xref: /openbmc/linux/fs/aio.c (revision a86854d0)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/uio.h>
23 
24 #include <linux/sched/signal.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/mm.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_context.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 
45 #include <asm/kmap_types.h>
46 #include <linux/uaccess.h>
47 
48 #include "internal.h"
49 
50 #define KIOCB_KEY		0
51 
52 #define AIO_RING_MAGIC			0xa10a10a1
53 #define AIO_RING_COMPAT_FEATURES	1
54 #define AIO_RING_INCOMPAT_FEATURES	0
55 struct aio_ring {
56 	unsigned	id;	/* kernel internal index number */
57 	unsigned	nr;	/* number of io_events */
58 	unsigned	head;	/* Written to by userland or under ring_lock
59 				 * mutex by aio_read_events_ring(). */
60 	unsigned	tail;
61 
62 	unsigned	magic;
63 	unsigned	compat_features;
64 	unsigned	incompat_features;
65 	unsigned	header_length;	/* size of aio_ring */
66 
67 
68 	struct io_event		io_events[0];
69 }; /* 128 bytes + ring size */
70 
71 #define AIO_RING_PAGES	8
72 
73 struct kioctx_table {
74 	struct rcu_head		rcu;
75 	unsigned		nr;
76 	struct kioctx __rcu	*table[];
77 };
78 
79 struct kioctx_cpu {
80 	unsigned		reqs_available;
81 };
82 
83 struct ctx_rq_wait {
84 	struct completion comp;
85 	atomic_t count;
86 };
87 
88 struct kioctx {
89 	struct percpu_ref	users;
90 	atomic_t		dead;
91 
92 	struct percpu_ref	reqs;
93 
94 	unsigned long		user_id;
95 
96 	struct __percpu kioctx_cpu *cpu;
97 
98 	/*
99 	 * For percpu reqs_available, number of slots we move to/from global
100 	 * counter at a time:
101 	 */
102 	unsigned		req_batch;
103 	/*
104 	 * This is what userspace passed to io_setup(), it's not used for
105 	 * anything but counting against the global max_reqs quota.
106 	 *
107 	 * The real limit is nr_events - 1, which will be larger (see
108 	 * aio_setup_ring())
109 	 */
110 	unsigned		max_reqs;
111 
112 	/* Size of ringbuffer, in units of struct io_event */
113 	unsigned		nr_events;
114 
115 	unsigned long		mmap_base;
116 	unsigned long		mmap_size;
117 
118 	struct page		**ring_pages;
119 	long			nr_pages;
120 
121 	struct rcu_work		free_rwork;	/* see free_ioctx() */
122 
123 	/*
124 	 * signals when all in-flight requests are done
125 	 */
126 	struct ctx_rq_wait	*rq_wait;
127 
128 	struct {
129 		/*
130 		 * This counts the number of available slots in the ringbuffer,
131 		 * so we avoid overflowing it: it's decremented (if positive)
132 		 * when allocating a kiocb and incremented when the resulting
133 		 * io_event is pulled off the ringbuffer.
134 		 *
135 		 * We batch accesses to it with a percpu version.
136 		 */
137 		atomic_t	reqs_available;
138 	} ____cacheline_aligned_in_smp;
139 
140 	struct {
141 		spinlock_t	ctx_lock;
142 		struct list_head active_reqs;	/* used for cancellation */
143 	} ____cacheline_aligned_in_smp;
144 
145 	struct {
146 		struct mutex	ring_lock;
147 		wait_queue_head_t wait;
148 	} ____cacheline_aligned_in_smp;
149 
150 	struct {
151 		unsigned	tail;
152 		unsigned	completed_events;
153 		spinlock_t	completion_lock;
154 	} ____cacheline_aligned_in_smp;
155 
156 	struct page		*internal_pages[AIO_RING_PAGES];
157 	struct file		*aio_ring_file;
158 
159 	unsigned		id;
160 };
161 
162 struct fsync_iocb {
163 	struct work_struct	work;
164 	struct file		*file;
165 	bool			datasync;
166 };
167 
168 struct poll_iocb {
169 	struct file		*file;
170 	__poll_t		events;
171 	struct wait_queue_head	*head;
172 
173 	union {
174 		struct wait_queue_entry	wait;
175 		struct work_struct	work;
176 	};
177 };
178 
179 struct aio_kiocb {
180 	union {
181 		struct kiocb		rw;
182 		struct fsync_iocb	fsync;
183 		struct poll_iocb	poll;
184 	};
185 
186 	struct kioctx		*ki_ctx;
187 	kiocb_cancel_fn		*ki_cancel;
188 
189 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
190 	__u64			ki_user_data;	/* user's data for completion */
191 
192 	struct list_head	ki_list;	/* the aio core uses this
193 						 * for cancellation */
194 
195 	/*
196 	 * If the aio_resfd field of the userspace iocb is not zero,
197 	 * this is the underlying eventfd context to deliver events to.
198 	 */
199 	struct eventfd_ctx	*ki_eventfd;
200 };
201 
202 /*------ sysctl variables----*/
203 static DEFINE_SPINLOCK(aio_nr_lock);
204 unsigned long aio_nr;		/* current system wide number of aio requests */
205 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
206 /*----end sysctl variables---*/
207 
208 static struct kmem_cache	*kiocb_cachep;
209 static struct kmem_cache	*kioctx_cachep;
210 
211 static struct vfsmount *aio_mnt;
212 
213 static const struct file_operations aio_ring_fops;
214 static const struct address_space_operations aio_ctx_aops;
215 
216 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
217 {
218 	struct qstr this = QSTR_INIT("[aio]", 5);
219 	struct file *file;
220 	struct path path;
221 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
222 	if (IS_ERR(inode))
223 		return ERR_CAST(inode);
224 
225 	inode->i_mapping->a_ops = &aio_ctx_aops;
226 	inode->i_mapping->private_data = ctx;
227 	inode->i_size = PAGE_SIZE * nr_pages;
228 
229 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
230 	if (!path.dentry) {
231 		iput(inode);
232 		return ERR_PTR(-ENOMEM);
233 	}
234 	path.mnt = mntget(aio_mnt);
235 
236 	d_instantiate(path.dentry, inode);
237 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
238 	if (IS_ERR(file)) {
239 		path_put(&path);
240 		return file;
241 	}
242 
243 	file->f_flags = O_RDWR;
244 	return file;
245 }
246 
247 static struct dentry *aio_mount(struct file_system_type *fs_type,
248 				int flags, const char *dev_name, void *data)
249 {
250 	static const struct dentry_operations ops = {
251 		.d_dname	= simple_dname,
252 	};
253 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
254 					   AIO_RING_MAGIC);
255 
256 	if (!IS_ERR(root))
257 		root->d_sb->s_iflags |= SB_I_NOEXEC;
258 	return root;
259 }
260 
261 /* aio_setup
262  *	Creates the slab caches used by the aio routines, panic on
263  *	failure as this is done early during the boot sequence.
264  */
265 static int __init aio_setup(void)
266 {
267 	static struct file_system_type aio_fs = {
268 		.name		= "aio",
269 		.mount		= aio_mount,
270 		.kill_sb	= kill_anon_super,
271 	};
272 	aio_mnt = kern_mount(&aio_fs);
273 	if (IS_ERR(aio_mnt))
274 		panic("Failed to create aio fs mount.");
275 
276 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	return 0;
279 }
280 __initcall(aio_setup);
281 
282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 	struct file *aio_ring_file = ctx->aio_ring_file;
285 	struct address_space *i_mapping;
286 
287 	if (aio_ring_file) {
288 		truncate_setsize(file_inode(aio_ring_file), 0);
289 
290 		/* Prevent further access to the kioctx from migratepages */
291 		i_mapping = aio_ring_file->f_mapping;
292 		spin_lock(&i_mapping->private_lock);
293 		i_mapping->private_data = NULL;
294 		ctx->aio_ring_file = NULL;
295 		spin_unlock(&i_mapping->private_lock);
296 
297 		fput(aio_ring_file);
298 	}
299 }
300 
301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 	int i;
304 
305 	/* Disconnect the kiotx from the ring file.  This prevents future
306 	 * accesses to the kioctx from page migration.
307 	 */
308 	put_aio_ring_file(ctx);
309 
310 	for (i = 0; i < ctx->nr_pages; i++) {
311 		struct page *page;
312 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 				page_count(ctx->ring_pages[i]));
314 		page = ctx->ring_pages[i];
315 		if (!page)
316 			continue;
317 		ctx->ring_pages[i] = NULL;
318 		put_page(page);
319 	}
320 
321 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 		kfree(ctx->ring_pages);
323 		ctx->ring_pages = NULL;
324 	}
325 }
326 
327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 	struct file *file = vma->vm_file;
330 	struct mm_struct *mm = vma->vm_mm;
331 	struct kioctx_table *table;
332 	int i, res = -EINVAL;
333 
334 	spin_lock(&mm->ioctx_lock);
335 	rcu_read_lock();
336 	table = rcu_dereference(mm->ioctx_table);
337 	for (i = 0; i < table->nr; i++) {
338 		struct kioctx *ctx;
339 
340 		ctx = rcu_dereference(table->table[i]);
341 		if (ctx && ctx->aio_ring_file == file) {
342 			if (!atomic_read(&ctx->dead)) {
343 				ctx->user_id = ctx->mmap_base = vma->vm_start;
344 				res = 0;
345 			}
346 			break;
347 		}
348 	}
349 
350 	rcu_read_unlock();
351 	spin_unlock(&mm->ioctx_lock);
352 	return res;
353 }
354 
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 	.mremap		= aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 	.fault		= filemap_fault,
359 	.map_pages	= filemap_map_pages,
360 	.page_mkwrite	= filemap_page_mkwrite,
361 #endif
362 };
363 
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 	vma->vm_flags |= VM_DONTEXPAND;
367 	vma->vm_ops = &aio_ring_vm_ops;
368 	return 0;
369 }
370 
371 static const struct file_operations aio_ring_fops = {
372 	.mmap = aio_ring_mmap,
373 };
374 
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 			struct page *old, enum migrate_mode mode)
378 {
379 	struct kioctx *ctx;
380 	unsigned long flags;
381 	pgoff_t idx;
382 	int rc;
383 
384 	/*
385 	 * We cannot support the _NO_COPY case here, because copy needs to
386 	 * happen under the ctx->completion_lock. That does not work with the
387 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 	 */
389 	if (mode == MIGRATE_SYNC_NO_COPY)
390 		return -EINVAL;
391 
392 	rc = 0;
393 
394 	/* mapping->private_lock here protects against the kioctx teardown.  */
395 	spin_lock(&mapping->private_lock);
396 	ctx = mapping->private_data;
397 	if (!ctx) {
398 		rc = -EINVAL;
399 		goto out;
400 	}
401 
402 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
403 	 * to the ring's head, and prevents page migration from mucking in
404 	 * a partially initialized kiotx.
405 	 */
406 	if (!mutex_trylock(&ctx->ring_lock)) {
407 		rc = -EAGAIN;
408 		goto out;
409 	}
410 
411 	idx = old->index;
412 	if (idx < (pgoff_t)ctx->nr_pages) {
413 		/* Make sure the old page hasn't already been changed */
414 		if (ctx->ring_pages[idx] != old)
415 			rc = -EAGAIN;
416 	} else
417 		rc = -EINVAL;
418 
419 	if (rc != 0)
420 		goto out_unlock;
421 
422 	/* Writeback must be complete */
423 	BUG_ON(PageWriteback(old));
424 	get_page(new);
425 
426 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
427 	if (rc != MIGRATEPAGE_SUCCESS) {
428 		put_page(new);
429 		goto out_unlock;
430 	}
431 
432 	/* Take completion_lock to prevent other writes to the ring buffer
433 	 * while the old page is copied to the new.  This prevents new
434 	 * events from being lost.
435 	 */
436 	spin_lock_irqsave(&ctx->completion_lock, flags);
437 	migrate_page_copy(new, old);
438 	BUG_ON(ctx->ring_pages[idx] != old);
439 	ctx->ring_pages[idx] = new;
440 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
441 
442 	/* The old page is no longer accessible. */
443 	put_page(old);
444 
445 out_unlock:
446 	mutex_unlock(&ctx->ring_lock);
447 out:
448 	spin_unlock(&mapping->private_lock);
449 	return rc;
450 }
451 #endif
452 
453 static const struct address_space_operations aio_ctx_aops = {
454 	.set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 	.migratepage	= aio_migratepage,
457 #endif
458 };
459 
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461 {
462 	struct aio_ring *ring;
463 	struct mm_struct *mm = current->mm;
464 	unsigned long size, unused;
465 	int nr_pages;
466 	int i;
467 	struct file *file;
468 
469 	/* Compensate for the ring buffer's head/tail overlap entry */
470 	nr_events += 2;	/* 1 is required, 2 for good luck */
471 
472 	size = sizeof(struct aio_ring);
473 	size += sizeof(struct io_event) * nr_events;
474 
475 	nr_pages = PFN_UP(size);
476 	if (nr_pages < 0)
477 		return -EINVAL;
478 
479 	file = aio_private_file(ctx, nr_pages);
480 	if (IS_ERR(file)) {
481 		ctx->aio_ring_file = NULL;
482 		return -ENOMEM;
483 	}
484 
485 	ctx->aio_ring_file = file;
486 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 			/ sizeof(struct io_event);
488 
489 	ctx->ring_pages = ctx->internal_pages;
490 	if (nr_pages > AIO_RING_PAGES) {
491 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 					  GFP_KERNEL);
493 		if (!ctx->ring_pages) {
494 			put_aio_ring_file(ctx);
495 			return -ENOMEM;
496 		}
497 	}
498 
499 	for (i = 0; i < nr_pages; i++) {
500 		struct page *page;
501 		page = find_or_create_page(file->f_mapping,
502 					   i, GFP_HIGHUSER | __GFP_ZERO);
503 		if (!page)
504 			break;
505 		pr_debug("pid(%d) page[%d]->count=%d\n",
506 			 current->pid, i, page_count(page));
507 		SetPageUptodate(page);
508 		unlock_page(page);
509 
510 		ctx->ring_pages[i] = page;
511 	}
512 	ctx->nr_pages = i;
513 
514 	if (unlikely(i != nr_pages)) {
515 		aio_free_ring(ctx);
516 		return -ENOMEM;
517 	}
518 
519 	ctx->mmap_size = nr_pages * PAGE_SIZE;
520 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521 
522 	if (down_write_killable(&mm->mmap_sem)) {
523 		ctx->mmap_size = 0;
524 		aio_free_ring(ctx);
525 		return -EINTR;
526 	}
527 
528 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 				       PROT_READ | PROT_WRITE,
530 				       MAP_SHARED, 0, &unused, NULL);
531 	up_write(&mm->mmap_sem);
532 	if (IS_ERR((void *)ctx->mmap_base)) {
533 		ctx->mmap_size = 0;
534 		aio_free_ring(ctx);
535 		return -ENOMEM;
536 	}
537 
538 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539 
540 	ctx->user_id = ctx->mmap_base;
541 	ctx->nr_events = nr_events; /* trusted copy */
542 
543 	ring = kmap_atomic(ctx->ring_pages[0]);
544 	ring->nr = nr_events;	/* user copy */
545 	ring->id = ~0U;
546 	ring->head = ring->tail = 0;
547 	ring->magic = AIO_RING_MAGIC;
548 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 	ring->header_length = sizeof(struct aio_ring);
551 	kunmap_atomic(ring);
552 	flush_dcache_page(ctx->ring_pages[0]);
553 
554 	return 0;
555 }
556 
557 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560 
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562 {
563 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 	struct kioctx *ctx = req->ki_ctx;
565 	unsigned long flags;
566 
567 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 		return;
569 
570 	spin_lock_irqsave(&ctx->ctx_lock, flags);
571 	list_add_tail(&req->ki_list, &ctx->active_reqs);
572 	req->ki_cancel = cancel;
573 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574 }
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
576 
577 /*
578  * free_ioctx() should be RCU delayed to synchronize against the RCU
579  * protected lookup_ioctx() and also needs process context to call
580  * aio_free_ring().  Use rcu_work.
581  */
582 static void free_ioctx(struct work_struct *work)
583 {
584 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 					  free_rwork);
586 	pr_debug("freeing %p\n", ctx);
587 
588 	aio_free_ring(ctx);
589 	free_percpu(ctx->cpu);
590 	percpu_ref_exit(&ctx->reqs);
591 	percpu_ref_exit(&ctx->users);
592 	kmem_cache_free(kioctx_cachep, ctx);
593 }
594 
595 static void free_ioctx_reqs(struct percpu_ref *ref)
596 {
597 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598 
599 	/* At this point we know that there are no any in-flight requests */
600 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 		complete(&ctx->rq_wait->comp);
602 
603 	/* Synchronize against RCU protected table->table[] dereferences */
604 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 	queue_rcu_work(system_wq, &ctx->free_rwork);
606 }
607 
608 /*
609  * When this function runs, the kioctx has been removed from the "hash table"
610  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611  * now it's safe to cancel any that need to be.
612  */
613 static void free_ioctx_users(struct percpu_ref *ref)
614 {
615 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 	struct aio_kiocb *req;
617 
618 	spin_lock_irq(&ctx->ctx_lock);
619 
620 	while (!list_empty(&ctx->active_reqs)) {
621 		req = list_first_entry(&ctx->active_reqs,
622 				       struct aio_kiocb, ki_list);
623 		req->ki_cancel(&req->rw);
624 		list_del_init(&req->ki_list);
625 	}
626 
627 	spin_unlock_irq(&ctx->ctx_lock);
628 
629 	percpu_ref_kill(&ctx->reqs);
630 	percpu_ref_put(&ctx->reqs);
631 }
632 
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 {
635 	unsigned i, new_nr;
636 	struct kioctx_table *table, *old;
637 	struct aio_ring *ring;
638 
639 	spin_lock(&mm->ioctx_lock);
640 	table = rcu_dereference_raw(mm->ioctx_table);
641 
642 	while (1) {
643 		if (table)
644 			for (i = 0; i < table->nr; i++)
645 				if (!rcu_access_pointer(table->table[i])) {
646 					ctx->id = i;
647 					rcu_assign_pointer(table->table[i], ctx);
648 					spin_unlock(&mm->ioctx_lock);
649 
650 					/* While kioctx setup is in progress,
651 					 * we are protected from page migration
652 					 * changes ring_pages by ->ring_lock.
653 					 */
654 					ring = kmap_atomic(ctx->ring_pages[0]);
655 					ring->id = ctx->id;
656 					kunmap_atomic(ring);
657 					return 0;
658 				}
659 
660 		new_nr = (table ? table->nr : 1) * 4;
661 		spin_unlock(&mm->ioctx_lock);
662 
663 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 				new_nr, GFP_KERNEL);
665 		if (!table)
666 			return -ENOMEM;
667 
668 		table->nr = new_nr;
669 
670 		spin_lock(&mm->ioctx_lock);
671 		old = rcu_dereference_raw(mm->ioctx_table);
672 
673 		if (!old) {
674 			rcu_assign_pointer(mm->ioctx_table, table);
675 		} else if (table->nr > old->nr) {
676 			memcpy(table->table, old->table,
677 			       old->nr * sizeof(struct kioctx *));
678 
679 			rcu_assign_pointer(mm->ioctx_table, table);
680 			kfree_rcu(old, rcu);
681 		} else {
682 			kfree(table);
683 			table = old;
684 		}
685 	}
686 }
687 
688 static void aio_nr_sub(unsigned nr)
689 {
690 	spin_lock(&aio_nr_lock);
691 	if (WARN_ON(aio_nr - nr > aio_nr))
692 		aio_nr = 0;
693 	else
694 		aio_nr -= nr;
695 	spin_unlock(&aio_nr_lock);
696 }
697 
698 /* ioctx_alloc
699  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
700  */
701 static struct kioctx *ioctx_alloc(unsigned nr_events)
702 {
703 	struct mm_struct *mm = current->mm;
704 	struct kioctx *ctx;
705 	int err = -ENOMEM;
706 
707 	/*
708 	 * Store the original nr_events -- what userspace passed to io_setup(),
709 	 * for counting against the global limit -- before it changes.
710 	 */
711 	unsigned int max_reqs = nr_events;
712 
713 	/*
714 	 * We keep track of the number of available ringbuffer slots, to prevent
715 	 * overflow (reqs_available), and we also use percpu counters for this.
716 	 *
717 	 * So since up to half the slots might be on other cpu's percpu counters
718 	 * and unavailable, double nr_events so userspace sees what they
719 	 * expected: additionally, we move req_batch slots to/from percpu
720 	 * counters at a time, so make sure that isn't 0:
721 	 */
722 	nr_events = max(nr_events, num_possible_cpus() * 4);
723 	nr_events *= 2;
724 
725 	/* Prevent overflows */
726 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
727 		pr_debug("ENOMEM: nr_events too high\n");
728 		return ERR_PTR(-EINVAL);
729 	}
730 
731 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
732 		return ERR_PTR(-EAGAIN);
733 
734 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
735 	if (!ctx)
736 		return ERR_PTR(-ENOMEM);
737 
738 	ctx->max_reqs = max_reqs;
739 
740 	spin_lock_init(&ctx->ctx_lock);
741 	spin_lock_init(&ctx->completion_lock);
742 	mutex_init(&ctx->ring_lock);
743 	/* Protect against page migration throughout kiotx setup by keeping
744 	 * the ring_lock mutex held until setup is complete. */
745 	mutex_lock(&ctx->ring_lock);
746 	init_waitqueue_head(&ctx->wait);
747 
748 	INIT_LIST_HEAD(&ctx->active_reqs);
749 
750 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
751 		goto err;
752 
753 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
754 		goto err;
755 
756 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 	if (!ctx->cpu)
758 		goto err;
759 
760 	err = aio_setup_ring(ctx, nr_events);
761 	if (err < 0)
762 		goto err;
763 
764 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
765 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
766 	if (ctx->req_batch < 1)
767 		ctx->req_batch = 1;
768 
769 	/* limit the number of system wide aios */
770 	spin_lock(&aio_nr_lock);
771 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 	    aio_nr + ctx->max_reqs < aio_nr) {
773 		spin_unlock(&aio_nr_lock);
774 		err = -EAGAIN;
775 		goto err_ctx;
776 	}
777 	aio_nr += ctx->max_reqs;
778 	spin_unlock(&aio_nr_lock);
779 
780 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
781 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
782 
783 	err = ioctx_add_table(ctx, mm);
784 	if (err)
785 		goto err_cleanup;
786 
787 	/* Release the ring_lock mutex now that all setup is complete. */
788 	mutex_unlock(&ctx->ring_lock);
789 
790 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 		 ctx, ctx->user_id, mm, ctx->nr_events);
792 	return ctx;
793 
794 err_cleanup:
795 	aio_nr_sub(ctx->max_reqs);
796 err_ctx:
797 	atomic_set(&ctx->dead, 1);
798 	if (ctx->mmap_size)
799 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
800 	aio_free_ring(ctx);
801 err:
802 	mutex_unlock(&ctx->ring_lock);
803 	free_percpu(ctx->cpu);
804 	percpu_ref_exit(&ctx->reqs);
805 	percpu_ref_exit(&ctx->users);
806 	kmem_cache_free(kioctx_cachep, ctx);
807 	pr_debug("error allocating ioctx %d\n", err);
808 	return ERR_PTR(err);
809 }
810 
811 /* kill_ioctx
812  *	Cancels all outstanding aio requests on an aio context.  Used
813  *	when the processes owning a context have all exited to encourage
814  *	the rapid destruction of the kioctx.
815  */
816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
817 		      struct ctx_rq_wait *wait)
818 {
819 	struct kioctx_table *table;
820 
821 	spin_lock(&mm->ioctx_lock);
822 	if (atomic_xchg(&ctx->dead, 1)) {
823 		spin_unlock(&mm->ioctx_lock);
824 		return -EINVAL;
825 	}
826 
827 	table = rcu_dereference_raw(mm->ioctx_table);
828 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
830 	spin_unlock(&mm->ioctx_lock);
831 
832 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
833 	wake_up_all(&ctx->wait);
834 
835 	/*
836 	 * It'd be more correct to do this in free_ioctx(), after all
837 	 * the outstanding kiocbs have finished - but by then io_destroy
838 	 * has already returned, so io_setup() could potentially return
839 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 	 *  could tell).
841 	 */
842 	aio_nr_sub(ctx->max_reqs);
843 
844 	if (ctx->mmap_size)
845 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
846 
847 	ctx->rq_wait = wait;
848 	percpu_ref_kill(&ctx->users);
849 	return 0;
850 }
851 
852 /*
853  * exit_aio: called when the last user of mm goes away.  At this point, there is
854  * no way for any new requests to be submited or any of the io_* syscalls to be
855  * called on the context.
856  *
857  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858  * them.
859  */
860 void exit_aio(struct mm_struct *mm)
861 {
862 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
863 	struct ctx_rq_wait wait;
864 	int i, skipped;
865 
866 	if (!table)
867 		return;
868 
869 	atomic_set(&wait.count, table->nr);
870 	init_completion(&wait.comp);
871 
872 	skipped = 0;
873 	for (i = 0; i < table->nr; ++i) {
874 		struct kioctx *ctx =
875 			rcu_dereference_protected(table->table[i], true);
876 
877 		if (!ctx) {
878 			skipped++;
879 			continue;
880 		}
881 
882 		/*
883 		 * We don't need to bother with munmap() here - exit_mmap(mm)
884 		 * is coming and it'll unmap everything. And we simply can't,
885 		 * this is not necessarily our ->mm.
886 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 		 * that it needs to unmap the area, just set it to 0.
888 		 */
889 		ctx->mmap_size = 0;
890 		kill_ioctx(mm, ctx, &wait);
891 	}
892 
893 	if (!atomic_sub_and_test(skipped, &wait.count)) {
894 		/* Wait until all IO for the context are done. */
895 		wait_for_completion(&wait.comp);
896 	}
897 
898 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 	kfree(table);
900 }
901 
902 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903 {
904 	struct kioctx_cpu *kcpu;
905 	unsigned long flags;
906 
907 	local_irq_save(flags);
908 	kcpu = this_cpu_ptr(ctx->cpu);
909 	kcpu->reqs_available += nr;
910 
911 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 		kcpu->reqs_available -= ctx->req_batch;
913 		atomic_add(ctx->req_batch, &ctx->reqs_available);
914 	}
915 
916 	local_irq_restore(flags);
917 }
918 
919 static bool get_reqs_available(struct kioctx *ctx)
920 {
921 	struct kioctx_cpu *kcpu;
922 	bool ret = false;
923 	unsigned long flags;
924 
925 	local_irq_save(flags);
926 	kcpu = this_cpu_ptr(ctx->cpu);
927 	if (!kcpu->reqs_available) {
928 		int old, avail = atomic_read(&ctx->reqs_available);
929 
930 		do {
931 			if (avail < ctx->req_batch)
932 				goto out;
933 
934 			old = avail;
935 			avail = atomic_cmpxchg(&ctx->reqs_available,
936 					       avail, avail - ctx->req_batch);
937 		} while (avail != old);
938 
939 		kcpu->reqs_available += ctx->req_batch;
940 	}
941 
942 	ret = true;
943 	kcpu->reqs_available--;
944 out:
945 	local_irq_restore(flags);
946 	return ret;
947 }
948 
949 /* refill_reqs_available
950  *	Updates the reqs_available reference counts used for tracking the
951  *	number of free slots in the completion ring.  This can be called
952  *	from aio_complete() (to optimistically update reqs_available) or
953  *	from aio_get_req() (the we're out of events case).  It must be
954  *	called holding ctx->completion_lock.
955  */
956 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957                                   unsigned tail)
958 {
959 	unsigned events_in_ring, completed;
960 
961 	/* Clamp head since userland can write to it. */
962 	head %= ctx->nr_events;
963 	if (head <= tail)
964 		events_in_ring = tail - head;
965 	else
966 		events_in_ring = ctx->nr_events - (head - tail);
967 
968 	completed = ctx->completed_events;
969 	if (events_in_ring < completed)
970 		completed -= events_in_ring;
971 	else
972 		completed = 0;
973 
974 	if (!completed)
975 		return;
976 
977 	ctx->completed_events -= completed;
978 	put_reqs_available(ctx, completed);
979 }
980 
981 /* user_refill_reqs_available
982  *	Called to refill reqs_available when aio_get_req() encounters an
983  *	out of space in the completion ring.
984  */
985 static void user_refill_reqs_available(struct kioctx *ctx)
986 {
987 	spin_lock_irq(&ctx->completion_lock);
988 	if (ctx->completed_events) {
989 		struct aio_ring *ring;
990 		unsigned head;
991 
992 		/* Access of ring->head may race with aio_read_events_ring()
993 		 * here, but that's okay since whether we read the old version
994 		 * or the new version, and either will be valid.  The important
995 		 * part is that head cannot pass tail since we prevent
996 		 * aio_complete() from updating tail by holding
997 		 * ctx->completion_lock.  Even if head is invalid, the check
998 		 * against ctx->completed_events below will make sure we do the
999 		 * safe/right thing.
1000 		 */
1001 		ring = kmap_atomic(ctx->ring_pages[0]);
1002 		head = ring->head;
1003 		kunmap_atomic(ring);
1004 
1005 		refill_reqs_available(ctx, head, ctx->tail);
1006 	}
1007 
1008 	spin_unlock_irq(&ctx->completion_lock);
1009 }
1010 
1011 /* aio_get_req
1012  *	Allocate a slot for an aio request.
1013  * Returns NULL if no requests are free.
1014  */
1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1016 {
1017 	struct aio_kiocb *req;
1018 
1019 	if (!get_reqs_available(ctx)) {
1020 		user_refill_reqs_available(ctx);
1021 		if (!get_reqs_available(ctx))
1022 			return NULL;
1023 	}
1024 
1025 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1026 	if (unlikely(!req))
1027 		goto out_put;
1028 
1029 	percpu_ref_get(&ctx->reqs);
1030 	INIT_LIST_HEAD(&req->ki_list);
1031 	req->ki_ctx = ctx;
1032 	return req;
1033 out_put:
1034 	put_reqs_available(ctx, 1);
1035 	return NULL;
1036 }
1037 
1038 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1039 {
1040 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1041 	struct mm_struct *mm = current->mm;
1042 	struct kioctx *ctx, *ret = NULL;
1043 	struct kioctx_table *table;
1044 	unsigned id;
1045 
1046 	if (get_user(id, &ring->id))
1047 		return NULL;
1048 
1049 	rcu_read_lock();
1050 	table = rcu_dereference(mm->ioctx_table);
1051 
1052 	if (!table || id >= table->nr)
1053 		goto out;
1054 
1055 	ctx = rcu_dereference(table->table[id]);
1056 	if (ctx && ctx->user_id == ctx_id) {
1057 		if (percpu_ref_tryget_live(&ctx->users))
1058 			ret = ctx;
1059 	}
1060 out:
1061 	rcu_read_unlock();
1062 	return ret;
1063 }
1064 
1065 /* aio_complete
1066  *	Called when the io request on the given iocb is complete.
1067  */
1068 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1069 {
1070 	struct kioctx	*ctx = iocb->ki_ctx;
1071 	struct aio_ring	*ring;
1072 	struct io_event	*ev_page, *event;
1073 	unsigned tail, pos, head;
1074 	unsigned long	flags;
1075 
1076 	/*
1077 	 * Add a completion event to the ring buffer. Must be done holding
1078 	 * ctx->completion_lock to prevent other code from messing with the tail
1079 	 * pointer since we might be called from irq context.
1080 	 */
1081 	spin_lock_irqsave(&ctx->completion_lock, flags);
1082 
1083 	tail = ctx->tail;
1084 	pos = tail + AIO_EVENTS_OFFSET;
1085 
1086 	if (++tail >= ctx->nr_events)
1087 		tail = 0;
1088 
1089 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1090 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1091 
1092 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1093 	event->data = iocb->ki_user_data;
1094 	event->res = res;
1095 	event->res2 = res2;
1096 
1097 	kunmap_atomic(ev_page);
1098 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099 
1100 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1101 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1102 		 res, res2);
1103 
1104 	/* after flagging the request as done, we
1105 	 * must never even look at it again
1106 	 */
1107 	smp_wmb();	/* make event visible before updating tail */
1108 
1109 	ctx->tail = tail;
1110 
1111 	ring = kmap_atomic(ctx->ring_pages[0]);
1112 	head = ring->head;
1113 	ring->tail = tail;
1114 	kunmap_atomic(ring);
1115 	flush_dcache_page(ctx->ring_pages[0]);
1116 
1117 	ctx->completed_events++;
1118 	if (ctx->completed_events > 1)
1119 		refill_reqs_available(ctx, head, tail);
1120 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1121 
1122 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1123 
1124 	/*
1125 	 * Check if the user asked us to deliver the result through an
1126 	 * eventfd. The eventfd_signal() function is safe to be called
1127 	 * from IRQ context.
1128 	 */
1129 	if (iocb->ki_eventfd) {
1130 		eventfd_signal(iocb->ki_eventfd, 1);
1131 		eventfd_ctx_put(iocb->ki_eventfd);
1132 	}
1133 
1134 	kmem_cache_free(kiocb_cachep, iocb);
1135 
1136 	/*
1137 	 * We have to order our ring_info tail store above and test
1138 	 * of the wait list below outside the wait lock.  This is
1139 	 * like in wake_up_bit() where clearing a bit has to be
1140 	 * ordered with the unlocked test.
1141 	 */
1142 	smp_mb();
1143 
1144 	if (waitqueue_active(&ctx->wait))
1145 		wake_up(&ctx->wait);
1146 
1147 	percpu_ref_put(&ctx->reqs);
1148 }
1149 
1150 /* aio_read_events_ring
1151  *	Pull an event off of the ioctx's event ring.  Returns the number of
1152  *	events fetched
1153  */
1154 static long aio_read_events_ring(struct kioctx *ctx,
1155 				 struct io_event __user *event, long nr)
1156 {
1157 	struct aio_ring *ring;
1158 	unsigned head, tail, pos;
1159 	long ret = 0;
1160 	int copy_ret;
1161 
1162 	/*
1163 	 * The mutex can block and wake us up and that will cause
1164 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1165 	 * and repeat. This should be rare enough that it doesn't cause
1166 	 * peformance issues. See the comment in read_events() for more detail.
1167 	 */
1168 	sched_annotate_sleep();
1169 	mutex_lock(&ctx->ring_lock);
1170 
1171 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1172 	ring = kmap_atomic(ctx->ring_pages[0]);
1173 	head = ring->head;
1174 	tail = ring->tail;
1175 	kunmap_atomic(ring);
1176 
1177 	/*
1178 	 * Ensure that once we've read the current tail pointer, that
1179 	 * we also see the events that were stored up to the tail.
1180 	 */
1181 	smp_rmb();
1182 
1183 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1184 
1185 	if (head == tail)
1186 		goto out;
1187 
1188 	head %= ctx->nr_events;
1189 	tail %= ctx->nr_events;
1190 
1191 	while (ret < nr) {
1192 		long avail;
1193 		struct io_event *ev;
1194 		struct page *page;
1195 
1196 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1197 		if (head == tail)
1198 			break;
1199 
1200 		pos = head + AIO_EVENTS_OFFSET;
1201 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1202 		pos %= AIO_EVENTS_PER_PAGE;
1203 
1204 		avail = min(avail, nr - ret);
1205 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1206 
1207 		ev = kmap(page);
1208 		copy_ret = copy_to_user(event + ret, ev + pos,
1209 					sizeof(*ev) * avail);
1210 		kunmap(page);
1211 
1212 		if (unlikely(copy_ret)) {
1213 			ret = -EFAULT;
1214 			goto out;
1215 		}
1216 
1217 		ret += avail;
1218 		head += avail;
1219 		head %= ctx->nr_events;
1220 	}
1221 
1222 	ring = kmap_atomic(ctx->ring_pages[0]);
1223 	ring->head = head;
1224 	kunmap_atomic(ring);
1225 	flush_dcache_page(ctx->ring_pages[0]);
1226 
1227 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1228 out:
1229 	mutex_unlock(&ctx->ring_lock);
1230 
1231 	return ret;
1232 }
1233 
1234 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1235 			    struct io_event __user *event, long *i)
1236 {
1237 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1238 
1239 	if (ret > 0)
1240 		*i += ret;
1241 
1242 	if (unlikely(atomic_read(&ctx->dead)))
1243 		ret = -EINVAL;
1244 
1245 	if (!*i)
1246 		*i = ret;
1247 
1248 	return ret < 0 || *i >= min_nr;
1249 }
1250 
1251 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1252 			struct io_event __user *event,
1253 			ktime_t until)
1254 {
1255 	long ret = 0;
1256 
1257 	/*
1258 	 * Note that aio_read_events() is being called as the conditional - i.e.
1259 	 * we're calling it after prepare_to_wait() has set task state to
1260 	 * TASK_INTERRUPTIBLE.
1261 	 *
1262 	 * But aio_read_events() can block, and if it blocks it's going to flip
1263 	 * the task state back to TASK_RUNNING.
1264 	 *
1265 	 * This should be ok, provided it doesn't flip the state back to
1266 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1267 	 * will only happen if the mutex_lock() call blocks, and we then find
1268 	 * the ringbuffer empty. So in practice we should be ok, but it's
1269 	 * something to be aware of when touching this code.
1270 	 */
1271 	if (until == 0)
1272 		aio_read_events(ctx, min_nr, nr, event, &ret);
1273 	else
1274 		wait_event_interruptible_hrtimeout(ctx->wait,
1275 				aio_read_events(ctx, min_nr, nr, event, &ret),
1276 				until);
1277 	return ret;
1278 }
1279 
1280 /* sys_io_setup:
1281  *	Create an aio_context capable of receiving at least nr_events.
1282  *	ctxp must not point to an aio_context that already exists, and
1283  *	must be initialized to 0 prior to the call.  On successful
1284  *	creation of the aio_context, *ctxp is filled in with the resulting
1285  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1286  *	if the specified nr_events exceeds internal limits.  May fail
1287  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1288  *	of available events.  May fail with -ENOMEM if insufficient kernel
1289  *	resources are available.  May fail with -EFAULT if an invalid
1290  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1291  *	implemented.
1292  */
1293 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1294 {
1295 	struct kioctx *ioctx = NULL;
1296 	unsigned long ctx;
1297 	long ret;
1298 
1299 	ret = get_user(ctx, ctxp);
1300 	if (unlikely(ret))
1301 		goto out;
1302 
1303 	ret = -EINVAL;
1304 	if (unlikely(ctx || nr_events == 0)) {
1305 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1306 		         ctx, nr_events);
1307 		goto out;
1308 	}
1309 
1310 	ioctx = ioctx_alloc(nr_events);
1311 	ret = PTR_ERR(ioctx);
1312 	if (!IS_ERR(ioctx)) {
1313 		ret = put_user(ioctx->user_id, ctxp);
1314 		if (ret)
1315 			kill_ioctx(current->mm, ioctx, NULL);
1316 		percpu_ref_put(&ioctx->users);
1317 	}
1318 
1319 out:
1320 	return ret;
1321 }
1322 
1323 #ifdef CONFIG_COMPAT
1324 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1325 {
1326 	struct kioctx *ioctx = NULL;
1327 	unsigned long ctx;
1328 	long ret;
1329 
1330 	ret = get_user(ctx, ctx32p);
1331 	if (unlikely(ret))
1332 		goto out;
1333 
1334 	ret = -EINVAL;
1335 	if (unlikely(ctx || nr_events == 0)) {
1336 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1337 		         ctx, nr_events);
1338 		goto out;
1339 	}
1340 
1341 	ioctx = ioctx_alloc(nr_events);
1342 	ret = PTR_ERR(ioctx);
1343 	if (!IS_ERR(ioctx)) {
1344 		/* truncating is ok because it's a user address */
1345 		ret = put_user((u32)ioctx->user_id, ctx32p);
1346 		if (ret)
1347 			kill_ioctx(current->mm, ioctx, NULL);
1348 		percpu_ref_put(&ioctx->users);
1349 	}
1350 
1351 out:
1352 	return ret;
1353 }
1354 #endif
1355 
1356 /* sys_io_destroy:
1357  *	Destroy the aio_context specified.  May cancel any outstanding
1358  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1359  *	implemented.  May fail with -EINVAL if the context pointed to
1360  *	is invalid.
1361  */
1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1363 {
1364 	struct kioctx *ioctx = lookup_ioctx(ctx);
1365 	if (likely(NULL != ioctx)) {
1366 		struct ctx_rq_wait wait;
1367 		int ret;
1368 
1369 		init_completion(&wait.comp);
1370 		atomic_set(&wait.count, 1);
1371 
1372 		/* Pass requests_done to kill_ioctx() where it can be set
1373 		 * in a thread-safe way. If we try to set it here then we have
1374 		 * a race condition if two io_destroy() called simultaneously.
1375 		 */
1376 		ret = kill_ioctx(current->mm, ioctx, &wait);
1377 		percpu_ref_put(&ioctx->users);
1378 
1379 		/* Wait until all IO for the context are done. Otherwise kernel
1380 		 * keep using user-space buffers even if user thinks the context
1381 		 * is destroyed.
1382 		 */
1383 		if (!ret)
1384 			wait_for_completion(&wait.comp);
1385 
1386 		return ret;
1387 	}
1388 	pr_debug("EINVAL: invalid context id\n");
1389 	return -EINVAL;
1390 }
1391 
1392 static void aio_remove_iocb(struct aio_kiocb *iocb)
1393 {
1394 	struct kioctx *ctx = iocb->ki_ctx;
1395 	unsigned long flags;
1396 
1397 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1398 	list_del(&iocb->ki_list);
1399 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1400 }
1401 
1402 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1403 {
1404 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1405 
1406 	if (!list_empty_careful(&iocb->ki_list))
1407 		aio_remove_iocb(iocb);
1408 
1409 	if (kiocb->ki_flags & IOCB_WRITE) {
1410 		struct inode *inode = file_inode(kiocb->ki_filp);
1411 
1412 		/*
1413 		 * Tell lockdep we inherited freeze protection from submission
1414 		 * thread.
1415 		 */
1416 		if (S_ISREG(inode->i_mode))
1417 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1418 		file_end_write(kiocb->ki_filp);
1419 	}
1420 
1421 	fput(kiocb->ki_filp);
1422 	aio_complete(iocb, res, res2);
1423 }
1424 
1425 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1426 {
1427 	int ret;
1428 
1429 	req->ki_filp = fget(iocb->aio_fildes);
1430 	if (unlikely(!req->ki_filp))
1431 		return -EBADF;
1432 	req->ki_complete = aio_complete_rw;
1433 	req->ki_pos = iocb->aio_offset;
1434 	req->ki_flags = iocb_flags(req->ki_filp);
1435 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1436 		req->ki_flags |= IOCB_EVENTFD;
1437 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1438 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1439 		/*
1440 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1441 		 * aio_reqprio is interpreted as an I/O scheduling
1442 		 * class and priority.
1443 		 */
1444 		ret = ioprio_check_cap(iocb->aio_reqprio);
1445 		if (ret) {
1446 			pr_debug("aio ioprio check cap error: %d\n", ret);
1447 			return ret;
1448 		}
1449 
1450 		req->ki_ioprio = iocb->aio_reqprio;
1451 	} else
1452 		req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1453 
1454 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1455 	if (unlikely(ret))
1456 		fput(req->ki_filp);
1457 	return ret;
1458 }
1459 
1460 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1461 		bool vectored, bool compat, struct iov_iter *iter)
1462 {
1463 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1464 	size_t len = iocb->aio_nbytes;
1465 
1466 	if (!vectored) {
1467 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1468 		*iovec = NULL;
1469 		return ret;
1470 	}
1471 #ifdef CONFIG_COMPAT
1472 	if (compat)
1473 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1474 				iter);
1475 #endif
1476 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1477 }
1478 
1479 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1480 {
1481 	switch (ret) {
1482 	case -EIOCBQUEUED:
1483 		break;
1484 	case -ERESTARTSYS:
1485 	case -ERESTARTNOINTR:
1486 	case -ERESTARTNOHAND:
1487 	case -ERESTART_RESTARTBLOCK:
1488 		/*
1489 		 * There's no easy way to restart the syscall since other AIO's
1490 		 * may be already running. Just fail this IO with EINTR.
1491 		 */
1492 		ret = -EINTR;
1493 		/*FALLTHRU*/
1494 	default:
1495 		aio_complete_rw(req, ret, 0);
1496 	}
1497 }
1498 
1499 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1500 		bool compat)
1501 {
1502 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1503 	struct iov_iter iter;
1504 	struct file *file;
1505 	ssize_t ret;
1506 
1507 	ret = aio_prep_rw(req, iocb);
1508 	if (ret)
1509 		return ret;
1510 	file = req->ki_filp;
1511 
1512 	ret = -EBADF;
1513 	if (unlikely(!(file->f_mode & FMODE_READ)))
1514 		goto out_fput;
1515 	ret = -EINVAL;
1516 	if (unlikely(!file->f_op->read_iter))
1517 		goto out_fput;
1518 
1519 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1520 	if (ret)
1521 		goto out_fput;
1522 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1523 	if (!ret)
1524 		aio_rw_done(req, call_read_iter(file, req, &iter));
1525 	kfree(iovec);
1526 out_fput:
1527 	if (unlikely(ret))
1528 		fput(file);
1529 	return ret;
1530 }
1531 
1532 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1533 		bool compat)
1534 {
1535 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1536 	struct iov_iter iter;
1537 	struct file *file;
1538 	ssize_t ret;
1539 
1540 	ret = aio_prep_rw(req, iocb);
1541 	if (ret)
1542 		return ret;
1543 	file = req->ki_filp;
1544 
1545 	ret = -EBADF;
1546 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1547 		goto out_fput;
1548 	ret = -EINVAL;
1549 	if (unlikely(!file->f_op->write_iter))
1550 		goto out_fput;
1551 
1552 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1553 	if (ret)
1554 		goto out_fput;
1555 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1556 	if (!ret) {
1557 		/*
1558 		 * Open-code file_start_write here to grab freeze protection,
1559 		 * which will be released by another thread in
1560 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1561 		 * released so that it doesn't complain about the held lock when
1562 		 * we return to userspace.
1563 		 */
1564 		if (S_ISREG(file_inode(file)->i_mode)) {
1565 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1566 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1567 		}
1568 		req->ki_flags |= IOCB_WRITE;
1569 		aio_rw_done(req, call_write_iter(file, req, &iter));
1570 	}
1571 	kfree(iovec);
1572 out_fput:
1573 	if (unlikely(ret))
1574 		fput(file);
1575 	return ret;
1576 }
1577 
1578 static void aio_fsync_work(struct work_struct *work)
1579 {
1580 	struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1581 	int ret;
1582 
1583 	ret = vfs_fsync(req->file, req->datasync);
1584 	fput(req->file);
1585 	aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1586 }
1587 
1588 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1589 {
1590 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1591 			iocb->aio_rw_flags))
1592 		return -EINVAL;
1593 	req->file = fget(iocb->aio_fildes);
1594 	if (unlikely(!req->file))
1595 		return -EBADF;
1596 	if (unlikely(!req->file->f_op->fsync)) {
1597 		fput(req->file);
1598 		return -EINVAL;
1599 	}
1600 
1601 	req->datasync = datasync;
1602 	INIT_WORK(&req->work, aio_fsync_work);
1603 	schedule_work(&req->work);
1604 	return 0;
1605 }
1606 
1607 /* need to use list_del_init so we can check if item was present */
1608 static inline bool __aio_poll_remove(struct poll_iocb *req)
1609 {
1610 	if (list_empty(&req->wait.entry))
1611 		return false;
1612 	list_del_init(&req->wait.entry);
1613 	return true;
1614 }
1615 
1616 static inline void __aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1617 {
1618 	fput(iocb->poll.file);
1619 	aio_complete(iocb, mangle_poll(mask), 0);
1620 }
1621 
1622 static void aio_poll_work(struct work_struct *work)
1623 {
1624 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, poll.work);
1625 
1626 	if (!list_empty_careful(&iocb->ki_list))
1627 		aio_remove_iocb(iocb);
1628 	__aio_poll_complete(iocb, iocb->poll.events);
1629 }
1630 
1631 static int aio_poll_cancel(struct kiocb *iocb)
1632 {
1633 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1634 	struct poll_iocb *req = &aiocb->poll;
1635 	struct wait_queue_head *head = req->head;
1636 	bool found = false;
1637 
1638 	spin_lock(&head->lock);
1639 	found = __aio_poll_remove(req);
1640 	spin_unlock(&head->lock);
1641 
1642 	if (found) {
1643 		req->events = 0;
1644 		INIT_WORK(&req->work, aio_poll_work);
1645 		schedule_work(&req->work);
1646 	}
1647 	return 0;
1648 }
1649 
1650 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1651 		void *key)
1652 {
1653 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1654 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1655 	struct file *file = req->file;
1656 	__poll_t mask = key_to_poll(key);
1657 
1658 	assert_spin_locked(&req->head->lock);
1659 
1660 	/* for instances that support it check for an event match first: */
1661 	if (mask && !(mask & req->events))
1662 		return 0;
1663 
1664 	mask = file->f_op->poll_mask(file, req->events);
1665 	if (!mask)
1666 		return 0;
1667 
1668 	__aio_poll_remove(req);
1669 
1670 	/*
1671 	 * Try completing without a context switch if we can acquire ctx_lock
1672 	 * without spinning.  Otherwise we need to defer to a workqueue to
1673 	 * avoid a deadlock due to the lock order.
1674 	 */
1675 	if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1676 		list_del_init(&iocb->ki_list);
1677 		spin_unlock(&iocb->ki_ctx->ctx_lock);
1678 
1679 		__aio_poll_complete(iocb, mask);
1680 	} else {
1681 		req->events = mask;
1682 		INIT_WORK(&req->work, aio_poll_work);
1683 		schedule_work(&req->work);
1684 	}
1685 
1686 	return 1;
1687 }
1688 
1689 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1690 {
1691 	struct kioctx *ctx = aiocb->ki_ctx;
1692 	struct poll_iocb *req = &aiocb->poll;
1693 	__poll_t mask;
1694 
1695 	/* reject any unknown events outside the normal event mask. */
1696 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1697 		return -EINVAL;
1698 	/* reject fields that are not defined for poll */
1699 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1700 		return -EINVAL;
1701 
1702 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1703 	req->file = fget(iocb->aio_fildes);
1704 	if (unlikely(!req->file))
1705 		return -EBADF;
1706 	if (!file_has_poll_mask(req->file))
1707 		goto out_fail;
1708 
1709 	req->head = req->file->f_op->get_poll_head(req->file, req->events);
1710 	if (!req->head)
1711 		goto out_fail;
1712 	if (IS_ERR(req->head)) {
1713 		mask = EPOLLERR;
1714 		goto done;
1715 	}
1716 
1717 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1718 	aiocb->ki_cancel = aio_poll_cancel;
1719 
1720 	spin_lock_irq(&ctx->ctx_lock);
1721 	spin_lock(&req->head->lock);
1722 	mask = req->file->f_op->poll_mask(req->file, req->events);
1723 	if (!mask) {
1724 		__add_wait_queue(req->head, &req->wait);
1725 		list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1726 	}
1727 	spin_unlock(&req->head->lock);
1728 	spin_unlock_irq(&ctx->ctx_lock);
1729 done:
1730 	if (mask)
1731 		__aio_poll_complete(aiocb, mask);
1732 	return 0;
1733 out_fail:
1734 	fput(req->file);
1735 	return -EINVAL; /* same as no support for IOCB_CMD_POLL */
1736 }
1737 
1738 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1739 			 bool compat)
1740 {
1741 	struct aio_kiocb *req;
1742 	struct iocb iocb;
1743 	ssize_t ret;
1744 
1745 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1746 		return -EFAULT;
1747 
1748 	/* enforce forwards compatibility on users */
1749 	if (unlikely(iocb.aio_reserved2)) {
1750 		pr_debug("EINVAL: reserve field set\n");
1751 		return -EINVAL;
1752 	}
1753 
1754 	/* prevent overflows */
1755 	if (unlikely(
1756 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1757 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1758 	    ((ssize_t)iocb.aio_nbytes < 0)
1759 	   )) {
1760 		pr_debug("EINVAL: overflow check\n");
1761 		return -EINVAL;
1762 	}
1763 
1764 	req = aio_get_req(ctx);
1765 	if (unlikely(!req))
1766 		return -EAGAIN;
1767 
1768 	if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1769 		/*
1770 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1771 		 * instance of the file* now. The file descriptor must be
1772 		 * an eventfd() fd, and will be signaled for each completed
1773 		 * event using the eventfd_signal() function.
1774 		 */
1775 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1776 		if (IS_ERR(req->ki_eventfd)) {
1777 			ret = PTR_ERR(req->ki_eventfd);
1778 			req->ki_eventfd = NULL;
1779 			goto out_put_req;
1780 		}
1781 	}
1782 
1783 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1784 	if (unlikely(ret)) {
1785 		pr_debug("EFAULT: aio_key\n");
1786 		goto out_put_req;
1787 	}
1788 
1789 	req->ki_user_iocb = user_iocb;
1790 	req->ki_user_data = iocb.aio_data;
1791 
1792 	switch (iocb.aio_lio_opcode) {
1793 	case IOCB_CMD_PREAD:
1794 		ret = aio_read(&req->rw, &iocb, false, compat);
1795 		break;
1796 	case IOCB_CMD_PWRITE:
1797 		ret = aio_write(&req->rw, &iocb, false, compat);
1798 		break;
1799 	case IOCB_CMD_PREADV:
1800 		ret = aio_read(&req->rw, &iocb, true, compat);
1801 		break;
1802 	case IOCB_CMD_PWRITEV:
1803 		ret = aio_write(&req->rw, &iocb, true, compat);
1804 		break;
1805 	case IOCB_CMD_FSYNC:
1806 		ret = aio_fsync(&req->fsync, &iocb, false);
1807 		break;
1808 	case IOCB_CMD_FDSYNC:
1809 		ret = aio_fsync(&req->fsync, &iocb, true);
1810 		break;
1811 	case IOCB_CMD_POLL:
1812 		ret = aio_poll(req, &iocb);
1813 		break;
1814 	default:
1815 		pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1816 		ret = -EINVAL;
1817 		break;
1818 	}
1819 
1820 	/*
1821 	 * If ret is 0, we'd either done aio_complete() ourselves or have
1822 	 * arranged for that to be done asynchronously.  Anything non-zero
1823 	 * means that we need to destroy req ourselves.
1824 	 */
1825 	if (ret)
1826 		goto out_put_req;
1827 	return 0;
1828 out_put_req:
1829 	put_reqs_available(ctx, 1);
1830 	percpu_ref_put(&ctx->reqs);
1831 	if (req->ki_eventfd)
1832 		eventfd_ctx_put(req->ki_eventfd);
1833 	kmem_cache_free(kiocb_cachep, req);
1834 	return ret;
1835 }
1836 
1837 /* sys_io_submit:
1838  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1839  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1840  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1841  *	*iocbpp[0] is not properly initialized, if the operation specified
1842  *	is invalid for the file descriptor in the iocb.  May fail with
1843  *	-EFAULT if any of the data structures point to invalid data.  May
1844  *	fail with -EBADF if the file descriptor specified in the first
1845  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1846  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1847  *	fail with -ENOSYS if not implemented.
1848  */
1849 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1850 		struct iocb __user * __user *, iocbpp)
1851 {
1852 	struct kioctx *ctx;
1853 	long ret = 0;
1854 	int i = 0;
1855 	struct blk_plug plug;
1856 
1857 	if (unlikely(nr < 0))
1858 		return -EINVAL;
1859 
1860 	ctx = lookup_ioctx(ctx_id);
1861 	if (unlikely(!ctx)) {
1862 		pr_debug("EINVAL: invalid context id\n");
1863 		return -EINVAL;
1864 	}
1865 
1866 	if (nr > ctx->nr_events)
1867 		nr = ctx->nr_events;
1868 
1869 	blk_start_plug(&plug);
1870 	for (i = 0; i < nr; i++) {
1871 		struct iocb __user *user_iocb;
1872 
1873 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1874 			ret = -EFAULT;
1875 			break;
1876 		}
1877 
1878 		ret = io_submit_one(ctx, user_iocb, false);
1879 		if (ret)
1880 			break;
1881 	}
1882 	blk_finish_plug(&plug);
1883 
1884 	percpu_ref_put(&ctx->users);
1885 	return i ? i : ret;
1886 }
1887 
1888 #ifdef CONFIG_COMPAT
1889 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1890 		       int, nr, compat_uptr_t __user *, iocbpp)
1891 {
1892 	struct kioctx *ctx;
1893 	long ret = 0;
1894 	int i = 0;
1895 	struct blk_plug plug;
1896 
1897 	if (unlikely(nr < 0))
1898 		return -EINVAL;
1899 
1900 	ctx = lookup_ioctx(ctx_id);
1901 	if (unlikely(!ctx)) {
1902 		pr_debug("EINVAL: invalid context id\n");
1903 		return -EINVAL;
1904 	}
1905 
1906 	if (nr > ctx->nr_events)
1907 		nr = ctx->nr_events;
1908 
1909 	blk_start_plug(&plug);
1910 	for (i = 0; i < nr; i++) {
1911 		compat_uptr_t user_iocb;
1912 
1913 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1914 			ret = -EFAULT;
1915 			break;
1916 		}
1917 
1918 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1919 		if (ret)
1920 			break;
1921 	}
1922 	blk_finish_plug(&plug);
1923 
1924 	percpu_ref_put(&ctx->users);
1925 	return i ? i : ret;
1926 }
1927 #endif
1928 
1929 /* lookup_kiocb
1930  *	Finds a given iocb for cancellation.
1931  */
1932 static struct aio_kiocb *
1933 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1934 {
1935 	struct aio_kiocb *kiocb;
1936 
1937 	assert_spin_locked(&ctx->ctx_lock);
1938 
1939 	/* TODO: use a hash or array, this sucks. */
1940 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1941 		if (kiocb->ki_user_iocb == iocb)
1942 			return kiocb;
1943 	}
1944 	return NULL;
1945 }
1946 
1947 /* sys_io_cancel:
1948  *	Attempts to cancel an iocb previously passed to io_submit.  If
1949  *	the operation is successfully cancelled, the resulting event is
1950  *	copied into the memory pointed to by result without being placed
1951  *	into the completion queue and 0 is returned.  May fail with
1952  *	-EFAULT if any of the data structures pointed to are invalid.
1953  *	May fail with -EINVAL if aio_context specified by ctx_id is
1954  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1955  *	cancelled.  Will fail with -ENOSYS if not implemented.
1956  */
1957 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1958 		struct io_event __user *, result)
1959 {
1960 	struct kioctx *ctx;
1961 	struct aio_kiocb *kiocb;
1962 	int ret = -EINVAL;
1963 	u32 key;
1964 
1965 	if (unlikely(get_user(key, &iocb->aio_key)))
1966 		return -EFAULT;
1967 	if (unlikely(key != KIOCB_KEY))
1968 		return -EINVAL;
1969 
1970 	ctx = lookup_ioctx(ctx_id);
1971 	if (unlikely(!ctx))
1972 		return -EINVAL;
1973 
1974 	spin_lock_irq(&ctx->ctx_lock);
1975 	kiocb = lookup_kiocb(ctx, iocb);
1976 	if (kiocb) {
1977 		ret = kiocb->ki_cancel(&kiocb->rw);
1978 		list_del_init(&kiocb->ki_list);
1979 	}
1980 	spin_unlock_irq(&ctx->ctx_lock);
1981 
1982 	if (!ret) {
1983 		/*
1984 		 * The result argument is no longer used - the io_event is
1985 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1986 		 * cancellation is progress:
1987 		 */
1988 		ret = -EINPROGRESS;
1989 	}
1990 
1991 	percpu_ref_put(&ctx->users);
1992 
1993 	return ret;
1994 }
1995 
1996 static long do_io_getevents(aio_context_t ctx_id,
1997 		long min_nr,
1998 		long nr,
1999 		struct io_event __user *events,
2000 		struct timespec64 *ts)
2001 {
2002 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2003 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2004 	long ret = -EINVAL;
2005 
2006 	if (likely(ioctx)) {
2007 		if (likely(min_nr <= nr && min_nr >= 0))
2008 			ret = read_events(ioctx, min_nr, nr, events, until);
2009 		percpu_ref_put(&ioctx->users);
2010 	}
2011 
2012 	return ret;
2013 }
2014 
2015 /* io_getevents:
2016  *	Attempts to read at least min_nr events and up to nr events from
2017  *	the completion queue for the aio_context specified by ctx_id. If
2018  *	it succeeds, the number of read events is returned. May fail with
2019  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2020  *	out of range, if timeout is out of range.  May fail with -EFAULT
2021  *	if any of the memory specified is invalid.  May return 0 or
2022  *	< min_nr if the timeout specified by timeout has elapsed
2023  *	before sufficient events are available, where timeout == NULL
2024  *	specifies an infinite timeout. Note that the timeout pointed to by
2025  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2026  */
2027 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2028 		long, min_nr,
2029 		long, nr,
2030 		struct io_event __user *, events,
2031 		struct timespec __user *, timeout)
2032 {
2033 	struct timespec64	ts;
2034 	int			ret;
2035 
2036 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2037 		return -EFAULT;
2038 
2039 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2040 	if (!ret && signal_pending(current))
2041 		ret = -EINTR;
2042 	return ret;
2043 }
2044 
2045 SYSCALL_DEFINE6(io_pgetevents,
2046 		aio_context_t, ctx_id,
2047 		long, min_nr,
2048 		long, nr,
2049 		struct io_event __user *, events,
2050 		struct timespec __user *, timeout,
2051 		const struct __aio_sigset __user *, usig)
2052 {
2053 	struct __aio_sigset	ksig = { NULL, };
2054 	sigset_t		ksigmask, sigsaved;
2055 	struct timespec64	ts;
2056 	int ret;
2057 
2058 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2059 		return -EFAULT;
2060 
2061 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2062 		return -EFAULT;
2063 
2064 	if (ksig.sigmask) {
2065 		if (ksig.sigsetsize != sizeof(sigset_t))
2066 			return -EINVAL;
2067 		if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2068 			return -EFAULT;
2069 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2070 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2071 	}
2072 
2073 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074 	if (signal_pending(current)) {
2075 		if (ksig.sigmask) {
2076 			current->saved_sigmask = sigsaved;
2077 			set_restore_sigmask();
2078 		}
2079 
2080 		if (!ret)
2081 			ret = -ERESTARTNOHAND;
2082 	} else {
2083 		if (ksig.sigmask)
2084 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2085 	}
2086 
2087 	return ret;
2088 }
2089 
2090 #ifdef CONFIG_COMPAT
2091 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2092 		       compat_long_t, min_nr,
2093 		       compat_long_t, nr,
2094 		       struct io_event __user *, events,
2095 		       struct compat_timespec __user *, timeout)
2096 {
2097 	struct timespec64 t;
2098 	int ret;
2099 
2100 	if (timeout && compat_get_timespec64(&t, timeout))
2101 		return -EFAULT;
2102 
2103 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2104 	if (!ret && signal_pending(current))
2105 		ret = -EINTR;
2106 	return ret;
2107 }
2108 
2109 
2110 struct __compat_aio_sigset {
2111 	compat_sigset_t __user	*sigmask;
2112 	compat_size_t		sigsetsize;
2113 };
2114 
2115 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2116 		compat_aio_context_t, ctx_id,
2117 		compat_long_t, min_nr,
2118 		compat_long_t, nr,
2119 		struct io_event __user *, events,
2120 		struct compat_timespec __user *, timeout,
2121 		const struct __compat_aio_sigset __user *, usig)
2122 {
2123 	struct __compat_aio_sigset ksig = { NULL, };
2124 	sigset_t ksigmask, sigsaved;
2125 	struct timespec64 t;
2126 	int ret;
2127 
2128 	if (timeout && compat_get_timespec64(&t, timeout))
2129 		return -EFAULT;
2130 
2131 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2132 		return -EFAULT;
2133 
2134 	if (ksig.sigmask) {
2135 		if (ksig.sigsetsize != sizeof(compat_sigset_t))
2136 			return -EINVAL;
2137 		if (get_compat_sigset(&ksigmask, ksig.sigmask))
2138 			return -EFAULT;
2139 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2140 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2141 	}
2142 
2143 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2144 	if (signal_pending(current)) {
2145 		if (ksig.sigmask) {
2146 			current->saved_sigmask = sigsaved;
2147 			set_restore_sigmask();
2148 		}
2149 		if (!ret)
2150 			ret = -ERESTARTNOHAND;
2151 	} else {
2152 		if (ksig.sigmask)
2153 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2154 	}
2155 
2156 	return ret;
2157 }
2158 #endif
2159