1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 /* 116 * signals when all in-flight requests are done 117 */ 118 struct completion *requests_done; 119 120 struct { 121 /* 122 * This counts the number of available slots in the ringbuffer, 123 * so we avoid overflowing it: it's decremented (if positive) 124 * when allocating a kiocb and incremented when the resulting 125 * io_event is pulled off the ringbuffer. 126 * 127 * We batch accesses to it with a percpu version. 128 */ 129 atomic_t reqs_available; 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 spinlock_t ctx_lock; 134 struct list_head active_reqs; /* used for cancellation */ 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 struct mutex ring_lock; 139 wait_queue_head_t wait; 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 unsigned tail; 144 unsigned completed_events; 145 spinlock_t completion_lock; 146 } ____cacheline_aligned_in_smp; 147 148 struct page *internal_pages[AIO_RING_PAGES]; 149 struct file *aio_ring_file; 150 151 unsigned id; 152 }; 153 154 /*------ sysctl variables----*/ 155 static DEFINE_SPINLOCK(aio_nr_lock); 156 unsigned long aio_nr; /* current system wide number of aio requests */ 157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 158 /*----end sysctl variables---*/ 159 160 static struct kmem_cache *kiocb_cachep; 161 static struct kmem_cache *kioctx_cachep; 162 163 static struct vfsmount *aio_mnt; 164 165 static const struct file_operations aio_ring_fops; 166 static const struct address_space_operations aio_ctx_aops; 167 168 /* Backing dev info for aio fs. 169 * -no dirty page accounting or writeback happens 170 */ 171 static struct backing_dev_info aio_fs_backing_dev_info = { 172 .name = "aiofs", 173 .state = 0, 174 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_MAP_COPY, 175 }; 176 177 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 178 { 179 struct qstr this = QSTR_INIT("[aio]", 5); 180 struct file *file; 181 struct path path; 182 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 183 if (IS_ERR(inode)) 184 return ERR_CAST(inode); 185 186 inode->i_mapping->a_ops = &aio_ctx_aops; 187 inode->i_mapping->private_data = ctx; 188 inode->i_mapping->backing_dev_info = &aio_fs_backing_dev_info; 189 inode->i_size = PAGE_SIZE * nr_pages; 190 191 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 192 if (!path.dentry) { 193 iput(inode); 194 return ERR_PTR(-ENOMEM); 195 } 196 path.mnt = mntget(aio_mnt); 197 198 d_instantiate(path.dentry, inode); 199 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 200 if (IS_ERR(file)) { 201 path_put(&path); 202 return file; 203 } 204 205 file->f_flags = O_RDWR; 206 return file; 207 } 208 209 static struct dentry *aio_mount(struct file_system_type *fs_type, 210 int flags, const char *dev_name, void *data) 211 { 212 static const struct dentry_operations ops = { 213 .d_dname = simple_dname, 214 }; 215 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); 216 } 217 218 /* aio_setup 219 * Creates the slab caches used by the aio routines, panic on 220 * failure as this is done early during the boot sequence. 221 */ 222 static int __init aio_setup(void) 223 { 224 static struct file_system_type aio_fs = { 225 .name = "aio", 226 .mount = aio_mount, 227 .kill_sb = kill_anon_super, 228 }; 229 aio_mnt = kern_mount(&aio_fs); 230 if (IS_ERR(aio_mnt)) 231 panic("Failed to create aio fs mount."); 232 233 if (bdi_init(&aio_fs_backing_dev_info)) 234 panic("Failed to init aio fs backing dev info."); 235 236 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 237 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 238 239 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 240 241 return 0; 242 } 243 __initcall(aio_setup); 244 245 static void put_aio_ring_file(struct kioctx *ctx) 246 { 247 struct file *aio_ring_file = ctx->aio_ring_file; 248 if (aio_ring_file) { 249 truncate_setsize(aio_ring_file->f_inode, 0); 250 251 /* Prevent further access to the kioctx from migratepages */ 252 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 253 aio_ring_file->f_inode->i_mapping->private_data = NULL; 254 ctx->aio_ring_file = NULL; 255 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 256 257 fput(aio_ring_file); 258 } 259 } 260 261 static void aio_free_ring(struct kioctx *ctx) 262 { 263 int i; 264 265 /* Disconnect the kiotx from the ring file. This prevents future 266 * accesses to the kioctx from page migration. 267 */ 268 put_aio_ring_file(ctx); 269 270 for (i = 0; i < ctx->nr_pages; i++) { 271 struct page *page; 272 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 273 page_count(ctx->ring_pages[i])); 274 page = ctx->ring_pages[i]; 275 if (!page) 276 continue; 277 ctx->ring_pages[i] = NULL; 278 put_page(page); 279 } 280 281 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 282 kfree(ctx->ring_pages); 283 ctx->ring_pages = NULL; 284 } 285 } 286 287 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 288 { 289 vma->vm_ops = &generic_file_vm_ops; 290 return 0; 291 } 292 293 static const struct file_operations aio_ring_fops = { 294 .mmap = aio_ring_mmap, 295 }; 296 297 #if IS_ENABLED(CONFIG_MIGRATION) 298 static int aio_migratepage(struct address_space *mapping, struct page *new, 299 struct page *old, enum migrate_mode mode) 300 { 301 struct kioctx *ctx; 302 unsigned long flags; 303 pgoff_t idx; 304 int rc; 305 306 rc = 0; 307 308 /* mapping->private_lock here protects against the kioctx teardown. */ 309 spin_lock(&mapping->private_lock); 310 ctx = mapping->private_data; 311 if (!ctx) { 312 rc = -EINVAL; 313 goto out; 314 } 315 316 /* The ring_lock mutex. The prevents aio_read_events() from writing 317 * to the ring's head, and prevents page migration from mucking in 318 * a partially initialized kiotx. 319 */ 320 if (!mutex_trylock(&ctx->ring_lock)) { 321 rc = -EAGAIN; 322 goto out; 323 } 324 325 idx = old->index; 326 if (idx < (pgoff_t)ctx->nr_pages) { 327 /* Make sure the old page hasn't already been changed */ 328 if (ctx->ring_pages[idx] != old) 329 rc = -EAGAIN; 330 } else 331 rc = -EINVAL; 332 333 if (rc != 0) 334 goto out_unlock; 335 336 /* Writeback must be complete */ 337 BUG_ON(PageWriteback(old)); 338 get_page(new); 339 340 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 341 if (rc != MIGRATEPAGE_SUCCESS) { 342 put_page(new); 343 goto out_unlock; 344 } 345 346 /* Take completion_lock to prevent other writes to the ring buffer 347 * while the old page is copied to the new. This prevents new 348 * events from being lost. 349 */ 350 spin_lock_irqsave(&ctx->completion_lock, flags); 351 migrate_page_copy(new, old); 352 BUG_ON(ctx->ring_pages[idx] != old); 353 ctx->ring_pages[idx] = new; 354 spin_unlock_irqrestore(&ctx->completion_lock, flags); 355 356 /* The old page is no longer accessible. */ 357 put_page(old); 358 359 out_unlock: 360 mutex_unlock(&ctx->ring_lock); 361 out: 362 spin_unlock(&mapping->private_lock); 363 return rc; 364 } 365 #endif 366 367 static const struct address_space_operations aio_ctx_aops = { 368 .set_page_dirty = __set_page_dirty_no_writeback, 369 #if IS_ENABLED(CONFIG_MIGRATION) 370 .migratepage = aio_migratepage, 371 #endif 372 }; 373 374 static int aio_setup_ring(struct kioctx *ctx) 375 { 376 struct aio_ring *ring; 377 unsigned nr_events = ctx->max_reqs; 378 struct mm_struct *mm = current->mm; 379 unsigned long size, unused; 380 int nr_pages; 381 int i; 382 struct file *file; 383 384 /* Compensate for the ring buffer's head/tail overlap entry */ 385 nr_events += 2; /* 1 is required, 2 for good luck */ 386 387 size = sizeof(struct aio_ring); 388 size += sizeof(struct io_event) * nr_events; 389 390 nr_pages = PFN_UP(size); 391 if (nr_pages < 0) 392 return -EINVAL; 393 394 file = aio_private_file(ctx, nr_pages); 395 if (IS_ERR(file)) { 396 ctx->aio_ring_file = NULL; 397 return -ENOMEM; 398 } 399 400 ctx->aio_ring_file = file; 401 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 402 / sizeof(struct io_event); 403 404 ctx->ring_pages = ctx->internal_pages; 405 if (nr_pages > AIO_RING_PAGES) { 406 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 407 GFP_KERNEL); 408 if (!ctx->ring_pages) { 409 put_aio_ring_file(ctx); 410 return -ENOMEM; 411 } 412 } 413 414 for (i = 0; i < nr_pages; i++) { 415 struct page *page; 416 page = find_or_create_page(file->f_inode->i_mapping, 417 i, GFP_HIGHUSER | __GFP_ZERO); 418 if (!page) 419 break; 420 pr_debug("pid(%d) page[%d]->count=%d\n", 421 current->pid, i, page_count(page)); 422 SetPageUptodate(page); 423 unlock_page(page); 424 425 ctx->ring_pages[i] = page; 426 } 427 ctx->nr_pages = i; 428 429 if (unlikely(i != nr_pages)) { 430 aio_free_ring(ctx); 431 return -ENOMEM; 432 } 433 434 ctx->mmap_size = nr_pages * PAGE_SIZE; 435 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 436 437 down_write(&mm->mmap_sem); 438 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 439 PROT_READ | PROT_WRITE, 440 MAP_SHARED, 0, &unused); 441 up_write(&mm->mmap_sem); 442 if (IS_ERR((void *)ctx->mmap_base)) { 443 ctx->mmap_size = 0; 444 aio_free_ring(ctx); 445 return -ENOMEM; 446 } 447 448 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 449 450 ctx->user_id = ctx->mmap_base; 451 ctx->nr_events = nr_events; /* trusted copy */ 452 453 ring = kmap_atomic(ctx->ring_pages[0]); 454 ring->nr = nr_events; /* user copy */ 455 ring->id = ~0U; 456 ring->head = ring->tail = 0; 457 ring->magic = AIO_RING_MAGIC; 458 ring->compat_features = AIO_RING_COMPAT_FEATURES; 459 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 460 ring->header_length = sizeof(struct aio_ring); 461 kunmap_atomic(ring); 462 flush_dcache_page(ctx->ring_pages[0]); 463 464 return 0; 465 } 466 467 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 468 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 469 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 470 471 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 472 { 473 struct kioctx *ctx = req->ki_ctx; 474 unsigned long flags; 475 476 spin_lock_irqsave(&ctx->ctx_lock, flags); 477 478 if (!req->ki_list.next) 479 list_add(&req->ki_list, &ctx->active_reqs); 480 481 req->ki_cancel = cancel; 482 483 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 484 } 485 EXPORT_SYMBOL(kiocb_set_cancel_fn); 486 487 static int kiocb_cancel(struct kiocb *kiocb) 488 { 489 kiocb_cancel_fn *old, *cancel; 490 491 /* 492 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 493 * actually has a cancel function, hence the cmpxchg() 494 */ 495 496 cancel = ACCESS_ONCE(kiocb->ki_cancel); 497 do { 498 if (!cancel || cancel == KIOCB_CANCELLED) 499 return -EINVAL; 500 501 old = cancel; 502 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 503 } while (cancel != old); 504 505 return cancel(kiocb); 506 } 507 508 static void free_ioctx(struct work_struct *work) 509 { 510 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 511 512 pr_debug("freeing %p\n", ctx); 513 514 aio_free_ring(ctx); 515 free_percpu(ctx->cpu); 516 percpu_ref_exit(&ctx->reqs); 517 percpu_ref_exit(&ctx->users); 518 kmem_cache_free(kioctx_cachep, ctx); 519 } 520 521 static void free_ioctx_reqs(struct percpu_ref *ref) 522 { 523 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 524 525 /* At this point we know that there are no any in-flight requests */ 526 if (ctx->requests_done) 527 complete(ctx->requests_done); 528 529 INIT_WORK(&ctx->free_work, free_ioctx); 530 schedule_work(&ctx->free_work); 531 } 532 533 /* 534 * When this function runs, the kioctx has been removed from the "hash table" 535 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 536 * now it's safe to cancel any that need to be. 537 */ 538 static void free_ioctx_users(struct percpu_ref *ref) 539 { 540 struct kioctx *ctx = container_of(ref, struct kioctx, users); 541 struct kiocb *req; 542 543 spin_lock_irq(&ctx->ctx_lock); 544 545 while (!list_empty(&ctx->active_reqs)) { 546 req = list_first_entry(&ctx->active_reqs, 547 struct kiocb, ki_list); 548 549 list_del_init(&req->ki_list); 550 kiocb_cancel(req); 551 } 552 553 spin_unlock_irq(&ctx->ctx_lock); 554 555 percpu_ref_kill(&ctx->reqs); 556 percpu_ref_put(&ctx->reqs); 557 } 558 559 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 560 { 561 unsigned i, new_nr; 562 struct kioctx_table *table, *old; 563 struct aio_ring *ring; 564 565 spin_lock(&mm->ioctx_lock); 566 table = rcu_dereference_raw(mm->ioctx_table); 567 568 while (1) { 569 if (table) 570 for (i = 0; i < table->nr; i++) 571 if (!table->table[i]) { 572 ctx->id = i; 573 table->table[i] = ctx; 574 spin_unlock(&mm->ioctx_lock); 575 576 /* While kioctx setup is in progress, 577 * we are protected from page migration 578 * changes ring_pages by ->ring_lock. 579 */ 580 ring = kmap_atomic(ctx->ring_pages[0]); 581 ring->id = ctx->id; 582 kunmap_atomic(ring); 583 return 0; 584 } 585 586 new_nr = (table ? table->nr : 1) * 4; 587 spin_unlock(&mm->ioctx_lock); 588 589 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 590 new_nr, GFP_KERNEL); 591 if (!table) 592 return -ENOMEM; 593 594 table->nr = new_nr; 595 596 spin_lock(&mm->ioctx_lock); 597 old = rcu_dereference_raw(mm->ioctx_table); 598 599 if (!old) { 600 rcu_assign_pointer(mm->ioctx_table, table); 601 } else if (table->nr > old->nr) { 602 memcpy(table->table, old->table, 603 old->nr * sizeof(struct kioctx *)); 604 605 rcu_assign_pointer(mm->ioctx_table, table); 606 kfree_rcu(old, rcu); 607 } else { 608 kfree(table); 609 table = old; 610 } 611 } 612 } 613 614 static void aio_nr_sub(unsigned nr) 615 { 616 spin_lock(&aio_nr_lock); 617 if (WARN_ON(aio_nr - nr > aio_nr)) 618 aio_nr = 0; 619 else 620 aio_nr -= nr; 621 spin_unlock(&aio_nr_lock); 622 } 623 624 /* ioctx_alloc 625 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 626 */ 627 static struct kioctx *ioctx_alloc(unsigned nr_events) 628 { 629 struct mm_struct *mm = current->mm; 630 struct kioctx *ctx; 631 int err = -ENOMEM; 632 633 /* 634 * We keep track of the number of available ringbuffer slots, to prevent 635 * overflow (reqs_available), and we also use percpu counters for this. 636 * 637 * So since up to half the slots might be on other cpu's percpu counters 638 * and unavailable, double nr_events so userspace sees what they 639 * expected: additionally, we move req_batch slots to/from percpu 640 * counters at a time, so make sure that isn't 0: 641 */ 642 nr_events = max(nr_events, num_possible_cpus() * 4); 643 nr_events *= 2; 644 645 /* Prevent overflows */ 646 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 647 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 648 pr_debug("ENOMEM: nr_events too high\n"); 649 return ERR_PTR(-EINVAL); 650 } 651 652 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 653 return ERR_PTR(-EAGAIN); 654 655 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 656 if (!ctx) 657 return ERR_PTR(-ENOMEM); 658 659 ctx->max_reqs = nr_events; 660 661 spin_lock_init(&ctx->ctx_lock); 662 spin_lock_init(&ctx->completion_lock); 663 mutex_init(&ctx->ring_lock); 664 /* Protect against page migration throughout kiotx setup by keeping 665 * the ring_lock mutex held until setup is complete. */ 666 mutex_lock(&ctx->ring_lock); 667 init_waitqueue_head(&ctx->wait); 668 669 INIT_LIST_HEAD(&ctx->active_reqs); 670 671 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 672 goto err; 673 674 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 675 goto err; 676 677 ctx->cpu = alloc_percpu(struct kioctx_cpu); 678 if (!ctx->cpu) 679 goto err; 680 681 err = aio_setup_ring(ctx); 682 if (err < 0) 683 goto err; 684 685 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 686 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 687 if (ctx->req_batch < 1) 688 ctx->req_batch = 1; 689 690 /* limit the number of system wide aios */ 691 spin_lock(&aio_nr_lock); 692 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 693 aio_nr + nr_events < aio_nr) { 694 spin_unlock(&aio_nr_lock); 695 err = -EAGAIN; 696 goto err_ctx; 697 } 698 aio_nr += ctx->max_reqs; 699 spin_unlock(&aio_nr_lock); 700 701 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 702 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 703 704 err = ioctx_add_table(ctx, mm); 705 if (err) 706 goto err_cleanup; 707 708 /* Release the ring_lock mutex now that all setup is complete. */ 709 mutex_unlock(&ctx->ring_lock); 710 711 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 712 ctx, ctx->user_id, mm, ctx->nr_events); 713 return ctx; 714 715 err_cleanup: 716 aio_nr_sub(ctx->max_reqs); 717 err_ctx: 718 aio_free_ring(ctx); 719 err: 720 mutex_unlock(&ctx->ring_lock); 721 free_percpu(ctx->cpu); 722 percpu_ref_exit(&ctx->reqs); 723 percpu_ref_exit(&ctx->users); 724 kmem_cache_free(kioctx_cachep, ctx); 725 pr_debug("error allocating ioctx %d\n", err); 726 return ERR_PTR(err); 727 } 728 729 /* kill_ioctx 730 * Cancels all outstanding aio requests on an aio context. Used 731 * when the processes owning a context have all exited to encourage 732 * the rapid destruction of the kioctx. 733 */ 734 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 735 struct completion *requests_done) 736 { 737 struct kioctx_table *table; 738 739 if (atomic_xchg(&ctx->dead, 1)) 740 return -EINVAL; 741 742 743 spin_lock(&mm->ioctx_lock); 744 table = rcu_dereference_raw(mm->ioctx_table); 745 WARN_ON(ctx != table->table[ctx->id]); 746 table->table[ctx->id] = NULL; 747 spin_unlock(&mm->ioctx_lock); 748 749 /* percpu_ref_kill() will do the necessary call_rcu() */ 750 wake_up_all(&ctx->wait); 751 752 /* 753 * It'd be more correct to do this in free_ioctx(), after all 754 * the outstanding kiocbs have finished - but by then io_destroy 755 * has already returned, so io_setup() could potentially return 756 * -EAGAIN with no ioctxs actually in use (as far as userspace 757 * could tell). 758 */ 759 aio_nr_sub(ctx->max_reqs); 760 761 if (ctx->mmap_size) 762 vm_munmap(ctx->mmap_base, ctx->mmap_size); 763 764 ctx->requests_done = requests_done; 765 percpu_ref_kill(&ctx->users); 766 return 0; 767 } 768 769 /* wait_on_sync_kiocb: 770 * Waits on the given sync kiocb to complete. 771 */ 772 ssize_t wait_on_sync_kiocb(struct kiocb *req) 773 { 774 while (!req->ki_ctx) { 775 set_current_state(TASK_UNINTERRUPTIBLE); 776 if (req->ki_ctx) 777 break; 778 io_schedule(); 779 } 780 __set_current_state(TASK_RUNNING); 781 return req->ki_user_data; 782 } 783 EXPORT_SYMBOL(wait_on_sync_kiocb); 784 785 /* 786 * exit_aio: called when the last user of mm goes away. At this point, there is 787 * no way for any new requests to be submited or any of the io_* syscalls to be 788 * called on the context. 789 * 790 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 791 * them. 792 */ 793 void exit_aio(struct mm_struct *mm) 794 { 795 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 796 int i; 797 798 if (!table) 799 return; 800 801 for (i = 0; i < table->nr; ++i) { 802 struct kioctx *ctx = table->table[i]; 803 struct completion requests_done = 804 COMPLETION_INITIALIZER_ONSTACK(requests_done); 805 806 if (!ctx) 807 continue; 808 /* 809 * We don't need to bother with munmap() here - exit_mmap(mm) 810 * is coming and it'll unmap everything. And we simply can't, 811 * this is not necessarily our ->mm. 812 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 813 * that it needs to unmap the area, just set it to 0. 814 */ 815 ctx->mmap_size = 0; 816 kill_ioctx(mm, ctx, &requests_done); 817 818 /* Wait until all IO for the context are done. */ 819 wait_for_completion(&requests_done); 820 } 821 822 RCU_INIT_POINTER(mm->ioctx_table, NULL); 823 kfree(table); 824 } 825 826 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 827 { 828 struct kioctx_cpu *kcpu; 829 unsigned long flags; 830 831 local_irq_save(flags); 832 kcpu = this_cpu_ptr(ctx->cpu); 833 kcpu->reqs_available += nr; 834 835 while (kcpu->reqs_available >= ctx->req_batch * 2) { 836 kcpu->reqs_available -= ctx->req_batch; 837 atomic_add(ctx->req_batch, &ctx->reqs_available); 838 } 839 840 local_irq_restore(flags); 841 } 842 843 static bool get_reqs_available(struct kioctx *ctx) 844 { 845 struct kioctx_cpu *kcpu; 846 bool ret = false; 847 unsigned long flags; 848 849 local_irq_save(flags); 850 kcpu = this_cpu_ptr(ctx->cpu); 851 if (!kcpu->reqs_available) { 852 int old, avail = atomic_read(&ctx->reqs_available); 853 854 do { 855 if (avail < ctx->req_batch) 856 goto out; 857 858 old = avail; 859 avail = atomic_cmpxchg(&ctx->reqs_available, 860 avail, avail - ctx->req_batch); 861 } while (avail != old); 862 863 kcpu->reqs_available += ctx->req_batch; 864 } 865 866 ret = true; 867 kcpu->reqs_available--; 868 out: 869 local_irq_restore(flags); 870 return ret; 871 } 872 873 /* refill_reqs_available 874 * Updates the reqs_available reference counts used for tracking the 875 * number of free slots in the completion ring. This can be called 876 * from aio_complete() (to optimistically update reqs_available) or 877 * from aio_get_req() (the we're out of events case). It must be 878 * called holding ctx->completion_lock. 879 */ 880 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 881 unsigned tail) 882 { 883 unsigned events_in_ring, completed; 884 885 /* Clamp head since userland can write to it. */ 886 head %= ctx->nr_events; 887 if (head <= tail) 888 events_in_ring = tail - head; 889 else 890 events_in_ring = ctx->nr_events - (head - tail); 891 892 completed = ctx->completed_events; 893 if (events_in_ring < completed) 894 completed -= events_in_ring; 895 else 896 completed = 0; 897 898 if (!completed) 899 return; 900 901 ctx->completed_events -= completed; 902 put_reqs_available(ctx, completed); 903 } 904 905 /* user_refill_reqs_available 906 * Called to refill reqs_available when aio_get_req() encounters an 907 * out of space in the completion ring. 908 */ 909 static void user_refill_reqs_available(struct kioctx *ctx) 910 { 911 spin_lock_irq(&ctx->completion_lock); 912 if (ctx->completed_events) { 913 struct aio_ring *ring; 914 unsigned head; 915 916 /* Access of ring->head may race with aio_read_events_ring() 917 * here, but that's okay since whether we read the old version 918 * or the new version, and either will be valid. The important 919 * part is that head cannot pass tail since we prevent 920 * aio_complete() from updating tail by holding 921 * ctx->completion_lock. Even if head is invalid, the check 922 * against ctx->completed_events below will make sure we do the 923 * safe/right thing. 924 */ 925 ring = kmap_atomic(ctx->ring_pages[0]); 926 head = ring->head; 927 kunmap_atomic(ring); 928 929 refill_reqs_available(ctx, head, ctx->tail); 930 } 931 932 spin_unlock_irq(&ctx->completion_lock); 933 } 934 935 /* aio_get_req 936 * Allocate a slot for an aio request. 937 * Returns NULL if no requests are free. 938 */ 939 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 940 { 941 struct kiocb *req; 942 943 if (!get_reqs_available(ctx)) { 944 user_refill_reqs_available(ctx); 945 if (!get_reqs_available(ctx)) 946 return NULL; 947 } 948 949 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 950 if (unlikely(!req)) 951 goto out_put; 952 953 percpu_ref_get(&ctx->reqs); 954 955 req->ki_ctx = ctx; 956 return req; 957 out_put: 958 put_reqs_available(ctx, 1); 959 return NULL; 960 } 961 962 static void kiocb_free(struct kiocb *req) 963 { 964 if (req->ki_filp) 965 fput(req->ki_filp); 966 if (req->ki_eventfd != NULL) 967 eventfd_ctx_put(req->ki_eventfd); 968 kmem_cache_free(kiocb_cachep, req); 969 } 970 971 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 972 { 973 struct aio_ring __user *ring = (void __user *)ctx_id; 974 struct mm_struct *mm = current->mm; 975 struct kioctx *ctx, *ret = NULL; 976 struct kioctx_table *table; 977 unsigned id; 978 979 if (get_user(id, &ring->id)) 980 return NULL; 981 982 rcu_read_lock(); 983 table = rcu_dereference(mm->ioctx_table); 984 985 if (!table || id >= table->nr) 986 goto out; 987 988 ctx = table->table[id]; 989 if (ctx && ctx->user_id == ctx_id) { 990 percpu_ref_get(&ctx->users); 991 ret = ctx; 992 } 993 out: 994 rcu_read_unlock(); 995 return ret; 996 } 997 998 /* aio_complete 999 * Called when the io request on the given iocb is complete. 1000 */ 1001 void aio_complete(struct kiocb *iocb, long res, long res2) 1002 { 1003 struct kioctx *ctx = iocb->ki_ctx; 1004 struct aio_ring *ring; 1005 struct io_event *ev_page, *event; 1006 unsigned tail, pos, head; 1007 unsigned long flags; 1008 1009 /* 1010 * Special case handling for sync iocbs: 1011 * - events go directly into the iocb for fast handling 1012 * - the sync task with the iocb in its stack holds the single iocb 1013 * ref, no other paths have a way to get another ref 1014 * - the sync task helpfully left a reference to itself in the iocb 1015 */ 1016 if (is_sync_kiocb(iocb)) { 1017 iocb->ki_user_data = res; 1018 smp_wmb(); 1019 iocb->ki_ctx = ERR_PTR(-EXDEV); 1020 wake_up_process(iocb->ki_obj.tsk); 1021 return; 1022 } 1023 1024 if (iocb->ki_list.next) { 1025 unsigned long flags; 1026 1027 spin_lock_irqsave(&ctx->ctx_lock, flags); 1028 list_del(&iocb->ki_list); 1029 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1030 } 1031 1032 /* 1033 * Add a completion event to the ring buffer. Must be done holding 1034 * ctx->completion_lock to prevent other code from messing with the tail 1035 * pointer since we might be called from irq context. 1036 */ 1037 spin_lock_irqsave(&ctx->completion_lock, flags); 1038 1039 tail = ctx->tail; 1040 pos = tail + AIO_EVENTS_OFFSET; 1041 1042 if (++tail >= ctx->nr_events) 1043 tail = 0; 1044 1045 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1046 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1047 1048 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 1049 event->data = iocb->ki_user_data; 1050 event->res = res; 1051 event->res2 = res2; 1052 1053 kunmap_atomic(ev_page); 1054 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1055 1056 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1057 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1058 res, res2); 1059 1060 /* after flagging the request as done, we 1061 * must never even look at it again 1062 */ 1063 smp_wmb(); /* make event visible before updating tail */ 1064 1065 ctx->tail = tail; 1066 1067 ring = kmap_atomic(ctx->ring_pages[0]); 1068 head = ring->head; 1069 ring->tail = tail; 1070 kunmap_atomic(ring); 1071 flush_dcache_page(ctx->ring_pages[0]); 1072 1073 ctx->completed_events++; 1074 if (ctx->completed_events > 1) 1075 refill_reqs_available(ctx, head, tail); 1076 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1077 1078 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1079 1080 /* 1081 * Check if the user asked us to deliver the result through an 1082 * eventfd. The eventfd_signal() function is safe to be called 1083 * from IRQ context. 1084 */ 1085 if (iocb->ki_eventfd != NULL) 1086 eventfd_signal(iocb->ki_eventfd, 1); 1087 1088 /* everything turned out well, dispose of the aiocb. */ 1089 kiocb_free(iocb); 1090 1091 /* 1092 * We have to order our ring_info tail store above and test 1093 * of the wait list below outside the wait lock. This is 1094 * like in wake_up_bit() where clearing a bit has to be 1095 * ordered with the unlocked test. 1096 */ 1097 smp_mb(); 1098 1099 if (waitqueue_active(&ctx->wait)) 1100 wake_up(&ctx->wait); 1101 1102 percpu_ref_put(&ctx->reqs); 1103 } 1104 EXPORT_SYMBOL(aio_complete); 1105 1106 /* aio_read_events_ring 1107 * Pull an event off of the ioctx's event ring. Returns the number of 1108 * events fetched 1109 */ 1110 static long aio_read_events_ring(struct kioctx *ctx, 1111 struct io_event __user *event, long nr) 1112 { 1113 struct aio_ring *ring; 1114 unsigned head, tail, pos; 1115 long ret = 0; 1116 int copy_ret; 1117 1118 mutex_lock(&ctx->ring_lock); 1119 1120 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1121 ring = kmap_atomic(ctx->ring_pages[0]); 1122 head = ring->head; 1123 tail = ring->tail; 1124 kunmap_atomic(ring); 1125 1126 /* 1127 * Ensure that once we've read the current tail pointer, that 1128 * we also see the events that were stored up to the tail. 1129 */ 1130 smp_rmb(); 1131 1132 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1133 1134 if (head == tail) 1135 goto out; 1136 1137 head %= ctx->nr_events; 1138 tail %= ctx->nr_events; 1139 1140 while (ret < nr) { 1141 long avail; 1142 struct io_event *ev; 1143 struct page *page; 1144 1145 avail = (head <= tail ? tail : ctx->nr_events) - head; 1146 if (head == tail) 1147 break; 1148 1149 avail = min(avail, nr - ret); 1150 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1151 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1152 1153 pos = head + AIO_EVENTS_OFFSET; 1154 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1155 pos %= AIO_EVENTS_PER_PAGE; 1156 1157 ev = kmap(page); 1158 copy_ret = copy_to_user(event + ret, ev + pos, 1159 sizeof(*ev) * avail); 1160 kunmap(page); 1161 1162 if (unlikely(copy_ret)) { 1163 ret = -EFAULT; 1164 goto out; 1165 } 1166 1167 ret += avail; 1168 head += avail; 1169 head %= ctx->nr_events; 1170 } 1171 1172 ring = kmap_atomic(ctx->ring_pages[0]); 1173 ring->head = head; 1174 kunmap_atomic(ring); 1175 flush_dcache_page(ctx->ring_pages[0]); 1176 1177 pr_debug("%li h%u t%u\n", ret, head, tail); 1178 out: 1179 mutex_unlock(&ctx->ring_lock); 1180 1181 return ret; 1182 } 1183 1184 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1185 struct io_event __user *event, long *i) 1186 { 1187 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1188 1189 if (ret > 0) 1190 *i += ret; 1191 1192 if (unlikely(atomic_read(&ctx->dead))) 1193 ret = -EINVAL; 1194 1195 if (!*i) 1196 *i = ret; 1197 1198 return ret < 0 || *i >= min_nr; 1199 } 1200 1201 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1202 struct io_event __user *event, 1203 struct timespec __user *timeout) 1204 { 1205 ktime_t until = { .tv64 = KTIME_MAX }; 1206 long ret = 0; 1207 1208 if (timeout) { 1209 struct timespec ts; 1210 1211 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1212 return -EFAULT; 1213 1214 until = timespec_to_ktime(ts); 1215 } 1216 1217 /* 1218 * Note that aio_read_events() is being called as the conditional - i.e. 1219 * we're calling it after prepare_to_wait() has set task state to 1220 * TASK_INTERRUPTIBLE. 1221 * 1222 * But aio_read_events() can block, and if it blocks it's going to flip 1223 * the task state back to TASK_RUNNING. 1224 * 1225 * This should be ok, provided it doesn't flip the state back to 1226 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1227 * will only happen if the mutex_lock() call blocks, and we then find 1228 * the ringbuffer empty. So in practice we should be ok, but it's 1229 * something to be aware of when touching this code. 1230 */ 1231 wait_event_interruptible_hrtimeout(ctx->wait, 1232 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1233 1234 if (!ret && signal_pending(current)) 1235 ret = -EINTR; 1236 1237 return ret; 1238 } 1239 1240 /* sys_io_setup: 1241 * Create an aio_context capable of receiving at least nr_events. 1242 * ctxp must not point to an aio_context that already exists, and 1243 * must be initialized to 0 prior to the call. On successful 1244 * creation of the aio_context, *ctxp is filled in with the resulting 1245 * handle. May fail with -EINVAL if *ctxp is not initialized, 1246 * if the specified nr_events exceeds internal limits. May fail 1247 * with -EAGAIN if the specified nr_events exceeds the user's limit 1248 * of available events. May fail with -ENOMEM if insufficient kernel 1249 * resources are available. May fail with -EFAULT if an invalid 1250 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1251 * implemented. 1252 */ 1253 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1254 { 1255 struct kioctx *ioctx = NULL; 1256 unsigned long ctx; 1257 long ret; 1258 1259 ret = get_user(ctx, ctxp); 1260 if (unlikely(ret)) 1261 goto out; 1262 1263 ret = -EINVAL; 1264 if (unlikely(ctx || nr_events == 0)) { 1265 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1266 ctx, nr_events); 1267 goto out; 1268 } 1269 1270 ioctx = ioctx_alloc(nr_events); 1271 ret = PTR_ERR(ioctx); 1272 if (!IS_ERR(ioctx)) { 1273 ret = put_user(ioctx->user_id, ctxp); 1274 if (ret) 1275 kill_ioctx(current->mm, ioctx, NULL); 1276 percpu_ref_put(&ioctx->users); 1277 } 1278 1279 out: 1280 return ret; 1281 } 1282 1283 /* sys_io_destroy: 1284 * Destroy the aio_context specified. May cancel any outstanding 1285 * AIOs and block on completion. Will fail with -ENOSYS if not 1286 * implemented. May fail with -EINVAL if the context pointed to 1287 * is invalid. 1288 */ 1289 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1290 { 1291 struct kioctx *ioctx = lookup_ioctx(ctx); 1292 if (likely(NULL != ioctx)) { 1293 struct completion requests_done = 1294 COMPLETION_INITIALIZER_ONSTACK(requests_done); 1295 int ret; 1296 1297 /* Pass requests_done to kill_ioctx() where it can be set 1298 * in a thread-safe way. If we try to set it here then we have 1299 * a race condition if two io_destroy() called simultaneously. 1300 */ 1301 ret = kill_ioctx(current->mm, ioctx, &requests_done); 1302 percpu_ref_put(&ioctx->users); 1303 1304 /* Wait until all IO for the context are done. Otherwise kernel 1305 * keep using user-space buffers even if user thinks the context 1306 * is destroyed. 1307 */ 1308 if (!ret) 1309 wait_for_completion(&requests_done); 1310 1311 return ret; 1312 } 1313 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1314 return -EINVAL; 1315 } 1316 1317 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1318 unsigned long, loff_t); 1319 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1320 1321 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1322 int rw, char __user *buf, 1323 unsigned long *nr_segs, 1324 struct iovec **iovec, 1325 bool compat) 1326 { 1327 ssize_t ret; 1328 1329 *nr_segs = kiocb->ki_nbytes; 1330 1331 #ifdef CONFIG_COMPAT 1332 if (compat) 1333 ret = compat_rw_copy_check_uvector(rw, 1334 (struct compat_iovec __user *)buf, 1335 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1336 else 1337 #endif 1338 ret = rw_copy_check_uvector(rw, 1339 (struct iovec __user *)buf, 1340 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1341 if (ret < 0) 1342 return ret; 1343 1344 /* ki_nbytes now reflect bytes instead of segs */ 1345 kiocb->ki_nbytes = ret; 1346 return 0; 1347 } 1348 1349 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1350 int rw, char __user *buf, 1351 unsigned long *nr_segs, 1352 struct iovec *iovec) 1353 { 1354 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1355 return -EFAULT; 1356 1357 iovec->iov_base = buf; 1358 iovec->iov_len = kiocb->ki_nbytes; 1359 *nr_segs = 1; 1360 return 0; 1361 } 1362 1363 /* 1364 * aio_run_iocb: 1365 * Performs the initial checks and io submission. 1366 */ 1367 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1368 char __user *buf, bool compat) 1369 { 1370 struct file *file = req->ki_filp; 1371 ssize_t ret; 1372 unsigned long nr_segs; 1373 int rw; 1374 fmode_t mode; 1375 aio_rw_op *rw_op; 1376 rw_iter_op *iter_op; 1377 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1378 struct iov_iter iter; 1379 1380 switch (opcode) { 1381 case IOCB_CMD_PREAD: 1382 case IOCB_CMD_PREADV: 1383 mode = FMODE_READ; 1384 rw = READ; 1385 rw_op = file->f_op->aio_read; 1386 iter_op = file->f_op->read_iter; 1387 goto rw_common; 1388 1389 case IOCB_CMD_PWRITE: 1390 case IOCB_CMD_PWRITEV: 1391 mode = FMODE_WRITE; 1392 rw = WRITE; 1393 rw_op = file->f_op->aio_write; 1394 iter_op = file->f_op->write_iter; 1395 goto rw_common; 1396 rw_common: 1397 if (unlikely(!(file->f_mode & mode))) 1398 return -EBADF; 1399 1400 if (!rw_op && !iter_op) 1401 return -EINVAL; 1402 1403 ret = (opcode == IOCB_CMD_PREADV || 1404 opcode == IOCB_CMD_PWRITEV) 1405 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1406 &iovec, compat) 1407 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1408 iovec); 1409 if (!ret) 1410 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1411 if (ret < 0) { 1412 if (iovec != inline_vecs) 1413 kfree(iovec); 1414 return ret; 1415 } 1416 1417 req->ki_nbytes = ret; 1418 1419 /* XXX: move/kill - rw_verify_area()? */ 1420 /* This matches the pread()/pwrite() logic */ 1421 if (req->ki_pos < 0) { 1422 ret = -EINVAL; 1423 break; 1424 } 1425 1426 if (rw == WRITE) 1427 file_start_write(file); 1428 1429 if (iter_op) { 1430 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes); 1431 ret = iter_op(req, &iter); 1432 } else { 1433 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1434 } 1435 1436 if (rw == WRITE) 1437 file_end_write(file); 1438 break; 1439 1440 case IOCB_CMD_FDSYNC: 1441 if (!file->f_op->aio_fsync) 1442 return -EINVAL; 1443 1444 ret = file->f_op->aio_fsync(req, 1); 1445 break; 1446 1447 case IOCB_CMD_FSYNC: 1448 if (!file->f_op->aio_fsync) 1449 return -EINVAL; 1450 1451 ret = file->f_op->aio_fsync(req, 0); 1452 break; 1453 1454 default: 1455 pr_debug("EINVAL: no operation provided\n"); 1456 return -EINVAL; 1457 } 1458 1459 if (iovec != inline_vecs) 1460 kfree(iovec); 1461 1462 if (ret != -EIOCBQUEUED) { 1463 /* 1464 * There's no easy way to restart the syscall since other AIO's 1465 * may be already running. Just fail this IO with EINTR. 1466 */ 1467 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1468 ret == -ERESTARTNOHAND || 1469 ret == -ERESTART_RESTARTBLOCK)) 1470 ret = -EINTR; 1471 aio_complete(req, ret, 0); 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1478 struct iocb *iocb, bool compat) 1479 { 1480 struct kiocb *req; 1481 ssize_t ret; 1482 1483 /* enforce forwards compatibility on users */ 1484 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1485 pr_debug("EINVAL: reserve field set\n"); 1486 return -EINVAL; 1487 } 1488 1489 /* prevent overflows */ 1490 if (unlikely( 1491 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1492 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1493 ((ssize_t)iocb->aio_nbytes < 0) 1494 )) { 1495 pr_debug("EINVAL: io_submit: overflow check\n"); 1496 return -EINVAL; 1497 } 1498 1499 req = aio_get_req(ctx); 1500 if (unlikely(!req)) 1501 return -EAGAIN; 1502 1503 req->ki_filp = fget(iocb->aio_fildes); 1504 if (unlikely(!req->ki_filp)) { 1505 ret = -EBADF; 1506 goto out_put_req; 1507 } 1508 1509 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1510 /* 1511 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1512 * instance of the file* now. The file descriptor must be 1513 * an eventfd() fd, and will be signaled for each completed 1514 * event using the eventfd_signal() function. 1515 */ 1516 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1517 if (IS_ERR(req->ki_eventfd)) { 1518 ret = PTR_ERR(req->ki_eventfd); 1519 req->ki_eventfd = NULL; 1520 goto out_put_req; 1521 } 1522 } 1523 1524 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1525 if (unlikely(ret)) { 1526 pr_debug("EFAULT: aio_key\n"); 1527 goto out_put_req; 1528 } 1529 1530 req->ki_obj.user = user_iocb; 1531 req->ki_user_data = iocb->aio_data; 1532 req->ki_pos = iocb->aio_offset; 1533 req->ki_nbytes = iocb->aio_nbytes; 1534 1535 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1536 (char __user *)(unsigned long)iocb->aio_buf, 1537 compat); 1538 if (ret) 1539 goto out_put_req; 1540 1541 return 0; 1542 out_put_req: 1543 put_reqs_available(ctx, 1); 1544 percpu_ref_put(&ctx->reqs); 1545 kiocb_free(req); 1546 return ret; 1547 } 1548 1549 long do_io_submit(aio_context_t ctx_id, long nr, 1550 struct iocb __user *__user *iocbpp, bool compat) 1551 { 1552 struct kioctx *ctx; 1553 long ret = 0; 1554 int i = 0; 1555 struct blk_plug plug; 1556 1557 if (unlikely(nr < 0)) 1558 return -EINVAL; 1559 1560 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1561 nr = LONG_MAX/sizeof(*iocbpp); 1562 1563 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1564 return -EFAULT; 1565 1566 ctx = lookup_ioctx(ctx_id); 1567 if (unlikely(!ctx)) { 1568 pr_debug("EINVAL: invalid context id\n"); 1569 return -EINVAL; 1570 } 1571 1572 blk_start_plug(&plug); 1573 1574 /* 1575 * AKPM: should this return a partial result if some of the IOs were 1576 * successfully submitted? 1577 */ 1578 for (i=0; i<nr; i++) { 1579 struct iocb __user *user_iocb; 1580 struct iocb tmp; 1581 1582 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1583 ret = -EFAULT; 1584 break; 1585 } 1586 1587 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1588 ret = -EFAULT; 1589 break; 1590 } 1591 1592 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1593 if (ret) 1594 break; 1595 } 1596 blk_finish_plug(&plug); 1597 1598 percpu_ref_put(&ctx->users); 1599 return i ? i : ret; 1600 } 1601 1602 /* sys_io_submit: 1603 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1604 * the number of iocbs queued. May return -EINVAL if the aio_context 1605 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1606 * *iocbpp[0] is not properly initialized, if the operation specified 1607 * is invalid for the file descriptor in the iocb. May fail with 1608 * -EFAULT if any of the data structures point to invalid data. May 1609 * fail with -EBADF if the file descriptor specified in the first 1610 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1611 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1612 * fail with -ENOSYS if not implemented. 1613 */ 1614 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1615 struct iocb __user * __user *, iocbpp) 1616 { 1617 return do_io_submit(ctx_id, nr, iocbpp, 0); 1618 } 1619 1620 /* lookup_kiocb 1621 * Finds a given iocb for cancellation. 1622 */ 1623 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1624 u32 key) 1625 { 1626 struct list_head *pos; 1627 1628 assert_spin_locked(&ctx->ctx_lock); 1629 1630 if (key != KIOCB_KEY) 1631 return NULL; 1632 1633 /* TODO: use a hash or array, this sucks. */ 1634 list_for_each(pos, &ctx->active_reqs) { 1635 struct kiocb *kiocb = list_kiocb(pos); 1636 if (kiocb->ki_obj.user == iocb) 1637 return kiocb; 1638 } 1639 return NULL; 1640 } 1641 1642 /* sys_io_cancel: 1643 * Attempts to cancel an iocb previously passed to io_submit. If 1644 * the operation is successfully cancelled, the resulting event is 1645 * copied into the memory pointed to by result without being placed 1646 * into the completion queue and 0 is returned. May fail with 1647 * -EFAULT if any of the data structures pointed to are invalid. 1648 * May fail with -EINVAL if aio_context specified by ctx_id is 1649 * invalid. May fail with -EAGAIN if the iocb specified was not 1650 * cancelled. Will fail with -ENOSYS if not implemented. 1651 */ 1652 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1653 struct io_event __user *, result) 1654 { 1655 struct kioctx *ctx; 1656 struct kiocb *kiocb; 1657 u32 key; 1658 int ret; 1659 1660 ret = get_user(key, &iocb->aio_key); 1661 if (unlikely(ret)) 1662 return -EFAULT; 1663 1664 ctx = lookup_ioctx(ctx_id); 1665 if (unlikely(!ctx)) 1666 return -EINVAL; 1667 1668 spin_lock_irq(&ctx->ctx_lock); 1669 1670 kiocb = lookup_kiocb(ctx, iocb, key); 1671 if (kiocb) 1672 ret = kiocb_cancel(kiocb); 1673 else 1674 ret = -EINVAL; 1675 1676 spin_unlock_irq(&ctx->ctx_lock); 1677 1678 if (!ret) { 1679 /* 1680 * The result argument is no longer used - the io_event is 1681 * always delivered via the ring buffer. -EINPROGRESS indicates 1682 * cancellation is progress: 1683 */ 1684 ret = -EINPROGRESS; 1685 } 1686 1687 percpu_ref_put(&ctx->users); 1688 1689 return ret; 1690 } 1691 1692 /* io_getevents: 1693 * Attempts to read at least min_nr events and up to nr events from 1694 * the completion queue for the aio_context specified by ctx_id. If 1695 * it succeeds, the number of read events is returned. May fail with 1696 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1697 * out of range, if timeout is out of range. May fail with -EFAULT 1698 * if any of the memory specified is invalid. May return 0 or 1699 * < min_nr if the timeout specified by timeout has elapsed 1700 * before sufficient events are available, where timeout == NULL 1701 * specifies an infinite timeout. Note that the timeout pointed to by 1702 * timeout is relative. Will fail with -ENOSYS if not implemented. 1703 */ 1704 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1705 long, min_nr, 1706 long, nr, 1707 struct io_event __user *, events, 1708 struct timespec __user *, timeout) 1709 { 1710 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1711 long ret = -EINVAL; 1712 1713 if (likely(ioctx)) { 1714 if (likely(min_nr <= nr && min_nr >= 0)) 1715 ret = read_events(ioctx, min_nr, nr, events, timeout); 1716 percpu_ref_put(&ioctx->users); 1717 } 1718 return ret; 1719 } 1720