xref: /openbmc/linux/fs/aio.c (revision b9dd2add)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			done;
185 	bool			cancelled;
186 	struct wait_queue_entry	wait;
187 	struct work_struct	work;
188 };
189 
190 /*
191  * NOTE! Each of the iocb union members has the file pointer
192  * as the first entry in their struct definition. So you can
193  * access the file pointer through any of the sub-structs,
194  * or directly as just 'ki_filp' in this struct.
195  */
196 struct aio_kiocb {
197 	union {
198 		struct file		*ki_filp;
199 		struct kiocb		rw;
200 		struct fsync_iocb	fsync;
201 		struct poll_iocb	poll;
202 	};
203 
204 	struct kioctx		*ki_ctx;
205 	kiocb_cancel_fn		*ki_cancel;
206 
207 	struct io_event		ki_res;
208 
209 	struct list_head	ki_list;	/* the aio core uses this
210 						 * for cancellation */
211 	refcount_t		ki_refcnt;
212 
213 	/*
214 	 * If the aio_resfd field of the userspace iocb is not zero,
215 	 * this is the underlying eventfd context to deliver events to.
216 	 */
217 	struct eventfd_ctx	*ki_eventfd;
218 };
219 
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock);
222 unsigned long aio_nr;		/* current system wide number of aio requests */
223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
225 
226 static struct kmem_cache	*kiocb_cachep;
227 static struct kmem_cache	*kioctx_cachep;
228 
229 static struct vfsmount *aio_mnt;
230 
231 static const struct file_operations aio_ring_fops;
232 static const struct address_space_operations aio_ctx_aops;
233 
234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235 {
236 	struct file *file;
237 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
238 	if (IS_ERR(inode))
239 		return ERR_CAST(inode);
240 
241 	inode->i_mapping->a_ops = &aio_ctx_aops;
242 	inode->i_mapping->private_data = ctx;
243 	inode->i_size = PAGE_SIZE * nr_pages;
244 
245 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 				O_RDWR, &aio_ring_fops);
247 	if (IS_ERR(file))
248 		iput(inode);
249 	return file;
250 }
251 
252 static int aio_init_fs_context(struct fs_context *fc)
253 {
254 	if (!init_pseudo(fc, AIO_RING_MAGIC))
255 		return -ENOMEM;
256 	fc->s_iflags |= SB_I_NOEXEC;
257 	return 0;
258 }
259 
260 /* aio_setup
261  *	Creates the slab caches used by the aio routines, panic on
262  *	failure as this is done early during the boot sequence.
263  */
264 static int __init aio_setup(void)
265 {
266 	static struct file_system_type aio_fs = {
267 		.name		= "aio",
268 		.init_fs_context = aio_init_fs_context,
269 		.kill_sb	= kill_anon_super,
270 	};
271 	aio_mnt = kern_mount(&aio_fs);
272 	if (IS_ERR(aio_mnt))
273 		panic("Failed to create aio fs mount.");
274 
275 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	return 0;
278 }
279 __initcall(aio_setup);
280 
281 static void put_aio_ring_file(struct kioctx *ctx)
282 {
283 	struct file *aio_ring_file = ctx->aio_ring_file;
284 	struct address_space *i_mapping;
285 
286 	if (aio_ring_file) {
287 		truncate_setsize(file_inode(aio_ring_file), 0);
288 
289 		/* Prevent further access to the kioctx from migratepages */
290 		i_mapping = aio_ring_file->f_mapping;
291 		spin_lock(&i_mapping->private_lock);
292 		i_mapping->private_data = NULL;
293 		ctx->aio_ring_file = NULL;
294 		spin_unlock(&i_mapping->private_lock);
295 
296 		fput(aio_ring_file);
297 	}
298 }
299 
300 static void aio_free_ring(struct kioctx *ctx)
301 {
302 	int i;
303 
304 	/* Disconnect the kiotx from the ring file.  This prevents future
305 	 * accesses to the kioctx from page migration.
306 	 */
307 	put_aio_ring_file(ctx);
308 
309 	for (i = 0; i < ctx->nr_pages; i++) {
310 		struct page *page;
311 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
312 				page_count(ctx->ring_pages[i]));
313 		page = ctx->ring_pages[i];
314 		if (!page)
315 			continue;
316 		ctx->ring_pages[i] = NULL;
317 		put_page(page);
318 	}
319 
320 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
321 		kfree(ctx->ring_pages);
322 		ctx->ring_pages = NULL;
323 	}
324 }
325 
326 static int aio_ring_mremap(struct vm_area_struct *vma, unsigned long flags)
327 {
328 	struct file *file = vma->vm_file;
329 	struct mm_struct *mm = vma->vm_mm;
330 	struct kioctx_table *table;
331 	int i, res = -EINVAL;
332 
333 	if (flags & MREMAP_DONTUNMAP)
334 		return -EINVAL;
335 
336 	spin_lock(&mm->ioctx_lock);
337 	rcu_read_lock();
338 	table = rcu_dereference(mm->ioctx_table);
339 	for (i = 0; i < table->nr; i++) {
340 		struct kioctx *ctx;
341 
342 		ctx = rcu_dereference(table->table[i]);
343 		if (ctx && ctx->aio_ring_file == file) {
344 			if (!atomic_read(&ctx->dead)) {
345 				ctx->user_id = ctx->mmap_base = vma->vm_start;
346 				res = 0;
347 			}
348 			break;
349 		}
350 	}
351 
352 	rcu_read_unlock();
353 	spin_unlock(&mm->ioctx_lock);
354 	return res;
355 }
356 
357 static const struct vm_operations_struct aio_ring_vm_ops = {
358 	.mremap		= aio_ring_mremap,
359 #if IS_ENABLED(CONFIG_MMU)
360 	.fault		= filemap_fault,
361 	.map_pages	= filemap_map_pages,
362 	.page_mkwrite	= filemap_page_mkwrite,
363 #endif
364 };
365 
366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367 {
368 	vma->vm_flags |= VM_DONTEXPAND;
369 	vma->vm_ops = &aio_ring_vm_ops;
370 	return 0;
371 }
372 
373 static const struct file_operations aio_ring_fops = {
374 	.mmap = aio_ring_mmap,
375 };
376 
377 #if IS_ENABLED(CONFIG_MIGRATION)
378 static int aio_migratepage(struct address_space *mapping, struct page *new,
379 			struct page *old, enum migrate_mode mode)
380 {
381 	struct kioctx *ctx;
382 	unsigned long flags;
383 	pgoff_t idx;
384 	int rc;
385 
386 	/*
387 	 * We cannot support the _NO_COPY case here, because copy needs to
388 	 * happen under the ctx->completion_lock. That does not work with the
389 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 	 */
391 	if (mode == MIGRATE_SYNC_NO_COPY)
392 		return -EINVAL;
393 
394 	rc = 0;
395 
396 	/* mapping->private_lock here protects against the kioctx teardown.  */
397 	spin_lock(&mapping->private_lock);
398 	ctx = mapping->private_data;
399 	if (!ctx) {
400 		rc = -EINVAL;
401 		goto out;
402 	}
403 
404 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
405 	 * to the ring's head, and prevents page migration from mucking in
406 	 * a partially initialized kiotx.
407 	 */
408 	if (!mutex_trylock(&ctx->ring_lock)) {
409 		rc = -EAGAIN;
410 		goto out;
411 	}
412 
413 	idx = old->index;
414 	if (idx < (pgoff_t)ctx->nr_pages) {
415 		/* Make sure the old page hasn't already been changed */
416 		if (ctx->ring_pages[idx] != old)
417 			rc = -EAGAIN;
418 	} else
419 		rc = -EINVAL;
420 
421 	if (rc != 0)
422 		goto out_unlock;
423 
424 	/* Writeback must be complete */
425 	BUG_ON(PageWriteback(old));
426 	get_page(new);
427 
428 	rc = migrate_page_move_mapping(mapping, new, old, 1);
429 	if (rc != MIGRATEPAGE_SUCCESS) {
430 		put_page(new);
431 		goto out_unlock;
432 	}
433 
434 	/* Take completion_lock to prevent other writes to the ring buffer
435 	 * while the old page is copied to the new.  This prevents new
436 	 * events from being lost.
437 	 */
438 	spin_lock_irqsave(&ctx->completion_lock, flags);
439 	migrate_page_copy(new, old);
440 	BUG_ON(ctx->ring_pages[idx] != old);
441 	ctx->ring_pages[idx] = new;
442 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
443 
444 	/* The old page is no longer accessible. */
445 	put_page(old);
446 
447 out_unlock:
448 	mutex_unlock(&ctx->ring_lock);
449 out:
450 	spin_unlock(&mapping->private_lock);
451 	return rc;
452 }
453 #endif
454 
455 static const struct address_space_operations aio_ctx_aops = {
456 	.set_page_dirty = __set_page_dirty_no_writeback,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 	.migratepage	= aio_migratepage,
459 #endif
460 };
461 
462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
463 {
464 	struct aio_ring *ring;
465 	struct mm_struct *mm = current->mm;
466 	unsigned long size, unused;
467 	int nr_pages;
468 	int i;
469 	struct file *file;
470 
471 	/* Compensate for the ring buffer's head/tail overlap entry */
472 	nr_events += 2;	/* 1 is required, 2 for good luck */
473 
474 	size = sizeof(struct aio_ring);
475 	size += sizeof(struct io_event) * nr_events;
476 
477 	nr_pages = PFN_UP(size);
478 	if (nr_pages < 0)
479 		return -EINVAL;
480 
481 	file = aio_private_file(ctx, nr_pages);
482 	if (IS_ERR(file)) {
483 		ctx->aio_ring_file = NULL;
484 		return -ENOMEM;
485 	}
486 
487 	ctx->aio_ring_file = file;
488 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 			/ sizeof(struct io_event);
490 
491 	ctx->ring_pages = ctx->internal_pages;
492 	if (nr_pages > AIO_RING_PAGES) {
493 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 					  GFP_KERNEL);
495 		if (!ctx->ring_pages) {
496 			put_aio_ring_file(ctx);
497 			return -ENOMEM;
498 		}
499 	}
500 
501 	for (i = 0; i < nr_pages; i++) {
502 		struct page *page;
503 		page = find_or_create_page(file->f_mapping,
504 					   i, GFP_HIGHUSER | __GFP_ZERO);
505 		if (!page)
506 			break;
507 		pr_debug("pid(%d) page[%d]->count=%d\n",
508 			 current->pid, i, page_count(page));
509 		SetPageUptodate(page);
510 		unlock_page(page);
511 
512 		ctx->ring_pages[i] = page;
513 	}
514 	ctx->nr_pages = i;
515 
516 	if (unlikely(i != nr_pages)) {
517 		aio_free_ring(ctx);
518 		return -ENOMEM;
519 	}
520 
521 	ctx->mmap_size = nr_pages * PAGE_SIZE;
522 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
523 
524 	if (mmap_write_lock_killable(mm)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -EINTR;
528 	}
529 
530 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
531 				 PROT_READ | PROT_WRITE,
532 				 MAP_SHARED, 0, &unused, NULL);
533 	mmap_write_unlock(mm);
534 	if (IS_ERR((void *)ctx->mmap_base)) {
535 		ctx->mmap_size = 0;
536 		aio_free_ring(ctx);
537 		return -ENOMEM;
538 	}
539 
540 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
541 
542 	ctx->user_id = ctx->mmap_base;
543 	ctx->nr_events = nr_events; /* trusted copy */
544 
545 	ring = kmap_atomic(ctx->ring_pages[0]);
546 	ring->nr = nr_events;	/* user copy */
547 	ring->id = ~0U;
548 	ring->head = ring->tail = 0;
549 	ring->magic = AIO_RING_MAGIC;
550 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 	ring->header_length = sizeof(struct aio_ring);
553 	kunmap_atomic(ring);
554 	flush_dcache_page(ctx->ring_pages[0]);
555 
556 	return 0;
557 }
558 
559 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562 
563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
564 {
565 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
566 	struct kioctx *ctx = req->ki_ctx;
567 	unsigned long flags;
568 
569 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 		return;
571 
572 	spin_lock_irqsave(&ctx->ctx_lock, flags);
573 	list_add_tail(&req->ki_list, &ctx->active_reqs);
574 	req->ki_cancel = cancel;
575 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576 }
577 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 
579 /*
580  * free_ioctx() should be RCU delayed to synchronize against the RCU
581  * protected lookup_ioctx() and also needs process context to call
582  * aio_free_ring().  Use rcu_work.
583  */
584 static void free_ioctx(struct work_struct *work)
585 {
586 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 					  free_rwork);
588 	pr_debug("freeing %p\n", ctx);
589 
590 	aio_free_ring(ctx);
591 	free_percpu(ctx->cpu);
592 	percpu_ref_exit(&ctx->reqs);
593 	percpu_ref_exit(&ctx->users);
594 	kmem_cache_free(kioctx_cachep, ctx);
595 }
596 
597 static void free_ioctx_reqs(struct percpu_ref *ref)
598 {
599 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600 
601 	/* At this point we know that there are no any in-flight requests */
602 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 		complete(&ctx->rq_wait->comp);
604 
605 	/* Synchronize against RCU protected table->table[] dereferences */
606 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 	queue_rcu_work(system_wq, &ctx->free_rwork);
608 }
609 
610 /*
611  * When this function runs, the kioctx has been removed from the "hash table"
612  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613  * now it's safe to cancel any that need to be.
614  */
615 static void free_ioctx_users(struct percpu_ref *ref)
616 {
617 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
618 	struct aio_kiocb *req;
619 
620 	spin_lock_irq(&ctx->ctx_lock);
621 
622 	while (!list_empty(&ctx->active_reqs)) {
623 		req = list_first_entry(&ctx->active_reqs,
624 				       struct aio_kiocb, ki_list);
625 		req->ki_cancel(&req->rw);
626 		list_del_init(&req->ki_list);
627 	}
628 
629 	spin_unlock_irq(&ctx->ctx_lock);
630 
631 	percpu_ref_kill(&ctx->reqs);
632 	percpu_ref_put(&ctx->reqs);
633 }
634 
635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 {
637 	unsigned i, new_nr;
638 	struct kioctx_table *table, *old;
639 	struct aio_ring *ring;
640 
641 	spin_lock(&mm->ioctx_lock);
642 	table = rcu_dereference_raw(mm->ioctx_table);
643 
644 	while (1) {
645 		if (table)
646 			for (i = 0; i < table->nr; i++)
647 				if (!rcu_access_pointer(table->table[i])) {
648 					ctx->id = i;
649 					rcu_assign_pointer(table->table[i], ctx);
650 					spin_unlock(&mm->ioctx_lock);
651 
652 					/* While kioctx setup is in progress,
653 					 * we are protected from page migration
654 					 * changes ring_pages by ->ring_lock.
655 					 */
656 					ring = kmap_atomic(ctx->ring_pages[0]);
657 					ring->id = ctx->id;
658 					kunmap_atomic(ring);
659 					return 0;
660 				}
661 
662 		new_nr = (table ? table->nr : 1) * 4;
663 		spin_unlock(&mm->ioctx_lock);
664 
665 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 				new_nr, GFP_KERNEL);
667 		if (!table)
668 			return -ENOMEM;
669 
670 		table->nr = new_nr;
671 
672 		spin_lock(&mm->ioctx_lock);
673 		old = rcu_dereference_raw(mm->ioctx_table);
674 
675 		if (!old) {
676 			rcu_assign_pointer(mm->ioctx_table, table);
677 		} else if (table->nr > old->nr) {
678 			memcpy(table->table, old->table,
679 			       old->nr * sizeof(struct kioctx *));
680 
681 			rcu_assign_pointer(mm->ioctx_table, table);
682 			kfree_rcu(old, rcu);
683 		} else {
684 			kfree(table);
685 			table = old;
686 		}
687 	}
688 }
689 
690 static void aio_nr_sub(unsigned nr)
691 {
692 	spin_lock(&aio_nr_lock);
693 	if (WARN_ON(aio_nr - nr > aio_nr))
694 		aio_nr = 0;
695 	else
696 		aio_nr -= nr;
697 	spin_unlock(&aio_nr_lock);
698 }
699 
700 /* ioctx_alloc
701  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
702  */
703 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 {
705 	struct mm_struct *mm = current->mm;
706 	struct kioctx *ctx;
707 	int err = -ENOMEM;
708 
709 	/*
710 	 * Store the original nr_events -- what userspace passed to io_setup(),
711 	 * for counting against the global limit -- before it changes.
712 	 */
713 	unsigned int max_reqs = nr_events;
714 
715 	/*
716 	 * We keep track of the number of available ringbuffer slots, to prevent
717 	 * overflow (reqs_available), and we also use percpu counters for this.
718 	 *
719 	 * So since up to half the slots might be on other cpu's percpu counters
720 	 * and unavailable, double nr_events so userspace sees what they
721 	 * expected: additionally, we move req_batch slots to/from percpu
722 	 * counters at a time, so make sure that isn't 0:
723 	 */
724 	nr_events = max(nr_events, num_possible_cpus() * 4);
725 	nr_events *= 2;
726 
727 	/* Prevent overflows */
728 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 		pr_debug("ENOMEM: nr_events too high\n");
730 		return ERR_PTR(-EINVAL);
731 	}
732 
733 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
734 		return ERR_PTR(-EAGAIN);
735 
736 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 	if (!ctx)
738 		return ERR_PTR(-ENOMEM);
739 
740 	ctx->max_reqs = max_reqs;
741 
742 	spin_lock_init(&ctx->ctx_lock);
743 	spin_lock_init(&ctx->completion_lock);
744 	mutex_init(&ctx->ring_lock);
745 	/* Protect against page migration throughout kiotx setup by keeping
746 	 * the ring_lock mutex held until setup is complete. */
747 	mutex_lock(&ctx->ring_lock);
748 	init_waitqueue_head(&ctx->wait);
749 
750 	INIT_LIST_HEAD(&ctx->active_reqs);
751 
752 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 		goto err;
754 
755 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 		goto err;
757 
758 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 	if (!ctx->cpu)
760 		goto err;
761 
762 	err = aio_setup_ring(ctx, nr_events);
763 	if (err < 0)
764 		goto err;
765 
766 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 	if (ctx->req_batch < 1)
769 		ctx->req_batch = 1;
770 
771 	/* limit the number of system wide aios */
772 	spin_lock(&aio_nr_lock);
773 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 	    aio_nr + ctx->max_reqs < aio_nr) {
775 		spin_unlock(&aio_nr_lock);
776 		err = -EAGAIN;
777 		goto err_ctx;
778 	}
779 	aio_nr += ctx->max_reqs;
780 	spin_unlock(&aio_nr_lock);
781 
782 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
783 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
784 
785 	err = ioctx_add_table(ctx, mm);
786 	if (err)
787 		goto err_cleanup;
788 
789 	/* Release the ring_lock mutex now that all setup is complete. */
790 	mutex_unlock(&ctx->ring_lock);
791 
792 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 		 ctx, ctx->user_id, mm, ctx->nr_events);
794 	return ctx;
795 
796 err_cleanup:
797 	aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 	atomic_set(&ctx->dead, 1);
800 	if (ctx->mmap_size)
801 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 	aio_free_ring(ctx);
803 err:
804 	mutex_unlock(&ctx->ring_lock);
805 	free_percpu(ctx->cpu);
806 	percpu_ref_exit(&ctx->reqs);
807 	percpu_ref_exit(&ctx->users);
808 	kmem_cache_free(kioctx_cachep, ctx);
809 	pr_debug("error allocating ioctx %d\n", err);
810 	return ERR_PTR(err);
811 }
812 
813 /* kill_ioctx
814  *	Cancels all outstanding aio requests on an aio context.  Used
815  *	when the processes owning a context have all exited to encourage
816  *	the rapid destruction of the kioctx.
817  */
818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 		      struct ctx_rq_wait *wait)
820 {
821 	struct kioctx_table *table;
822 
823 	spin_lock(&mm->ioctx_lock);
824 	if (atomic_xchg(&ctx->dead, 1)) {
825 		spin_unlock(&mm->ioctx_lock);
826 		return -EINVAL;
827 	}
828 
829 	table = rcu_dereference_raw(mm->ioctx_table);
830 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 	spin_unlock(&mm->ioctx_lock);
833 
834 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
835 	wake_up_all(&ctx->wait);
836 
837 	/*
838 	 * It'd be more correct to do this in free_ioctx(), after all
839 	 * the outstanding kiocbs have finished - but by then io_destroy
840 	 * has already returned, so io_setup() could potentially return
841 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 	 *  could tell).
843 	 */
844 	aio_nr_sub(ctx->max_reqs);
845 
846 	if (ctx->mmap_size)
847 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
848 
849 	ctx->rq_wait = wait;
850 	percpu_ref_kill(&ctx->users);
851 	return 0;
852 }
853 
854 /*
855  * exit_aio: called when the last user of mm goes away.  At this point, there is
856  * no way for any new requests to be submited or any of the io_* syscalls to be
857  * called on the context.
858  *
859  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860  * them.
861  */
862 void exit_aio(struct mm_struct *mm)
863 {
864 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 	struct ctx_rq_wait wait;
866 	int i, skipped;
867 
868 	if (!table)
869 		return;
870 
871 	atomic_set(&wait.count, table->nr);
872 	init_completion(&wait.comp);
873 
874 	skipped = 0;
875 	for (i = 0; i < table->nr; ++i) {
876 		struct kioctx *ctx =
877 			rcu_dereference_protected(table->table[i], true);
878 
879 		if (!ctx) {
880 			skipped++;
881 			continue;
882 		}
883 
884 		/*
885 		 * We don't need to bother with munmap() here - exit_mmap(mm)
886 		 * is coming and it'll unmap everything. And we simply can't,
887 		 * this is not necessarily our ->mm.
888 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 		 * that it needs to unmap the area, just set it to 0.
890 		 */
891 		ctx->mmap_size = 0;
892 		kill_ioctx(mm, ctx, &wait);
893 	}
894 
895 	if (!atomic_sub_and_test(skipped, &wait.count)) {
896 		/* Wait until all IO for the context are done. */
897 		wait_for_completion(&wait.comp);
898 	}
899 
900 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 	kfree(table);
902 }
903 
904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905 {
906 	struct kioctx_cpu *kcpu;
907 	unsigned long flags;
908 
909 	local_irq_save(flags);
910 	kcpu = this_cpu_ptr(ctx->cpu);
911 	kcpu->reqs_available += nr;
912 
913 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 		kcpu->reqs_available -= ctx->req_batch;
915 		atomic_add(ctx->req_batch, &ctx->reqs_available);
916 	}
917 
918 	local_irq_restore(flags);
919 }
920 
921 static bool __get_reqs_available(struct kioctx *ctx)
922 {
923 	struct kioctx_cpu *kcpu;
924 	bool ret = false;
925 	unsigned long flags;
926 
927 	local_irq_save(flags);
928 	kcpu = this_cpu_ptr(ctx->cpu);
929 	if (!kcpu->reqs_available) {
930 		int old, avail = atomic_read(&ctx->reqs_available);
931 
932 		do {
933 			if (avail < ctx->req_batch)
934 				goto out;
935 
936 			old = avail;
937 			avail = atomic_cmpxchg(&ctx->reqs_available,
938 					       avail, avail - ctx->req_batch);
939 		} while (avail != old);
940 
941 		kcpu->reqs_available += ctx->req_batch;
942 	}
943 
944 	ret = true;
945 	kcpu->reqs_available--;
946 out:
947 	local_irq_restore(flags);
948 	return ret;
949 }
950 
951 /* refill_reqs_available
952  *	Updates the reqs_available reference counts used for tracking the
953  *	number of free slots in the completion ring.  This can be called
954  *	from aio_complete() (to optimistically update reqs_available) or
955  *	from aio_get_req() (the we're out of events case).  It must be
956  *	called holding ctx->completion_lock.
957  */
958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959                                   unsigned tail)
960 {
961 	unsigned events_in_ring, completed;
962 
963 	/* Clamp head since userland can write to it. */
964 	head %= ctx->nr_events;
965 	if (head <= tail)
966 		events_in_ring = tail - head;
967 	else
968 		events_in_ring = ctx->nr_events - (head - tail);
969 
970 	completed = ctx->completed_events;
971 	if (events_in_ring < completed)
972 		completed -= events_in_ring;
973 	else
974 		completed = 0;
975 
976 	if (!completed)
977 		return;
978 
979 	ctx->completed_events -= completed;
980 	put_reqs_available(ctx, completed);
981 }
982 
983 /* user_refill_reqs_available
984  *	Called to refill reqs_available when aio_get_req() encounters an
985  *	out of space in the completion ring.
986  */
987 static void user_refill_reqs_available(struct kioctx *ctx)
988 {
989 	spin_lock_irq(&ctx->completion_lock);
990 	if (ctx->completed_events) {
991 		struct aio_ring *ring;
992 		unsigned head;
993 
994 		/* Access of ring->head may race with aio_read_events_ring()
995 		 * here, but that's okay since whether we read the old version
996 		 * or the new version, and either will be valid.  The important
997 		 * part is that head cannot pass tail since we prevent
998 		 * aio_complete() from updating tail by holding
999 		 * ctx->completion_lock.  Even if head is invalid, the check
1000 		 * against ctx->completed_events below will make sure we do the
1001 		 * safe/right thing.
1002 		 */
1003 		ring = kmap_atomic(ctx->ring_pages[0]);
1004 		head = ring->head;
1005 		kunmap_atomic(ring);
1006 
1007 		refill_reqs_available(ctx, head, ctx->tail);
1008 	}
1009 
1010 	spin_unlock_irq(&ctx->completion_lock);
1011 }
1012 
1013 static bool get_reqs_available(struct kioctx *ctx)
1014 {
1015 	if (__get_reqs_available(ctx))
1016 		return true;
1017 	user_refill_reqs_available(ctx);
1018 	return __get_reqs_available(ctx);
1019 }
1020 
1021 /* aio_get_req
1022  *	Allocate a slot for an aio request.
1023  * Returns NULL if no requests are free.
1024  *
1025  * The refcount is initialized to 2 - one for the async op completion,
1026  * one for the synchronous code that does this.
1027  */
1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029 {
1030 	struct aio_kiocb *req;
1031 
1032 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 	if (unlikely(!req))
1034 		return NULL;
1035 
1036 	if (unlikely(!get_reqs_available(ctx))) {
1037 		kmem_cache_free(kiocb_cachep, req);
1038 		return NULL;
1039 	}
1040 
1041 	percpu_ref_get(&ctx->reqs);
1042 	req->ki_ctx = ctx;
1043 	INIT_LIST_HEAD(&req->ki_list);
1044 	refcount_set(&req->ki_refcnt, 2);
1045 	req->ki_eventfd = NULL;
1046 	return req;
1047 }
1048 
1049 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1050 {
1051 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1052 	struct mm_struct *mm = current->mm;
1053 	struct kioctx *ctx, *ret = NULL;
1054 	struct kioctx_table *table;
1055 	unsigned id;
1056 
1057 	if (get_user(id, &ring->id))
1058 		return NULL;
1059 
1060 	rcu_read_lock();
1061 	table = rcu_dereference(mm->ioctx_table);
1062 
1063 	if (!table || id >= table->nr)
1064 		goto out;
1065 
1066 	id = array_index_nospec(id, table->nr);
1067 	ctx = rcu_dereference(table->table[id]);
1068 	if (ctx && ctx->user_id == ctx_id) {
1069 		if (percpu_ref_tryget_live(&ctx->users))
1070 			ret = ctx;
1071 	}
1072 out:
1073 	rcu_read_unlock();
1074 	return ret;
1075 }
1076 
1077 static inline void iocb_destroy(struct aio_kiocb *iocb)
1078 {
1079 	if (iocb->ki_eventfd)
1080 		eventfd_ctx_put(iocb->ki_eventfd);
1081 	if (iocb->ki_filp)
1082 		fput(iocb->ki_filp);
1083 	percpu_ref_put(&iocb->ki_ctx->reqs);
1084 	kmem_cache_free(kiocb_cachep, iocb);
1085 }
1086 
1087 /* aio_complete
1088  *	Called when the io request on the given iocb is complete.
1089  */
1090 static void aio_complete(struct aio_kiocb *iocb)
1091 {
1092 	struct kioctx	*ctx = iocb->ki_ctx;
1093 	struct aio_ring	*ring;
1094 	struct io_event	*ev_page, *event;
1095 	unsigned tail, pos, head;
1096 	unsigned long	flags;
1097 
1098 	/*
1099 	 * Add a completion event to the ring buffer. Must be done holding
1100 	 * ctx->completion_lock to prevent other code from messing with the tail
1101 	 * pointer since we might be called from irq context.
1102 	 */
1103 	spin_lock_irqsave(&ctx->completion_lock, flags);
1104 
1105 	tail = ctx->tail;
1106 	pos = tail + AIO_EVENTS_OFFSET;
1107 
1108 	if (++tail >= ctx->nr_events)
1109 		tail = 0;
1110 
1111 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1112 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1113 
1114 	*event = iocb->ki_res;
1115 
1116 	kunmap_atomic(ev_page);
1117 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1118 
1119 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1121 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1122 
1123 	/* after flagging the request as done, we
1124 	 * must never even look at it again
1125 	 */
1126 	smp_wmb();	/* make event visible before updating tail */
1127 
1128 	ctx->tail = tail;
1129 
1130 	ring = kmap_atomic(ctx->ring_pages[0]);
1131 	head = ring->head;
1132 	ring->tail = tail;
1133 	kunmap_atomic(ring);
1134 	flush_dcache_page(ctx->ring_pages[0]);
1135 
1136 	ctx->completed_events++;
1137 	if (ctx->completed_events > 1)
1138 		refill_reqs_available(ctx, head, tail);
1139 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140 
1141 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1142 
1143 	/*
1144 	 * Check if the user asked us to deliver the result through an
1145 	 * eventfd. The eventfd_signal() function is safe to be called
1146 	 * from IRQ context.
1147 	 */
1148 	if (iocb->ki_eventfd)
1149 		eventfd_signal(iocb->ki_eventfd, 1);
1150 
1151 	/*
1152 	 * We have to order our ring_info tail store above and test
1153 	 * of the wait list below outside the wait lock.  This is
1154 	 * like in wake_up_bit() where clearing a bit has to be
1155 	 * ordered with the unlocked test.
1156 	 */
1157 	smp_mb();
1158 
1159 	if (waitqueue_active(&ctx->wait))
1160 		wake_up(&ctx->wait);
1161 }
1162 
1163 static inline void iocb_put(struct aio_kiocb *iocb)
1164 {
1165 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166 		aio_complete(iocb);
1167 		iocb_destroy(iocb);
1168 	}
1169 }
1170 
1171 /* aio_read_events_ring
1172  *	Pull an event off of the ioctx's event ring.  Returns the number of
1173  *	events fetched
1174  */
1175 static long aio_read_events_ring(struct kioctx *ctx,
1176 				 struct io_event __user *event, long nr)
1177 {
1178 	struct aio_ring *ring;
1179 	unsigned head, tail, pos;
1180 	long ret = 0;
1181 	int copy_ret;
1182 
1183 	/*
1184 	 * The mutex can block and wake us up and that will cause
1185 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 	 * and repeat. This should be rare enough that it doesn't cause
1187 	 * peformance issues. See the comment in read_events() for more detail.
1188 	 */
1189 	sched_annotate_sleep();
1190 	mutex_lock(&ctx->ring_lock);
1191 
1192 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1193 	ring = kmap_atomic(ctx->ring_pages[0]);
1194 	head = ring->head;
1195 	tail = ring->tail;
1196 	kunmap_atomic(ring);
1197 
1198 	/*
1199 	 * Ensure that once we've read the current tail pointer, that
1200 	 * we also see the events that were stored up to the tail.
1201 	 */
1202 	smp_rmb();
1203 
1204 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1205 
1206 	if (head == tail)
1207 		goto out;
1208 
1209 	head %= ctx->nr_events;
1210 	tail %= ctx->nr_events;
1211 
1212 	while (ret < nr) {
1213 		long avail;
1214 		struct io_event *ev;
1215 		struct page *page;
1216 
1217 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1218 		if (head == tail)
1219 			break;
1220 
1221 		pos = head + AIO_EVENTS_OFFSET;
1222 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1223 		pos %= AIO_EVENTS_PER_PAGE;
1224 
1225 		avail = min(avail, nr - ret);
1226 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1227 
1228 		ev = kmap(page);
1229 		copy_ret = copy_to_user(event + ret, ev + pos,
1230 					sizeof(*ev) * avail);
1231 		kunmap(page);
1232 
1233 		if (unlikely(copy_ret)) {
1234 			ret = -EFAULT;
1235 			goto out;
1236 		}
1237 
1238 		ret += avail;
1239 		head += avail;
1240 		head %= ctx->nr_events;
1241 	}
1242 
1243 	ring = kmap_atomic(ctx->ring_pages[0]);
1244 	ring->head = head;
1245 	kunmap_atomic(ring);
1246 	flush_dcache_page(ctx->ring_pages[0]);
1247 
1248 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1249 out:
1250 	mutex_unlock(&ctx->ring_lock);
1251 
1252 	return ret;
1253 }
1254 
1255 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256 			    struct io_event __user *event, long *i)
1257 {
1258 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1259 
1260 	if (ret > 0)
1261 		*i += ret;
1262 
1263 	if (unlikely(atomic_read(&ctx->dead)))
1264 		ret = -EINVAL;
1265 
1266 	if (!*i)
1267 		*i = ret;
1268 
1269 	return ret < 0 || *i >= min_nr;
1270 }
1271 
1272 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1273 			struct io_event __user *event,
1274 			ktime_t until)
1275 {
1276 	long ret = 0;
1277 
1278 	/*
1279 	 * Note that aio_read_events() is being called as the conditional - i.e.
1280 	 * we're calling it after prepare_to_wait() has set task state to
1281 	 * TASK_INTERRUPTIBLE.
1282 	 *
1283 	 * But aio_read_events() can block, and if it blocks it's going to flip
1284 	 * the task state back to TASK_RUNNING.
1285 	 *
1286 	 * This should be ok, provided it doesn't flip the state back to
1287 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 	 * will only happen if the mutex_lock() call blocks, and we then find
1289 	 * the ringbuffer empty. So in practice we should be ok, but it's
1290 	 * something to be aware of when touching this code.
1291 	 */
1292 	if (until == 0)
1293 		aio_read_events(ctx, min_nr, nr, event, &ret);
1294 	else
1295 		wait_event_interruptible_hrtimeout(ctx->wait,
1296 				aio_read_events(ctx, min_nr, nr, event, &ret),
1297 				until);
1298 	return ret;
1299 }
1300 
1301 /* sys_io_setup:
1302  *	Create an aio_context capable of receiving at least nr_events.
1303  *	ctxp must not point to an aio_context that already exists, and
1304  *	must be initialized to 0 prior to the call.  On successful
1305  *	creation of the aio_context, *ctxp is filled in with the resulting
1306  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1307  *	if the specified nr_events exceeds internal limits.  May fail
1308  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1309  *	of available events.  May fail with -ENOMEM if insufficient kernel
1310  *	resources are available.  May fail with -EFAULT if an invalid
1311  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1312  *	implemented.
1313  */
1314 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1315 {
1316 	struct kioctx *ioctx = NULL;
1317 	unsigned long ctx;
1318 	long ret;
1319 
1320 	ret = get_user(ctx, ctxp);
1321 	if (unlikely(ret))
1322 		goto out;
1323 
1324 	ret = -EINVAL;
1325 	if (unlikely(ctx || nr_events == 0)) {
1326 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1327 		         ctx, nr_events);
1328 		goto out;
1329 	}
1330 
1331 	ioctx = ioctx_alloc(nr_events);
1332 	ret = PTR_ERR(ioctx);
1333 	if (!IS_ERR(ioctx)) {
1334 		ret = put_user(ioctx->user_id, ctxp);
1335 		if (ret)
1336 			kill_ioctx(current->mm, ioctx, NULL);
1337 		percpu_ref_put(&ioctx->users);
1338 	}
1339 
1340 out:
1341 	return ret;
1342 }
1343 
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1346 {
1347 	struct kioctx *ioctx = NULL;
1348 	unsigned long ctx;
1349 	long ret;
1350 
1351 	ret = get_user(ctx, ctx32p);
1352 	if (unlikely(ret))
1353 		goto out;
1354 
1355 	ret = -EINVAL;
1356 	if (unlikely(ctx || nr_events == 0)) {
1357 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358 		         ctx, nr_events);
1359 		goto out;
1360 	}
1361 
1362 	ioctx = ioctx_alloc(nr_events);
1363 	ret = PTR_ERR(ioctx);
1364 	if (!IS_ERR(ioctx)) {
1365 		/* truncating is ok because it's a user address */
1366 		ret = put_user((u32)ioctx->user_id, ctx32p);
1367 		if (ret)
1368 			kill_ioctx(current->mm, ioctx, NULL);
1369 		percpu_ref_put(&ioctx->users);
1370 	}
1371 
1372 out:
1373 	return ret;
1374 }
1375 #endif
1376 
1377 /* sys_io_destroy:
1378  *	Destroy the aio_context specified.  May cancel any outstanding
1379  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1380  *	implemented.  May fail with -EINVAL if the context pointed to
1381  *	is invalid.
1382  */
1383 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1384 {
1385 	struct kioctx *ioctx = lookup_ioctx(ctx);
1386 	if (likely(NULL != ioctx)) {
1387 		struct ctx_rq_wait wait;
1388 		int ret;
1389 
1390 		init_completion(&wait.comp);
1391 		atomic_set(&wait.count, 1);
1392 
1393 		/* Pass requests_done to kill_ioctx() where it can be set
1394 		 * in a thread-safe way. If we try to set it here then we have
1395 		 * a race condition if two io_destroy() called simultaneously.
1396 		 */
1397 		ret = kill_ioctx(current->mm, ioctx, &wait);
1398 		percpu_ref_put(&ioctx->users);
1399 
1400 		/* Wait until all IO for the context are done. Otherwise kernel
1401 		 * keep using user-space buffers even if user thinks the context
1402 		 * is destroyed.
1403 		 */
1404 		if (!ret)
1405 			wait_for_completion(&wait.comp);
1406 
1407 		return ret;
1408 	}
1409 	pr_debug("EINVAL: invalid context id\n");
1410 	return -EINVAL;
1411 }
1412 
1413 static void aio_remove_iocb(struct aio_kiocb *iocb)
1414 {
1415 	struct kioctx *ctx = iocb->ki_ctx;
1416 	unsigned long flags;
1417 
1418 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1419 	list_del(&iocb->ki_list);
1420 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421 }
1422 
1423 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1424 {
1425 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1426 
1427 	if (!list_empty_careful(&iocb->ki_list))
1428 		aio_remove_iocb(iocb);
1429 
1430 	if (kiocb->ki_flags & IOCB_WRITE) {
1431 		struct inode *inode = file_inode(kiocb->ki_filp);
1432 
1433 		/*
1434 		 * Tell lockdep we inherited freeze protection from submission
1435 		 * thread.
1436 		 */
1437 		if (S_ISREG(inode->i_mode))
1438 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439 		file_end_write(kiocb->ki_filp);
1440 	}
1441 
1442 	iocb->ki_res.res = res;
1443 	iocb->ki_res.res2 = res2;
1444 	iocb_put(iocb);
1445 }
1446 
1447 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1448 {
1449 	int ret;
1450 
1451 	req->ki_complete = aio_complete_rw;
1452 	req->private = NULL;
1453 	req->ki_pos = iocb->aio_offset;
1454 	req->ki_flags = iocb_flags(req->ki_filp);
1455 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456 		req->ki_flags |= IOCB_EVENTFD;
1457 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1458 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1459 		/*
1460 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 		 * aio_reqprio is interpreted as an I/O scheduling
1462 		 * class and priority.
1463 		 */
1464 		ret = ioprio_check_cap(iocb->aio_reqprio);
1465 		if (ret) {
1466 			pr_debug("aio ioprio check cap error: %d\n", ret);
1467 			return ret;
1468 		}
1469 
1470 		req->ki_ioprio = iocb->aio_reqprio;
1471 	} else
1472 		req->ki_ioprio = get_current_ioprio();
1473 
1474 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 	if (unlikely(ret))
1476 		return ret;
1477 
1478 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 	return 0;
1480 }
1481 
1482 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1483 		struct iovec **iovec, bool vectored, bool compat,
1484 		struct iov_iter *iter)
1485 {
1486 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1487 	size_t len = iocb->aio_nbytes;
1488 
1489 	if (!vectored) {
1490 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1491 		*iovec = NULL;
1492 		return ret;
1493 	}
1494 
1495 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1496 }
1497 
1498 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1499 {
1500 	switch (ret) {
1501 	case -EIOCBQUEUED:
1502 		break;
1503 	case -ERESTARTSYS:
1504 	case -ERESTARTNOINTR:
1505 	case -ERESTARTNOHAND:
1506 	case -ERESTART_RESTARTBLOCK:
1507 		/*
1508 		 * There's no easy way to restart the syscall since other AIO's
1509 		 * may be already running. Just fail this IO with EINTR.
1510 		 */
1511 		ret = -EINTR;
1512 		fallthrough;
1513 	default:
1514 		req->ki_complete(req, ret, 0);
1515 	}
1516 }
1517 
1518 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1519 			bool vectored, bool compat)
1520 {
1521 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1522 	struct iov_iter iter;
1523 	struct file *file;
1524 	int ret;
1525 
1526 	ret = aio_prep_rw(req, iocb);
1527 	if (ret)
1528 		return ret;
1529 	file = req->ki_filp;
1530 	if (unlikely(!(file->f_mode & FMODE_READ)))
1531 		return -EBADF;
1532 	ret = -EINVAL;
1533 	if (unlikely(!file->f_op->read_iter))
1534 		return -EINVAL;
1535 
1536 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1537 	if (ret < 0)
1538 		return ret;
1539 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1540 	if (!ret)
1541 		aio_rw_done(req, call_read_iter(file, req, &iter));
1542 	kfree(iovec);
1543 	return ret;
1544 }
1545 
1546 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1547 			 bool vectored, bool compat)
1548 {
1549 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1550 	struct iov_iter iter;
1551 	struct file *file;
1552 	int ret;
1553 
1554 	ret = aio_prep_rw(req, iocb);
1555 	if (ret)
1556 		return ret;
1557 	file = req->ki_filp;
1558 
1559 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1560 		return -EBADF;
1561 	if (unlikely(!file->f_op->write_iter))
1562 		return -EINVAL;
1563 
1564 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1565 	if (ret < 0)
1566 		return ret;
1567 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1568 	if (!ret) {
1569 		/*
1570 		 * Open-code file_start_write here to grab freeze protection,
1571 		 * which will be released by another thread in
1572 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1573 		 * released so that it doesn't complain about the held lock when
1574 		 * we return to userspace.
1575 		 */
1576 		if (S_ISREG(file_inode(file)->i_mode)) {
1577 			sb_start_write(file_inode(file)->i_sb);
1578 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1579 		}
1580 		req->ki_flags |= IOCB_WRITE;
1581 		aio_rw_done(req, call_write_iter(file, req, &iter));
1582 	}
1583 	kfree(iovec);
1584 	return ret;
1585 }
1586 
1587 static void aio_fsync_work(struct work_struct *work)
1588 {
1589 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1590 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1591 
1592 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1593 	revert_creds(old_cred);
1594 	put_cred(iocb->fsync.creds);
1595 	iocb_put(iocb);
1596 }
1597 
1598 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1599 		     bool datasync)
1600 {
1601 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1602 			iocb->aio_rw_flags))
1603 		return -EINVAL;
1604 
1605 	if (unlikely(!req->file->f_op->fsync))
1606 		return -EINVAL;
1607 
1608 	req->creds = prepare_creds();
1609 	if (!req->creds)
1610 		return -ENOMEM;
1611 
1612 	req->datasync = datasync;
1613 	INIT_WORK(&req->work, aio_fsync_work);
1614 	schedule_work(&req->work);
1615 	return 0;
1616 }
1617 
1618 static void aio_poll_put_work(struct work_struct *work)
1619 {
1620 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1621 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1622 
1623 	iocb_put(iocb);
1624 }
1625 
1626 static void aio_poll_complete_work(struct work_struct *work)
1627 {
1628 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1629 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1630 	struct poll_table_struct pt = { ._key = req->events };
1631 	struct kioctx *ctx = iocb->ki_ctx;
1632 	__poll_t mask = 0;
1633 
1634 	if (!READ_ONCE(req->cancelled))
1635 		mask = vfs_poll(req->file, &pt) & req->events;
1636 
1637 	/*
1638 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1639 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1640 	 * synchronize with them.  In the cancellation case the list_del_init
1641 	 * itself is not actually needed, but harmless so we keep it in to
1642 	 * avoid further branches in the fast path.
1643 	 */
1644 	spin_lock_irq(&ctx->ctx_lock);
1645 	if (!mask && !READ_ONCE(req->cancelled)) {
1646 		add_wait_queue(req->head, &req->wait);
1647 		spin_unlock_irq(&ctx->ctx_lock);
1648 		return;
1649 	}
1650 	list_del_init(&iocb->ki_list);
1651 	iocb->ki_res.res = mangle_poll(mask);
1652 	req->done = true;
1653 	spin_unlock_irq(&ctx->ctx_lock);
1654 
1655 	iocb_put(iocb);
1656 }
1657 
1658 /* assumes we are called with irqs disabled */
1659 static int aio_poll_cancel(struct kiocb *iocb)
1660 {
1661 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1662 	struct poll_iocb *req = &aiocb->poll;
1663 
1664 	spin_lock(&req->head->lock);
1665 	WRITE_ONCE(req->cancelled, true);
1666 	if (!list_empty(&req->wait.entry)) {
1667 		list_del_init(&req->wait.entry);
1668 		schedule_work(&aiocb->poll.work);
1669 	}
1670 	spin_unlock(&req->head->lock);
1671 
1672 	return 0;
1673 }
1674 
1675 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1676 		void *key)
1677 {
1678 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1679 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1680 	__poll_t mask = key_to_poll(key);
1681 	unsigned long flags;
1682 
1683 	/* for instances that support it check for an event match first: */
1684 	if (mask && !(mask & req->events))
1685 		return 0;
1686 
1687 	list_del_init(&req->wait.entry);
1688 
1689 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1690 		struct kioctx *ctx = iocb->ki_ctx;
1691 
1692 		/*
1693 		 * Try to complete the iocb inline if we can. Use
1694 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1695 		 * call this function with IRQs disabled and because IRQs
1696 		 * have to be disabled before ctx_lock is obtained.
1697 		 */
1698 		list_del(&iocb->ki_list);
1699 		iocb->ki_res.res = mangle_poll(mask);
1700 		req->done = true;
1701 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1702 			iocb = NULL;
1703 			INIT_WORK(&req->work, aio_poll_put_work);
1704 			schedule_work(&req->work);
1705 		}
1706 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1707 		if (iocb)
1708 			iocb_put(iocb);
1709 	} else {
1710 		schedule_work(&req->work);
1711 	}
1712 	return 1;
1713 }
1714 
1715 struct aio_poll_table {
1716 	struct poll_table_struct	pt;
1717 	struct aio_kiocb		*iocb;
1718 	int				error;
1719 };
1720 
1721 static void
1722 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1723 		struct poll_table_struct *p)
1724 {
1725 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1726 
1727 	/* multiple wait queues per file are not supported */
1728 	if (unlikely(pt->iocb->poll.head)) {
1729 		pt->error = -EINVAL;
1730 		return;
1731 	}
1732 
1733 	pt->error = 0;
1734 	pt->iocb->poll.head = head;
1735 	add_wait_queue(head, &pt->iocb->poll.wait);
1736 }
1737 
1738 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1739 {
1740 	struct kioctx *ctx = aiocb->ki_ctx;
1741 	struct poll_iocb *req = &aiocb->poll;
1742 	struct aio_poll_table apt;
1743 	bool cancel = false;
1744 	__poll_t mask;
1745 
1746 	/* reject any unknown events outside the normal event mask. */
1747 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1748 		return -EINVAL;
1749 	/* reject fields that are not defined for poll */
1750 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1751 		return -EINVAL;
1752 
1753 	INIT_WORK(&req->work, aio_poll_complete_work);
1754 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1755 
1756 	req->head = NULL;
1757 	req->done = false;
1758 	req->cancelled = false;
1759 
1760 	apt.pt._qproc = aio_poll_queue_proc;
1761 	apt.pt._key = req->events;
1762 	apt.iocb = aiocb;
1763 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1764 
1765 	/* initialized the list so that we can do list_empty checks */
1766 	INIT_LIST_HEAD(&req->wait.entry);
1767 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1768 
1769 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1770 	spin_lock_irq(&ctx->ctx_lock);
1771 	if (likely(req->head)) {
1772 		spin_lock(&req->head->lock);
1773 		if (unlikely(list_empty(&req->wait.entry))) {
1774 			if (apt.error)
1775 				cancel = true;
1776 			apt.error = 0;
1777 			mask = 0;
1778 		}
1779 		if (mask || apt.error) {
1780 			list_del_init(&req->wait.entry);
1781 		} else if (cancel) {
1782 			WRITE_ONCE(req->cancelled, true);
1783 		} else if (!req->done) { /* actually waiting for an event */
1784 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1785 			aiocb->ki_cancel = aio_poll_cancel;
1786 		}
1787 		spin_unlock(&req->head->lock);
1788 	}
1789 	if (mask) { /* no async, we'd stolen it */
1790 		aiocb->ki_res.res = mangle_poll(mask);
1791 		apt.error = 0;
1792 	}
1793 	spin_unlock_irq(&ctx->ctx_lock);
1794 	if (mask)
1795 		iocb_put(aiocb);
1796 	return apt.error;
1797 }
1798 
1799 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1800 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1801 			   bool compat)
1802 {
1803 	req->ki_filp = fget(iocb->aio_fildes);
1804 	if (unlikely(!req->ki_filp))
1805 		return -EBADF;
1806 
1807 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1808 		struct eventfd_ctx *eventfd;
1809 		/*
1810 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1811 		 * instance of the file* now. The file descriptor must be
1812 		 * an eventfd() fd, and will be signaled for each completed
1813 		 * event using the eventfd_signal() function.
1814 		 */
1815 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1816 		if (IS_ERR(eventfd))
1817 			return PTR_ERR(eventfd);
1818 
1819 		req->ki_eventfd = eventfd;
1820 	}
1821 
1822 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1823 		pr_debug("EFAULT: aio_key\n");
1824 		return -EFAULT;
1825 	}
1826 
1827 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1828 	req->ki_res.data = iocb->aio_data;
1829 	req->ki_res.res = 0;
1830 	req->ki_res.res2 = 0;
1831 
1832 	switch (iocb->aio_lio_opcode) {
1833 	case IOCB_CMD_PREAD:
1834 		return aio_read(&req->rw, iocb, false, compat);
1835 	case IOCB_CMD_PWRITE:
1836 		return aio_write(&req->rw, iocb, false, compat);
1837 	case IOCB_CMD_PREADV:
1838 		return aio_read(&req->rw, iocb, true, compat);
1839 	case IOCB_CMD_PWRITEV:
1840 		return aio_write(&req->rw, iocb, true, compat);
1841 	case IOCB_CMD_FSYNC:
1842 		return aio_fsync(&req->fsync, iocb, false);
1843 	case IOCB_CMD_FDSYNC:
1844 		return aio_fsync(&req->fsync, iocb, true);
1845 	case IOCB_CMD_POLL:
1846 		return aio_poll(req, iocb);
1847 	default:
1848 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1849 		return -EINVAL;
1850 	}
1851 }
1852 
1853 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1854 			 bool compat)
1855 {
1856 	struct aio_kiocb *req;
1857 	struct iocb iocb;
1858 	int err;
1859 
1860 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1861 		return -EFAULT;
1862 
1863 	/* enforce forwards compatibility on users */
1864 	if (unlikely(iocb.aio_reserved2)) {
1865 		pr_debug("EINVAL: reserve field set\n");
1866 		return -EINVAL;
1867 	}
1868 
1869 	/* prevent overflows */
1870 	if (unlikely(
1871 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1872 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1873 	    ((ssize_t)iocb.aio_nbytes < 0)
1874 	   )) {
1875 		pr_debug("EINVAL: overflow check\n");
1876 		return -EINVAL;
1877 	}
1878 
1879 	req = aio_get_req(ctx);
1880 	if (unlikely(!req))
1881 		return -EAGAIN;
1882 
1883 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1884 
1885 	/* Done with the synchronous reference */
1886 	iocb_put(req);
1887 
1888 	/*
1889 	 * If err is 0, we'd either done aio_complete() ourselves or have
1890 	 * arranged for that to be done asynchronously.  Anything non-zero
1891 	 * means that we need to destroy req ourselves.
1892 	 */
1893 	if (unlikely(err)) {
1894 		iocb_destroy(req);
1895 		put_reqs_available(ctx, 1);
1896 	}
1897 	return err;
1898 }
1899 
1900 /* sys_io_submit:
1901  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1902  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1903  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1904  *	*iocbpp[0] is not properly initialized, if the operation specified
1905  *	is invalid for the file descriptor in the iocb.  May fail with
1906  *	-EFAULT if any of the data structures point to invalid data.  May
1907  *	fail with -EBADF if the file descriptor specified in the first
1908  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1909  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1910  *	fail with -ENOSYS if not implemented.
1911  */
1912 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1913 		struct iocb __user * __user *, iocbpp)
1914 {
1915 	struct kioctx *ctx;
1916 	long ret = 0;
1917 	int i = 0;
1918 	struct blk_plug plug;
1919 
1920 	if (unlikely(nr < 0))
1921 		return -EINVAL;
1922 
1923 	ctx = lookup_ioctx(ctx_id);
1924 	if (unlikely(!ctx)) {
1925 		pr_debug("EINVAL: invalid context id\n");
1926 		return -EINVAL;
1927 	}
1928 
1929 	if (nr > ctx->nr_events)
1930 		nr = ctx->nr_events;
1931 
1932 	if (nr > AIO_PLUG_THRESHOLD)
1933 		blk_start_plug(&plug);
1934 	for (i = 0; i < nr; i++) {
1935 		struct iocb __user *user_iocb;
1936 
1937 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1938 			ret = -EFAULT;
1939 			break;
1940 		}
1941 
1942 		ret = io_submit_one(ctx, user_iocb, false);
1943 		if (ret)
1944 			break;
1945 	}
1946 	if (nr > AIO_PLUG_THRESHOLD)
1947 		blk_finish_plug(&plug);
1948 
1949 	percpu_ref_put(&ctx->users);
1950 	return i ? i : ret;
1951 }
1952 
1953 #ifdef CONFIG_COMPAT
1954 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1955 		       int, nr, compat_uptr_t __user *, iocbpp)
1956 {
1957 	struct kioctx *ctx;
1958 	long ret = 0;
1959 	int i = 0;
1960 	struct blk_plug plug;
1961 
1962 	if (unlikely(nr < 0))
1963 		return -EINVAL;
1964 
1965 	ctx = lookup_ioctx(ctx_id);
1966 	if (unlikely(!ctx)) {
1967 		pr_debug("EINVAL: invalid context id\n");
1968 		return -EINVAL;
1969 	}
1970 
1971 	if (nr > ctx->nr_events)
1972 		nr = ctx->nr_events;
1973 
1974 	if (nr > AIO_PLUG_THRESHOLD)
1975 		blk_start_plug(&plug);
1976 	for (i = 0; i < nr; i++) {
1977 		compat_uptr_t user_iocb;
1978 
1979 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1980 			ret = -EFAULT;
1981 			break;
1982 		}
1983 
1984 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1985 		if (ret)
1986 			break;
1987 	}
1988 	if (nr > AIO_PLUG_THRESHOLD)
1989 		blk_finish_plug(&plug);
1990 
1991 	percpu_ref_put(&ctx->users);
1992 	return i ? i : ret;
1993 }
1994 #endif
1995 
1996 /* sys_io_cancel:
1997  *	Attempts to cancel an iocb previously passed to io_submit.  If
1998  *	the operation is successfully cancelled, the resulting event is
1999  *	copied into the memory pointed to by result without being placed
2000  *	into the completion queue and 0 is returned.  May fail with
2001  *	-EFAULT if any of the data structures pointed to are invalid.
2002  *	May fail with -EINVAL if aio_context specified by ctx_id is
2003  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2004  *	cancelled.  Will fail with -ENOSYS if not implemented.
2005  */
2006 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2007 		struct io_event __user *, result)
2008 {
2009 	struct kioctx *ctx;
2010 	struct aio_kiocb *kiocb;
2011 	int ret = -EINVAL;
2012 	u32 key;
2013 	u64 obj = (u64)(unsigned long)iocb;
2014 
2015 	if (unlikely(get_user(key, &iocb->aio_key)))
2016 		return -EFAULT;
2017 	if (unlikely(key != KIOCB_KEY))
2018 		return -EINVAL;
2019 
2020 	ctx = lookup_ioctx(ctx_id);
2021 	if (unlikely(!ctx))
2022 		return -EINVAL;
2023 
2024 	spin_lock_irq(&ctx->ctx_lock);
2025 	/* TODO: use a hash or array, this sucks. */
2026 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2027 		if (kiocb->ki_res.obj == obj) {
2028 			ret = kiocb->ki_cancel(&kiocb->rw);
2029 			list_del_init(&kiocb->ki_list);
2030 			break;
2031 		}
2032 	}
2033 	spin_unlock_irq(&ctx->ctx_lock);
2034 
2035 	if (!ret) {
2036 		/*
2037 		 * The result argument is no longer used - the io_event is
2038 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2039 		 * cancellation is progress:
2040 		 */
2041 		ret = -EINPROGRESS;
2042 	}
2043 
2044 	percpu_ref_put(&ctx->users);
2045 
2046 	return ret;
2047 }
2048 
2049 static long do_io_getevents(aio_context_t ctx_id,
2050 		long min_nr,
2051 		long nr,
2052 		struct io_event __user *events,
2053 		struct timespec64 *ts)
2054 {
2055 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2056 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2057 	long ret = -EINVAL;
2058 
2059 	if (likely(ioctx)) {
2060 		if (likely(min_nr <= nr && min_nr >= 0))
2061 			ret = read_events(ioctx, min_nr, nr, events, until);
2062 		percpu_ref_put(&ioctx->users);
2063 	}
2064 
2065 	return ret;
2066 }
2067 
2068 /* io_getevents:
2069  *	Attempts to read at least min_nr events and up to nr events from
2070  *	the completion queue for the aio_context specified by ctx_id. If
2071  *	it succeeds, the number of read events is returned. May fail with
2072  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2073  *	out of range, if timeout is out of range.  May fail with -EFAULT
2074  *	if any of the memory specified is invalid.  May return 0 or
2075  *	< min_nr if the timeout specified by timeout has elapsed
2076  *	before sufficient events are available, where timeout == NULL
2077  *	specifies an infinite timeout. Note that the timeout pointed to by
2078  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2079  */
2080 #ifdef CONFIG_64BIT
2081 
2082 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2083 		long, min_nr,
2084 		long, nr,
2085 		struct io_event __user *, events,
2086 		struct __kernel_timespec __user *, timeout)
2087 {
2088 	struct timespec64	ts;
2089 	int			ret;
2090 
2091 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2092 		return -EFAULT;
2093 
2094 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2095 	if (!ret && signal_pending(current))
2096 		ret = -EINTR;
2097 	return ret;
2098 }
2099 
2100 #endif
2101 
2102 struct __aio_sigset {
2103 	const sigset_t __user	*sigmask;
2104 	size_t		sigsetsize;
2105 };
2106 
2107 SYSCALL_DEFINE6(io_pgetevents,
2108 		aio_context_t, ctx_id,
2109 		long, min_nr,
2110 		long, nr,
2111 		struct io_event __user *, events,
2112 		struct __kernel_timespec __user *, timeout,
2113 		const struct __aio_sigset __user *, usig)
2114 {
2115 	struct __aio_sigset	ksig = { NULL, };
2116 	struct timespec64	ts;
2117 	bool interrupted;
2118 	int ret;
2119 
2120 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2121 		return -EFAULT;
2122 
2123 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2124 		return -EFAULT;
2125 
2126 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2127 	if (ret)
2128 		return ret;
2129 
2130 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2131 
2132 	interrupted = signal_pending(current);
2133 	restore_saved_sigmask_unless(interrupted);
2134 	if (interrupted && !ret)
2135 		ret = -ERESTARTNOHAND;
2136 
2137 	return ret;
2138 }
2139 
2140 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2141 
2142 SYSCALL_DEFINE6(io_pgetevents_time32,
2143 		aio_context_t, ctx_id,
2144 		long, min_nr,
2145 		long, nr,
2146 		struct io_event __user *, events,
2147 		struct old_timespec32 __user *, timeout,
2148 		const struct __aio_sigset __user *, usig)
2149 {
2150 	struct __aio_sigset	ksig = { NULL, };
2151 	struct timespec64	ts;
2152 	bool interrupted;
2153 	int ret;
2154 
2155 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2156 		return -EFAULT;
2157 
2158 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2159 		return -EFAULT;
2160 
2161 
2162 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2163 	if (ret)
2164 		return ret;
2165 
2166 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2167 
2168 	interrupted = signal_pending(current);
2169 	restore_saved_sigmask_unless(interrupted);
2170 	if (interrupted && !ret)
2171 		ret = -ERESTARTNOHAND;
2172 
2173 	return ret;
2174 }
2175 
2176 #endif
2177 
2178 #if defined(CONFIG_COMPAT_32BIT_TIME)
2179 
2180 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2181 		__s32, min_nr,
2182 		__s32, nr,
2183 		struct io_event __user *, events,
2184 		struct old_timespec32 __user *, timeout)
2185 {
2186 	struct timespec64 t;
2187 	int ret;
2188 
2189 	if (timeout && get_old_timespec32(&t, timeout))
2190 		return -EFAULT;
2191 
2192 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2193 	if (!ret && signal_pending(current))
2194 		ret = -EINTR;
2195 	return ret;
2196 }
2197 
2198 #endif
2199 
2200 #ifdef CONFIG_COMPAT
2201 
2202 struct __compat_aio_sigset {
2203 	compat_uptr_t		sigmask;
2204 	compat_size_t		sigsetsize;
2205 };
2206 
2207 #if defined(CONFIG_COMPAT_32BIT_TIME)
2208 
2209 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2210 		compat_aio_context_t, ctx_id,
2211 		compat_long_t, min_nr,
2212 		compat_long_t, nr,
2213 		struct io_event __user *, events,
2214 		struct old_timespec32 __user *, timeout,
2215 		const struct __compat_aio_sigset __user *, usig)
2216 {
2217 	struct __compat_aio_sigset ksig = { 0, };
2218 	struct timespec64 t;
2219 	bool interrupted;
2220 	int ret;
2221 
2222 	if (timeout && get_old_timespec32(&t, timeout))
2223 		return -EFAULT;
2224 
2225 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2226 		return -EFAULT;
2227 
2228 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2229 	if (ret)
2230 		return ret;
2231 
2232 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2233 
2234 	interrupted = signal_pending(current);
2235 	restore_saved_sigmask_unless(interrupted);
2236 	if (interrupted && !ret)
2237 		ret = -ERESTARTNOHAND;
2238 
2239 	return ret;
2240 }
2241 
2242 #endif
2243 
2244 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2245 		compat_aio_context_t, ctx_id,
2246 		compat_long_t, min_nr,
2247 		compat_long_t, nr,
2248 		struct io_event __user *, events,
2249 		struct __kernel_timespec __user *, timeout,
2250 		const struct __compat_aio_sigset __user *, usig)
2251 {
2252 	struct __compat_aio_sigset ksig = { 0, };
2253 	struct timespec64 t;
2254 	bool interrupted;
2255 	int ret;
2256 
2257 	if (timeout && get_timespec64(&t, timeout))
2258 		return -EFAULT;
2259 
2260 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2261 		return -EFAULT;
2262 
2263 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2264 	if (ret)
2265 		return ret;
2266 
2267 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2268 
2269 	interrupted = signal_pending(current);
2270 	restore_saved_sigmask_unless(interrupted);
2271 	if (interrupted && !ret)
2272 		ret = -ERESTARTNOHAND;
2273 
2274 	return ret;
2275 }
2276 #endif
2277