 
429 	/* The old page is no longer accessible. */
430 	put_page(old);
431 
432 out_unlock:
433 	mutex_unlock(&ctx->ring_lock);
434 out:
435 	spin_unlock(&mapping->private_lock);
436 	return rc;
437 }
438 #endif
439 
440 static const struct address_space_operations aio_ctx_aops = {
441 	.set_page_dirty = __set_page_dirty_no_writeback,
442 #if IS_ENABLED(CONFIG_MIGRATION)
443 	.migratepage	= aio_migratepage,
444 #endif
445 };
446 
447 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
448 {
449 	struct aio_ring *ring;
450 	struct mm_struct *mm = current->mm;
451 	unsigned long size, unused;
452 	int nr_pages;
453 	int i;
454 	struct file *file;
455 
456 	/* Compensate for the ring buffer's head/tail overlap entry */
457 	nr_events += 2;	/* 1 is required, 2 for good luck */
458 
459 	size = sizeof(struct aio_ring);
460 	size += sizeof(struct io_event) * nr_events;
461 
462 	nr_pages = PFN_UP(size);
463 	if (nr_pages < 0)
464 		return -EINVAL;
465 
466 	file = aio_private_file(ctx, nr_pages);
467 	if (IS_ERR(file)) {
468 		ctx->aio_ring_file = NULL;
469 		return -ENOMEM;
470 	}
471 
472 	ctx->aio_ring_file = file;
473 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
474 			/ sizeof(struct io_event);
475 
476 	ctx->ring_pages = ctx->internal_pages;
477 	if (nr_pages > AIO_RING_PAGES) {
478 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
479 					  GFP_KERNEL);
480 		if (!ctx->ring_pages) {
481 			put_aio_ring_file(ctx);
482 			return -ENOMEM;
483 		}
484 	}
485 
486 	for (i = 0; i < nr_pages; i++) {
487 		struct page *page;
488 		page = find_or_create_page(file->f_mapping,
489 					   i, GFP_HIGHUSER | __GFP_ZERO);
490 		if (!page)
491 			break;
492 		pr_debug("pid(%d) page[%d]->count=%d\n",
493 			 current->pid, i, page_count(page));
494 		SetPageUptodate(page);
495 		unlock_page(page);
496 
497 		ctx->ring_pages[i] = page;
498 	}
499 	ctx->nr_pages = i;
500 
501 	if (unlikely(i != nr_pages)) {
502 		aio_free_ring(ctx);
503 		return -ENOMEM;
504 	}
505 
506 	ctx->mmap_size = nr_pages * PAGE_SIZE;
507 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
508 
509 	if (down_write_killable(&mm->mmap_sem)) {
510 		ctx->mmap_size = 0;
511 		aio_free_ring(ctx);
512 		return -EINTR;
513 	}
514 
515 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
516 				       PROT_READ | PROT_WRITE,
517 				       MAP_SHARED, 0, &unused, NULL);
518 	up_write(&mm->mmap_sem);
519 	if (IS_ERR((void *)ctx->mmap_base)) {
520 		ctx->mmap_size = 0;
521 		aio_free_ring(ctx);
522 		return -ENOMEM;
523 	}
524 
525 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
526 
527 	ctx->user_id = ctx->mmap_base;
528 	ctx->nr_events = nr_events; /* trusted copy */
529 
530 	ring = kmap_atomic(ctx->ring_pages[0]);
531 	ring->nr = nr_events;	/* user copy */
532 	ring->id = ~0U;
533 	ring->head = ring->tail = 0;
534 	ring->magic = AIO_RING_MAGIC;
535 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
536 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
537 	ring->header_length = sizeof(struct aio_ring);
538 	kunmap_atomic(ring);
539 	flush_dcache_page(ctx->ring_pages[0]);
540 
541 	return 0;
542 }
543 
544 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
545 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
546 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
547 
548 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
549 {
550 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
551 	struct kioctx *ctx = req->ki_ctx;
552 	unsigned long flags;
553 
554 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
555 		return;
556 
557 	spin_lock_irqsave(&ctx->ctx_lock, flags);
558 	list_add_tail(&req->ki_list, &ctx->active_reqs);
559 	req->ki_cancel = cancel;
560 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
561 }
562 EXPORT_SYMBOL(kiocb_set_cancel_fn);
563 
564 /*
565  * free_ioctx() should be RCU delayed to synchronize against the RCU
566  * protected lookup_ioctx() and also needs process context to call
567  * aio_free_ring().  Use rcu_work.
568  */
569 static void free_ioctx(struct work_struct *work)
570 {
571 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
572 					  free_rwork);
573 	pr_debug("freeing %p\n", ctx);
574 
575 	aio_free_ring(ctx);
576 	free_percpu(ctx->cpu);
577 	percpu_ref_exit(&ctx->reqs);
578 	percpu_ref_exit(&ctx->users);
579 	kmem_cache_free(kioctx_cachep, ctx);
580 }
581 
582 static void free_ioctx_reqs(struct percpu_ref *ref)
583 {
584 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
585 
586 	/* At this point we know that there are no any in-flight requests */
587 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
588 		complete(&ctx->rq_wait->comp);
589 
590 	/* Synchronize against RCU protected table->table[] dereferences */
591 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
592 	queue_rcu_work(system_wq, &ctx->free_rwork);
593 }
594 
595 /*
596  * When this function runs, the kioctx has been removed from the "hash table"
597  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
598  * now it's safe to cancel any that need to be.
599  */
600 static void free_ioctx_users(struct percpu_ref *ref)
601 {
602 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
603 	struct aio_kiocb *req;
604 
605 	spin_lock_irq(&ctx->ctx_lock);
606 
607 	while (!list_empty(&ctx->active_reqs)) {
608 		req = list_first_entry(&ctx->active_reqs,
609 				       struct aio_kiocb, ki_list);
610 		req->ki_cancel(&req->rw);
611 		list_del_init(&req->ki_list);
612 	}
613 
614 	spin_unlock_irq(&ctx->ctx_lock);
615 
616 	percpu_ref_kill(&ctx->reqs);
617 	percpu_ref_put(&ctx->reqs);
618 }
619 
620 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
621 {
622 	unsigned i, new_nr;
623 	struct kioctx_table *table, *old;
624 	struct aio_ring *ring;
625 
626 	spin_lock(&mm->ioctx_lock);
627 	table = rcu_dereference_raw(mm->ioctx_table);
628 
629 	while (1) {
630 		if (table)
631 			for (i = 0; i < table->nr; i++)
632 				if (!rcu_access_pointer(table->table[i])) {
633 					ctx->id = i;
634 					rcu_assign_pointer(table->table[i], ctx);
635 					spin_unlock(&mm->ioctx_lock);
636 
637 					/* While kioctx setup is in progress,
638 					 * we are protected from page migration
639 					 * changes ring_pages by ->ring_lock.
640 					 */
641 					ring = kmap_atomic(ctx->ring_pages[0]);
642 					ring->id = ctx->id;
643 					kunmap_atomic(ring);
644 					return 0;
645 				}
646 
647 		new_nr = (table ? table->nr : 1) * 4;
648 		spin_unlock(&mm->ioctx_lock);
649 
650 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
651 				new_nr, GFP_KERNEL);
652 		if (!table)
653 			return -ENOMEM;
654 
655 		table->nr = new_nr;
656 
657 		spin_lock(&mm->ioctx_lock);
658 		old = rcu_dereference_raw(mm->ioctx_table);
659 
660 		if (!old) {
661 			rcu_assign_pointer(mm->ioctx_table, table);
662 		} else if (table->nr > old->nr) {
663 			memcpy(table->table, old->table,
664 			       old->nr * sizeof(struct kioctx *));
665 
666 			rcu_assign_pointer(mm->ioctx_table, table);
667 			kfree_rcu(old, rcu);
668 		} else {
669 			kfree(table);
670 			table = old;
671 		}
672 	}
673 }
674 
675 static void aio_nr_sub(unsigned nr)
676 {
677 	spin_lock(&aio_nr_lock);
678 	if (WARN_ON(aio_nr - nr > aio_nr))
679 		aio_nr = 0;
680 	else
681 		aio_nr -= nr;
682 	spin_unlock(&aio_nr_lock);
683 }
684 
685 /* ioctx_alloc
686  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
687  */
688 static struct kioctx *ioctx_alloc(unsigned nr_events)
689 {
690 	struct mm_struct *mm = current->mm;
691 	struct kioctx *ctx;
692 	int err = -ENOMEM;
693 
694 	/*
695 	 * Store the original nr_events -- what userspace passed to io_setup(),
696 	 * for counting against the global limit -- before it changes.
697 	 */
698 	unsigned int max_reqs = nr_events;
699 
700 	/*
701 	 * We keep track of the number of available ringbuffer slots, to prevent
702 	 * overflow (reqs_available), and we also use percpu counters for this.
703 	 *
704 	 * So since up to half the slots might be on other cpu's percpu counters
705 	 * and unavailable, double nr_events so userspace sees what they
706 	 * expected: additionally, we move req_batch slots to/from percpu
707 	 * counters at a time, so make sure that isn't 0:
708 	 */
709 	nr_events = max(nr_events, num_possible_cpus() * 4);
710 	nr_events *= 2;
711 
712 	/* Prevent overflows */
713 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
714 		pr_debug("ENOMEM: nr_events too high\n");
715 		return ERR_PTR(-EINVAL);
716 	}
717 
718 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
719 		return ERR_PTR(-EAGAIN);
720 
721 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
722 	if (!ctx)
723 		return ERR_PTR(-ENOMEM);
724 
725 	ctx->max_reqs = max_reqs;
726 
727 	spin_lock_init(&ctx->ctx_lock);
728 	spin_lock_init(&ctx->completion_lock);
729 	mutex_init(&ctx->ring_lock);
730 	/* Protect against page migration throughout kiotx setup by keeping
731 	 * the ring_lock mutex held until setup is complete. */
732 	mutex_lock(&ctx->ring_lock);
733 	init_waitqueue_head(&ctx->wait);
734 
735 	INIT_LIST_HEAD(&ctx->active_reqs);
736 
737 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
738 		goto err;
739 
740 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
741 		goto err;
742 
743 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
744 	if (!ctx->cpu)
745 		goto err;
746 
747 	err = aio_setup_ring(ctx, nr_events);
748 	if (err < 0)
749 		goto err;
750 
751 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
752 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
753 	if (ctx->req_batch < 1)
754 		ctx->req_batch = 1;
755 
756 	/* limit the number of system wide aios */
757 	spin_lock(&aio_nr_lock);
758 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
759 	    aio_nr + ctx->max_reqs < aio_nr) {
760 		spin_unlock(&aio_nr_lock);
761 		err = -EAGAIN;
762 		goto err_ctx;
763 	}
764 	aio_nr += ctx->max_reqs;
765 	spin_unlock(&aio_nr_lock);
766 
767 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
768 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
769 
770 	err = ioctx_add_table(ctx, mm);
771 	if (err)
772 		goto err_cleanup;
773 
774 	/* Release the ring_lock mutex now that all setup is complete. */
775 	mutex_unlock(&ctx->ring_lock);
776 
777 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
778 		 ctx, ctx->user_id, mm, ctx->nr_events);
779 	return ctx;
780 
781 err_cleanup:
782 	aio_nr_sub(ctx->max_reqs);
783 err_ctx:
784 	atomic_set(&ctx->dead, 1);
785 	if (ctx->mmap_size)
786 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
787 	aio_free_ring(ctx);
788 err:
789 	mutex_unlock(&ctx->ring_lock);
790 	free_percpu(ctx->cpu);
791 	percpu_ref_exit(&ctx->reqs);
792 	percpu_ref_exit(&ctx->users);
793 	kmem_cache_free(kioctx_cachep, ctx);
794 	pr_debug("error allocating ioctx %d\n", err);
795 	return ERR_PTR(err);
796 }
797 
798 /* kill_ioctx
799  *	Cancels all outstanding aio requests on an aio context.  Used
800  *	when the processes owning a context have all exited to encourage
801  *	the rapid destruction of the kioctx.
802  */
803 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
804 		      struct ctx_rq_wait *wait)
805 {
806 	struct kioctx_table *table;
807 
808 	spin_lock(&mm->ioctx_lock);
809 	if (atomic_xchg(&ctx->dead, 1)) {
810 		spin_unlock(&mm->ioctx_lock);
811 		return -EINVAL;
812 	}
813 
814 	table = rcu_dereference_raw(mm->ioctx_table);
815 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
816 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
817 	spin_unlock(&mm->ioctx_lock);
818 
819 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
820 	wake_up_all(&ctx->wait);
821 
822 	/*
823 	 * It'd be more correct to do this in free_ioctx(), after all
824 	 * the outstanding kiocbs have finished - but by then io_destroy
825 	 * has already returned, so io_setup() could potentially return
826 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
827 	 *  could tell).
828 	 */
829 	aio_nr_sub(ctx->max_reqs);
830 
831 	if (ctx->mmap_size)
832 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
833 
834 	ctx->rq_wait = wait;
835 	percpu_ref_kill(&ctx->users);
836 	return 0;
837 }
838 
839 /*
840  * exit_aio: called when the last user of mm goes away.  At this point, there is
841  * no way for any new requests to be submited or any of the io_* syscalls to be
842  * called on the context.
843  *
844  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
845  * them.
846  */
847 void exit_aio(struct mm_struct *mm)
848 {
849 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
850 	struct ctx_rq_wait wait;
851 	int i, skipped;
852 
853 	if (!table)
854 		return;
855 
856 	atomic_set(&wait.count, table->nr);
857 	init_completion(&wait.comp);
858 
859 	skipped = 0;
860 	for (i = 0; i < table->nr; ++i) {
861 		struct kioctx *ctx =
862 			rcu_dereference_protected(table->table[i], true);
863 
864 		if (!ctx) {
865 			skipped++;
866 			continue;
867 		}
868 
869 		/*
870 		 * We don't need to bother with munmap() here - exit_mmap(mm)
871 		 * is coming and it'll unmap everything. And we simply can't,
872 		 * this is not necessarily our ->mm.
873 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 		 * that it needs to unmap the area, just set it to 0.
875 		 */
876 		ctx->mmap_size = 0;
877 		kill_ioctx(mm, ctx, &wait);
878 	}
879 
880 	if (!atomic_sub_and_test(skipped, &wait.count)) {
881 		/* Wait until all IO for the context are done. */
882 		wait_for_completion(&wait.comp);
883 	}
884 
885 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
886 	kfree(table);
887 }
888 
889 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
890 {
891 	struct kioctx_cpu *kcpu;
892 	unsigned long flags;
893 
894 	local_irq_save(flags);
895 	kcpu = this_cpu_ptr(ctx->cpu);
896 	kcpu->reqs_available += nr;
897 
898 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
899 		kcpu->reqs_available -= ctx->req_batch;
900 		atomic_add(ctx->req_batch, &ctx->reqs_available);
901 	}
902 
903 	local_irq_restore(flags);
904 }
905 
906 static bool get_reqs_available(struct kioctx *ctx)
907 {
908 	struct kioctx_cpu *kcpu;
909 	bool ret = false;
910 	unsigned long flags;
911 
912 	local_irq_save(flags);
913 	kcpu = this_cpu_ptr(ctx->cpu);
914 	if (!kcpu->reqs_available) {
915 		int old, avail = atomic_read(&ctx->reqs_available);
916 
917 		do {
918 			if (avail < ctx->req_batch)
919 				goto out;
920 
921 			old = avail;
922 			avail = atomic_cmpxchg(&ctx->reqs_available,
923 					       avail, avail - ctx->req_batch);
924 		} while (avail != old);
925 
926 		kcpu->reqs_available += ctx->req_batch;
927 	}
928 
929 	ret = true;
930 	kcpu->reqs_available--;
931 out:
932 	local_irq_restore(flags);
933 	return ret;
934 }
935 
936 /* refill_reqs_available
937  *	Updates the reqs_available reference counts used for tracking the
938  *	number of free slots in the completion ring.  This can be called
939  *	from aio_complete() (to optimistically update reqs_available) or
940  *	from aio_get_req() (the we're out of events case).  It must be
941  *	called holding ctx->completion_lock.
942  */
943 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
944                                   unsigned tail)
945 {
946 	unsigned events_in_ring, completed;
947 
948 	/* Clamp head since userland can write to it. */
949 	head %= ctx->nr_events;
950 	if (head <= tail)
951 		events_in_ring = tail - head;
952 	else
953 		events_in_ring = ctx->nr_events - (head - tail);
954 
955 	completed = ctx->completed_events;
956 	if (events_in_ring < completed)
957 		completed -= events_in_ring;
958 	else
959 		completed = 0;
960 
961 	if (!completed)
962 		return;
963 
964 	ctx->completed_events -= completed;
965 	put_reqs_available(ctx, completed);
966 }
967 
968 /* user_refill_reqs_available
969  *	Called to refill reqs_available when aio_get_req() encounters an
970  *	out of space in the completion ring.
971  */
972 static void user_refill_reqs_available(struct kioctx *ctx)
973 {
974 	spin_lock_irq(&ctx->completion_lock);
975 	if (ctx->completed_events) {
976 		struct aio_ring *ring;
977 		unsigned head;
978 
979 		/* Access of ring->head may race with aio_read_events_ring()
980 		 * here, but that's okay since whether we read the old version
981 		 * or the new version, and either will be valid.  The important
982 		 * part is that head cannot pass tail since we prevent
983 		 * aio_complete() from updating tail by holding
984 		 * ctx->completion_lock.  Even if head is invalid, the check
985 		 * against ctx->completed_events below will make sure we do the
986 		 * safe/right thing.
987 		 */
988 		ring = kmap_atomic(ctx->ring_pages[0]);
989 		head = ring->head;
990 		kunmap_atomic(ring);
991 
992 		refill_reqs_available(ctx, head, ctx->tail);
993 	}
994 
995 	spin_unlock_irq(&ctx->completion_lock);
996 }
997 
998 /* aio_get_req
999  *	Allocate a slot for an aio request.
1000  * Returns NULL if no requests are free.
1001  */
1002 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1003 {
1004 	struct aio_kiocb *req;
1005 
1006 	if (!get_reqs_available(ctx)) {
1007 		user_refill_reqs_available(ctx);
1008 		if (!get_reqs_available(ctx))
1009 			return NULL;
1010 	}
1011 
1012 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1013 	if (unlikely(!req))
1014 		goto out_put;
1015 
1016 	percpu_ref_get(&ctx->reqs);
1017 	INIT_LIST_HEAD(&req->ki_list);
1018 	req->ki_ctx = ctx;
1019 	return req;
1020 out_put:
1021 	put_reqs_available(ctx, 1);
1022 	return NULL;
1023 }
1024 
1025 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1026 {
1027 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1028 	struct mm_struct *mm = current->mm;
1029 	struct kioctx *ctx, *ret = NULL;
1030 	struct kioctx_table *table;
1031 	unsigned id;
1032 
1033 	if (get_user(id, &ring->id))
1034 		return NULL;
1035 
1036 	rcu_read_lock();
1037 	table = rcu_dereference(mm->ioctx_table);
1038 
1039 	if (!table || id >= table->nr)
1040 		goto out;
1041 
1042 	ctx = rcu_dereference(table->table[id]);
1043 	if (ctx && ctx->user_id == ctx_id) {
1044 		if (percpu_ref_tryget_live(&ctx->users))
1045 			ret = ctx;
1046 	}
1047 out:
1048 	rcu_read_unlock();
1049 	return ret;
1050 }
1051 
1052 /* aio_complete
1053  *	Called when the io request on the given iocb is complete.
1054  */
1055 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1056 {
1057 	struct kioctx	*ctx = iocb->ki_ctx;
1058 	struct aio_ring	*ring;
1059 	struct io_event	*ev_page, *event;
1060 	unsigned tail, pos, head;
1061 	unsigned long	flags;
1062 
1063 	/*
1064 	 * Add a completion event to the ring buffer. Must be done holding
1065 	 * ctx->completion_lock to prevent other code from messing with the tail
1066 	 * pointer since we might be called from irq context.
1067 	 */
1068 	spin_lock_irqsave(&ctx->completion_lock, flags);
1069 
1070 	tail = ctx->tail;
1071 	pos = tail + AIO_EVENTS_OFFSET;
1072 
1073 	if (++tail >= ctx->nr_events)
1074 		tail = 0;
1075 
1076 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1077 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1078 
1079 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1080 	event->data = iocb->ki_user_data;
1081 	event->res = res;
1082 	event->res2 = res2;
1083 
1084 	kunmap_atomic(ev_page);
1085 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1086 
1087 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1088 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1089 		 res, res2);
1090 
1091 	/* after flagging the request as done, we
1092 	 * must never even look at it again
1093 	 */
1094 	smp_wmb();	/* make event visible before updating tail */
1095 
1096 	ctx->tail = tail;
1097 
1098 	ring = kmap_atomic(ctx->ring_pages[0]);
1099 	head = ring->head;
1100 	ring->tail = tail;
1101 	kunmap_atomic(ring);
1102 	flush_dcache_page(ctx->ring_pages[0]);
1103 
1104 	ctx->completed_events++;
1105 	if (ctx->completed_events > 1)
1106 		refill_reqs_available(ctx, head, tail);
1107 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1108 
1109 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1110 
1111 	/*
1112 	 * Check if the user asked us to deliver the result through an
1113 	 * eventfd. The eventfd_signal() function is safe to be called
1114 	 * from IRQ context.
1115 	 */
1116 	if (iocb->ki_eventfd) {
1117 		eventfd_signal(iocb->ki_eventfd, 1);
1118 		eventfd_ctx_put(iocb->ki_eventfd);
1119 	}
1120 
1121 	kmem_cache_free(kiocb_cachep, iocb);
1122 
1123 	/*
1124 	 * We have to order our ring_info tail store above and test
1125 	 * of the wait list below outside the wait lock.  This is
1126 	 * like in wake_up_bit() where clearing a bit has to be
1127 	 * ordered with the unlocked test.
1128 	 */
1129 	smp_mb();
1130 
1131 	if (waitqueue_active(&ctx->wait))
1132 		wake_up(&ctx->wait);
1133 
1134 	percpu_ref_put(&ctx->reqs);
1135 }
1136 
1137 /* aio_read_events_ring
1138  *	Pull an event off of the ioctx's event ring.  Returns the number of
1139  *	events fetched
1140  */
1141 static long aio_read_events_ring(struct kioctx *ctx,
1142 				 struct io_event __user *event, long nr)
1143 {
1144 	struct aio_ring *ring;
1145 	unsigned head, tail, pos;
1146 	long ret = 0;
1147 	int copy_ret;
1148 
1149 	/*
1150 	 * The mutex can block and wake us up and that will cause
1151 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1152 	 * and repeat. This should be rare enough that it doesn't cause
1153 	 * peformance issues. See the comment in read_events() for more detail.
1154 	 */
1155 	sched_annotate_sleep();
1156 	mutex_lock(&ctx->ring_lock);
1157 
1158 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1159 	ring = kmap_atomic(ctx->ring_pages[0]);
1160 	head = ring->head;
1161 	tail = ring->tail;
1162 	kunmap_atomic(ring);
1163 
1164 	/*
1165 	 * Ensure that once we've read the current tail pointer, that
1166 	 * we also see the events that were stored up to the tail.
1167 	 */
1168 	smp_rmb();
1169 
1170 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1171 
1172 	if (head == tail)
1173 		goto out;
1174 
1175 	head %= ctx->nr_events;
1176 	tail %= ctx->nr_events;
1177 
1178 	while (ret < nr) {
1179 		long avail;
1180 		struct io_event *ev;
1181 		struct page *page;
1182 
1183 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1184 		if (head == tail)
1185 			break;
1186 
1187 		pos = head + AIO_EVENTS_OFFSET;
1188 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1189 		pos %= AIO_EVENTS_PER_PAGE;
1190 
1191 		avail = min(avail, nr - ret);
1192 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1193 
1194 		ev = kmap(page);
1195 		copy_ret = copy_to_user(event + ret, ev + pos,
1196 					sizeof(*ev) * avail);
1197 		kunmap(page);
1198 
1199 		if (unlikely(copy_ret)) {
1200 			ret = -EFAULT;
1201 			goto out;
1202 		}
1203 
1204 		ret += avail;
1205 		head += avail;
1206 		head %= ctx->nr_events;
1207 	}
1208 
1209 	ring = kmap_atomic(ctx->ring_pages[0]);
1210 	ring->head = head;
1211 	kunmap_atomic(ring);
1212 	flush_dcache_page(ctx->ring_pages[0]);
1213 
1214 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1215 out:
1216 	mutex_unlock(&ctx->ring_lock);
1217 
1218 	return ret;
1219 }
1220 
1221 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 			    struct io_event __user *event, long *i)
1223 {
1224 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1225 
1226 	if (ret > 0)
1227 		*i += ret;
1228 
1229 	if (unlikely(atomic_read(&ctx->dead)))
1230 		ret = -EINVAL;
1231 
1232 	if (!*i)
1233 		*i = ret;
1234 
1235 	return ret < 0 || *i >= min_nr;
1236 }
1237 
1238 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1239 			struct io_event __user *event,
1240 			ktime_t until)
1241 {
1242 	long ret = 0;
1243 
1244 	/*
1245 	 * Note that aio_read_events() is being called as the conditional - i.e.
1246 	 * we're calling it after prepare_to_wait() has set task state to
1247 	 * TASK_INTERRUPTIBLE.
1248 	 *
1249 	 * But aio_read_events() can block, and if it blocks it's going to flip
1250 	 * the task state back to TASK_RUNNING.
1251 	 *
1252 	 * This should be ok, provided it doesn't flip the state back to
1253 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1254 	 * will only happen if the mutex_lock() call blocks, and we then find
1255 	 * the ringbuffer empty. So in practice we should be ok, but it's
1256 	 * something to be aware of when touching this code.
1257 	 */
1258 	if (until == 0)
1259 		aio_read_events(ctx, min_nr, nr, event, &ret);
1260 	else
1261 		wait_event_interruptible_hrtimeout(ctx->wait,
1262 				aio_read_events(ctx, min_nr, nr, event, &ret),
1263 				until);
1264 	return ret;
1265 }
1266 
1267 /* sys_io_setup:
1268  *	Create an aio_context capable of receiving at least nr_events.
1269  *	ctxp must not point to an aio_context that already exists, and
1270  *	must be initialized to 0 prior to the call.  On successful
1271  *	creation of the aio_context, *ctxp is filled in with the resulting
1272  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1273  *	if the specified nr_events exceeds internal limits.  May fail
1274  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1275  *	of available events.  May fail with -ENOMEM if insufficient kernel
1276  *	resources are available.  May fail with -EFAULT if an invalid
1277  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1278  *	implemented.
1279  */
1280 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1281 {
1282 	struct kioctx *ioctx = NULL;
1283 	unsigned long ctx;
1284 	long ret;
1285 
1286 	ret = get_user(ctx, ctxp);
1287 	if (unlikely(ret))
1288 		goto out;
1289 
1290 	ret = -EINVAL;
1291 	if (unlikely(ctx || nr_events == 0)) {
1292 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1293 		         ctx, nr_events);
1294 		goto out;
1295 	}
1296 
1297 	ioctx = ioctx_alloc(nr_events);
1298 	ret = PTR_ERR(ioctx);
1299 	if (!IS_ERR(ioctx)) {
1300 		ret = put_user(ioctx->user_id, ctxp);
1301 		if (ret)
1302 			kill_ioctx(current->mm, ioctx, NULL);
1303 		percpu_ref_put(&ioctx->users);
1304 	}
1305 
1306 out:
1307 	return ret;
1308 }
1309 
1310 #ifdef CONFIG_COMPAT
1311 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1312 {
1313 	struct kioctx *ioctx = NULL;
1314 	unsigned long ctx;
1315 	long ret;
1316 
1317 	ret = get_user(ctx, ctx32p);
1318 	if (unlikely(ret))
1319 		goto out;
1320 
1321 	ret = -EINVAL;
1322 	if (unlikely(ctx || nr_events == 0)) {
1323 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324 		         ctx, nr_events);
1325 		goto out;
1326 	}
1327 
1328 	ioctx = ioctx_alloc(nr_events);
1329 	ret = PTR_ERR(ioctx);
1330 	if (!IS_ERR(ioctx)) {
1331 		/* truncating is ok because it's a user address */
1332 		ret = put_user((u32)ioctx->user_id, ctx32p);
1333 		if (ret)
1334 			kill_ioctx(current->mm, ioctx, NULL);
1335 		percpu_ref_put(&ioctx->users);
1336 	}
1337 
1338 out:
1339 	return ret;
1340 }
1341 #endif
1342 
1343 /* sys_io_destroy:
1344  *	Destroy the aio_context specified.  May cancel any outstanding
1345  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1346  *	implemented.  May fail with -EINVAL if the context pointed to
1347  *	is invalid.
1348  */
1349 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1350 {
1351 	struct kioctx *ioctx = lookup_ioctx(ctx);
1352 	if (likely(NULL != ioctx)) {
1353 		struct ctx_rq_wait wait;
1354 		int ret;
1355 
1356 		init_completion(&wait.comp);
1357 		atomic_set(&wait.count, 1);
1358 
1359 		/* Pass requests_done to kill_ioctx() where it can be set
1360 		 * in a thread-safe way. If we try to set it here then we have
1361 		 * a race condition if two io_destroy() called simultaneously.
1362 		 */
1363 		ret = kill_ioctx(current->mm, ioctx, &wait);
1364 		percpu_ref_put(&ioctx->users);
1365 
1366 		/* Wait until all IO for the context are done. Otherwise kernel
1367 		 * keep using user-space buffers even if user thinks the context
1368 		 * is destroyed.
1369 		 */
1370 		if (!ret)
1371 			wait_for_completion(&wait.comp);
1372 
1373 		return ret;
1374 	}
1375 	pr_debug("EINVAL: invalid context id\n");
1376 	return -EINVAL;
1377 }
1378 
1379 static void aio_remove_iocb(struct aio_kiocb *iocb)
1380 {
1381 	struct kioctx *ctx = iocb->ki_ctx;
1382 	unsigned long flags;
1383 
1384 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1385 	list_del(&iocb->ki_list);
1386 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1387 }
1388 
1389 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1390 {
1391 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1392 
1393 	if (!list_empty_careful(&iocb->ki_list))
1394 		aio_remove_iocb(iocb);
1395 
1396 	if (kiocb->ki_flags & IOCB_WRITE) {
1397 		struct inode *inode = file_inode(kiocb->ki_filp);
1398 
1399 		/*
1400 		 * Tell lockdep we inherited freeze protection from submission
1401 		 * thread.
1402 		 */
1403 		if (S_ISREG(inode->i_mode))
1404 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1405 		file_end_write(kiocb->ki_filp);
1406 	}
1407 
1408 	fput(kiocb->ki_filp);
1409 	aio_complete(iocb, res, res2);
1410 }
1411 
1412 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1413 {
1414 	int ret;
1415 
1416 	req->ki_filp = fget(iocb->aio_fildes);
1417 	if (unlikely(!req->ki_filp))
1418 		return -EBADF;
1419 	req->ki_complete = aio_complete_rw;
1420 	req->ki_pos = iocb->aio_offset;
1421 	req->ki_flags = iocb_flags(req->ki_filp);
1422 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1423 		req->ki_flags |= IOCB_EVENTFD;
1424 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1425 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1426 		/*
1427 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1428 		 * aio_reqprio is interpreted as an I/O scheduling
1429 		 * class and priority.
1430 		 */
1431 		ret = ioprio_check_cap(iocb->aio_reqprio);
1432 		if (ret) {
1433 			pr_debug("aio ioprio check cap error: %d\n", ret);
1434 			return ret;
1435 		}
1436 
1437 		req->ki_ioprio = iocb->aio_reqprio;
1438 	} else
1439 		req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1440 
1441 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1442 	if (unlikely(ret))
1443 		fput(req->ki_filp);
1444 	return ret;
1445 }
1446 
1447 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1448 		bool vectored, bool compat, struct iov_iter *iter)
1449 {
1450 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1451 	size_t len = iocb->aio_nbytes;
1452 
1453 	if (!vectored) {
1454 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1455 		*iovec = NULL;
1456 		return ret;
1457 	}
1458 #ifdef CONFIG_COMPAT
1459 	if (compat)
1460 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1461 				iter);
1462 #endif
1463 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1464 }
1465 
1466 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1467 {
1468 	switch (ret) {
1469 	case -EIOCBQUEUED:
1470 		break;
1471 	case -ERESTARTSYS:
1472 	case -ERESTARTNOINTR:
1473 	case -ERESTARTNOHAND:
1474 	case -ERESTART_RESTARTBLOCK:
1475 		/*
1476 		 * There's no easy way to restart the syscall since other AIO's
1477 		 * may be already running. Just fail this IO with EINTR.
1478 		 */
1479 		ret = -EINTR;
1480 		/*FALLTHRU*/
1481 	default:
1482 		aio_complete_rw(req, ret, 0);
1483 	}
1484 }
1485 
1486 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1487 		bool compat)
1488 {
1489 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1490 	struct iov_iter iter;
1491 	struct file *file;
1492 	ssize_t ret;
1493 
1494 	ret = aio_prep_rw(req, iocb);
1495 	if (ret)
1496 		return ret;
1497 	file = req->ki_filp;
1498 
1499 	ret = -EBADF;
1500 	if (unlikely(!(file->f_mode & FMODE_READ)))
1501 		goto out_fput;
1502 	ret = -EINVAL;
1503 	if (unlikely(!file->f_op->read_iter))
1504 		goto out_fput;
1505 
1506 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1507 	if (ret)
1508 		goto out_fput;
1509 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1510 	if (!ret)
1511 		aio_rw_done(req, call_read_iter(file, req, &iter));
1512 	kfree(iovec);
1513 out_fput:
1514 	if (unlikely(ret))
1515 		fput(file);
1516 	return ret;
1517 }
1518 
1519 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1520 		bool compat)
1521 {
1522 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1523 	struct iov_iter iter;
1524 	struct file *file;
1525 	ssize_t ret;
1526 
1527 	ret = aio_prep_rw(req, iocb);
1528 	if (ret)
1529 		return ret;
1530 	file = req->ki_filp;
1531 
1532 	ret = -EBADF;
1533 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1534 		goto out_fput;
1535 	ret = -EINVAL;
1536 	if (unlikely(!file->f_op->write_iter))
1537 		goto out_fput;
1538 
1539 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1540 	if (ret)
1541 		goto out_fput;
1542 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1543 	if (!ret) {
1544 		/*
1545 		 * Open-code file_start_write here to grab freeze protection,
1546 		 * which will be released by another thread in
1547 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1548 		 * released so that it doesn't complain about the held lock when
1549 		 * we return to userspace.
1550 		 */
1551 		if (S_ISREG(file_inode(file)->i_mode)) {
1552 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1553 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1554 		}
1555 		req->ki_flags |= IOCB_WRITE;
1556 		aio_rw_done(req, call_write_iter(file, req, &iter));
1557 	}
1558 	kfree(iovec);
1559 out_fput:
1560 	if (unlikely(ret))
1561 		fput(file);
1562 	return ret;
1563 }
1564 
1565 static void aio_fsync_work(struct work_struct *work)
1566 {
1567 	struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1568 	int ret;
1569 
1570 	ret = vfs_fsync(req->file, req->datasync);
1571 	fput(req->file);
1572 	aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1573 }
1574 
1575 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1576 {
1577 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1578 			iocb->aio_rw_flags))
1579 		return -EINVAL;
1580 
1581 	req->file = fget(iocb->aio_fildes);
1582 	if (unlikely(!req->file))
1583 		return -EBADF;
1584 	if (unlikely(!req->file->f_op->fsync)) {
1585 		fput(req->file);
1586 		return -EINVAL;
1587 	}
1588 
1589 	req->datasync = datasync;
1590 	INIT_WORK(&req->work, aio_fsync_work);
1591 	schedule_work(&req->work);
1592 	return 0;
1593 }
1594 
1595 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1596 			 bool compat)
1597 {
1598 	struct aio_kiocb *req;
1599 	struct iocb iocb;
1600 	ssize_t ret;
1601 
1602 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1603 		return -EFAULT;
1604 
1605 	/* enforce forwards compatibility on users */
1606 	if (unlikely(iocb.aio_reserved2)) {
1607 		pr_debug("EINVAL: reserve field set\n");
1608 		return -EINVAL;
1609 	}
1610 
1611 	/* prevent overflows */
1612 	if (unlikely(
1613 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1614 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1615 	    ((ssize_t)iocb.aio_nbytes < 0)
1616 	   )) {
1617 		pr_debug("EINVAL: overflow check\n");
1618 		return -EINVAL;
1619 	}
1620 
1621 	req = aio_get_req(ctx);
1622 	if (unlikely(!req))
1623 		return -EAGAIN;
1624 
1625 	if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1626 		/*
1627 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1628 		 * instance of the file* now. The file descriptor must be
1629 		 * an eventfd() fd, and will be signaled for each completed
1630 		 * event using the eventfd_signal() function.
1631 		 */
1632 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1633 		if (IS_ERR(req->ki_eventfd)) {
1634 			ret = PTR_ERR(req->ki_eventfd);
1635 			req->ki_eventfd = NULL;
1636 			goto out_put_req;
1637 		}
1638 	}
1639 
1640 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1641 	if (unlikely(ret)) {
1642 		pr_debug("EFAULT: aio_key\n");
1643 		goto out_put_req;
1644 	}
1645 
1646 	req->ki_user_iocb = user_iocb;
1647 	req->ki_user_data = iocb.aio_data;
1648 
1649 	switch (iocb.aio_lio_opcode) {
1650 	case IOCB_CMD_PREAD:
1651 		ret = aio_read(&req->rw, &iocb, false, compat);
1652 		break;
1653 	case IOCB_CMD_PWRITE:
1654 		ret = aio_write(&req->rw, &iocb, false, compat);
1655 		break;
1656 	case IOCB_CMD_PREADV:
1657 		ret = aio_read(&req->rw, &iocb, true, compat);
1658 		break;
1659 	case IOCB_CMD_PWRITEV:
1660 		ret = aio_write(&req->rw, &iocb, true, compat);
1661 		break;
1662 	case IOCB_CMD_FSYNC:
1663 		ret = aio_fsync(&req->fsync, &iocb, false);
1664 		break;
1665 	case IOCB_CMD_FDSYNC:
1666 		ret = aio_fsync(&req->fsync, &iocb, true);
1667 		break;
1668 	default:
1669 		pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1670 		ret = -EINVAL;
1671 		break;
1672 	}
1673 
1674 	/*
1675 	 * If ret is 0, we'd either done aio_complete() ourselves or have
1676 	 * arranged for that to be done asynchronously.  Anything non-zero
1677 	 * means that we need to destroy req ourselves.
1678 	 */
1679 	if (ret)
1680 		goto out_put_req;
1681 	return 0;
1682 out_put_req:
1683 	put_reqs_available(ctx, 1);
1684 	percpu_ref_put(&ctx->reqs);
1685 	if (req->ki_eventfd)
1686 		eventfd_ctx_put(req->ki_eventfd);
1687 	kmem_cache_free(kiocb_cachep, req);
1688 	return ret;
1689 }
1690 
1691 /* sys_io_submit:
1692  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1693  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1694  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1695  *	*iocbpp[0] is not properly initialized, if the operation specified
1696  *	is invalid for the file descriptor in the iocb.  May fail with
1697  *	-EFAULT if any of the data structures point to invalid data.  May
1698  *	fail with -EBADF if the file descriptor specified in the first
1699  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1700  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1701  *	fail with -ENOSYS if not implemented.
1702  */
1703 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1704 		struct iocb __user * __user *, iocbpp)
1705 {
1706 	struct kioctx *ctx;
1707 	long ret = 0;
1708 	int i = 0;
1709 	struct blk_plug plug;
1710 
1711 	if (unlikely(nr < 0))
1712 		return -EINVAL;
1713 
1714 	ctx = lookup_ioctx(ctx_id);
1715 	if (unlikely(!ctx)) {
1716 		pr_debug("EINVAL: invalid context id\n");
1717 		return -EINVAL;
1718 	}
1719 
1720 	if (nr > ctx->nr_events)
1721 		nr = ctx->nr_events;
1722 
1723 	blk_start_plug(&plug);
1724 	for (i = 0; i < nr; i++) {
1725 		struct iocb __user *user_iocb;
1726 
1727 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1728 			ret = -EFAULT;
1729 			break;
1730 		}
1731 
1732 		ret = io_submit_one(ctx, user_iocb, false);
1733 		if (ret)
1734 			break;
1735 	}
1736 	blk_finish_plug(&plug);
1737 
1738 	percpu_ref_put(&ctx->users);
1739 	return i ? i : ret;
1740 }
1741 
1742 #ifdef CONFIG_COMPAT
1743 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1744 		       int, nr, compat_uptr_t __user *, iocbpp)
1745 {
1746 	struct kioctx *ctx;
1747 	long ret = 0;
1748 	int i = 0;
1749 	struct blk_plug plug;
1750 
1751 	if (unlikely(nr < 0))
1752 		return -EINVAL;
1753 
1754 	ctx = lookup_ioctx(ctx_id);
1755 	if (unlikely(!ctx)) {
1756 		pr_debug("EINVAL: invalid context id\n");
1757 		return -EINVAL;
1758 	}
1759 
1760 	if (nr > ctx->nr_events)
1761 		nr = ctx->nr_events;
1762 
1763 	blk_start_plug(&plug);
1764 	for (i = 0; i < nr; i++) {
1765 		compat_uptr_t user_iocb;
1766 
1767 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1768 			ret = -EFAULT;
1769 			break;
1770 		}
1771 
1772 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1773 		if (ret)
1774 			break;
1775 	}
1776 	blk_finish_plug(&plug);
1777 
1778 	percpu_ref_put(&ctx->users);
1779 	return i ? i : ret;
1780 }
1781 #endif
1782 
1783 /* lookup_kiocb
1784  *	Finds a given iocb for cancellation.
1785  */
1786 static struct aio_kiocb *
1787 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1788 {
1789 	struct aio_kiocb *kiocb;
1790 
1791 	assert_spin_locked(&ctx->ctx_lock);
1792 
1793 	/* TODO: use a hash or array, this sucks. */
1794 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1795 		if (kiocb->ki_user_iocb == iocb)
1796 			return kiocb;
1797 	}
1798 	return NULL;
1799 }
1800 
1801 /* sys_io_cancel:
1802  *	Attempts to cancel an iocb previously passed to io_submit.  If
1803  *	the operation is successfully cancelled, the resulting event is
1804  *	copied into the memory pointed to by result without being placed
1805  *	into the completion queue and 0 is returned.  May fail with
1806  *	-EFAULT if any of the data structures pointed to are invalid.
1807  *	May fail with -EINVAL if aio_context specified by ctx_id is
1808  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1809  *	cancelled.  Will fail with -ENOSYS if not implemented.
1810  */
1811 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1812 		struct io_event __user *, result)
1813 {
1814 	struct kioctx *ctx;
1815 	struct aio_kiocb *kiocb;
1816 	int ret = -EINVAL;
1817 	u32 key;
1818 
1819 	if (unlikely(get_user(key, &iocb->aio_key)))
1820 		return -EFAULT;
1821 	if (unlikely(key != KIOCB_KEY))
1822 		return -EINVAL;
1823 
1824 	ctx = lookup_ioctx(ctx_id);
1825 	if (unlikely(!ctx))
1826 		return -EINVAL;
1827 
1828 	spin_lock_irq(&ctx->ctx_lock);
1829 	kiocb = lookup_kiocb(ctx, iocb);
1830 	if (kiocb) {
1831 		ret = kiocb->ki_cancel(&kiocb->rw);
1832 		list_del_init(&kiocb->ki_list);
1833 	}
1834 	spin_unlock_irq(&ctx->ctx_lock);
1835 
1836 	if (!ret) {
1837 		/*
1838 		 * The result argument is no longer used - the io_event is
1839 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1840 		 * cancellation is progress:
1841 		 */
1842 		ret = -EINPROGRESS;
1843 	}
1844 
1845 	percpu_ref_put(&ctx->users);
1846 
1847 	return ret;
1848 }
1849 
1850 static long do_io_getevents(aio_context_t ctx_id,
1851 		long min_nr,
1852 		long nr,
1853 		struct io_event __user *events,
1854 		struct timespec64 *ts)
1855 {
1856 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1857 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1858 	long ret = -EINVAL;
1859 
1860 	if (likely(ioctx)) {
1861 		if (likely(min_nr <= nr && min_nr >= 0))
1862 			ret = read_events(ioctx, min_nr, nr, events, until);
1863 		percpu_ref_put(&ioctx->users);
1864 	}
1865 
1866 	return ret;
1867 }
1868 
1869 /* io_getevents:
1870  *	Attempts to read at least min_nr events and up to nr events from
1871  *	the completion queue for the aio_context specified by ctx_id. If
1872  *	it succeeds, the number of read events is returned. May fail with
1873  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1874  *	out of range, if timeout is out of range.  May fail with -EFAULT
1875  *	if any of the memory specified is invalid.  May return 0 or
1876  *	< min_nr if the timeout specified by timeout has elapsed
1877  *	before sufficient events are available, where timeout == NULL
1878  *	specifies an infinite timeout. Note that the timeout pointed to by
1879  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1880  */
1881 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1882 		long, min_nr,
1883 		long, nr,
1884 		struct io_event __user *, events,
1885 		struct timespec __user *, timeout)
1886 {
1887 	struct timespec64	ts;
1888 	int			ret;
1889 
1890 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
1891 		return -EFAULT;
1892 
1893 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1894 	if (!ret && signal_pending(current))
1895 		ret = -EINTR;
1896 	return ret;
1897 }
1898 
1899 SYSCALL_DEFINE6(io_pgetevents,
1900 		aio_context_t, ctx_id,
1901 		long, min_nr,
1902 		long, nr,
1903 		struct io_event __user *, events,
1904 		struct timespec __user *, timeout,
1905 		const struct __aio_sigset __user *, usig)
1906 {
1907 	struct __aio_sigset	ksig = { NULL, };
1908 	sigset_t		ksigmask, sigsaved;
1909 	struct timespec64	ts;
1910 	int ret;
1911 
1912 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
1913 		return -EFAULT;
1914 
1915 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1916 		return -EFAULT;
1917 
1918 	if (ksig.sigmask) {
1919 		if (ksig.sigsetsize != sizeof(sigset_t))
1920 			return -EINVAL;
1921 		if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
1922 			return -EFAULT;
1923 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1924 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1925 	}
1926 
1927 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1928 	if (signal_pending(current)) {
1929 		if (ksig.sigmask) {
1930 			current->saved_sigmask = sigsaved;
1931 			set_restore_sigmask();
1932 		}
1933 
1934 		if (!ret)
1935 			ret = -ERESTARTNOHAND;
1936 	} else {
1937 		if (ksig.sigmask)
1938 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1939 	}
1940 
1941 	return ret;
1942 }
1943 
1944 #ifdef CONFIG_COMPAT
1945 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1946 		       compat_long_t, min_nr,
1947 		       compat_long_t, nr,
1948 		       struct io_event __user *, events,
1949 		       struct compat_timespec __user *, timeout)
1950 {
1951 	struct timespec64 t;
1952 	int ret;
1953 
1954 	if (timeout && compat_get_timespec64(&t, timeout))
1955 		return -EFAULT;
1956 
1957 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1958 	if (!ret && signal_pending(current))
1959 		ret = -EINTR;
1960 	return ret;
1961 }
1962 
1963 
1964 struct __compat_aio_sigset {
1965 	compat_sigset_t __user	*sigmask;
1966 	compat_size_t		sigsetsize;
1967 };
1968 
1969 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
1970 		compat_aio_context_t, ctx_id,
1971 		compat_long_t, min_nr,
1972 		compat_long_t, nr,
1973 		struct io_event __user *, events,
1974 		struct compat_timespec __user *, timeout,
1975 		const struct __compat_aio_sigset __user *, usig)
1976 {
1977 	struct __compat_aio_sigset ksig = { NULL, };
1978 	sigset_t ksigmask, sigsaved;
1979 	struct timespec64 t;
1980 	int ret;
1981 
1982 	if (timeout && compat_get_timespec64(&t, timeout))
1983 		return -EFAULT;
1984 
1985 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
1986 		return -EFAULT;
1987 
1988 	if (ksig.sigmask) {
1989 		if (ksig.sigsetsize != sizeof(compat_sigset_t))
1990 			return -EINVAL;
1991 		if (get_compat_sigset(&ksigmask, ksig.sigmask))
1992 			return -EFAULT;
1993 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1994 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1995 	}
1996 
1997 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1998 	if (signal_pending(current)) {
1999 		if (ksig.sigmask) {
2000 			current->saved_sigmask = sigsaved;
2001 			set_restore_sigmask();
2002 		}
2003 		if (!ret)
2004 			ret = -ERESTARTNOHAND;
2005 	} else {
2006 		if (ksig.sigmask)
2007 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2008 	}
2009 
2010 	return ret;
2011 }
2012 #endif
2013