1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 /* 116 * signals when all in-flight requests are done 117 */ 118 struct completion *requests_done; 119 120 struct { 121 /* 122 * This counts the number of available slots in the ringbuffer, 123 * so we avoid overflowing it: it's decremented (if positive) 124 * when allocating a kiocb and incremented when the resulting 125 * io_event is pulled off the ringbuffer. 126 * 127 * We batch accesses to it with a percpu version. 128 */ 129 atomic_t reqs_available; 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 spinlock_t ctx_lock; 134 struct list_head active_reqs; /* used for cancellation */ 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 struct mutex ring_lock; 139 wait_queue_head_t wait; 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 unsigned tail; 144 spinlock_t completion_lock; 145 } ____cacheline_aligned_in_smp; 146 147 struct page *internal_pages[AIO_RING_PAGES]; 148 struct file *aio_ring_file; 149 150 unsigned id; 151 }; 152 153 /*------ sysctl variables----*/ 154 static DEFINE_SPINLOCK(aio_nr_lock); 155 unsigned long aio_nr; /* current system wide number of aio requests */ 156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 157 /*----end sysctl variables---*/ 158 159 static struct kmem_cache *kiocb_cachep; 160 static struct kmem_cache *kioctx_cachep; 161 162 static struct vfsmount *aio_mnt; 163 164 static const struct file_operations aio_ring_fops; 165 static const struct address_space_operations aio_ctx_aops; 166 167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 168 { 169 struct qstr this = QSTR_INIT("[aio]", 5); 170 struct file *file; 171 struct path path; 172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 173 if (IS_ERR(inode)) 174 return ERR_CAST(inode); 175 176 inode->i_mapping->a_ops = &aio_ctx_aops; 177 inode->i_mapping->private_data = ctx; 178 inode->i_size = PAGE_SIZE * nr_pages; 179 180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 181 if (!path.dentry) { 182 iput(inode); 183 return ERR_PTR(-ENOMEM); 184 } 185 path.mnt = mntget(aio_mnt); 186 187 d_instantiate(path.dentry, inode); 188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 189 if (IS_ERR(file)) { 190 path_put(&path); 191 return file; 192 } 193 194 file->f_flags = O_RDWR; 195 file->private_data = ctx; 196 return file; 197 } 198 199 static struct dentry *aio_mount(struct file_system_type *fs_type, 200 int flags, const char *dev_name, void *data) 201 { 202 static const struct dentry_operations ops = { 203 .d_dname = simple_dname, 204 }; 205 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 206 } 207 208 /* aio_setup 209 * Creates the slab caches used by the aio routines, panic on 210 * failure as this is done early during the boot sequence. 211 */ 212 static int __init aio_setup(void) 213 { 214 static struct file_system_type aio_fs = { 215 .name = "aio", 216 .mount = aio_mount, 217 .kill_sb = kill_anon_super, 218 }; 219 aio_mnt = kern_mount(&aio_fs); 220 if (IS_ERR(aio_mnt)) 221 panic("Failed to create aio fs mount."); 222 223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 225 226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 227 228 return 0; 229 } 230 __initcall(aio_setup); 231 232 static void put_aio_ring_file(struct kioctx *ctx) 233 { 234 struct file *aio_ring_file = ctx->aio_ring_file; 235 if (aio_ring_file) { 236 truncate_setsize(aio_ring_file->f_inode, 0); 237 238 /* Prevent further access to the kioctx from migratepages */ 239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 240 aio_ring_file->f_inode->i_mapping->private_data = NULL; 241 ctx->aio_ring_file = NULL; 242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 243 244 fput(aio_ring_file); 245 } 246 } 247 248 static void aio_free_ring(struct kioctx *ctx) 249 { 250 int i; 251 252 /* Disconnect the kiotx from the ring file. This prevents future 253 * accesses to the kioctx from page migration. 254 */ 255 put_aio_ring_file(ctx); 256 257 for (i = 0; i < ctx->nr_pages; i++) { 258 struct page *page; 259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 260 page_count(ctx->ring_pages[i])); 261 page = ctx->ring_pages[i]; 262 if (!page) 263 continue; 264 ctx->ring_pages[i] = NULL; 265 put_page(page); 266 } 267 268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 269 kfree(ctx->ring_pages); 270 ctx->ring_pages = NULL; 271 } 272 } 273 274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 275 { 276 vma->vm_ops = &generic_file_vm_ops; 277 return 0; 278 } 279 280 static const struct file_operations aio_ring_fops = { 281 .mmap = aio_ring_mmap, 282 }; 283 284 static int aio_set_page_dirty(struct page *page) 285 { 286 return 0; 287 } 288 289 #if IS_ENABLED(CONFIG_MIGRATION) 290 static int aio_migratepage(struct address_space *mapping, struct page *new, 291 struct page *old, enum migrate_mode mode) 292 { 293 struct kioctx *ctx; 294 unsigned long flags; 295 pgoff_t idx; 296 int rc; 297 298 rc = 0; 299 300 /* mapping->private_lock here protects against the kioctx teardown. */ 301 spin_lock(&mapping->private_lock); 302 ctx = mapping->private_data; 303 if (!ctx) { 304 rc = -EINVAL; 305 goto out; 306 } 307 308 /* The ring_lock mutex. The prevents aio_read_events() from writing 309 * to the ring's head, and prevents page migration from mucking in 310 * a partially initialized kiotx. 311 */ 312 if (!mutex_trylock(&ctx->ring_lock)) { 313 rc = -EAGAIN; 314 goto out; 315 } 316 317 idx = old->index; 318 if (idx < (pgoff_t)ctx->nr_pages) { 319 /* Make sure the old page hasn't already been changed */ 320 if (ctx->ring_pages[idx] != old) 321 rc = -EAGAIN; 322 } else 323 rc = -EINVAL; 324 325 if (rc != 0) 326 goto out_unlock; 327 328 /* Writeback must be complete */ 329 BUG_ON(PageWriteback(old)); 330 get_page(new); 331 332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 333 if (rc != MIGRATEPAGE_SUCCESS) { 334 put_page(new); 335 goto out_unlock; 336 } 337 338 /* Take completion_lock to prevent other writes to the ring buffer 339 * while the old page is copied to the new. This prevents new 340 * events from being lost. 341 */ 342 spin_lock_irqsave(&ctx->completion_lock, flags); 343 migrate_page_copy(new, old); 344 BUG_ON(ctx->ring_pages[idx] != old); 345 ctx->ring_pages[idx] = new; 346 spin_unlock_irqrestore(&ctx->completion_lock, flags); 347 348 /* The old page is no longer accessible. */ 349 put_page(old); 350 351 out_unlock: 352 mutex_unlock(&ctx->ring_lock); 353 out: 354 spin_unlock(&mapping->private_lock); 355 return rc; 356 } 357 #endif 358 359 static const struct address_space_operations aio_ctx_aops = { 360 .set_page_dirty = aio_set_page_dirty, 361 #if IS_ENABLED(CONFIG_MIGRATION) 362 .migratepage = aio_migratepage, 363 #endif 364 }; 365 366 static int aio_setup_ring(struct kioctx *ctx) 367 { 368 struct aio_ring *ring; 369 unsigned nr_events = ctx->max_reqs; 370 struct mm_struct *mm = current->mm; 371 unsigned long size, unused; 372 int nr_pages; 373 int i; 374 struct file *file; 375 376 /* Compensate for the ring buffer's head/tail overlap entry */ 377 nr_events += 2; /* 1 is required, 2 for good luck */ 378 379 size = sizeof(struct aio_ring); 380 size += sizeof(struct io_event) * nr_events; 381 382 nr_pages = PFN_UP(size); 383 if (nr_pages < 0) 384 return -EINVAL; 385 386 file = aio_private_file(ctx, nr_pages); 387 if (IS_ERR(file)) { 388 ctx->aio_ring_file = NULL; 389 return -ENOMEM; 390 } 391 392 ctx->aio_ring_file = file; 393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 394 / sizeof(struct io_event); 395 396 ctx->ring_pages = ctx->internal_pages; 397 if (nr_pages > AIO_RING_PAGES) { 398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 399 GFP_KERNEL); 400 if (!ctx->ring_pages) { 401 put_aio_ring_file(ctx); 402 return -ENOMEM; 403 } 404 } 405 406 for (i = 0; i < nr_pages; i++) { 407 struct page *page; 408 page = find_or_create_page(file->f_inode->i_mapping, 409 i, GFP_HIGHUSER | __GFP_ZERO); 410 if (!page) 411 break; 412 pr_debug("pid(%d) page[%d]->count=%d\n", 413 current->pid, i, page_count(page)); 414 SetPageUptodate(page); 415 SetPageDirty(page); 416 unlock_page(page); 417 418 ctx->ring_pages[i] = page; 419 } 420 ctx->nr_pages = i; 421 422 if (unlikely(i != nr_pages)) { 423 aio_free_ring(ctx); 424 return -ENOMEM; 425 } 426 427 ctx->mmap_size = nr_pages * PAGE_SIZE; 428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 429 430 down_write(&mm->mmap_sem); 431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 432 PROT_READ | PROT_WRITE, 433 MAP_SHARED, 0, &unused); 434 up_write(&mm->mmap_sem); 435 if (IS_ERR((void *)ctx->mmap_base)) { 436 ctx->mmap_size = 0; 437 aio_free_ring(ctx); 438 return -ENOMEM; 439 } 440 441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 442 443 ctx->user_id = ctx->mmap_base; 444 ctx->nr_events = nr_events; /* trusted copy */ 445 446 ring = kmap_atomic(ctx->ring_pages[0]); 447 ring->nr = nr_events; /* user copy */ 448 ring->id = ~0U; 449 ring->head = ring->tail = 0; 450 ring->magic = AIO_RING_MAGIC; 451 ring->compat_features = AIO_RING_COMPAT_FEATURES; 452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 453 ring->header_length = sizeof(struct aio_ring); 454 kunmap_atomic(ring); 455 flush_dcache_page(ctx->ring_pages[0]); 456 457 return 0; 458 } 459 460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 463 464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 465 { 466 struct kioctx *ctx = req->ki_ctx; 467 unsigned long flags; 468 469 spin_lock_irqsave(&ctx->ctx_lock, flags); 470 471 if (!req->ki_list.next) 472 list_add(&req->ki_list, &ctx->active_reqs); 473 474 req->ki_cancel = cancel; 475 476 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 477 } 478 EXPORT_SYMBOL(kiocb_set_cancel_fn); 479 480 static int kiocb_cancel(struct kiocb *kiocb) 481 { 482 kiocb_cancel_fn *old, *cancel; 483 484 /* 485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 486 * actually has a cancel function, hence the cmpxchg() 487 */ 488 489 cancel = ACCESS_ONCE(kiocb->ki_cancel); 490 do { 491 if (!cancel || cancel == KIOCB_CANCELLED) 492 return -EINVAL; 493 494 old = cancel; 495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 496 } while (cancel != old); 497 498 return cancel(kiocb); 499 } 500 501 static void free_ioctx(struct work_struct *work) 502 { 503 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 504 505 pr_debug("freeing %p\n", ctx); 506 507 aio_free_ring(ctx); 508 free_percpu(ctx->cpu); 509 kmem_cache_free(kioctx_cachep, ctx); 510 } 511 512 static void free_ioctx_reqs(struct percpu_ref *ref) 513 { 514 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 515 516 /* At this point we know that there are no any in-flight requests */ 517 if (ctx->requests_done) 518 complete(ctx->requests_done); 519 520 INIT_WORK(&ctx->free_work, free_ioctx); 521 schedule_work(&ctx->free_work); 522 } 523 524 /* 525 * When this function runs, the kioctx has been removed from the "hash table" 526 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 527 * now it's safe to cancel any that need to be. 528 */ 529 static void free_ioctx_users(struct percpu_ref *ref) 530 { 531 struct kioctx *ctx = container_of(ref, struct kioctx, users); 532 struct kiocb *req; 533 534 spin_lock_irq(&ctx->ctx_lock); 535 536 while (!list_empty(&ctx->active_reqs)) { 537 req = list_first_entry(&ctx->active_reqs, 538 struct kiocb, ki_list); 539 540 list_del_init(&req->ki_list); 541 kiocb_cancel(req); 542 } 543 544 spin_unlock_irq(&ctx->ctx_lock); 545 546 percpu_ref_kill(&ctx->reqs); 547 percpu_ref_put(&ctx->reqs); 548 } 549 550 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 551 { 552 unsigned i, new_nr; 553 struct kioctx_table *table, *old; 554 struct aio_ring *ring; 555 556 spin_lock(&mm->ioctx_lock); 557 rcu_read_lock(); 558 table = rcu_dereference(mm->ioctx_table); 559 560 while (1) { 561 if (table) 562 for (i = 0; i < table->nr; i++) 563 if (!table->table[i]) { 564 ctx->id = i; 565 table->table[i] = ctx; 566 rcu_read_unlock(); 567 spin_unlock(&mm->ioctx_lock); 568 569 /* While kioctx setup is in progress, 570 * we are protected from page migration 571 * changes ring_pages by ->ring_lock. 572 */ 573 ring = kmap_atomic(ctx->ring_pages[0]); 574 ring->id = ctx->id; 575 kunmap_atomic(ring); 576 return 0; 577 } 578 579 new_nr = (table ? table->nr : 1) * 4; 580 581 rcu_read_unlock(); 582 spin_unlock(&mm->ioctx_lock); 583 584 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 585 new_nr, GFP_KERNEL); 586 if (!table) 587 return -ENOMEM; 588 589 table->nr = new_nr; 590 591 spin_lock(&mm->ioctx_lock); 592 rcu_read_lock(); 593 old = rcu_dereference(mm->ioctx_table); 594 595 if (!old) { 596 rcu_assign_pointer(mm->ioctx_table, table); 597 } else if (table->nr > old->nr) { 598 memcpy(table->table, old->table, 599 old->nr * sizeof(struct kioctx *)); 600 601 rcu_assign_pointer(mm->ioctx_table, table); 602 kfree_rcu(old, rcu); 603 } else { 604 kfree(table); 605 table = old; 606 } 607 } 608 } 609 610 static void aio_nr_sub(unsigned nr) 611 { 612 spin_lock(&aio_nr_lock); 613 if (WARN_ON(aio_nr - nr > aio_nr)) 614 aio_nr = 0; 615 else 616 aio_nr -= nr; 617 spin_unlock(&aio_nr_lock); 618 } 619 620 /* ioctx_alloc 621 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 622 */ 623 static struct kioctx *ioctx_alloc(unsigned nr_events) 624 { 625 struct mm_struct *mm = current->mm; 626 struct kioctx *ctx; 627 int err = -ENOMEM; 628 629 /* 630 * We keep track of the number of available ringbuffer slots, to prevent 631 * overflow (reqs_available), and we also use percpu counters for this. 632 * 633 * So since up to half the slots might be on other cpu's percpu counters 634 * and unavailable, double nr_events so userspace sees what they 635 * expected: additionally, we move req_batch slots to/from percpu 636 * counters at a time, so make sure that isn't 0: 637 */ 638 nr_events = max(nr_events, num_possible_cpus() * 4); 639 nr_events *= 2; 640 641 /* Prevent overflows */ 642 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 643 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 644 pr_debug("ENOMEM: nr_events too high\n"); 645 return ERR_PTR(-EINVAL); 646 } 647 648 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 649 return ERR_PTR(-EAGAIN); 650 651 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 652 if (!ctx) 653 return ERR_PTR(-ENOMEM); 654 655 ctx->max_reqs = nr_events; 656 657 spin_lock_init(&ctx->ctx_lock); 658 spin_lock_init(&ctx->completion_lock); 659 mutex_init(&ctx->ring_lock); 660 /* Protect against page migration throughout kiotx setup by keeping 661 * the ring_lock mutex held until setup is complete. */ 662 mutex_lock(&ctx->ring_lock); 663 init_waitqueue_head(&ctx->wait); 664 665 INIT_LIST_HEAD(&ctx->active_reqs); 666 667 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 668 goto err; 669 670 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 671 goto err; 672 673 ctx->cpu = alloc_percpu(struct kioctx_cpu); 674 if (!ctx->cpu) 675 goto err; 676 677 err = aio_setup_ring(ctx); 678 if (err < 0) 679 goto err; 680 681 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 682 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 683 if (ctx->req_batch < 1) 684 ctx->req_batch = 1; 685 686 /* limit the number of system wide aios */ 687 spin_lock(&aio_nr_lock); 688 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 689 aio_nr + nr_events < aio_nr) { 690 spin_unlock(&aio_nr_lock); 691 err = -EAGAIN; 692 goto err_ctx; 693 } 694 aio_nr += ctx->max_reqs; 695 spin_unlock(&aio_nr_lock); 696 697 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 698 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 699 700 err = ioctx_add_table(ctx, mm); 701 if (err) 702 goto err_cleanup; 703 704 /* Release the ring_lock mutex now that all setup is complete. */ 705 mutex_unlock(&ctx->ring_lock); 706 707 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 708 ctx, ctx->user_id, mm, ctx->nr_events); 709 return ctx; 710 711 err_cleanup: 712 aio_nr_sub(ctx->max_reqs); 713 err_ctx: 714 aio_free_ring(ctx); 715 err: 716 mutex_unlock(&ctx->ring_lock); 717 free_percpu(ctx->cpu); 718 free_percpu(ctx->reqs.pcpu_count); 719 free_percpu(ctx->users.pcpu_count); 720 kmem_cache_free(kioctx_cachep, ctx); 721 pr_debug("error allocating ioctx %d\n", err); 722 return ERR_PTR(err); 723 } 724 725 /* kill_ioctx 726 * Cancels all outstanding aio requests on an aio context. Used 727 * when the processes owning a context have all exited to encourage 728 * the rapid destruction of the kioctx. 729 */ 730 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 731 struct completion *requests_done) 732 { 733 struct kioctx_table *table; 734 735 if (atomic_xchg(&ctx->dead, 1)) 736 return -EINVAL; 737 738 739 spin_lock(&mm->ioctx_lock); 740 rcu_read_lock(); 741 table = rcu_dereference(mm->ioctx_table); 742 743 WARN_ON(ctx != table->table[ctx->id]); 744 table->table[ctx->id] = NULL; 745 rcu_read_unlock(); 746 spin_unlock(&mm->ioctx_lock); 747 748 /* percpu_ref_kill() will do the necessary call_rcu() */ 749 wake_up_all(&ctx->wait); 750 751 /* 752 * It'd be more correct to do this in free_ioctx(), after all 753 * the outstanding kiocbs have finished - but by then io_destroy 754 * has already returned, so io_setup() could potentially return 755 * -EAGAIN with no ioctxs actually in use (as far as userspace 756 * could tell). 757 */ 758 aio_nr_sub(ctx->max_reqs); 759 760 if (ctx->mmap_size) 761 vm_munmap(ctx->mmap_base, ctx->mmap_size); 762 763 ctx->requests_done = requests_done; 764 percpu_ref_kill(&ctx->users); 765 return 0; 766 } 767 768 /* wait_on_sync_kiocb: 769 * Waits on the given sync kiocb to complete. 770 */ 771 ssize_t wait_on_sync_kiocb(struct kiocb *req) 772 { 773 while (!req->ki_ctx) { 774 set_current_state(TASK_UNINTERRUPTIBLE); 775 if (req->ki_ctx) 776 break; 777 io_schedule(); 778 } 779 __set_current_state(TASK_RUNNING); 780 return req->ki_user_data; 781 } 782 EXPORT_SYMBOL(wait_on_sync_kiocb); 783 784 /* 785 * exit_aio: called when the last user of mm goes away. At this point, there is 786 * no way for any new requests to be submited or any of the io_* syscalls to be 787 * called on the context. 788 * 789 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 790 * them. 791 */ 792 void exit_aio(struct mm_struct *mm) 793 { 794 struct kioctx_table *table; 795 struct kioctx *ctx; 796 unsigned i = 0; 797 798 while (1) { 799 rcu_read_lock(); 800 table = rcu_dereference(mm->ioctx_table); 801 802 do { 803 if (!table || i >= table->nr) { 804 rcu_read_unlock(); 805 rcu_assign_pointer(mm->ioctx_table, NULL); 806 if (table) 807 kfree(table); 808 return; 809 } 810 811 ctx = table->table[i++]; 812 } while (!ctx); 813 814 rcu_read_unlock(); 815 816 /* 817 * We don't need to bother with munmap() here - 818 * exit_mmap(mm) is coming and it'll unmap everything. 819 * Since aio_free_ring() uses non-zero ->mmap_size 820 * as indicator that it needs to unmap the area, 821 * just set it to 0; aio_free_ring() is the only 822 * place that uses ->mmap_size, so it's safe. 823 */ 824 ctx->mmap_size = 0; 825 826 kill_ioctx(mm, ctx, NULL); 827 } 828 } 829 830 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 831 { 832 struct kioctx_cpu *kcpu; 833 834 preempt_disable(); 835 kcpu = this_cpu_ptr(ctx->cpu); 836 837 kcpu->reqs_available += nr; 838 while (kcpu->reqs_available >= ctx->req_batch * 2) { 839 kcpu->reqs_available -= ctx->req_batch; 840 atomic_add(ctx->req_batch, &ctx->reqs_available); 841 } 842 843 preempt_enable(); 844 } 845 846 static bool get_reqs_available(struct kioctx *ctx) 847 { 848 struct kioctx_cpu *kcpu; 849 bool ret = false; 850 851 preempt_disable(); 852 kcpu = this_cpu_ptr(ctx->cpu); 853 854 if (!kcpu->reqs_available) { 855 int old, avail = atomic_read(&ctx->reqs_available); 856 857 do { 858 if (avail < ctx->req_batch) 859 goto out; 860 861 old = avail; 862 avail = atomic_cmpxchg(&ctx->reqs_available, 863 avail, avail - ctx->req_batch); 864 } while (avail != old); 865 866 kcpu->reqs_available += ctx->req_batch; 867 } 868 869 ret = true; 870 kcpu->reqs_available--; 871 out: 872 preempt_enable(); 873 return ret; 874 } 875 876 /* aio_get_req 877 * Allocate a slot for an aio request. 878 * Returns NULL if no requests are free. 879 */ 880 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 881 { 882 struct kiocb *req; 883 884 if (!get_reqs_available(ctx)) 885 return NULL; 886 887 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 888 if (unlikely(!req)) 889 goto out_put; 890 891 percpu_ref_get(&ctx->reqs); 892 893 req->ki_ctx = ctx; 894 return req; 895 out_put: 896 put_reqs_available(ctx, 1); 897 return NULL; 898 } 899 900 static void kiocb_free(struct kiocb *req) 901 { 902 if (req->ki_filp) 903 fput(req->ki_filp); 904 if (req->ki_eventfd != NULL) 905 eventfd_ctx_put(req->ki_eventfd); 906 kmem_cache_free(kiocb_cachep, req); 907 } 908 909 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 910 { 911 struct aio_ring __user *ring = (void __user *)ctx_id; 912 struct mm_struct *mm = current->mm; 913 struct kioctx *ctx, *ret = NULL; 914 struct kioctx_table *table; 915 unsigned id; 916 917 if (get_user(id, &ring->id)) 918 return NULL; 919 920 rcu_read_lock(); 921 table = rcu_dereference(mm->ioctx_table); 922 923 if (!table || id >= table->nr) 924 goto out; 925 926 ctx = table->table[id]; 927 if (ctx && ctx->user_id == ctx_id) { 928 percpu_ref_get(&ctx->users); 929 ret = ctx; 930 } 931 out: 932 rcu_read_unlock(); 933 return ret; 934 } 935 936 /* aio_complete 937 * Called when the io request on the given iocb is complete. 938 */ 939 void aio_complete(struct kiocb *iocb, long res, long res2) 940 { 941 struct kioctx *ctx = iocb->ki_ctx; 942 struct aio_ring *ring; 943 struct io_event *ev_page, *event; 944 unsigned long flags; 945 unsigned tail, pos; 946 947 /* 948 * Special case handling for sync iocbs: 949 * - events go directly into the iocb for fast handling 950 * - the sync task with the iocb in its stack holds the single iocb 951 * ref, no other paths have a way to get another ref 952 * - the sync task helpfully left a reference to itself in the iocb 953 */ 954 if (is_sync_kiocb(iocb)) { 955 iocb->ki_user_data = res; 956 smp_wmb(); 957 iocb->ki_ctx = ERR_PTR(-EXDEV); 958 wake_up_process(iocb->ki_obj.tsk); 959 return; 960 } 961 962 if (iocb->ki_list.next) { 963 unsigned long flags; 964 965 spin_lock_irqsave(&ctx->ctx_lock, flags); 966 list_del(&iocb->ki_list); 967 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 968 } 969 970 /* 971 * Add a completion event to the ring buffer. Must be done holding 972 * ctx->completion_lock to prevent other code from messing with the tail 973 * pointer since we might be called from irq context. 974 */ 975 spin_lock_irqsave(&ctx->completion_lock, flags); 976 977 tail = ctx->tail; 978 pos = tail + AIO_EVENTS_OFFSET; 979 980 if (++tail >= ctx->nr_events) 981 tail = 0; 982 983 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 984 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 985 986 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 987 event->data = iocb->ki_user_data; 988 event->res = res; 989 event->res2 = res2; 990 991 kunmap_atomic(ev_page); 992 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 993 994 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 995 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 996 res, res2); 997 998 /* after flagging the request as done, we 999 * must never even look at it again 1000 */ 1001 smp_wmb(); /* make event visible before updating tail */ 1002 1003 ctx->tail = tail; 1004 1005 ring = kmap_atomic(ctx->ring_pages[0]); 1006 ring->tail = tail; 1007 kunmap_atomic(ring); 1008 flush_dcache_page(ctx->ring_pages[0]); 1009 1010 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1011 1012 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1013 1014 /* 1015 * Check if the user asked us to deliver the result through an 1016 * eventfd. The eventfd_signal() function is safe to be called 1017 * from IRQ context. 1018 */ 1019 if (iocb->ki_eventfd != NULL) 1020 eventfd_signal(iocb->ki_eventfd, 1); 1021 1022 /* everything turned out well, dispose of the aiocb. */ 1023 kiocb_free(iocb); 1024 put_reqs_available(ctx, 1); 1025 1026 /* 1027 * We have to order our ring_info tail store above and test 1028 * of the wait list below outside the wait lock. This is 1029 * like in wake_up_bit() where clearing a bit has to be 1030 * ordered with the unlocked test. 1031 */ 1032 smp_mb(); 1033 1034 if (waitqueue_active(&ctx->wait)) 1035 wake_up(&ctx->wait); 1036 1037 percpu_ref_put(&ctx->reqs); 1038 } 1039 EXPORT_SYMBOL(aio_complete); 1040 1041 /* aio_read_events 1042 * Pull an event off of the ioctx's event ring. Returns the number of 1043 * events fetched 1044 */ 1045 static long aio_read_events_ring(struct kioctx *ctx, 1046 struct io_event __user *event, long nr) 1047 { 1048 struct aio_ring *ring; 1049 unsigned head, tail, pos; 1050 long ret = 0; 1051 int copy_ret; 1052 1053 mutex_lock(&ctx->ring_lock); 1054 1055 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1056 ring = kmap_atomic(ctx->ring_pages[0]); 1057 head = ring->head; 1058 tail = ring->tail; 1059 kunmap_atomic(ring); 1060 1061 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1062 1063 if (head == tail) 1064 goto out; 1065 1066 head %= ctx->nr_events; 1067 tail %= ctx->nr_events; 1068 1069 while (ret < nr) { 1070 long avail; 1071 struct io_event *ev; 1072 struct page *page; 1073 1074 avail = (head <= tail ? tail : ctx->nr_events) - head; 1075 if (head == tail) 1076 break; 1077 1078 avail = min(avail, nr - ret); 1079 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1080 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1081 1082 pos = head + AIO_EVENTS_OFFSET; 1083 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1084 pos %= AIO_EVENTS_PER_PAGE; 1085 1086 ev = kmap(page); 1087 copy_ret = copy_to_user(event + ret, ev + pos, 1088 sizeof(*ev) * avail); 1089 kunmap(page); 1090 1091 if (unlikely(copy_ret)) { 1092 ret = -EFAULT; 1093 goto out; 1094 } 1095 1096 ret += avail; 1097 head += avail; 1098 head %= ctx->nr_events; 1099 } 1100 1101 ring = kmap_atomic(ctx->ring_pages[0]); 1102 ring->head = head; 1103 kunmap_atomic(ring); 1104 flush_dcache_page(ctx->ring_pages[0]); 1105 1106 pr_debug("%li h%u t%u\n", ret, head, tail); 1107 out: 1108 mutex_unlock(&ctx->ring_lock); 1109 1110 return ret; 1111 } 1112 1113 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1114 struct io_event __user *event, long *i) 1115 { 1116 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1117 1118 if (ret > 0) 1119 *i += ret; 1120 1121 if (unlikely(atomic_read(&ctx->dead))) 1122 ret = -EINVAL; 1123 1124 if (!*i) 1125 *i = ret; 1126 1127 return ret < 0 || *i >= min_nr; 1128 } 1129 1130 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1131 struct io_event __user *event, 1132 struct timespec __user *timeout) 1133 { 1134 ktime_t until = { .tv64 = KTIME_MAX }; 1135 long ret = 0; 1136 1137 if (timeout) { 1138 struct timespec ts; 1139 1140 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1141 return -EFAULT; 1142 1143 until = timespec_to_ktime(ts); 1144 } 1145 1146 /* 1147 * Note that aio_read_events() is being called as the conditional - i.e. 1148 * we're calling it after prepare_to_wait() has set task state to 1149 * TASK_INTERRUPTIBLE. 1150 * 1151 * But aio_read_events() can block, and if it blocks it's going to flip 1152 * the task state back to TASK_RUNNING. 1153 * 1154 * This should be ok, provided it doesn't flip the state back to 1155 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1156 * will only happen if the mutex_lock() call blocks, and we then find 1157 * the ringbuffer empty. So in practice we should be ok, but it's 1158 * something to be aware of when touching this code. 1159 */ 1160 wait_event_interruptible_hrtimeout(ctx->wait, 1161 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1162 1163 if (!ret && signal_pending(current)) 1164 ret = -EINTR; 1165 1166 return ret; 1167 } 1168 1169 /* sys_io_setup: 1170 * Create an aio_context capable of receiving at least nr_events. 1171 * ctxp must not point to an aio_context that already exists, and 1172 * must be initialized to 0 prior to the call. On successful 1173 * creation of the aio_context, *ctxp is filled in with the resulting 1174 * handle. May fail with -EINVAL if *ctxp is not initialized, 1175 * if the specified nr_events exceeds internal limits. May fail 1176 * with -EAGAIN if the specified nr_events exceeds the user's limit 1177 * of available events. May fail with -ENOMEM if insufficient kernel 1178 * resources are available. May fail with -EFAULT if an invalid 1179 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1180 * implemented. 1181 */ 1182 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1183 { 1184 struct kioctx *ioctx = NULL; 1185 unsigned long ctx; 1186 long ret; 1187 1188 ret = get_user(ctx, ctxp); 1189 if (unlikely(ret)) 1190 goto out; 1191 1192 ret = -EINVAL; 1193 if (unlikely(ctx || nr_events == 0)) { 1194 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1195 ctx, nr_events); 1196 goto out; 1197 } 1198 1199 ioctx = ioctx_alloc(nr_events); 1200 ret = PTR_ERR(ioctx); 1201 if (!IS_ERR(ioctx)) { 1202 ret = put_user(ioctx->user_id, ctxp); 1203 if (ret) 1204 kill_ioctx(current->mm, ioctx, NULL); 1205 percpu_ref_put(&ioctx->users); 1206 } 1207 1208 out: 1209 return ret; 1210 } 1211 1212 /* sys_io_destroy: 1213 * Destroy the aio_context specified. May cancel any outstanding 1214 * AIOs and block on completion. Will fail with -ENOSYS if not 1215 * implemented. May fail with -EINVAL if the context pointed to 1216 * is invalid. 1217 */ 1218 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1219 { 1220 struct kioctx *ioctx = lookup_ioctx(ctx); 1221 if (likely(NULL != ioctx)) { 1222 struct completion requests_done = 1223 COMPLETION_INITIALIZER_ONSTACK(requests_done); 1224 int ret; 1225 1226 /* Pass requests_done to kill_ioctx() where it can be set 1227 * in a thread-safe way. If we try to set it here then we have 1228 * a race condition if two io_destroy() called simultaneously. 1229 */ 1230 ret = kill_ioctx(current->mm, ioctx, &requests_done); 1231 percpu_ref_put(&ioctx->users); 1232 1233 /* Wait until all IO for the context are done. Otherwise kernel 1234 * keep using user-space buffers even if user thinks the context 1235 * is destroyed. 1236 */ 1237 if (!ret) 1238 wait_for_completion(&requests_done); 1239 1240 return ret; 1241 } 1242 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1243 return -EINVAL; 1244 } 1245 1246 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1247 unsigned long, loff_t); 1248 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1249 1250 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1251 int rw, char __user *buf, 1252 unsigned long *nr_segs, 1253 struct iovec **iovec, 1254 bool compat) 1255 { 1256 ssize_t ret; 1257 1258 *nr_segs = kiocb->ki_nbytes; 1259 1260 #ifdef CONFIG_COMPAT 1261 if (compat) 1262 ret = compat_rw_copy_check_uvector(rw, 1263 (struct compat_iovec __user *)buf, 1264 *nr_segs, 1, *iovec, iovec); 1265 else 1266 #endif 1267 ret = rw_copy_check_uvector(rw, 1268 (struct iovec __user *)buf, 1269 *nr_segs, 1, *iovec, iovec); 1270 if (ret < 0) 1271 return ret; 1272 1273 /* ki_nbytes now reflect bytes instead of segs */ 1274 kiocb->ki_nbytes = ret; 1275 return 0; 1276 } 1277 1278 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1279 int rw, char __user *buf, 1280 unsigned long *nr_segs, 1281 struct iovec *iovec) 1282 { 1283 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1284 return -EFAULT; 1285 1286 iovec->iov_base = buf; 1287 iovec->iov_len = kiocb->ki_nbytes; 1288 *nr_segs = 1; 1289 return 0; 1290 } 1291 1292 /* 1293 * aio_setup_iocb: 1294 * Performs the initial checks and aio retry method 1295 * setup for the kiocb at the time of io submission. 1296 */ 1297 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1298 char __user *buf, bool compat) 1299 { 1300 struct file *file = req->ki_filp; 1301 ssize_t ret; 1302 unsigned long nr_segs; 1303 int rw; 1304 fmode_t mode; 1305 aio_rw_op *rw_op; 1306 rw_iter_op *iter_op; 1307 struct iovec inline_vec, *iovec = &inline_vec; 1308 struct iov_iter iter; 1309 1310 switch (opcode) { 1311 case IOCB_CMD_PREAD: 1312 case IOCB_CMD_PREADV: 1313 mode = FMODE_READ; 1314 rw = READ; 1315 rw_op = file->f_op->aio_read; 1316 iter_op = file->f_op->read_iter; 1317 goto rw_common; 1318 1319 case IOCB_CMD_PWRITE: 1320 case IOCB_CMD_PWRITEV: 1321 mode = FMODE_WRITE; 1322 rw = WRITE; 1323 rw_op = file->f_op->aio_write; 1324 iter_op = file->f_op->write_iter; 1325 goto rw_common; 1326 rw_common: 1327 if (unlikely(!(file->f_mode & mode))) 1328 return -EBADF; 1329 1330 if (!rw_op && !iter_op) 1331 return -EINVAL; 1332 1333 ret = (opcode == IOCB_CMD_PREADV || 1334 opcode == IOCB_CMD_PWRITEV) 1335 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1336 &iovec, compat) 1337 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1338 iovec); 1339 if (!ret) 1340 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1341 if (ret < 0) { 1342 if (iovec != &inline_vec) 1343 kfree(iovec); 1344 return ret; 1345 } 1346 1347 req->ki_nbytes = ret; 1348 1349 /* XXX: move/kill - rw_verify_area()? */ 1350 /* This matches the pread()/pwrite() logic */ 1351 if (req->ki_pos < 0) { 1352 ret = -EINVAL; 1353 break; 1354 } 1355 1356 if (rw == WRITE) 1357 file_start_write(file); 1358 1359 if (iter_op) { 1360 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes); 1361 ret = iter_op(req, &iter); 1362 } else { 1363 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1364 } 1365 1366 if (rw == WRITE) 1367 file_end_write(file); 1368 break; 1369 1370 case IOCB_CMD_FDSYNC: 1371 if (!file->f_op->aio_fsync) 1372 return -EINVAL; 1373 1374 ret = file->f_op->aio_fsync(req, 1); 1375 break; 1376 1377 case IOCB_CMD_FSYNC: 1378 if (!file->f_op->aio_fsync) 1379 return -EINVAL; 1380 1381 ret = file->f_op->aio_fsync(req, 0); 1382 break; 1383 1384 default: 1385 pr_debug("EINVAL: no operation provided\n"); 1386 return -EINVAL; 1387 } 1388 1389 if (iovec != &inline_vec) 1390 kfree(iovec); 1391 1392 if (ret != -EIOCBQUEUED) { 1393 /* 1394 * There's no easy way to restart the syscall since other AIO's 1395 * may be already running. Just fail this IO with EINTR. 1396 */ 1397 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1398 ret == -ERESTARTNOHAND || 1399 ret == -ERESTART_RESTARTBLOCK)) 1400 ret = -EINTR; 1401 aio_complete(req, ret, 0); 1402 } 1403 1404 return 0; 1405 } 1406 1407 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1408 struct iocb *iocb, bool compat) 1409 { 1410 struct kiocb *req; 1411 ssize_t ret; 1412 1413 /* enforce forwards compatibility on users */ 1414 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1415 pr_debug("EINVAL: reserve field set\n"); 1416 return -EINVAL; 1417 } 1418 1419 /* prevent overflows */ 1420 if (unlikely( 1421 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1422 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1423 ((ssize_t)iocb->aio_nbytes < 0) 1424 )) { 1425 pr_debug("EINVAL: io_submit: overflow check\n"); 1426 return -EINVAL; 1427 } 1428 1429 req = aio_get_req(ctx); 1430 if (unlikely(!req)) 1431 return -EAGAIN; 1432 1433 req->ki_filp = fget(iocb->aio_fildes); 1434 if (unlikely(!req->ki_filp)) { 1435 ret = -EBADF; 1436 goto out_put_req; 1437 } 1438 1439 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1440 /* 1441 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1442 * instance of the file* now. The file descriptor must be 1443 * an eventfd() fd, and will be signaled for each completed 1444 * event using the eventfd_signal() function. 1445 */ 1446 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1447 if (IS_ERR(req->ki_eventfd)) { 1448 ret = PTR_ERR(req->ki_eventfd); 1449 req->ki_eventfd = NULL; 1450 goto out_put_req; 1451 } 1452 } 1453 1454 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1455 if (unlikely(ret)) { 1456 pr_debug("EFAULT: aio_key\n"); 1457 goto out_put_req; 1458 } 1459 1460 req->ki_obj.user = user_iocb; 1461 req->ki_user_data = iocb->aio_data; 1462 req->ki_pos = iocb->aio_offset; 1463 req->ki_nbytes = iocb->aio_nbytes; 1464 1465 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1466 (char __user *)(unsigned long)iocb->aio_buf, 1467 compat); 1468 if (ret) 1469 goto out_put_req; 1470 1471 return 0; 1472 out_put_req: 1473 put_reqs_available(ctx, 1); 1474 percpu_ref_put(&ctx->reqs); 1475 kiocb_free(req); 1476 return ret; 1477 } 1478 1479 long do_io_submit(aio_context_t ctx_id, long nr, 1480 struct iocb __user *__user *iocbpp, bool compat) 1481 { 1482 struct kioctx *ctx; 1483 long ret = 0; 1484 int i = 0; 1485 struct blk_plug plug; 1486 1487 if (unlikely(nr < 0)) 1488 return -EINVAL; 1489 1490 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1491 nr = LONG_MAX/sizeof(*iocbpp); 1492 1493 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1494 return -EFAULT; 1495 1496 ctx = lookup_ioctx(ctx_id); 1497 if (unlikely(!ctx)) { 1498 pr_debug("EINVAL: invalid context id\n"); 1499 return -EINVAL; 1500 } 1501 1502 blk_start_plug(&plug); 1503 1504 /* 1505 * AKPM: should this return a partial result if some of the IOs were 1506 * successfully submitted? 1507 */ 1508 for (i=0; i<nr; i++) { 1509 struct iocb __user *user_iocb; 1510 struct iocb tmp; 1511 1512 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1513 ret = -EFAULT; 1514 break; 1515 } 1516 1517 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1518 ret = -EFAULT; 1519 break; 1520 } 1521 1522 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1523 if (ret) 1524 break; 1525 } 1526 blk_finish_plug(&plug); 1527 1528 percpu_ref_put(&ctx->users); 1529 return i ? i : ret; 1530 } 1531 1532 /* sys_io_submit: 1533 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1534 * the number of iocbs queued. May return -EINVAL if the aio_context 1535 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1536 * *iocbpp[0] is not properly initialized, if the operation specified 1537 * is invalid for the file descriptor in the iocb. May fail with 1538 * -EFAULT if any of the data structures point to invalid data. May 1539 * fail with -EBADF if the file descriptor specified in the first 1540 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1541 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1542 * fail with -ENOSYS if not implemented. 1543 */ 1544 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1545 struct iocb __user * __user *, iocbpp) 1546 { 1547 return do_io_submit(ctx_id, nr, iocbpp, 0); 1548 } 1549 1550 /* lookup_kiocb 1551 * Finds a given iocb for cancellation. 1552 */ 1553 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1554 u32 key) 1555 { 1556 struct list_head *pos; 1557 1558 assert_spin_locked(&ctx->ctx_lock); 1559 1560 if (key != KIOCB_KEY) 1561 return NULL; 1562 1563 /* TODO: use a hash or array, this sucks. */ 1564 list_for_each(pos, &ctx->active_reqs) { 1565 struct kiocb *kiocb = list_kiocb(pos); 1566 if (kiocb->ki_obj.user == iocb) 1567 return kiocb; 1568 } 1569 return NULL; 1570 } 1571 1572 /* sys_io_cancel: 1573 * Attempts to cancel an iocb previously passed to io_submit. If 1574 * the operation is successfully cancelled, the resulting event is 1575 * copied into the memory pointed to by result without being placed 1576 * into the completion queue and 0 is returned. May fail with 1577 * -EFAULT if any of the data structures pointed to are invalid. 1578 * May fail with -EINVAL if aio_context specified by ctx_id is 1579 * invalid. May fail with -EAGAIN if the iocb specified was not 1580 * cancelled. Will fail with -ENOSYS if not implemented. 1581 */ 1582 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1583 struct io_event __user *, result) 1584 { 1585 struct kioctx *ctx; 1586 struct kiocb *kiocb; 1587 u32 key; 1588 int ret; 1589 1590 ret = get_user(key, &iocb->aio_key); 1591 if (unlikely(ret)) 1592 return -EFAULT; 1593 1594 ctx = lookup_ioctx(ctx_id); 1595 if (unlikely(!ctx)) 1596 return -EINVAL; 1597 1598 spin_lock_irq(&ctx->ctx_lock); 1599 1600 kiocb = lookup_kiocb(ctx, iocb, key); 1601 if (kiocb) 1602 ret = kiocb_cancel(kiocb); 1603 else 1604 ret = -EINVAL; 1605 1606 spin_unlock_irq(&ctx->ctx_lock); 1607 1608 if (!ret) { 1609 /* 1610 * The result argument is no longer used - the io_event is 1611 * always delivered via the ring buffer. -EINPROGRESS indicates 1612 * cancellation is progress: 1613 */ 1614 ret = -EINPROGRESS; 1615 } 1616 1617 percpu_ref_put(&ctx->users); 1618 1619 return ret; 1620 } 1621 1622 /* io_getevents: 1623 * Attempts to read at least min_nr events and up to nr events from 1624 * the completion queue for the aio_context specified by ctx_id. If 1625 * it succeeds, the number of read events is returned. May fail with 1626 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1627 * out of range, if timeout is out of range. May fail with -EFAULT 1628 * if any of the memory specified is invalid. May return 0 or 1629 * < min_nr if the timeout specified by timeout has elapsed 1630 * before sufficient events are available, where timeout == NULL 1631 * specifies an infinite timeout. Note that the timeout pointed to by 1632 * timeout is relative. Will fail with -ENOSYS if not implemented. 1633 */ 1634 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1635 long, min_nr, 1636 long, nr, 1637 struct io_event __user *, events, 1638 struct timespec __user *, timeout) 1639 { 1640 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1641 long ret = -EINVAL; 1642 1643 if (likely(ioctx)) { 1644 if (likely(min_nr <= nr && min_nr >= 0)) 1645 ret = read_events(ioctx, min_nr, nr, events, timeout); 1646 percpu_ref_put(&ioctx->users); 1647 } 1648 return ret; 1649 } 1650