1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <asm/kmap_types.h> 47 #include <linux/uaccess.h> 48 #include <linux/nospec.h> 49 50 #include "internal.h" 51 52 #define KIOCB_KEY 0 53 54 #define AIO_RING_MAGIC 0xa10a10a1 55 #define AIO_RING_COMPAT_FEATURES 1 56 #define AIO_RING_INCOMPAT_FEATURES 0 57 struct aio_ring { 58 unsigned id; /* kernel internal index number */ 59 unsigned nr; /* number of io_events */ 60 unsigned head; /* Written to by userland or under ring_lock 61 * mutex by aio_read_events_ring(). */ 62 unsigned tail; 63 64 unsigned magic; 65 unsigned compat_features; 66 unsigned incompat_features; 67 unsigned header_length; /* size of aio_ring */ 68 69 70 struct io_event io_events[]; 71 }; /* 128 bytes + ring size */ 72 73 /* 74 * Plugging is meant to work with larger batches of IOs. If we don't 75 * have more than the below, then don't bother setting up a plug. 76 */ 77 #define AIO_PLUG_THRESHOLD 2 78 79 #define AIO_RING_PAGES 8 80 81 struct kioctx_table { 82 struct rcu_head rcu; 83 unsigned nr; 84 struct kioctx __rcu *table[]; 85 }; 86 87 struct kioctx_cpu { 88 unsigned reqs_available; 89 }; 90 91 struct ctx_rq_wait { 92 struct completion comp; 93 atomic_t count; 94 }; 95 96 struct kioctx { 97 struct percpu_ref users; 98 atomic_t dead; 99 100 struct percpu_ref reqs; 101 102 unsigned long user_id; 103 104 struct __percpu kioctx_cpu *cpu; 105 106 /* 107 * For percpu reqs_available, number of slots we move to/from global 108 * counter at a time: 109 */ 110 unsigned req_batch; 111 /* 112 * This is what userspace passed to io_setup(), it's not used for 113 * anything but counting against the global max_reqs quota. 114 * 115 * The real limit is nr_events - 1, which will be larger (see 116 * aio_setup_ring()) 117 */ 118 unsigned max_reqs; 119 120 /* Size of ringbuffer, in units of struct io_event */ 121 unsigned nr_events; 122 123 unsigned long mmap_base; 124 unsigned long mmap_size; 125 126 struct page **ring_pages; 127 long nr_pages; 128 129 struct rcu_work free_rwork; /* see free_ioctx() */ 130 131 /* 132 * signals when all in-flight requests are done 133 */ 134 struct ctx_rq_wait *rq_wait; 135 136 struct { 137 /* 138 * This counts the number of available slots in the ringbuffer, 139 * so we avoid overflowing it: it's decremented (if positive) 140 * when allocating a kiocb and incremented when the resulting 141 * io_event is pulled off the ringbuffer. 142 * 143 * We batch accesses to it with a percpu version. 144 */ 145 atomic_t reqs_available; 146 } ____cacheline_aligned_in_smp; 147 148 struct { 149 spinlock_t ctx_lock; 150 struct list_head active_reqs; /* used for cancellation */ 151 } ____cacheline_aligned_in_smp; 152 153 struct { 154 struct mutex ring_lock; 155 wait_queue_head_t wait; 156 } ____cacheline_aligned_in_smp; 157 158 struct { 159 unsigned tail; 160 unsigned completed_events; 161 spinlock_t completion_lock; 162 } ____cacheline_aligned_in_smp; 163 164 struct page *internal_pages[AIO_RING_PAGES]; 165 struct file *aio_ring_file; 166 167 unsigned id; 168 }; 169 170 /* 171 * First field must be the file pointer in all the 172 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 173 */ 174 struct fsync_iocb { 175 struct file *file; 176 struct work_struct work; 177 bool datasync; 178 struct cred *creds; 179 }; 180 181 struct poll_iocb { 182 struct file *file; 183 struct wait_queue_head *head; 184 __poll_t events; 185 bool done; 186 bool cancelled; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 unsigned long aio_nr; /* current system wide number of aio requests */ 224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 227 static struct kmem_cache *kiocb_cachep; 228 static struct kmem_cache *kioctx_cachep; 229 230 static struct vfsmount *aio_mnt; 231 232 static const struct file_operations aio_ring_fops; 233 static const struct address_space_operations aio_ctx_aops; 234 235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 236 { 237 struct file *file; 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 239 if (IS_ERR(inode)) 240 return ERR_CAST(inode); 241 242 inode->i_mapping->a_ops = &aio_ctx_aops; 243 inode->i_mapping->private_data = ctx; 244 inode->i_size = PAGE_SIZE * nr_pages; 245 246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 247 O_RDWR, &aio_ring_fops); 248 if (IS_ERR(file)) 249 iput(inode); 250 return file; 251 } 252 253 static int aio_init_fs_context(struct fs_context *fc) 254 { 255 if (!init_pseudo(fc, AIO_RING_MAGIC)) 256 return -ENOMEM; 257 fc->s_iflags |= SB_I_NOEXEC; 258 return 0; 259 } 260 261 /* aio_setup 262 * Creates the slab caches used by the aio routines, panic on 263 * failure as this is done early during the boot sequence. 264 */ 265 static int __init aio_setup(void) 266 { 267 static struct file_system_type aio_fs = { 268 .name = "aio", 269 .init_fs_context = aio_init_fs_context, 270 .kill_sb = kill_anon_super, 271 }; 272 aio_mnt = kern_mount(&aio_fs); 273 if (IS_ERR(aio_mnt)) 274 panic("Failed to create aio fs mount."); 275 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 278 return 0; 279 } 280 __initcall(aio_setup); 281 282 static void put_aio_ring_file(struct kioctx *ctx) 283 { 284 struct file *aio_ring_file = ctx->aio_ring_file; 285 struct address_space *i_mapping; 286 287 if (aio_ring_file) { 288 truncate_setsize(file_inode(aio_ring_file), 0); 289 290 /* Prevent further access to the kioctx from migratepages */ 291 i_mapping = aio_ring_file->f_mapping; 292 spin_lock(&i_mapping->private_lock); 293 i_mapping->private_data = NULL; 294 ctx->aio_ring_file = NULL; 295 spin_unlock(&i_mapping->private_lock); 296 297 fput(aio_ring_file); 298 } 299 } 300 301 static void aio_free_ring(struct kioctx *ctx) 302 { 303 int i; 304 305 /* Disconnect the kiotx from the ring file. This prevents future 306 * accesses to the kioctx from page migration. 307 */ 308 put_aio_ring_file(ctx); 309 310 for (i = 0; i < ctx->nr_pages; i++) { 311 struct page *page; 312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 313 page_count(ctx->ring_pages[i])); 314 page = ctx->ring_pages[i]; 315 if (!page) 316 continue; 317 ctx->ring_pages[i] = NULL; 318 put_page(page); 319 } 320 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 322 kfree(ctx->ring_pages); 323 ctx->ring_pages = NULL; 324 } 325 } 326 327 static int aio_ring_mremap(struct vm_area_struct *vma) 328 { 329 struct file *file = vma->vm_file; 330 struct mm_struct *mm = vma->vm_mm; 331 struct kioctx_table *table; 332 int i, res = -EINVAL; 333 334 spin_lock(&mm->ioctx_lock); 335 rcu_read_lock(); 336 table = rcu_dereference(mm->ioctx_table); 337 for (i = 0; i < table->nr; i++) { 338 struct kioctx *ctx; 339 340 ctx = rcu_dereference(table->table[i]); 341 if (ctx && ctx->aio_ring_file == file) { 342 if (!atomic_read(&ctx->dead)) { 343 ctx->user_id = ctx->mmap_base = vma->vm_start; 344 res = 0; 345 } 346 break; 347 } 348 } 349 350 rcu_read_unlock(); 351 spin_unlock(&mm->ioctx_lock); 352 return res; 353 } 354 355 static const struct vm_operations_struct aio_ring_vm_ops = { 356 .mremap = aio_ring_mremap, 357 #if IS_ENABLED(CONFIG_MMU) 358 .fault = filemap_fault, 359 .map_pages = filemap_map_pages, 360 .page_mkwrite = filemap_page_mkwrite, 361 #endif 362 }; 363 364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 365 { 366 vma->vm_flags |= VM_DONTEXPAND; 367 vma->vm_ops = &aio_ring_vm_ops; 368 return 0; 369 } 370 371 static const struct file_operations aio_ring_fops = { 372 .mmap = aio_ring_mmap, 373 }; 374 375 #if IS_ENABLED(CONFIG_MIGRATION) 376 static int aio_migratepage(struct address_space *mapping, struct page *new, 377 struct page *old, enum migrate_mode mode) 378 { 379 struct kioctx *ctx; 380 unsigned long flags; 381 pgoff_t idx; 382 int rc; 383 384 /* 385 * We cannot support the _NO_COPY case here, because copy needs to 386 * happen under the ctx->completion_lock. That does not work with the 387 * migration workflow of MIGRATE_SYNC_NO_COPY. 388 */ 389 if (mode == MIGRATE_SYNC_NO_COPY) 390 return -EINVAL; 391 392 rc = 0; 393 394 /* mapping->private_lock here protects against the kioctx teardown. */ 395 spin_lock(&mapping->private_lock); 396 ctx = mapping->private_data; 397 if (!ctx) { 398 rc = -EINVAL; 399 goto out; 400 } 401 402 /* The ring_lock mutex. The prevents aio_read_events() from writing 403 * to the ring's head, and prevents page migration from mucking in 404 * a partially initialized kiotx. 405 */ 406 if (!mutex_trylock(&ctx->ring_lock)) { 407 rc = -EAGAIN; 408 goto out; 409 } 410 411 idx = old->index; 412 if (idx < (pgoff_t)ctx->nr_pages) { 413 /* Make sure the old page hasn't already been changed */ 414 if (ctx->ring_pages[idx] != old) 415 rc = -EAGAIN; 416 } else 417 rc = -EINVAL; 418 419 if (rc != 0) 420 goto out_unlock; 421 422 /* Writeback must be complete */ 423 BUG_ON(PageWriteback(old)); 424 get_page(new); 425 426 rc = migrate_page_move_mapping(mapping, new, old, 1); 427 if (rc != MIGRATEPAGE_SUCCESS) { 428 put_page(new); 429 goto out_unlock; 430 } 431 432 /* Take completion_lock to prevent other writes to the ring buffer 433 * while the old page is copied to the new. This prevents new 434 * events from being lost. 435 */ 436 spin_lock_irqsave(&ctx->completion_lock, flags); 437 migrate_page_copy(new, old); 438 BUG_ON(ctx->ring_pages[idx] != old); 439 ctx->ring_pages[idx] = new; 440 spin_unlock_irqrestore(&ctx->completion_lock, flags); 441 442 /* The old page is no longer accessible. */ 443 put_page(old); 444 445 out_unlock: 446 mutex_unlock(&ctx->ring_lock); 447 out: 448 spin_unlock(&mapping->private_lock); 449 return rc; 450 } 451 #endif 452 453 static const struct address_space_operations aio_ctx_aops = { 454 .set_page_dirty = __set_page_dirty_no_writeback, 455 #if IS_ENABLED(CONFIG_MIGRATION) 456 .migratepage = aio_migratepage, 457 #endif 458 }; 459 460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 461 { 462 struct aio_ring *ring; 463 struct mm_struct *mm = current->mm; 464 unsigned long size, unused; 465 int nr_pages; 466 int i; 467 struct file *file; 468 469 /* Compensate for the ring buffer's head/tail overlap entry */ 470 nr_events += 2; /* 1 is required, 2 for good luck */ 471 472 size = sizeof(struct aio_ring); 473 size += sizeof(struct io_event) * nr_events; 474 475 nr_pages = PFN_UP(size); 476 if (nr_pages < 0) 477 return -EINVAL; 478 479 file = aio_private_file(ctx, nr_pages); 480 if (IS_ERR(file)) { 481 ctx->aio_ring_file = NULL; 482 return -ENOMEM; 483 } 484 485 ctx->aio_ring_file = file; 486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 487 / sizeof(struct io_event); 488 489 ctx->ring_pages = ctx->internal_pages; 490 if (nr_pages > AIO_RING_PAGES) { 491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 492 GFP_KERNEL); 493 if (!ctx->ring_pages) { 494 put_aio_ring_file(ctx); 495 return -ENOMEM; 496 } 497 } 498 499 for (i = 0; i < nr_pages; i++) { 500 struct page *page; 501 page = find_or_create_page(file->f_mapping, 502 i, GFP_HIGHUSER | __GFP_ZERO); 503 if (!page) 504 break; 505 pr_debug("pid(%d) page[%d]->count=%d\n", 506 current->pid, i, page_count(page)); 507 SetPageUptodate(page); 508 unlock_page(page); 509 510 ctx->ring_pages[i] = page; 511 } 512 ctx->nr_pages = i; 513 514 if (unlikely(i != nr_pages)) { 515 aio_free_ring(ctx); 516 return -ENOMEM; 517 } 518 519 ctx->mmap_size = nr_pages * PAGE_SIZE; 520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 521 522 if (mmap_write_lock_killable(mm)) { 523 ctx->mmap_size = 0; 524 aio_free_ring(ctx); 525 return -EINTR; 526 } 527 528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 529 PROT_READ | PROT_WRITE, 530 MAP_SHARED, 0, &unused, NULL); 531 mmap_write_unlock(mm); 532 if (IS_ERR((void *)ctx->mmap_base)) { 533 ctx->mmap_size = 0; 534 aio_free_ring(ctx); 535 return -ENOMEM; 536 } 537 538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 539 540 ctx->user_id = ctx->mmap_base; 541 ctx->nr_events = nr_events; /* trusted copy */ 542 543 ring = kmap_atomic(ctx->ring_pages[0]); 544 ring->nr = nr_events; /* user copy */ 545 ring->id = ~0U; 546 ring->head = ring->tail = 0; 547 ring->magic = AIO_RING_MAGIC; 548 ring->compat_features = AIO_RING_COMPAT_FEATURES; 549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 550 ring->header_length = sizeof(struct aio_ring); 551 kunmap_atomic(ring); 552 flush_dcache_page(ctx->ring_pages[0]); 553 554 return 0; 555 } 556 557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 560 561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 562 { 563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 564 struct kioctx *ctx = req->ki_ctx; 565 unsigned long flags; 566 567 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 568 return; 569 570 spin_lock_irqsave(&ctx->ctx_lock, flags); 571 list_add_tail(&req->ki_list, &ctx->active_reqs); 572 req->ki_cancel = cancel; 573 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 574 } 575 EXPORT_SYMBOL(kiocb_set_cancel_fn); 576 577 /* 578 * free_ioctx() should be RCU delayed to synchronize against the RCU 579 * protected lookup_ioctx() and also needs process context to call 580 * aio_free_ring(). Use rcu_work. 581 */ 582 static void free_ioctx(struct work_struct *work) 583 { 584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 585 free_rwork); 586 pr_debug("freeing %p\n", ctx); 587 588 aio_free_ring(ctx); 589 free_percpu(ctx->cpu); 590 percpu_ref_exit(&ctx->reqs); 591 percpu_ref_exit(&ctx->users); 592 kmem_cache_free(kioctx_cachep, ctx); 593 } 594 595 static void free_ioctx_reqs(struct percpu_ref *ref) 596 { 597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 598 599 /* At this point we know that there are no any in-flight requests */ 600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 601 complete(&ctx->rq_wait->comp); 602 603 /* Synchronize against RCU protected table->table[] dereferences */ 604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 605 queue_rcu_work(system_wq, &ctx->free_rwork); 606 } 607 608 /* 609 * When this function runs, the kioctx has been removed from the "hash table" 610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 611 * now it's safe to cancel any that need to be. 612 */ 613 static void free_ioctx_users(struct percpu_ref *ref) 614 { 615 struct kioctx *ctx = container_of(ref, struct kioctx, users); 616 struct aio_kiocb *req; 617 618 spin_lock_irq(&ctx->ctx_lock); 619 620 while (!list_empty(&ctx->active_reqs)) { 621 req = list_first_entry(&ctx->active_reqs, 622 struct aio_kiocb, ki_list); 623 req->ki_cancel(&req->rw); 624 list_del_init(&req->ki_list); 625 } 626 627 spin_unlock_irq(&ctx->ctx_lock); 628 629 percpu_ref_kill(&ctx->reqs); 630 percpu_ref_put(&ctx->reqs); 631 } 632 633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 634 { 635 unsigned i, new_nr; 636 struct kioctx_table *table, *old; 637 struct aio_ring *ring; 638 639 spin_lock(&mm->ioctx_lock); 640 table = rcu_dereference_raw(mm->ioctx_table); 641 642 while (1) { 643 if (table) 644 for (i = 0; i < table->nr; i++) 645 if (!rcu_access_pointer(table->table[i])) { 646 ctx->id = i; 647 rcu_assign_pointer(table->table[i], ctx); 648 spin_unlock(&mm->ioctx_lock); 649 650 /* While kioctx setup is in progress, 651 * we are protected from page migration 652 * changes ring_pages by ->ring_lock. 653 */ 654 ring = kmap_atomic(ctx->ring_pages[0]); 655 ring->id = ctx->id; 656 kunmap_atomic(ring); 657 return 0; 658 } 659 660 new_nr = (table ? table->nr : 1) * 4; 661 spin_unlock(&mm->ioctx_lock); 662 663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 664 new_nr, GFP_KERNEL); 665 if (!table) 666 return -ENOMEM; 667 668 table->nr = new_nr; 669 670 spin_lock(&mm->ioctx_lock); 671 old = rcu_dereference_raw(mm->ioctx_table); 672 673 if (!old) { 674 rcu_assign_pointer(mm->ioctx_table, table); 675 } else if (table->nr > old->nr) { 676 memcpy(table->table, old->table, 677 old->nr * sizeof(struct kioctx *)); 678 679 rcu_assign_pointer(mm->ioctx_table, table); 680 kfree_rcu(old, rcu); 681 } else { 682 kfree(table); 683 table = old; 684 } 685 } 686 } 687 688 static void aio_nr_sub(unsigned nr) 689 { 690 spin_lock(&aio_nr_lock); 691 if (WARN_ON(aio_nr - nr > aio_nr)) 692 aio_nr = 0; 693 else 694 aio_nr -= nr; 695 spin_unlock(&aio_nr_lock); 696 } 697 698 /* ioctx_alloc 699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 700 */ 701 static struct kioctx *ioctx_alloc(unsigned nr_events) 702 { 703 struct mm_struct *mm = current->mm; 704 struct kioctx *ctx; 705 int err = -ENOMEM; 706 707 /* 708 * Store the original nr_events -- what userspace passed to io_setup(), 709 * for counting against the global limit -- before it changes. 710 */ 711 unsigned int max_reqs = nr_events; 712 713 /* 714 * We keep track of the number of available ringbuffer slots, to prevent 715 * overflow (reqs_available), and we also use percpu counters for this. 716 * 717 * So since up to half the slots might be on other cpu's percpu counters 718 * and unavailable, double nr_events so userspace sees what they 719 * expected: additionally, we move req_batch slots to/from percpu 720 * counters at a time, so make sure that isn't 0: 721 */ 722 nr_events = max(nr_events, num_possible_cpus() * 4); 723 nr_events *= 2; 724 725 /* Prevent overflows */ 726 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 727 pr_debug("ENOMEM: nr_events too high\n"); 728 return ERR_PTR(-EINVAL); 729 } 730 731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 732 return ERR_PTR(-EAGAIN); 733 734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 735 if (!ctx) 736 return ERR_PTR(-ENOMEM); 737 738 ctx->max_reqs = max_reqs; 739 740 spin_lock_init(&ctx->ctx_lock); 741 spin_lock_init(&ctx->completion_lock); 742 mutex_init(&ctx->ring_lock); 743 /* Protect against page migration throughout kiotx setup by keeping 744 * the ring_lock mutex held until setup is complete. */ 745 mutex_lock(&ctx->ring_lock); 746 init_waitqueue_head(&ctx->wait); 747 748 INIT_LIST_HEAD(&ctx->active_reqs); 749 750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 751 goto err; 752 753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 754 goto err; 755 756 ctx->cpu = alloc_percpu(struct kioctx_cpu); 757 if (!ctx->cpu) 758 goto err; 759 760 err = aio_setup_ring(ctx, nr_events); 761 if (err < 0) 762 goto err; 763 764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 766 if (ctx->req_batch < 1) 767 ctx->req_batch = 1; 768 769 /* limit the number of system wide aios */ 770 spin_lock(&aio_nr_lock); 771 if (aio_nr + ctx->max_reqs > aio_max_nr || 772 aio_nr + ctx->max_reqs < aio_nr) { 773 spin_unlock(&aio_nr_lock); 774 err = -EAGAIN; 775 goto err_ctx; 776 } 777 aio_nr += ctx->max_reqs; 778 spin_unlock(&aio_nr_lock); 779 780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 782 783 err = ioctx_add_table(ctx, mm); 784 if (err) 785 goto err_cleanup; 786 787 /* Release the ring_lock mutex now that all setup is complete. */ 788 mutex_unlock(&ctx->ring_lock); 789 790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 791 ctx, ctx->user_id, mm, ctx->nr_events); 792 return ctx; 793 794 err_cleanup: 795 aio_nr_sub(ctx->max_reqs); 796 err_ctx: 797 atomic_set(&ctx->dead, 1); 798 if (ctx->mmap_size) 799 vm_munmap(ctx->mmap_base, ctx->mmap_size); 800 aio_free_ring(ctx); 801 err: 802 mutex_unlock(&ctx->ring_lock); 803 free_percpu(ctx->cpu); 804 percpu_ref_exit(&ctx->reqs); 805 percpu_ref_exit(&ctx->users); 806 kmem_cache_free(kioctx_cachep, ctx); 807 pr_debug("error allocating ioctx %d\n", err); 808 return ERR_PTR(err); 809 } 810 811 /* kill_ioctx 812 * Cancels all outstanding aio requests on an aio context. Used 813 * when the processes owning a context have all exited to encourage 814 * the rapid destruction of the kioctx. 815 */ 816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 817 struct ctx_rq_wait *wait) 818 { 819 struct kioctx_table *table; 820 821 spin_lock(&mm->ioctx_lock); 822 if (atomic_xchg(&ctx->dead, 1)) { 823 spin_unlock(&mm->ioctx_lock); 824 return -EINVAL; 825 } 826 827 table = rcu_dereference_raw(mm->ioctx_table); 828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 829 RCU_INIT_POINTER(table->table[ctx->id], NULL); 830 spin_unlock(&mm->ioctx_lock); 831 832 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 833 wake_up_all(&ctx->wait); 834 835 /* 836 * It'd be more correct to do this in free_ioctx(), after all 837 * the outstanding kiocbs have finished - but by then io_destroy 838 * has already returned, so io_setup() could potentially return 839 * -EAGAIN with no ioctxs actually in use (as far as userspace 840 * could tell). 841 */ 842 aio_nr_sub(ctx->max_reqs); 843 844 if (ctx->mmap_size) 845 vm_munmap(ctx->mmap_base, ctx->mmap_size); 846 847 ctx->rq_wait = wait; 848 percpu_ref_kill(&ctx->users); 849 return 0; 850 } 851 852 /* 853 * exit_aio: called when the last user of mm goes away. At this point, there is 854 * no way for any new requests to be submited or any of the io_* syscalls to be 855 * called on the context. 856 * 857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 858 * them. 859 */ 860 void exit_aio(struct mm_struct *mm) 861 { 862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 863 struct ctx_rq_wait wait; 864 int i, skipped; 865 866 if (!table) 867 return; 868 869 atomic_set(&wait.count, table->nr); 870 init_completion(&wait.comp); 871 872 skipped = 0; 873 for (i = 0; i < table->nr; ++i) { 874 struct kioctx *ctx = 875 rcu_dereference_protected(table->table[i], true); 876 877 if (!ctx) { 878 skipped++; 879 continue; 880 } 881 882 /* 883 * We don't need to bother with munmap() here - exit_mmap(mm) 884 * is coming and it'll unmap everything. And we simply can't, 885 * this is not necessarily our ->mm. 886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 887 * that it needs to unmap the area, just set it to 0. 888 */ 889 ctx->mmap_size = 0; 890 kill_ioctx(mm, ctx, &wait); 891 } 892 893 if (!atomic_sub_and_test(skipped, &wait.count)) { 894 /* Wait until all IO for the context are done. */ 895 wait_for_completion(&wait.comp); 896 } 897 898 RCU_INIT_POINTER(mm->ioctx_table, NULL); 899 kfree(table); 900 } 901 902 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 903 { 904 struct kioctx_cpu *kcpu; 905 unsigned long flags; 906 907 local_irq_save(flags); 908 kcpu = this_cpu_ptr(ctx->cpu); 909 kcpu->reqs_available += nr; 910 911 while (kcpu->reqs_available >= ctx->req_batch * 2) { 912 kcpu->reqs_available -= ctx->req_batch; 913 atomic_add(ctx->req_batch, &ctx->reqs_available); 914 } 915 916 local_irq_restore(flags); 917 } 918 919 static bool __get_reqs_available(struct kioctx *ctx) 920 { 921 struct kioctx_cpu *kcpu; 922 bool ret = false; 923 unsigned long flags; 924 925 local_irq_save(flags); 926 kcpu = this_cpu_ptr(ctx->cpu); 927 if (!kcpu->reqs_available) { 928 int old, avail = atomic_read(&ctx->reqs_available); 929 930 do { 931 if (avail < ctx->req_batch) 932 goto out; 933 934 old = avail; 935 avail = atomic_cmpxchg(&ctx->reqs_available, 936 avail, avail - ctx->req_batch); 937 } while (avail != old); 938 939 kcpu->reqs_available += ctx->req_batch; 940 } 941 942 ret = true; 943 kcpu->reqs_available--; 944 out: 945 local_irq_restore(flags); 946 return ret; 947 } 948 949 /* refill_reqs_available 950 * Updates the reqs_available reference counts used for tracking the 951 * number of free slots in the completion ring. This can be called 952 * from aio_complete() (to optimistically update reqs_available) or 953 * from aio_get_req() (the we're out of events case). It must be 954 * called holding ctx->completion_lock. 955 */ 956 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 957 unsigned tail) 958 { 959 unsigned events_in_ring, completed; 960 961 /* Clamp head since userland can write to it. */ 962 head %= ctx->nr_events; 963 if (head <= tail) 964 events_in_ring = tail - head; 965 else 966 events_in_ring = ctx->nr_events - (head - tail); 967 968 completed = ctx->completed_events; 969 if (events_in_ring < completed) 970 completed -= events_in_ring; 971 else 972 completed = 0; 973 974 if (!completed) 975 return; 976 977 ctx->completed_events -= completed; 978 put_reqs_available(ctx, completed); 979 } 980 981 /* user_refill_reqs_available 982 * Called to refill reqs_available when aio_get_req() encounters an 983 * out of space in the completion ring. 984 */ 985 static void user_refill_reqs_available(struct kioctx *ctx) 986 { 987 spin_lock_irq(&ctx->completion_lock); 988 if (ctx->completed_events) { 989 struct aio_ring *ring; 990 unsigned head; 991 992 /* Access of ring->head may race with aio_read_events_ring() 993 * here, but that's okay since whether we read the old version 994 * or the new version, and either will be valid. The important 995 * part is that head cannot pass tail since we prevent 996 * aio_complete() from updating tail by holding 997 * ctx->completion_lock. Even if head is invalid, the check 998 * against ctx->completed_events below will make sure we do the 999 * safe/right thing. 1000 */ 1001 ring = kmap_atomic(ctx->ring_pages[0]); 1002 head = ring->head; 1003 kunmap_atomic(ring); 1004 1005 refill_reqs_available(ctx, head, ctx->tail); 1006 } 1007 1008 spin_unlock_irq(&ctx->completion_lock); 1009 } 1010 1011 static bool get_reqs_available(struct kioctx *ctx) 1012 { 1013 if (__get_reqs_available(ctx)) 1014 return true; 1015 user_refill_reqs_available(ctx); 1016 return __get_reqs_available(ctx); 1017 } 1018 1019 /* aio_get_req 1020 * Allocate a slot for an aio request. 1021 * Returns NULL if no requests are free. 1022 * 1023 * The refcount is initialized to 2 - one for the async op completion, 1024 * one for the synchronous code that does this. 1025 */ 1026 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1027 { 1028 struct aio_kiocb *req; 1029 1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1031 if (unlikely(!req)) 1032 return NULL; 1033 1034 if (unlikely(!get_reqs_available(ctx))) { 1035 kmem_cache_free(kiocb_cachep, req); 1036 return NULL; 1037 } 1038 1039 percpu_ref_get(&ctx->reqs); 1040 req->ki_ctx = ctx; 1041 INIT_LIST_HEAD(&req->ki_list); 1042 refcount_set(&req->ki_refcnt, 2); 1043 req->ki_eventfd = NULL; 1044 return req; 1045 } 1046 1047 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1048 { 1049 struct aio_ring __user *ring = (void __user *)ctx_id; 1050 struct mm_struct *mm = current->mm; 1051 struct kioctx *ctx, *ret = NULL; 1052 struct kioctx_table *table; 1053 unsigned id; 1054 1055 if (get_user(id, &ring->id)) 1056 return NULL; 1057 1058 rcu_read_lock(); 1059 table = rcu_dereference(mm->ioctx_table); 1060 1061 if (!table || id >= table->nr) 1062 goto out; 1063 1064 id = array_index_nospec(id, table->nr); 1065 ctx = rcu_dereference(table->table[id]); 1066 if (ctx && ctx->user_id == ctx_id) { 1067 if (percpu_ref_tryget_live(&ctx->users)) 1068 ret = ctx; 1069 } 1070 out: 1071 rcu_read_unlock(); 1072 return ret; 1073 } 1074 1075 static inline void iocb_destroy(struct aio_kiocb *iocb) 1076 { 1077 if (iocb->ki_eventfd) 1078 eventfd_ctx_put(iocb->ki_eventfd); 1079 if (iocb->ki_filp) 1080 fput(iocb->ki_filp); 1081 percpu_ref_put(&iocb->ki_ctx->reqs); 1082 kmem_cache_free(kiocb_cachep, iocb); 1083 } 1084 1085 /* aio_complete 1086 * Called when the io request on the given iocb is complete. 1087 */ 1088 static void aio_complete(struct aio_kiocb *iocb) 1089 { 1090 struct kioctx *ctx = iocb->ki_ctx; 1091 struct aio_ring *ring; 1092 struct io_event *ev_page, *event; 1093 unsigned tail, pos, head; 1094 unsigned long flags; 1095 1096 /* 1097 * Add a completion event to the ring buffer. Must be done holding 1098 * ctx->completion_lock to prevent other code from messing with the tail 1099 * pointer since we might be called from irq context. 1100 */ 1101 spin_lock_irqsave(&ctx->completion_lock, flags); 1102 1103 tail = ctx->tail; 1104 pos = tail + AIO_EVENTS_OFFSET; 1105 1106 if (++tail >= ctx->nr_events) 1107 tail = 0; 1108 1109 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1110 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1111 1112 *event = iocb->ki_res; 1113 1114 kunmap_atomic(ev_page); 1115 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1116 1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1118 (void __user *)(unsigned long)iocb->ki_res.obj, 1119 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1120 1121 /* after flagging the request as done, we 1122 * must never even look at it again 1123 */ 1124 smp_wmb(); /* make event visible before updating tail */ 1125 1126 ctx->tail = tail; 1127 1128 ring = kmap_atomic(ctx->ring_pages[0]); 1129 head = ring->head; 1130 ring->tail = tail; 1131 kunmap_atomic(ring); 1132 flush_dcache_page(ctx->ring_pages[0]); 1133 1134 ctx->completed_events++; 1135 if (ctx->completed_events > 1) 1136 refill_reqs_available(ctx, head, tail); 1137 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1138 1139 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1140 1141 /* 1142 * Check if the user asked us to deliver the result through an 1143 * eventfd. The eventfd_signal() function is safe to be called 1144 * from IRQ context. 1145 */ 1146 if (iocb->ki_eventfd) 1147 eventfd_signal(iocb->ki_eventfd, 1); 1148 1149 /* 1150 * We have to order our ring_info tail store above and test 1151 * of the wait list below outside the wait lock. This is 1152 * like in wake_up_bit() where clearing a bit has to be 1153 * ordered with the unlocked test. 1154 */ 1155 smp_mb(); 1156 1157 if (waitqueue_active(&ctx->wait)) 1158 wake_up(&ctx->wait); 1159 } 1160 1161 static inline void iocb_put(struct aio_kiocb *iocb) 1162 { 1163 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1164 aio_complete(iocb); 1165 iocb_destroy(iocb); 1166 } 1167 } 1168 1169 /* aio_read_events_ring 1170 * Pull an event off of the ioctx's event ring. Returns the number of 1171 * events fetched 1172 */ 1173 static long aio_read_events_ring(struct kioctx *ctx, 1174 struct io_event __user *event, long nr) 1175 { 1176 struct aio_ring *ring; 1177 unsigned head, tail, pos; 1178 long ret = 0; 1179 int copy_ret; 1180 1181 /* 1182 * The mutex can block and wake us up and that will cause 1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1184 * and repeat. This should be rare enough that it doesn't cause 1185 * peformance issues. See the comment in read_events() for more detail. 1186 */ 1187 sched_annotate_sleep(); 1188 mutex_lock(&ctx->ring_lock); 1189 1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1191 ring = kmap_atomic(ctx->ring_pages[0]); 1192 head = ring->head; 1193 tail = ring->tail; 1194 kunmap_atomic(ring); 1195 1196 /* 1197 * Ensure that once we've read the current tail pointer, that 1198 * we also see the events that were stored up to the tail. 1199 */ 1200 smp_rmb(); 1201 1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1203 1204 if (head == tail) 1205 goto out; 1206 1207 head %= ctx->nr_events; 1208 tail %= ctx->nr_events; 1209 1210 while (ret < nr) { 1211 long avail; 1212 struct io_event *ev; 1213 struct page *page; 1214 1215 avail = (head <= tail ? tail : ctx->nr_events) - head; 1216 if (head == tail) 1217 break; 1218 1219 pos = head + AIO_EVENTS_OFFSET; 1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1221 pos %= AIO_EVENTS_PER_PAGE; 1222 1223 avail = min(avail, nr - ret); 1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1225 1226 ev = kmap(page); 1227 copy_ret = copy_to_user(event + ret, ev + pos, 1228 sizeof(*ev) * avail); 1229 kunmap(page); 1230 1231 if (unlikely(copy_ret)) { 1232 ret = -EFAULT; 1233 goto out; 1234 } 1235 1236 ret += avail; 1237 head += avail; 1238 head %= ctx->nr_events; 1239 } 1240 1241 ring = kmap_atomic(ctx->ring_pages[0]); 1242 ring->head = head; 1243 kunmap_atomic(ring); 1244 flush_dcache_page(ctx->ring_pages[0]); 1245 1246 pr_debug("%li h%u t%u\n", ret, head, tail); 1247 out: 1248 mutex_unlock(&ctx->ring_lock); 1249 1250 return ret; 1251 } 1252 1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1254 struct io_event __user *event, long *i) 1255 { 1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1257 1258 if (ret > 0) 1259 *i += ret; 1260 1261 if (unlikely(atomic_read(&ctx->dead))) 1262 ret = -EINVAL; 1263 1264 if (!*i) 1265 *i = ret; 1266 1267 return ret < 0 || *i >= min_nr; 1268 } 1269 1270 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1271 struct io_event __user *event, 1272 ktime_t until) 1273 { 1274 long ret = 0; 1275 1276 /* 1277 * Note that aio_read_events() is being called as the conditional - i.e. 1278 * we're calling it after prepare_to_wait() has set task state to 1279 * TASK_INTERRUPTIBLE. 1280 * 1281 * But aio_read_events() can block, and if it blocks it's going to flip 1282 * the task state back to TASK_RUNNING. 1283 * 1284 * This should be ok, provided it doesn't flip the state back to 1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1286 * will only happen if the mutex_lock() call blocks, and we then find 1287 * the ringbuffer empty. So in practice we should be ok, but it's 1288 * something to be aware of when touching this code. 1289 */ 1290 if (until == 0) 1291 aio_read_events(ctx, min_nr, nr, event, &ret); 1292 else 1293 wait_event_interruptible_hrtimeout(ctx->wait, 1294 aio_read_events(ctx, min_nr, nr, event, &ret), 1295 until); 1296 return ret; 1297 } 1298 1299 /* sys_io_setup: 1300 * Create an aio_context capable of receiving at least nr_events. 1301 * ctxp must not point to an aio_context that already exists, and 1302 * must be initialized to 0 prior to the call. On successful 1303 * creation of the aio_context, *ctxp is filled in with the resulting 1304 * handle. May fail with -EINVAL if *ctxp is not initialized, 1305 * if the specified nr_events exceeds internal limits. May fail 1306 * with -EAGAIN if the specified nr_events exceeds the user's limit 1307 * of available events. May fail with -ENOMEM if insufficient kernel 1308 * resources are available. May fail with -EFAULT if an invalid 1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1310 * implemented. 1311 */ 1312 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1313 { 1314 struct kioctx *ioctx = NULL; 1315 unsigned long ctx; 1316 long ret; 1317 1318 ret = get_user(ctx, ctxp); 1319 if (unlikely(ret)) 1320 goto out; 1321 1322 ret = -EINVAL; 1323 if (unlikely(ctx || nr_events == 0)) { 1324 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1325 ctx, nr_events); 1326 goto out; 1327 } 1328 1329 ioctx = ioctx_alloc(nr_events); 1330 ret = PTR_ERR(ioctx); 1331 if (!IS_ERR(ioctx)) { 1332 ret = put_user(ioctx->user_id, ctxp); 1333 if (ret) 1334 kill_ioctx(current->mm, ioctx, NULL); 1335 percpu_ref_put(&ioctx->users); 1336 } 1337 1338 out: 1339 return ret; 1340 } 1341 1342 #ifdef CONFIG_COMPAT 1343 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1344 { 1345 struct kioctx *ioctx = NULL; 1346 unsigned long ctx; 1347 long ret; 1348 1349 ret = get_user(ctx, ctx32p); 1350 if (unlikely(ret)) 1351 goto out; 1352 1353 ret = -EINVAL; 1354 if (unlikely(ctx || nr_events == 0)) { 1355 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1356 ctx, nr_events); 1357 goto out; 1358 } 1359 1360 ioctx = ioctx_alloc(nr_events); 1361 ret = PTR_ERR(ioctx); 1362 if (!IS_ERR(ioctx)) { 1363 /* truncating is ok because it's a user address */ 1364 ret = put_user((u32)ioctx->user_id, ctx32p); 1365 if (ret) 1366 kill_ioctx(current->mm, ioctx, NULL); 1367 percpu_ref_put(&ioctx->users); 1368 } 1369 1370 out: 1371 return ret; 1372 } 1373 #endif 1374 1375 /* sys_io_destroy: 1376 * Destroy the aio_context specified. May cancel any outstanding 1377 * AIOs and block on completion. Will fail with -ENOSYS if not 1378 * implemented. May fail with -EINVAL if the context pointed to 1379 * is invalid. 1380 */ 1381 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1382 { 1383 struct kioctx *ioctx = lookup_ioctx(ctx); 1384 if (likely(NULL != ioctx)) { 1385 struct ctx_rq_wait wait; 1386 int ret; 1387 1388 init_completion(&wait.comp); 1389 atomic_set(&wait.count, 1); 1390 1391 /* Pass requests_done to kill_ioctx() where it can be set 1392 * in a thread-safe way. If we try to set it here then we have 1393 * a race condition if two io_destroy() called simultaneously. 1394 */ 1395 ret = kill_ioctx(current->mm, ioctx, &wait); 1396 percpu_ref_put(&ioctx->users); 1397 1398 /* Wait until all IO for the context are done. Otherwise kernel 1399 * keep using user-space buffers even if user thinks the context 1400 * is destroyed. 1401 */ 1402 if (!ret) 1403 wait_for_completion(&wait.comp); 1404 1405 return ret; 1406 } 1407 pr_debug("EINVAL: invalid context id\n"); 1408 return -EINVAL; 1409 } 1410 1411 static void aio_remove_iocb(struct aio_kiocb *iocb) 1412 { 1413 struct kioctx *ctx = iocb->ki_ctx; 1414 unsigned long flags; 1415 1416 spin_lock_irqsave(&ctx->ctx_lock, flags); 1417 list_del(&iocb->ki_list); 1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1419 } 1420 1421 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1422 { 1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1424 1425 if (!list_empty_careful(&iocb->ki_list)) 1426 aio_remove_iocb(iocb); 1427 1428 if (kiocb->ki_flags & IOCB_WRITE) { 1429 struct inode *inode = file_inode(kiocb->ki_filp); 1430 1431 /* 1432 * Tell lockdep we inherited freeze protection from submission 1433 * thread. 1434 */ 1435 if (S_ISREG(inode->i_mode)) 1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1437 file_end_write(kiocb->ki_filp); 1438 } 1439 1440 iocb->ki_res.res = res; 1441 iocb->ki_res.res2 = res2; 1442 iocb_put(iocb); 1443 } 1444 1445 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1446 { 1447 int ret; 1448 1449 req->ki_complete = aio_complete_rw; 1450 req->private = NULL; 1451 req->ki_pos = iocb->aio_offset; 1452 req->ki_flags = iocb_flags(req->ki_filp); 1453 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1454 req->ki_flags |= IOCB_EVENTFD; 1455 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1456 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1457 /* 1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1459 * aio_reqprio is interpreted as an I/O scheduling 1460 * class and priority. 1461 */ 1462 ret = ioprio_check_cap(iocb->aio_reqprio); 1463 if (ret) { 1464 pr_debug("aio ioprio check cap error: %d\n", ret); 1465 return ret; 1466 } 1467 1468 req->ki_ioprio = iocb->aio_reqprio; 1469 } else 1470 req->ki_ioprio = get_current_ioprio(); 1471 1472 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1473 if (unlikely(ret)) 1474 return ret; 1475 1476 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1477 return 0; 1478 } 1479 1480 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1481 struct iovec **iovec, bool vectored, bool compat, 1482 struct iov_iter *iter) 1483 { 1484 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1485 size_t len = iocb->aio_nbytes; 1486 1487 if (!vectored) { 1488 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1489 *iovec = NULL; 1490 return ret; 1491 } 1492 1493 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1494 } 1495 1496 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1497 { 1498 switch (ret) { 1499 case -EIOCBQUEUED: 1500 break; 1501 case -ERESTARTSYS: 1502 case -ERESTARTNOINTR: 1503 case -ERESTARTNOHAND: 1504 case -ERESTART_RESTARTBLOCK: 1505 /* 1506 * There's no easy way to restart the syscall since other AIO's 1507 * may be already running. Just fail this IO with EINTR. 1508 */ 1509 ret = -EINTR; 1510 fallthrough; 1511 default: 1512 req->ki_complete(req, ret, 0); 1513 } 1514 } 1515 1516 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1517 bool vectored, bool compat) 1518 { 1519 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1520 struct iov_iter iter; 1521 struct file *file; 1522 int ret; 1523 1524 ret = aio_prep_rw(req, iocb); 1525 if (ret) 1526 return ret; 1527 file = req->ki_filp; 1528 if (unlikely(!(file->f_mode & FMODE_READ))) 1529 return -EBADF; 1530 ret = -EINVAL; 1531 if (unlikely(!file->f_op->read_iter)) 1532 return -EINVAL; 1533 1534 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1535 if (ret < 0) 1536 return ret; 1537 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1538 if (!ret) 1539 aio_rw_done(req, call_read_iter(file, req, &iter)); 1540 kfree(iovec); 1541 return ret; 1542 } 1543 1544 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1545 bool vectored, bool compat) 1546 { 1547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1548 struct iov_iter iter; 1549 struct file *file; 1550 int ret; 1551 1552 ret = aio_prep_rw(req, iocb); 1553 if (ret) 1554 return ret; 1555 file = req->ki_filp; 1556 1557 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1558 return -EBADF; 1559 if (unlikely(!file->f_op->write_iter)) 1560 return -EINVAL; 1561 1562 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1563 if (ret < 0) 1564 return ret; 1565 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1566 if (!ret) { 1567 /* 1568 * Open-code file_start_write here to grab freeze protection, 1569 * which will be released by another thread in 1570 * aio_complete_rw(). Fool lockdep by telling it the lock got 1571 * released so that it doesn't complain about the held lock when 1572 * we return to userspace. 1573 */ 1574 if (S_ISREG(file_inode(file)->i_mode)) { 1575 sb_start_write(file_inode(file)->i_sb); 1576 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1577 } 1578 req->ki_flags |= IOCB_WRITE; 1579 aio_rw_done(req, call_write_iter(file, req, &iter)); 1580 } 1581 kfree(iovec); 1582 return ret; 1583 } 1584 1585 static void aio_fsync_work(struct work_struct *work) 1586 { 1587 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1588 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1589 1590 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1591 revert_creds(old_cred); 1592 put_cred(iocb->fsync.creds); 1593 iocb_put(iocb); 1594 } 1595 1596 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1597 bool datasync) 1598 { 1599 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1600 iocb->aio_rw_flags)) 1601 return -EINVAL; 1602 1603 if (unlikely(!req->file->f_op->fsync)) 1604 return -EINVAL; 1605 1606 req->creds = prepare_creds(); 1607 if (!req->creds) 1608 return -ENOMEM; 1609 1610 req->datasync = datasync; 1611 INIT_WORK(&req->work, aio_fsync_work); 1612 schedule_work(&req->work); 1613 return 0; 1614 } 1615 1616 static void aio_poll_put_work(struct work_struct *work) 1617 { 1618 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1619 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1620 1621 iocb_put(iocb); 1622 } 1623 1624 static void aio_poll_complete_work(struct work_struct *work) 1625 { 1626 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1627 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1628 struct poll_table_struct pt = { ._key = req->events }; 1629 struct kioctx *ctx = iocb->ki_ctx; 1630 __poll_t mask = 0; 1631 1632 if (!READ_ONCE(req->cancelled)) 1633 mask = vfs_poll(req->file, &pt) & req->events; 1634 1635 /* 1636 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1637 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1638 * synchronize with them. In the cancellation case the list_del_init 1639 * itself is not actually needed, but harmless so we keep it in to 1640 * avoid further branches in the fast path. 1641 */ 1642 spin_lock_irq(&ctx->ctx_lock); 1643 if (!mask && !READ_ONCE(req->cancelled)) { 1644 add_wait_queue(req->head, &req->wait); 1645 spin_unlock_irq(&ctx->ctx_lock); 1646 return; 1647 } 1648 list_del_init(&iocb->ki_list); 1649 iocb->ki_res.res = mangle_poll(mask); 1650 req->done = true; 1651 spin_unlock_irq(&ctx->ctx_lock); 1652 1653 iocb_put(iocb); 1654 } 1655 1656 /* assumes we are called with irqs disabled */ 1657 static int aio_poll_cancel(struct kiocb *iocb) 1658 { 1659 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1660 struct poll_iocb *req = &aiocb->poll; 1661 1662 spin_lock(&req->head->lock); 1663 WRITE_ONCE(req->cancelled, true); 1664 if (!list_empty(&req->wait.entry)) { 1665 list_del_init(&req->wait.entry); 1666 schedule_work(&aiocb->poll.work); 1667 } 1668 spin_unlock(&req->head->lock); 1669 1670 return 0; 1671 } 1672 1673 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1674 void *key) 1675 { 1676 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1677 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1678 __poll_t mask = key_to_poll(key); 1679 unsigned long flags; 1680 1681 /* for instances that support it check for an event match first: */ 1682 if (mask && !(mask & req->events)) 1683 return 0; 1684 1685 list_del_init(&req->wait.entry); 1686 1687 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1688 struct kioctx *ctx = iocb->ki_ctx; 1689 1690 /* 1691 * Try to complete the iocb inline if we can. Use 1692 * irqsave/irqrestore because not all filesystems (e.g. fuse) 1693 * call this function with IRQs disabled and because IRQs 1694 * have to be disabled before ctx_lock is obtained. 1695 */ 1696 list_del(&iocb->ki_list); 1697 iocb->ki_res.res = mangle_poll(mask); 1698 req->done = true; 1699 if (iocb->ki_eventfd && eventfd_signal_count()) { 1700 iocb = NULL; 1701 INIT_WORK(&req->work, aio_poll_put_work); 1702 schedule_work(&req->work); 1703 } 1704 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1705 if (iocb) 1706 iocb_put(iocb); 1707 } else { 1708 schedule_work(&req->work); 1709 } 1710 return 1; 1711 } 1712 1713 struct aio_poll_table { 1714 struct poll_table_struct pt; 1715 struct aio_kiocb *iocb; 1716 int error; 1717 }; 1718 1719 static void 1720 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1721 struct poll_table_struct *p) 1722 { 1723 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1724 1725 /* multiple wait queues per file are not supported */ 1726 if (unlikely(pt->iocb->poll.head)) { 1727 pt->error = -EINVAL; 1728 return; 1729 } 1730 1731 pt->error = 0; 1732 pt->iocb->poll.head = head; 1733 add_wait_queue(head, &pt->iocb->poll.wait); 1734 } 1735 1736 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1737 { 1738 struct kioctx *ctx = aiocb->ki_ctx; 1739 struct poll_iocb *req = &aiocb->poll; 1740 struct aio_poll_table apt; 1741 bool cancel = false; 1742 __poll_t mask; 1743 1744 /* reject any unknown events outside the normal event mask. */ 1745 if ((u16)iocb->aio_buf != iocb->aio_buf) 1746 return -EINVAL; 1747 /* reject fields that are not defined for poll */ 1748 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1749 return -EINVAL; 1750 1751 INIT_WORK(&req->work, aio_poll_complete_work); 1752 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1753 1754 req->head = NULL; 1755 req->done = false; 1756 req->cancelled = false; 1757 1758 apt.pt._qproc = aio_poll_queue_proc; 1759 apt.pt._key = req->events; 1760 apt.iocb = aiocb; 1761 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1762 1763 /* initialized the list so that we can do list_empty checks */ 1764 INIT_LIST_HEAD(&req->wait.entry); 1765 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1766 1767 mask = vfs_poll(req->file, &apt.pt) & req->events; 1768 spin_lock_irq(&ctx->ctx_lock); 1769 if (likely(req->head)) { 1770 spin_lock(&req->head->lock); 1771 if (unlikely(list_empty(&req->wait.entry))) { 1772 if (apt.error) 1773 cancel = true; 1774 apt.error = 0; 1775 mask = 0; 1776 } 1777 if (mask || apt.error) { 1778 list_del_init(&req->wait.entry); 1779 } else if (cancel) { 1780 WRITE_ONCE(req->cancelled, true); 1781 } else if (!req->done) { /* actually waiting for an event */ 1782 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1783 aiocb->ki_cancel = aio_poll_cancel; 1784 } 1785 spin_unlock(&req->head->lock); 1786 } 1787 if (mask) { /* no async, we'd stolen it */ 1788 aiocb->ki_res.res = mangle_poll(mask); 1789 apt.error = 0; 1790 } 1791 spin_unlock_irq(&ctx->ctx_lock); 1792 if (mask) 1793 iocb_put(aiocb); 1794 return apt.error; 1795 } 1796 1797 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1798 struct iocb __user *user_iocb, struct aio_kiocb *req, 1799 bool compat) 1800 { 1801 req->ki_filp = fget(iocb->aio_fildes); 1802 if (unlikely(!req->ki_filp)) 1803 return -EBADF; 1804 1805 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1806 struct eventfd_ctx *eventfd; 1807 /* 1808 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1809 * instance of the file* now. The file descriptor must be 1810 * an eventfd() fd, and will be signaled for each completed 1811 * event using the eventfd_signal() function. 1812 */ 1813 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1814 if (IS_ERR(eventfd)) 1815 return PTR_ERR(eventfd); 1816 1817 req->ki_eventfd = eventfd; 1818 } 1819 1820 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1821 pr_debug("EFAULT: aio_key\n"); 1822 return -EFAULT; 1823 } 1824 1825 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1826 req->ki_res.data = iocb->aio_data; 1827 req->ki_res.res = 0; 1828 req->ki_res.res2 = 0; 1829 1830 switch (iocb->aio_lio_opcode) { 1831 case IOCB_CMD_PREAD: 1832 return aio_read(&req->rw, iocb, false, compat); 1833 case IOCB_CMD_PWRITE: 1834 return aio_write(&req->rw, iocb, false, compat); 1835 case IOCB_CMD_PREADV: 1836 return aio_read(&req->rw, iocb, true, compat); 1837 case IOCB_CMD_PWRITEV: 1838 return aio_write(&req->rw, iocb, true, compat); 1839 case IOCB_CMD_FSYNC: 1840 return aio_fsync(&req->fsync, iocb, false); 1841 case IOCB_CMD_FDSYNC: 1842 return aio_fsync(&req->fsync, iocb, true); 1843 case IOCB_CMD_POLL: 1844 return aio_poll(req, iocb); 1845 default: 1846 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1847 return -EINVAL; 1848 } 1849 } 1850 1851 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1852 bool compat) 1853 { 1854 struct aio_kiocb *req; 1855 struct iocb iocb; 1856 int err; 1857 1858 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1859 return -EFAULT; 1860 1861 /* enforce forwards compatibility on users */ 1862 if (unlikely(iocb.aio_reserved2)) { 1863 pr_debug("EINVAL: reserve field set\n"); 1864 return -EINVAL; 1865 } 1866 1867 /* prevent overflows */ 1868 if (unlikely( 1869 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1870 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1871 ((ssize_t)iocb.aio_nbytes < 0) 1872 )) { 1873 pr_debug("EINVAL: overflow check\n"); 1874 return -EINVAL; 1875 } 1876 1877 req = aio_get_req(ctx); 1878 if (unlikely(!req)) 1879 return -EAGAIN; 1880 1881 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 1882 1883 /* Done with the synchronous reference */ 1884 iocb_put(req); 1885 1886 /* 1887 * If err is 0, we'd either done aio_complete() ourselves or have 1888 * arranged for that to be done asynchronously. Anything non-zero 1889 * means that we need to destroy req ourselves. 1890 */ 1891 if (unlikely(err)) { 1892 iocb_destroy(req); 1893 put_reqs_available(ctx, 1); 1894 } 1895 return err; 1896 } 1897 1898 /* sys_io_submit: 1899 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1900 * the number of iocbs queued. May return -EINVAL if the aio_context 1901 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1902 * *iocbpp[0] is not properly initialized, if the operation specified 1903 * is invalid for the file descriptor in the iocb. May fail with 1904 * -EFAULT if any of the data structures point to invalid data. May 1905 * fail with -EBADF if the file descriptor specified in the first 1906 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1907 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1908 * fail with -ENOSYS if not implemented. 1909 */ 1910 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1911 struct iocb __user * __user *, iocbpp) 1912 { 1913 struct kioctx *ctx; 1914 long ret = 0; 1915 int i = 0; 1916 struct blk_plug plug; 1917 1918 if (unlikely(nr < 0)) 1919 return -EINVAL; 1920 1921 ctx = lookup_ioctx(ctx_id); 1922 if (unlikely(!ctx)) { 1923 pr_debug("EINVAL: invalid context id\n"); 1924 return -EINVAL; 1925 } 1926 1927 if (nr > ctx->nr_events) 1928 nr = ctx->nr_events; 1929 1930 if (nr > AIO_PLUG_THRESHOLD) 1931 blk_start_plug(&plug); 1932 for (i = 0; i < nr; i++) { 1933 struct iocb __user *user_iocb; 1934 1935 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1936 ret = -EFAULT; 1937 break; 1938 } 1939 1940 ret = io_submit_one(ctx, user_iocb, false); 1941 if (ret) 1942 break; 1943 } 1944 if (nr > AIO_PLUG_THRESHOLD) 1945 blk_finish_plug(&plug); 1946 1947 percpu_ref_put(&ctx->users); 1948 return i ? i : ret; 1949 } 1950 1951 #ifdef CONFIG_COMPAT 1952 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1953 int, nr, compat_uptr_t __user *, iocbpp) 1954 { 1955 struct kioctx *ctx; 1956 long ret = 0; 1957 int i = 0; 1958 struct blk_plug plug; 1959 1960 if (unlikely(nr < 0)) 1961 return -EINVAL; 1962 1963 ctx = lookup_ioctx(ctx_id); 1964 if (unlikely(!ctx)) { 1965 pr_debug("EINVAL: invalid context id\n"); 1966 return -EINVAL; 1967 } 1968 1969 if (nr > ctx->nr_events) 1970 nr = ctx->nr_events; 1971 1972 if (nr > AIO_PLUG_THRESHOLD) 1973 blk_start_plug(&plug); 1974 for (i = 0; i < nr; i++) { 1975 compat_uptr_t user_iocb; 1976 1977 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1978 ret = -EFAULT; 1979 break; 1980 } 1981 1982 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1983 if (ret) 1984 break; 1985 } 1986 if (nr > AIO_PLUG_THRESHOLD) 1987 blk_finish_plug(&plug); 1988 1989 percpu_ref_put(&ctx->users); 1990 return i ? i : ret; 1991 } 1992 #endif 1993 1994 /* sys_io_cancel: 1995 * Attempts to cancel an iocb previously passed to io_submit. If 1996 * the operation is successfully cancelled, the resulting event is 1997 * copied into the memory pointed to by result without being placed 1998 * into the completion queue and 0 is returned. May fail with 1999 * -EFAULT if any of the data structures pointed to are invalid. 2000 * May fail with -EINVAL if aio_context specified by ctx_id is 2001 * invalid. May fail with -EAGAIN if the iocb specified was not 2002 * cancelled. Will fail with -ENOSYS if not implemented. 2003 */ 2004 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2005 struct io_event __user *, result) 2006 { 2007 struct kioctx *ctx; 2008 struct aio_kiocb *kiocb; 2009 int ret = -EINVAL; 2010 u32 key; 2011 u64 obj = (u64)(unsigned long)iocb; 2012 2013 if (unlikely(get_user(key, &iocb->aio_key))) 2014 return -EFAULT; 2015 if (unlikely(key != KIOCB_KEY)) 2016 return -EINVAL; 2017 2018 ctx = lookup_ioctx(ctx_id); 2019 if (unlikely(!ctx)) 2020 return -EINVAL; 2021 2022 spin_lock_irq(&ctx->ctx_lock); 2023 /* TODO: use a hash or array, this sucks. */ 2024 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2025 if (kiocb->ki_res.obj == obj) { 2026 ret = kiocb->ki_cancel(&kiocb->rw); 2027 list_del_init(&kiocb->ki_list); 2028 break; 2029 } 2030 } 2031 spin_unlock_irq(&ctx->ctx_lock); 2032 2033 if (!ret) { 2034 /* 2035 * The result argument is no longer used - the io_event is 2036 * always delivered via the ring buffer. -EINPROGRESS indicates 2037 * cancellation is progress: 2038 */ 2039 ret = -EINPROGRESS; 2040 } 2041 2042 percpu_ref_put(&ctx->users); 2043 2044 return ret; 2045 } 2046 2047 static long do_io_getevents(aio_context_t ctx_id, 2048 long min_nr, 2049 long nr, 2050 struct io_event __user *events, 2051 struct timespec64 *ts) 2052 { 2053 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2054 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2055 long ret = -EINVAL; 2056 2057 if (likely(ioctx)) { 2058 if (likely(min_nr <= nr && min_nr >= 0)) 2059 ret = read_events(ioctx, min_nr, nr, events, until); 2060 percpu_ref_put(&ioctx->users); 2061 } 2062 2063 return ret; 2064 } 2065 2066 /* io_getevents: 2067 * Attempts to read at least min_nr events and up to nr events from 2068 * the completion queue for the aio_context specified by ctx_id. If 2069 * it succeeds, the number of read events is returned. May fail with 2070 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2071 * out of range, if timeout is out of range. May fail with -EFAULT 2072 * if any of the memory specified is invalid. May return 0 or 2073 * < min_nr if the timeout specified by timeout has elapsed 2074 * before sufficient events are available, where timeout == NULL 2075 * specifies an infinite timeout. Note that the timeout pointed to by 2076 * timeout is relative. Will fail with -ENOSYS if not implemented. 2077 */ 2078 #ifdef CONFIG_64BIT 2079 2080 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2081 long, min_nr, 2082 long, nr, 2083 struct io_event __user *, events, 2084 struct __kernel_timespec __user *, timeout) 2085 { 2086 struct timespec64 ts; 2087 int ret; 2088 2089 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2090 return -EFAULT; 2091 2092 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2093 if (!ret && signal_pending(current)) 2094 ret = -EINTR; 2095 return ret; 2096 } 2097 2098 #endif 2099 2100 struct __aio_sigset { 2101 const sigset_t __user *sigmask; 2102 size_t sigsetsize; 2103 }; 2104 2105 SYSCALL_DEFINE6(io_pgetevents, 2106 aio_context_t, ctx_id, 2107 long, min_nr, 2108 long, nr, 2109 struct io_event __user *, events, 2110 struct __kernel_timespec __user *, timeout, 2111 const struct __aio_sigset __user *, usig) 2112 { 2113 struct __aio_sigset ksig = { NULL, }; 2114 struct timespec64 ts; 2115 bool interrupted; 2116 int ret; 2117 2118 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2119 return -EFAULT; 2120 2121 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2122 return -EFAULT; 2123 2124 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2125 if (ret) 2126 return ret; 2127 2128 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2129 2130 interrupted = signal_pending(current); 2131 restore_saved_sigmask_unless(interrupted); 2132 if (interrupted && !ret) 2133 ret = -ERESTARTNOHAND; 2134 2135 return ret; 2136 } 2137 2138 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2139 2140 SYSCALL_DEFINE6(io_pgetevents_time32, 2141 aio_context_t, ctx_id, 2142 long, min_nr, 2143 long, nr, 2144 struct io_event __user *, events, 2145 struct old_timespec32 __user *, timeout, 2146 const struct __aio_sigset __user *, usig) 2147 { 2148 struct __aio_sigset ksig = { NULL, }; 2149 struct timespec64 ts; 2150 bool interrupted; 2151 int ret; 2152 2153 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2154 return -EFAULT; 2155 2156 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2157 return -EFAULT; 2158 2159 2160 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2161 if (ret) 2162 return ret; 2163 2164 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2165 2166 interrupted = signal_pending(current); 2167 restore_saved_sigmask_unless(interrupted); 2168 if (interrupted && !ret) 2169 ret = -ERESTARTNOHAND; 2170 2171 return ret; 2172 } 2173 2174 #endif 2175 2176 #if defined(CONFIG_COMPAT_32BIT_TIME) 2177 2178 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2179 __s32, min_nr, 2180 __s32, nr, 2181 struct io_event __user *, events, 2182 struct old_timespec32 __user *, timeout) 2183 { 2184 struct timespec64 t; 2185 int ret; 2186 2187 if (timeout && get_old_timespec32(&t, timeout)) 2188 return -EFAULT; 2189 2190 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2191 if (!ret && signal_pending(current)) 2192 ret = -EINTR; 2193 return ret; 2194 } 2195 2196 #endif 2197 2198 #ifdef CONFIG_COMPAT 2199 2200 struct __compat_aio_sigset { 2201 compat_uptr_t sigmask; 2202 compat_size_t sigsetsize; 2203 }; 2204 2205 #if defined(CONFIG_COMPAT_32BIT_TIME) 2206 2207 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2208 compat_aio_context_t, ctx_id, 2209 compat_long_t, min_nr, 2210 compat_long_t, nr, 2211 struct io_event __user *, events, 2212 struct old_timespec32 __user *, timeout, 2213 const struct __compat_aio_sigset __user *, usig) 2214 { 2215 struct __compat_aio_sigset ksig = { 0, }; 2216 struct timespec64 t; 2217 bool interrupted; 2218 int ret; 2219 2220 if (timeout && get_old_timespec32(&t, timeout)) 2221 return -EFAULT; 2222 2223 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2224 return -EFAULT; 2225 2226 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2227 if (ret) 2228 return ret; 2229 2230 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2231 2232 interrupted = signal_pending(current); 2233 restore_saved_sigmask_unless(interrupted); 2234 if (interrupted && !ret) 2235 ret = -ERESTARTNOHAND; 2236 2237 return ret; 2238 } 2239 2240 #endif 2241 2242 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2243 compat_aio_context_t, ctx_id, 2244 compat_long_t, min_nr, 2245 compat_long_t, nr, 2246 struct io_event __user *, events, 2247 struct __kernel_timespec __user *, timeout, 2248 const struct __compat_aio_sigset __user *, usig) 2249 { 2250 struct __compat_aio_sigset ksig = { 0, }; 2251 struct timespec64 t; 2252 bool interrupted; 2253 int ret; 2254 2255 if (timeout && get_timespec64(&t, timeout)) 2256 return -EFAULT; 2257 2258 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2259 return -EFAULT; 2260 2261 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2262 if (ret) 2263 return ret; 2264 2265 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2266 2267 interrupted = signal_pending(current); 2268 restore_saved_sigmask_unless(interrupted); 2269 if (interrupted && !ret) 2270 ret = -ERESTARTNOHAND; 2271 2272 return ret; 2273 } 2274 #endif 2275