xref: /openbmc/linux/fs/aio.c (revision a8a28aff)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		spinlock_t	completion_lock;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct page		*internal_pages[AIO_RING_PAGES];
148 	struct file		*aio_ring_file;
149 
150 	unsigned		id;
151 };
152 
153 /*------ sysctl variables----*/
154 static DEFINE_SPINLOCK(aio_nr_lock);
155 unsigned long aio_nr;		/* current system wide number of aio requests */
156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
157 /*----end sysctl variables---*/
158 
159 static struct kmem_cache	*kiocb_cachep;
160 static struct kmem_cache	*kioctx_cachep;
161 
162 static struct vfsmount *aio_mnt;
163 
164 static const struct file_operations aio_ring_fops;
165 static const struct address_space_operations aio_ctx_aops;
166 
167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
168 {
169 	struct qstr this = QSTR_INIT("[aio]", 5);
170 	struct file *file;
171 	struct path path;
172 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
173 	if (IS_ERR(inode))
174 		return ERR_CAST(inode);
175 
176 	inode->i_mapping->a_ops = &aio_ctx_aops;
177 	inode->i_mapping->private_data = ctx;
178 	inode->i_size = PAGE_SIZE * nr_pages;
179 
180 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
181 	if (!path.dentry) {
182 		iput(inode);
183 		return ERR_PTR(-ENOMEM);
184 	}
185 	path.mnt = mntget(aio_mnt);
186 
187 	d_instantiate(path.dentry, inode);
188 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
189 	if (IS_ERR(file)) {
190 		path_put(&path);
191 		return file;
192 	}
193 
194 	file->f_flags = O_RDWR;
195 	file->private_data = ctx;
196 	return file;
197 }
198 
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 				int flags, const char *dev_name, void *data)
201 {
202 	static const struct dentry_operations ops = {
203 		.d_dname	= simple_dname,
204 	};
205 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
206 }
207 
208 /* aio_setup
209  *	Creates the slab caches used by the aio routines, panic on
210  *	failure as this is done early during the boot sequence.
211  */
212 static int __init aio_setup(void)
213 {
214 	static struct file_system_type aio_fs = {
215 		.name		= "aio",
216 		.mount		= aio_mount,
217 		.kill_sb	= kill_anon_super,
218 	};
219 	aio_mnt = kern_mount(&aio_fs);
220 	if (IS_ERR(aio_mnt))
221 		panic("Failed to create aio fs mount.");
222 
223 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225 
226 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227 
228 	return 0;
229 }
230 __initcall(aio_setup);
231 
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 	struct file *aio_ring_file = ctx->aio_ring_file;
235 	if (aio_ring_file) {
236 		truncate_setsize(aio_ring_file->f_inode, 0);
237 
238 		/* Prevent further access to the kioctx from migratepages */
239 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 		ctx->aio_ring_file = NULL;
242 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243 
244 		fput(aio_ring_file);
245 	}
246 }
247 
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 	int i;
251 
252 	/* Disconnect the kiotx from the ring file.  This prevents future
253 	 * accesses to the kioctx from page migration.
254 	 */
255 	put_aio_ring_file(ctx);
256 
257 	for (i = 0; i < ctx->nr_pages; i++) {
258 		struct page *page;
259 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 				page_count(ctx->ring_pages[i]));
261 		page = ctx->ring_pages[i];
262 		if (!page)
263 			continue;
264 		ctx->ring_pages[i] = NULL;
265 		put_page(page);
266 	}
267 
268 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 		kfree(ctx->ring_pages);
270 		ctx->ring_pages = NULL;
271 	}
272 }
273 
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 	vma->vm_ops = &generic_file_vm_ops;
277 	return 0;
278 }
279 
280 static const struct file_operations aio_ring_fops = {
281 	.mmap = aio_ring_mmap,
282 };
283 
284 static int aio_set_page_dirty(struct page *page)
285 {
286 	return 0;
287 }
288 
289 #if IS_ENABLED(CONFIG_MIGRATION)
290 static int aio_migratepage(struct address_space *mapping, struct page *new,
291 			struct page *old, enum migrate_mode mode)
292 {
293 	struct kioctx *ctx;
294 	unsigned long flags;
295 	pgoff_t idx;
296 	int rc;
297 
298 	rc = 0;
299 
300 	/* mapping->private_lock here protects against the kioctx teardown.  */
301 	spin_lock(&mapping->private_lock);
302 	ctx = mapping->private_data;
303 	if (!ctx) {
304 		rc = -EINVAL;
305 		goto out;
306 	}
307 
308 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
309 	 * to the ring's head, and prevents page migration from mucking in
310 	 * a partially initialized kiotx.
311 	 */
312 	if (!mutex_trylock(&ctx->ring_lock)) {
313 		rc = -EAGAIN;
314 		goto out;
315 	}
316 
317 	idx = old->index;
318 	if (idx < (pgoff_t)ctx->nr_pages) {
319 		/* Make sure the old page hasn't already been changed */
320 		if (ctx->ring_pages[idx] != old)
321 			rc = -EAGAIN;
322 	} else
323 		rc = -EINVAL;
324 
325 	if (rc != 0)
326 		goto out_unlock;
327 
328 	/* Writeback must be complete */
329 	BUG_ON(PageWriteback(old));
330 	get_page(new);
331 
332 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333 	if (rc != MIGRATEPAGE_SUCCESS) {
334 		put_page(new);
335 		goto out_unlock;
336 	}
337 
338 	/* Take completion_lock to prevent other writes to the ring buffer
339 	 * while the old page is copied to the new.  This prevents new
340 	 * events from being lost.
341 	 */
342 	spin_lock_irqsave(&ctx->completion_lock, flags);
343 	migrate_page_copy(new, old);
344 	BUG_ON(ctx->ring_pages[idx] != old);
345 	ctx->ring_pages[idx] = new;
346 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
347 
348 	/* The old page is no longer accessible. */
349 	put_page(old);
350 
351 out_unlock:
352 	mutex_unlock(&ctx->ring_lock);
353 out:
354 	spin_unlock(&mapping->private_lock);
355 	return rc;
356 }
357 #endif
358 
359 static const struct address_space_operations aio_ctx_aops = {
360 	.set_page_dirty = aio_set_page_dirty,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 	.migratepage	= aio_migratepage,
363 #endif
364 };
365 
366 static int aio_setup_ring(struct kioctx *ctx)
367 {
368 	struct aio_ring *ring;
369 	unsigned nr_events = ctx->max_reqs;
370 	struct mm_struct *mm = current->mm;
371 	unsigned long size, unused;
372 	int nr_pages;
373 	int i;
374 	struct file *file;
375 
376 	/* Compensate for the ring buffer's head/tail overlap entry */
377 	nr_events += 2;	/* 1 is required, 2 for good luck */
378 
379 	size = sizeof(struct aio_ring);
380 	size += sizeof(struct io_event) * nr_events;
381 
382 	nr_pages = PFN_UP(size);
383 	if (nr_pages < 0)
384 		return -EINVAL;
385 
386 	file = aio_private_file(ctx, nr_pages);
387 	if (IS_ERR(file)) {
388 		ctx->aio_ring_file = NULL;
389 		return -ENOMEM;
390 	}
391 
392 	ctx->aio_ring_file = file;
393 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 			/ sizeof(struct io_event);
395 
396 	ctx->ring_pages = ctx->internal_pages;
397 	if (nr_pages > AIO_RING_PAGES) {
398 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 					  GFP_KERNEL);
400 		if (!ctx->ring_pages) {
401 			put_aio_ring_file(ctx);
402 			return -ENOMEM;
403 		}
404 	}
405 
406 	for (i = 0; i < nr_pages; i++) {
407 		struct page *page;
408 		page = find_or_create_page(file->f_inode->i_mapping,
409 					   i, GFP_HIGHUSER | __GFP_ZERO);
410 		if (!page)
411 			break;
412 		pr_debug("pid(%d) page[%d]->count=%d\n",
413 			 current->pid, i, page_count(page));
414 		SetPageUptodate(page);
415 		SetPageDirty(page);
416 		unlock_page(page);
417 
418 		ctx->ring_pages[i] = page;
419 	}
420 	ctx->nr_pages = i;
421 
422 	if (unlikely(i != nr_pages)) {
423 		aio_free_ring(ctx);
424 		return -ENOMEM;
425 	}
426 
427 	ctx->mmap_size = nr_pages * PAGE_SIZE;
428 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429 
430 	down_write(&mm->mmap_sem);
431 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 				       PROT_READ | PROT_WRITE,
433 				       MAP_SHARED, 0, &unused);
434 	up_write(&mm->mmap_sem);
435 	if (IS_ERR((void *)ctx->mmap_base)) {
436 		ctx->mmap_size = 0;
437 		aio_free_ring(ctx);
438 		return -ENOMEM;
439 	}
440 
441 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442 
443 	ctx->user_id = ctx->mmap_base;
444 	ctx->nr_events = nr_events; /* trusted copy */
445 
446 	ring = kmap_atomic(ctx->ring_pages[0]);
447 	ring->nr = nr_events;	/* user copy */
448 	ring->id = ~0U;
449 	ring->head = ring->tail = 0;
450 	ring->magic = AIO_RING_MAGIC;
451 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 	ring->header_length = sizeof(struct aio_ring);
454 	kunmap_atomic(ring);
455 	flush_dcache_page(ctx->ring_pages[0]);
456 
457 	return 0;
458 }
459 
460 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
461 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463 
464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465 {
466 	struct kioctx *ctx = req->ki_ctx;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&ctx->ctx_lock, flags);
470 
471 	if (!req->ki_list.next)
472 		list_add(&req->ki_list, &ctx->active_reqs);
473 
474 	req->ki_cancel = cancel;
475 
476 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477 }
478 EXPORT_SYMBOL(kiocb_set_cancel_fn);
479 
480 static int kiocb_cancel(struct kiocb *kiocb)
481 {
482 	kiocb_cancel_fn *old, *cancel;
483 
484 	/*
485 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 	 * actually has a cancel function, hence the cmpxchg()
487 	 */
488 
489 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 	do {
491 		if (!cancel || cancel == KIOCB_CANCELLED)
492 			return -EINVAL;
493 
494 		old = cancel;
495 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 	} while (cancel != old);
497 
498 	return cancel(kiocb);
499 }
500 
501 static void free_ioctx(struct work_struct *work)
502 {
503 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504 
505 	pr_debug("freeing %p\n", ctx);
506 
507 	aio_free_ring(ctx);
508 	free_percpu(ctx->cpu);
509 	kmem_cache_free(kioctx_cachep, ctx);
510 }
511 
512 static void free_ioctx_reqs(struct percpu_ref *ref)
513 {
514 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
515 
516 	/* At this point we know that there are no any in-flight requests */
517 	if (ctx->requests_done)
518 		complete(ctx->requests_done);
519 
520 	INIT_WORK(&ctx->free_work, free_ioctx);
521 	schedule_work(&ctx->free_work);
522 }
523 
524 /*
525  * When this function runs, the kioctx has been removed from the "hash table"
526  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
527  * now it's safe to cancel any that need to be.
528  */
529 static void free_ioctx_users(struct percpu_ref *ref)
530 {
531 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
532 	struct kiocb *req;
533 
534 	spin_lock_irq(&ctx->ctx_lock);
535 
536 	while (!list_empty(&ctx->active_reqs)) {
537 		req = list_first_entry(&ctx->active_reqs,
538 				       struct kiocb, ki_list);
539 
540 		list_del_init(&req->ki_list);
541 		kiocb_cancel(req);
542 	}
543 
544 	spin_unlock_irq(&ctx->ctx_lock);
545 
546 	percpu_ref_kill(&ctx->reqs);
547 	percpu_ref_put(&ctx->reqs);
548 }
549 
550 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
551 {
552 	unsigned i, new_nr;
553 	struct kioctx_table *table, *old;
554 	struct aio_ring *ring;
555 
556 	spin_lock(&mm->ioctx_lock);
557 	rcu_read_lock();
558 	table = rcu_dereference(mm->ioctx_table);
559 
560 	while (1) {
561 		if (table)
562 			for (i = 0; i < table->nr; i++)
563 				if (!table->table[i]) {
564 					ctx->id = i;
565 					table->table[i] = ctx;
566 					rcu_read_unlock();
567 					spin_unlock(&mm->ioctx_lock);
568 
569 					/* While kioctx setup is in progress,
570 					 * we are protected from page migration
571 					 * changes ring_pages by ->ring_lock.
572 					 */
573 					ring = kmap_atomic(ctx->ring_pages[0]);
574 					ring->id = ctx->id;
575 					kunmap_atomic(ring);
576 					return 0;
577 				}
578 
579 		new_nr = (table ? table->nr : 1) * 4;
580 
581 		rcu_read_unlock();
582 		spin_unlock(&mm->ioctx_lock);
583 
584 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
585 				new_nr, GFP_KERNEL);
586 		if (!table)
587 			return -ENOMEM;
588 
589 		table->nr = new_nr;
590 
591 		spin_lock(&mm->ioctx_lock);
592 		rcu_read_lock();
593 		old = rcu_dereference(mm->ioctx_table);
594 
595 		if (!old) {
596 			rcu_assign_pointer(mm->ioctx_table, table);
597 		} else if (table->nr > old->nr) {
598 			memcpy(table->table, old->table,
599 			       old->nr * sizeof(struct kioctx *));
600 
601 			rcu_assign_pointer(mm->ioctx_table, table);
602 			kfree_rcu(old, rcu);
603 		} else {
604 			kfree(table);
605 			table = old;
606 		}
607 	}
608 }
609 
610 static void aio_nr_sub(unsigned nr)
611 {
612 	spin_lock(&aio_nr_lock);
613 	if (WARN_ON(aio_nr - nr > aio_nr))
614 		aio_nr = 0;
615 	else
616 		aio_nr -= nr;
617 	spin_unlock(&aio_nr_lock);
618 }
619 
620 /* ioctx_alloc
621  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
622  */
623 static struct kioctx *ioctx_alloc(unsigned nr_events)
624 {
625 	struct mm_struct *mm = current->mm;
626 	struct kioctx *ctx;
627 	int err = -ENOMEM;
628 
629 	/*
630 	 * We keep track of the number of available ringbuffer slots, to prevent
631 	 * overflow (reqs_available), and we also use percpu counters for this.
632 	 *
633 	 * So since up to half the slots might be on other cpu's percpu counters
634 	 * and unavailable, double nr_events so userspace sees what they
635 	 * expected: additionally, we move req_batch slots to/from percpu
636 	 * counters at a time, so make sure that isn't 0:
637 	 */
638 	nr_events = max(nr_events, num_possible_cpus() * 4);
639 	nr_events *= 2;
640 
641 	/* Prevent overflows */
642 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
643 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
644 		pr_debug("ENOMEM: nr_events too high\n");
645 		return ERR_PTR(-EINVAL);
646 	}
647 
648 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
649 		return ERR_PTR(-EAGAIN);
650 
651 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
652 	if (!ctx)
653 		return ERR_PTR(-ENOMEM);
654 
655 	ctx->max_reqs = nr_events;
656 
657 	spin_lock_init(&ctx->ctx_lock);
658 	spin_lock_init(&ctx->completion_lock);
659 	mutex_init(&ctx->ring_lock);
660 	/* Protect against page migration throughout kiotx setup by keeping
661 	 * the ring_lock mutex held until setup is complete. */
662 	mutex_lock(&ctx->ring_lock);
663 	init_waitqueue_head(&ctx->wait);
664 
665 	INIT_LIST_HEAD(&ctx->active_reqs);
666 
667 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
668 		goto err;
669 
670 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
671 		goto err;
672 
673 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
674 	if (!ctx->cpu)
675 		goto err;
676 
677 	err = aio_setup_ring(ctx);
678 	if (err < 0)
679 		goto err;
680 
681 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
682 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
683 	if (ctx->req_batch < 1)
684 		ctx->req_batch = 1;
685 
686 	/* limit the number of system wide aios */
687 	spin_lock(&aio_nr_lock);
688 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
689 	    aio_nr + nr_events < aio_nr) {
690 		spin_unlock(&aio_nr_lock);
691 		err = -EAGAIN;
692 		goto err_ctx;
693 	}
694 	aio_nr += ctx->max_reqs;
695 	spin_unlock(&aio_nr_lock);
696 
697 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
698 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
699 
700 	err = ioctx_add_table(ctx, mm);
701 	if (err)
702 		goto err_cleanup;
703 
704 	/* Release the ring_lock mutex now that all setup is complete. */
705 	mutex_unlock(&ctx->ring_lock);
706 
707 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
708 		 ctx, ctx->user_id, mm, ctx->nr_events);
709 	return ctx;
710 
711 err_cleanup:
712 	aio_nr_sub(ctx->max_reqs);
713 err_ctx:
714 	aio_free_ring(ctx);
715 err:
716 	mutex_unlock(&ctx->ring_lock);
717 	free_percpu(ctx->cpu);
718 	free_percpu(ctx->reqs.pcpu_count);
719 	free_percpu(ctx->users.pcpu_count);
720 	kmem_cache_free(kioctx_cachep, ctx);
721 	pr_debug("error allocating ioctx %d\n", err);
722 	return ERR_PTR(err);
723 }
724 
725 /* kill_ioctx
726  *	Cancels all outstanding aio requests on an aio context.  Used
727  *	when the processes owning a context have all exited to encourage
728  *	the rapid destruction of the kioctx.
729  */
730 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
731 		struct completion *requests_done)
732 {
733 	struct kioctx_table *table;
734 
735 	if (atomic_xchg(&ctx->dead, 1))
736 		return -EINVAL;
737 
738 
739 	spin_lock(&mm->ioctx_lock);
740 	rcu_read_lock();
741 	table = rcu_dereference(mm->ioctx_table);
742 
743 	WARN_ON(ctx != table->table[ctx->id]);
744 	table->table[ctx->id] = NULL;
745 	rcu_read_unlock();
746 	spin_unlock(&mm->ioctx_lock);
747 
748 	/* percpu_ref_kill() will do the necessary call_rcu() */
749 	wake_up_all(&ctx->wait);
750 
751 	/*
752 	 * It'd be more correct to do this in free_ioctx(), after all
753 	 * the outstanding kiocbs have finished - but by then io_destroy
754 	 * has already returned, so io_setup() could potentially return
755 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
756 	 *  could tell).
757 	 */
758 	aio_nr_sub(ctx->max_reqs);
759 
760 	if (ctx->mmap_size)
761 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
762 
763 	ctx->requests_done = requests_done;
764 	percpu_ref_kill(&ctx->users);
765 	return 0;
766 }
767 
768 /* wait_on_sync_kiocb:
769  *	Waits on the given sync kiocb to complete.
770  */
771 ssize_t wait_on_sync_kiocb(struct kiocb *req)
772 {
773 	while (!req->ki_ctx) {
774 		set_current_state(TASK_UNINTERRUPTIBLE);
775 		if (req->ki_ctx)
776 			break;
777 		io_schedule();
778 	}
779 	__set_current_state(TASK_RUNNING);
780 	return req->ki_user_data;
781 }
782 EXPORT_SYMBOL(wait_on_sync_kiocb);
783 
784 /*
785  * exit_aio: called when the last user of mm goes away.  At this point, there is
786  * no way for any new requests to be submited or any of the io_* syscalls to be
787  * called on the context.
788  *
789  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
790  * them.
791  */
792 void exit_aio(struct mm_struct *mm)
793 {
794 	struct kioctx_table *table;
795 	struct kioctx *ctx;
796 	unsigned i = 0;
797 
798 	while (1) {
799 		rcu_read_lock();
800 		table = rcu_dereference(mm->ioctx_table);
801 
802 		do {
803 			if (!table || i >= table->nr) {
804 				rcu_read_unlock();
805 				rcu_assign_pointer(mm->ioctx_table, NULL);
806 				if (table)
807 					kfree(table);
808 				return;
809 			}
810 
811 			ctx = table->table[i++];
812 		} while (!ctx);
813 
814 		rcu_read_unlock();
815 
816 		/*
817 		 * We don't need to bother with munmap() here -
818 		 * exit_mmap(mm) is coming and it'll unmap everything.
819 		 * Since aio_free_ring() uses non-zero ->mmap_size
820 		 * as indicator that it needs to unmap the area,
821 		 * just set it to 0; aio_free_ring() is the only
822 		 * place that uses ->mmap_size, so it's safe.
823 		 */
824 		ctx->mmap_size = 0;
825 
826 		kill_ioctx(mm, ctx, NULL);
827 	}
828 }
829 
830 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
831 {
832 	struct kioctx_cpu *kcpu;
833 
834 	preempt_disable();
835 	kcpu = this_cpu_ptr(ctx->cpu);
836 
837 	kcpu->reqs_available += nr;
838 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
839 		kcpu->reqs_available -= ctx->req_batch;
840 		atomic_add(ctx->req_batch, &ctx->reqs_available);
841 	}
842 
843 	preempt_enable();
844 }
845 
846 static bool get_reqs_available(struct kioctx *ctx)
847 {
848 	struct kioctx_cpu *kcpu;
849 	bool ret = false;
850 
851 	preempt_disable();
852 	kcpu = this_cpu_ptr(ctx->cpu);
853 
854 	if (!kcpu->reqs_available) {
855 		int old, avail = atomic_read(&ctx->reqs_available);
856 
857 		do {
858 			if (avail < ctx->req_batch)
859 				goto out;
860 
861 			old = avail;
862 			avail = atomic_cmpxchg(&ctx->reqs_available,
863 					       avail, avail - ctx->req_batch);
864 		} while (avail != old);
865 
866 		kcpu->reqs_available += ctx->req_batch;
867 	}
868 
869 	ret = true;
870 	kcpu->reqs_available--;
871 out:
872 	preempt_enable();
873 	return ret;
874 }
875 
876 /* aio_get_req
877  *	Allocate a slot for an aio request.
878  * Returns NULL if no requests are free.
879  */
880 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
881 {
882 	struct kiocb *req;
883 
884 	if (!get_reqs_available(ctx))
885 		return NULL;
886 
887 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
888 	if (unlikely(!req))
889 		goto out_put;
890 
891 	percpu_ref_get(&ctx->reqs);
892 
893 	req->ki_ctx = ctx;
894 	return req;
895 out_put:
896 	put_reqs_available(ctx, 1);
897 	return NULL;
898 }
899 
900 static void kiocb_free(struct kiocb *req)
901 {
902 	if (req->ki_filp)
903 		fput(req->ki_filp);
904 	if (req->ki_eventfd != NULL)
905 		eventfd_ctx_put(req->ki_eventfd);
906 	kmem_cache_free(kiocb_cachep, req);
907 }
908 
909 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
910 {
911 	struct aio_ring __user *ring  = (void __user *)ctx_id;
912 	struct mm_struct *mm = current->mm;
913 	struct kioctx *ctx, *ret = NULL;
914 	struct kioctx_table *table;
915 	unsigned id;
916 
917 	if (get_user(id, &ring->id))
918 		return NULL;
919 
920 	rcu_read_lock();
921 	table = rcu_dereference(mm->ioctx_table);
922 
923 	if (!table || id >= table->nr)
924 		goto out;
925 
926 	ctx = table->table[id];
927 	if (ctx && ctx->user_id == ctx_id) {
928 		percpu_ref_get(&ctx->users);
929 		ret = ctx;
930 	}
931 out:
932 	rcu_read_unlock();
933 	return ret;
934 }
935 
936 /* aio_complete
937  *	Called when the io request on the given iocb is complete.
938  */
939 void aio_complete(struct kiocb *iocb, long res, long res2)
940 {
941 	struct kioctx	*ctx = iocb->ki_ctx;
942 	struct aio_ring	*ring;
943 	struct io_event	*ev_page, *event;
944 	unsigned long	flags;
945 	unsigned tail, pos;
946 
947 	/*
948 	 * Special case handling for sync iocbs:
949 	 *  - events go directly into the iocb for fast handling
950 	 *  - the sync task with the iocb in its stack holds the single iocb
951 	 *    ref, no other paths have a way to get another ref
952 	 *  - the sync task helpfully left a reference to itself in the iocb
953 	 */
954 	if (is_sync_kiocb(iocb)) {
955 		iocb->ki_user_data = res;
956 		smp_wmb();
957 		iocb->ki_ctx = ERR_PTR(-EXDEV);
958 		wake_up_process(iocb->ki_obj.tsk);
959 		return;
960 	}
961 
962 	if (iocb->ki_list.next) {
963 		unsigned long flags;
964 
965 		spin_lock_irqsave(&ctx->ctx_lock, flags);
966 		list_del(&iocb->ki_list);
967 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
968 	}
969 
970 	/*
971 	 * Add a completion event to the ring buffer. Must be done holding
972 	 * ctx->completion_lock to prevent other code from messing with the tail
973 	 * pointer since we might be called from irq context.
974 	 */
975 	spin_lock_irqsave(&ctx->completion_lock, flags);
976 
977 	tail = ctx->tail;
978 	pos = tail + AIO_EVENTS_OFFSET;
979 
980 	if (++tail >= ctx->nr_events)
981 		tail = 0;
982 
983 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
984 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
985 
986 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
987 	event->data = iocb->ki_user_data;
988 	event->res = res;
989 	event->res2 = res2;
990 
991 	kunmap_atomic(ev_page);
992 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
993 
994 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
995 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
996 		 res, res2);
997 
998 	/* after flagging the request as done, we
999 	 * must never even look at it again
1000 	 */
1001 	smp_wmb();	/* make event visible before updating tail */
1002 
1003 	ctx->tail = tail;
1004 
1005 	ring = kmap_atomic(ctx->ring_pages[0]);
1006 	ring->tail = tail;
1007 	kunmap_atomic(ring);
1008 	flush_dcache_page(ctx->ring_pages[0]);
1009 
1010 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1011 
1012 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1013 
1014 	/*
1015 	 * Check if the user asked us to deliver the result through an
1016 	 * eventfd. The eventfd_signal() function is safe to be called
1017 	 * from IRQ context.
1018 	 */
1019 	if (iocb->ki_eventfd != NULL)
1020 		eventfd_signal(iocb->ki_eventfd, 1);
1021 
1022 	/* everything turned out well, dispose of the aiocb. */
1023 	kiocb_free(iocb);
1024 	put_reqs_available(ctx, 1);
1025 
1026 	/*
1027 	 * We have to order our ring_info tail store above and test
1028 	 * of the wait list below outside the wait lock.  This is
1029 	 * like in wake_up_bit() where clearing a bit has to be
1030 	 * ordered with the unlocked test.
1031 	 */
1032 	smp_mb();
1033 
1034 	if (waitqueue_active(&ctx->wait))
1035 		wake_up(&ctx->wait);
1036 
1037 	percpu_ref_put(&ctx->reqs);
1038 }
1039 EXPORT_SYMBOL(aio_complete);
1040 
1041 /* aio_read_events
1042  *	Pull an event off of the ioctx's event ring.  Returns the number of
1043  *	events fetched
1044  */
1045 static long aio_read_events_ring(struct kioctx *ctx,
1046 				 struct io_event __user *event, long nr)
1047 {
1048 	struct aio_ring *ring;
1049 	unsigned head, tail, pos;
1050 	long ret = 0;
1051 	int copy_ret;
1052 
1053 	mutex_lock(&ctx->ring_lock);
1054 
1055 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1056 	ring = kmap_atomic(ctx->ring_pages[0]);
1057 	head = ring->head;
1058 	tail = ring->tail;
1059 	kunmap_atomic(ring);
1060 
1061 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1062 
1063 	if (head == tail)
1064 		goto out;
1065 
1066 	head %= ctx->nr_events;
1067 	tail %= ctx->nr_events;
1068 
1069 	while (ret < nr) {
1070 		long avail;
1071 		struct io_event *ev;
1072 		struct page *page;
1073 
1074 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1075 		if (head == tail)
1076 			break;
1077 
1078 		avail = min(avail, nr - ret);
1079 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1080 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1081 
1082 		pos = head + AIO_EVENTS_OFFSET;
1083 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1084 		pos %= AIO_EVENTS_PER_PAGE;
1085 
1086 		ev = kmap(page);
1087 		copy_ret = copy_to_user(event + ret, ev + pos,
1088 					sizeof(*ev) * avail);
1089 		kunmap(page);
1090 
1091 		if (unlikely(copy_ret)) {
1092 			ret = -EFAULT;
1093 			goto out;
1094 		}
1095 
1096 		ret += avail;
1097 		head += avail;
1098 		head %= ctx->nr_events;
1099 	}
1100 
1101 	ring = kmap_atomic(ctx->ring_pages[0]);
1102 	ring->head = head;
1103 	kunmap_atomic(ring);
1104 	flush_dcache_page(ctx->ring_pages[0]);
1105 
1106 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1107 out:
1108 	mutex_unlock(&ctx->ring_lock);
1109 
1110 	return ret;
1111 }
1112 
1113 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1114 			    struct io_event __user *event, long *i)
1115 {
1116 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1117 
1118 	if (ret > 0)
1119 		*i += ret;
1120 
1121 	if (unlikely(atomic_read(&ctx->dead)))
1122 		ret = -EINVAL;
1123 
1124 	if (!*i)
1125 		*i = ret;
1126 
1127 	return ret < 0 || *i >= min_nr;
1128 }
1129 
1130 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1131 			struct io_event __user *event,
1132 			struct timespec __user *timeout)
1133 {
1134 	ktime_t until = { .tv64 = KTIME_MAX };
1135 	long ret = 0;
1136 
1137 	if (timeout) {
1138 		struct timespec	ts;
1139 
1140 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1141 			return -EFAULT;
1142 
1143 		until = timespec_to_ktime(ts);
1144 	}
1145 
1146 	/*
1147 	 * Note that aio_read_events() is being called as the conditional - i.e.
1148 	 * we're calling it after prepare_to_wait() has set task state to
1149 	 * TASK_INTERRUPTIBLE.
1150 	 *
1151 	 * But aio_read_events() can block, and if it blocks it's going to flip
1152 	 * the task state back to TASK_RUNNING.
1153 	 *
1154 	 * This should be ok, provided it doesn't flip the state back to
1155 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1156 	 * will only happen if the mutex_lock() call blocks, and we then find
1157 	 * the ringbuffer empty. So in practice we should be ok, but it's
1158 	 * something to be aware of when touching this code.
1159 	 */
1160 	wait_event_interruptible_hrtimeout(ctx->wait,
1161 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1162 
1163 	if (!ret && signal_pending(current))
1164 		ret = -EINTR;
1165 
1166 	return ret;
1167 }
1168 
1169 /* sys_io_setup:
1170  *	Create an aio_context capable of receiving at least nr_events.
1171  *	ctxp must not point to an aio_context that already exists, and
1172  *	must be initialized to 0 prior to the call.  On successful
1173  *	creation of the aio_context, *ctxp is filled in with the resulting
1174  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1175  *	if the specified nr_events exceeds internal limits.  May fail
1176  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1177  *	of available events.  May fail with -ENOMEM if insufficient kernel
1178  *	resources are available.  May fail with -EFAULT if an invalid
1179  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1180  *	implemented.
1181  */
1182 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1183 {
1184 	struct kioctx *ioctx = NULL;
1185 	unsigned long ctx;
1186 	long ret;
1187 
1188 	ret = get_user(ctx, ctxp);
1189 	if (unlikely(ret))
1190 		goto out;
1191 
1192 	ret = -EINVAL;
1193 	if (unlikely(ctx || nr_events == 0)) {
1194 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1195 		         ctx, nr_events);
1196 		goto out;
1197 	}
1198 
1199 	ioctx = ioctx_alloc(nr_events);
1200 	ret = PTR_ERR(ioctx);
1201 	if (!IS_ERR(ioctx)) {
1202 		ret = put_user(ioctx->user_id, ctxp);
1203 		if (ret)
1204 			kill_ioctx(current->mm, ioctx, NULL);
1205 		percpu_ref_put(&ioctx->users);
1206 	}
1207 
1208 out:
1209 	return ret;
1210 }
1211 
1212 /* sys_io_destroy:
1213  *	Destroy the aio_context specified.  May cancel any outstanding
1214  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1215  *	implemented.  May fail with -EINVAL if the context pointed to
1216  *	is invalid.
1217  */
1218 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1219 {
1220 	struct kioctx *ioctx = lookup_ioctx(ctx);
1221 	if (likely(NULL != ioctx)) {
1222 		struct completion requests_done =
1223 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1224 		int ret;
1225 
1226 		/* Pass requests_done to kill_ioctx() where it can be set
1227 		 * in a thread-safe way. If we try to set it here then we have
1228 		 * a race condition if two io_destroy() called simultaneously.
1229 		 */
1230 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1231 		percpu_ref_put(&ioctx->users);
1232 
1233 		/* Wait until all IO for the context are done. Otherwise kernel
1234 		 * keep using user-space buffers even if user thinks the context
1235 		 * is destroyed.
1236 		 */
1237 		if (!ret)
1238 			wait_for_completion(&requests_done);
1239 
1240 		return ret;
1241 	}
1242 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1243 	return -EINVAL;
1244 }
1245 
1246 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1247 			    unsigned long, loff_t);
1248 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1249 
1250 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1251 				     int rw, char __user *buf,
1252 				     unsigned long *nr_segs,
1253 				     struct iovec **iovec,
1254 				     bool compat)
1255 {
1256 	ssize_t ret;
1257 
1258 	*nr_segs = kiocb->ki_nbytes;
1259 
1260 #ifdef CONFIG_COMPAT
1261 	if (compat)
1262 		ret = compat_rw_copy_check_uvector(rw,
1263 				(struct compat_iovec __user *)buf,
1264 				*nr_segs, 1, *iovec, iovec);
1265 	else
1266 #endif
1267 		ret = rw_copy_check_uvector(rw,
1268 				(struct iovec __user *)buf,
1269 				*nr_segs, 1, *iovec, iovec);
1270 	if (ret < 0)
1271 		return ret;
1272 
1273 	/* ki_nbytes now reflect bytes instead of segs */
1274 	kiocb->ki_nbytes = ret;
1275 	return 0;
1276 }
1277 
1278 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1279 				       int rw, char __user *buf,
1280 				       unsigned long *nr_segs,
1281 				       struct iovec *iovec)
1282 {
1283 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1284 		return -EFAULT;
1285 
1286 	iovec->iov_base = buf;
1287 	iovec->iov_len = kiocb->ki_nbytes;
1288 	*nr_segs = 1;
1289 	return 0;
1290 }
1291 
1292 /*
1293  * aio_setup_iocb:
1294  *	Performs the initial checks and aio retry method
1295  *	setup for the kiocb at the time of io submission.
1296  */
1297 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1298 			    char __user *buf, bool compat)
1299 {
1300 	struct file *file = req->ki_filp;
1301 	ssize_t ret;
1302 	unsigned long nr_segs;
1303 	int rw;
1304 	fmode_t mode;
1305 	aio_rw_op *rw_op;
1306 	rw_iter_op *iter_op;
1307 	struct iovec inline_vec, *iovec = &inline_vec;
1308 	struct iov_iter iter;
1309 
1310 	switch (opcode) {
1311 	case IOCB_CMD_PREAD:
1312 	case IOCB_CMD_PREADV:
1313 		mode	= FMODE_READ;
1314 		rw	= READ;
1315 		rw_op	= file->f_op->aio_read;
1316 		iter_op	= file->f_op->read_iter;
1317 		goto rw_common;
1318 
1319 	case IOCB_CMD_PWRITE:
1320 	case IOCB_CMD_PWRITEV:
1321 		mode	= FMODE_WRITE;
1322 		rw	= WRITE;
1323 		rw_op	= file->f_op->aio_write;
1324 		iter_op	= file->f_op->write_iter;
1325 		goto rw_common;
1326 rw_common:
1327 		if (unlikely(!(file->f_mode & mode)))
1328 			return -EBADF;
1329 
1330 		if (!rw_op && !iter_op)
1331 			return -EINVAL;
1332 
1333 		ret = (opcode == IOCB_CMD_PREADV ||
1334 		       opcode == IOCB_CMD_PWRITEV)
1335 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1336 						&iovec, compat)
1337 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1338 						  iovec);
1339 		if (!ret)
1340 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1341 		if (ret < 0) {
1342 			if (iovec != &inline_vec)
1343 				kfree(iovec);
1344 			return ret;
1345 		}
1346 
1347 		req->ki_nbytes = ret;
1348 
1349 		/* XXX: move/kill - rw_verify_area()? */
1350 		/* This matches the pread()/pwrite() logic */
1351 		if (req->ki_pos < 0) {
1352 			ret = -EINVAL;
1353 			break;
1354 		}
1355 
1356 		if (rw == WRITE)
1357 			file_start_write(file);
1358 
1359 		if (iter_op) {
1360 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1361 			ret = iter_op(req, &iter);
1362 		} else {
1363 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1364 		}
1365 
1366 		if (rw == WRITE)
1367 			file_end_write(file);
1368 		break;
1369 
1370 	case IOCB_CMD_FDSYNC:
1371 		if (!file->f_op->aio_fsync)
1372 			return -EINVAL;
1373 
1374 		ret = file->f_op->aio_fsync(req, 1);
1375 		break;
1376 
1377 	case IOCB_CMD_FSYNC:
1378 		if (!file->f_op->aio_fsync)
1379 			return -EINVAL;
1380 
1381 		ret = file->f_op->aio_fsync(req, 0);
1382 		break;
1383 
1384 	default:
1385 		pr_debug("EINVAL: no operation provided\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	if (iovec != &inline_vec)
1390 		kfree(iovec);
1391 
1392 	if (ret != -EIOCBQUEUED) {
1393 		/*
1394 		 * There's no easy way to restart the syscall since other AIO's
1395 		 * may be already running. Just fail this IO with EINTR.
1396 		 */
1397 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1398 			     ret == -ERESTARTNOHAND ||
1399 			     ret == -ERESTART_RESTARTBLOCK))
1400 			ret = -EINTR;
1401 		aio_complete(req, ret, 0);
1402 	}
1403 
1404 	return 0;
1405 }
1406 
1407 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1408 			 struct iocb *iocb, bool compat)
1409 {
1410 	struct kiocb *req;
1411 	ssize_t ret;
1412 
1413 	/* enforce forwards compatibility on users */
1414 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1415 		pr_debug("EINVAL: reserve field set\n");
1416 		return -EINVAL;
1417 	}
1418 
1419 	/* prevent overflows */
1420 	if (unlikely(
1421 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1422 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1423 	    ((ssize_t)iocb->aio_nbytes < 0)
1424 	   )) {
1425 		pr_debug("EINVAL: io_submit: overflow check\n");
1426 		return -EINVAL;
1427 	}
1428 
1429 	req = aio_get_req(ctx);
1430 	if (unlikely(!req))
1431 		return -EAGAIN;
1432 
1433 	req->ki_filp = fget(iocb->aio_fildes);
1434 	if (unlikely(!req->ki_filp)) {
1435 		ret = -EBADF;
1436 		goto out_put_req;
1437 	}
1438 
1439 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1440 		/*
1441 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1442 		 * instance of the file* now. The file descriptor must be
1443 		 * an eventfd() fd, and will be signaled for each completed
1444 		 * event using the eventfd_signal() function.
1445 		 */
1446 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1447 		if (IS_ERR(req->ki_eventfd)) {
1448 			ret = PTR_ERR(req->ki_eventfd);
1449 			req->ki_eventfd = NULL;
1450 			goto out_put_req;
1451 		}
1452 	}
1453 
1454 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1455 	if (unlikely(ret)) {
1456 		pr_debug("EFAULT: aio_key\n");
1457 		goto out_put_req;
1458 	}
1459 
1460 	req->ki_obj.user = user_iocb;
1461 	req->ki_user_data = iocb->aio_data;
1462 	req->ki_pos = iocb->aio_offset;
1463 	req->ki_nbytes = iocb->aio_nbytes;
1464 
1465 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1466 			   (char __user *)(unsigned long)iocb->aio_buf,
1467 			   compat);
1468 	if (ret)
1469 		goto out_put_req;
1470 
1471 	return 0;
1472 out_put_req:
1473 	put_reqs_available(ctx, 1);
1474 	percpu_ref_put(&ctx->reqs);
1475 	kiocb_free(req);
1476 	return ret;
1477 }
1478 
1479 long do_io_submit(aio_context_t ctx_id, long nr,
1480 		  struct iocb __user *__user *iocbpp, bool compat)
1481 {
1482 	struct kioctx *ctx;
1483 	long ret = 0;
1484 	int i = 0;
1485 	struct blk_plug plug;
1486 
1487 	if (unlikely(nr < 0))
1488 		return -EINVAL;
1489 
1490 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1491 		nr = LONG_MAX/sizeof(*iocbpp);
1492 
1493 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1494 		return -EFAULT;
1495 
1496 	ctx = lookup_ioctx(ctx_id);
1497 	if (unlikely(!ctx)) {
1498 		pr_debug("EINVAL: invalid context id\n");
1499 		return -EINVAL;
1500 	}
1501 
1502 	blk_start_plug(&plug);
1503 
1504 	/*
1505 	 * AKPM: should this return a partial result if some of the IOs were
1506 	 * successfully submitted?
1507 	 */
1508 	for (i=0; i<nr; i++) {
1509 		struct iocb __user *user_iocb;
1510 		struct iocb tmp;
1511 
1512 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1513 			ret = -EFAULT;
1514 			break;
1515 		}
1516 
1517 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1518 			ret = -EFAULT;
1519 			break;
1520 		}
1521 
1522 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1523 		if (ret)
1524 			break;
1525 	}
1526 	blk_finish_plug(&plug);
1527 
1528 	percpu_ref_put(&ctx->users);
1529 	return i ? i : ret;
1530 }
1531 
1532 /* sys_io_submit:
1533  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1534  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1535  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1536  *	*iocbpp[0] is not properly initialized, if the operation specified
1537  *	is invalid for the file descriptor in the iocb.  May fail with
1538  *	-EFAULT if any of the data structures point to invalid data.  May
1539  *	fail with -EBADF if the file descriptor specified in the first
1540  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1541  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1542  *	fail with -ENOSYS if not implemented.
1543  */
1544 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1545 		struct iocb __user * __user *, iocbpp)
1546 {
1547 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1548 }
1549 
1550 /* lookup_kiocb
1551  *	Finds a given iocb for cancellation.
1552  */
1553 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1554 				  u32 key)
1555 {
1556 	struct list_head *pos;
1557 
1558 	assert_spin_locked(&ctx->ctx_lock);
1559 
1560 	if (key != KIOCB_KEY)
1561 		return NULL;
1562 
1563 	/* TODO: use a hash or array, this sucks. */
1564 	list_for_each(pos, &ctx->active_reqs) {
1565 		struct kiocb *kiocb = list_kiocb(pos);
1566 		if (kiocb->ki_obj.user == iocb)
1567 			return kiocb;
1568 	}
1569 	return NULL;
1570 }
1571 
1572 /* sys_io_cancel:
1573  *	Attempts to cancel an iocb previously passed to io_submit.  If
1574  *	the operation is successfully cancelled, the resulting event is
1575  *	copied into the memory pointed to by result without being placed
1576  *	into the completion queue and 0 is returned.  May fail with
1577  *	-EFAULT if any of the data structures pointed to are invalid.
1578  *	May fail with -EINVAL if aio_context specified by ctx_id is
1579  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1580  *	cancelled.  Will fail with -ENOSYS if not implemented.
1581  */
1582 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1583 		struct io_event __user *, result)
1584 {
1585 	struct kioctx *ctx;
1586 	struct kiocb *kiocb;
1587 	u32 key;
1588 	int ret;
1589 
1590 	ret = get_user(key, &iocb->aio_key);
1591 	if (unlikely(ret))
1592 		return -EFAULT;
1593 
1594 	ctx = lookup_ioctx(ctx_id);
1595 	if (unlikely(!ctx))
1596 		return -EINVAL;
1597 
1598 	spin_lock_irq(&ctx->ctx_lock);
1599 
1600 	kiocb = lookup_kiocb(ctx, iocb, key);
1601 	if (kiocb)
1602 		ret = kiocb_cancel(kiocb);
1603 	else
1604 		ret = -EINVAL;
1605 
1606 	spin_unlock_irq(&ctx->ctx_lock);
1607 
1608 	if (!ret) {
1609 		/*
1610 		 * The result argument is no longer used - the io_event is
1611 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1612 		 * cancellation is progress:
1613 		 */
1614 		ret = -EINPROGRESS;
1615 	}
1616 
1617 	percpu_ref_put(&ctx->users);
1618 
1619 	return ret;
1620 }
1621 
1622 /* io_getevents:
1623  *	Attempts to read at least min_nr events and up to nr events from
1624  *	the completion queue for the aio_context specified by ctx_id. If
1625  *	it succeeds, the number of read events is returned. May fail with
1626  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1627  *	out of range, if timeout is out of range.  May fail with -EFAULT
1628  *	if any of the memory specified is invalid.  May return 0 or
1629  *	< min_nr if the timeout specified by timeout has elapsed
1630  *	before sufficient events are available, where timeout == NULL
1631  *	specifies an infinite timeout. Note that the timeout pointed to by
1632  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1633  */
1634 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1635 		long, min_nr,
1636 		long, nr,
1637 		struct io_event __user *, events,
1638 		struct timespec __user *, timeout)
1639 {
1640 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1641 	long ret = -EINVAL;
1642 
1643 	if (likely(ioctx)) {
1644 		if (likely(min_nr <= nr && min_nr >= 0))
1645 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1646 		percpu_ref_put(&ioctx->users);
1647 	}
1648 	return ret;
1649 }
1650