1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct ctx_rq_wait { 81 struct completion comp; 82 atomic_t count; 83 }; 84 85 struct kioctx { 86 struct percpu_ref users; 87 atomic_t dead; 88 89 struct percpu_ref reqs; 90 91 unsigned long user_id; 92 93 struct __percpu kioctx_cpu *cpu; 94 95 /* 96 * For percpu reqs_available, number of slots we move to/from global 97 * counter at a time: 98 */ 99 unsigned req_batch; 100 /* 101 * This is what userspace passed to io_setup(), it's not used for 102 * anything but counting against the global max_reqs quota. 103 * 104 * The real limit is nr_events - 1, which will be larger (see 105 * aio_setup_ring()) 106 */ 107 unsigned max_reqs; 108 109 /* Size of ringbuffer, in units of struct io_event */ 110 unsigned nr_events; 111 112 unsigned long mmap_base; 113 unsigned long mmap_size; 114 115 struct page **ring_pages; 116 long nr_pages; 117 118 struct work_struct free_work; 119 120 /* 121 * signals when all in-flight requests are done 122 */ 123 struct ctx_rq_wait *rq_wait; 124 125 struct { 126 /* 127 * This counts the number of available slots in the ringbuffer, 128 * so we avoid overflowing it: it's decremented (if positive) 129 * when allocating a kiocb and incremented when the resulting 130 * io_event is pulled off the ringbuffer. 131 * 132 * We batch accesses to it with a percpu version. 133 */ 134 atomic_t reqs_available; 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 spinlock_t ctx_lock; 139 struct list_head active_reqs; /* used for cancellation */ 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 struct mutex ring_lock; 144 wait_queue_head_t wait; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 unsigned tail; 149 unsigned completed_events; 150 spinlock_t completion_lock; 151 } ____cacheline_aligned_in_smp; 152 153 struct page *internal_pages[AIO_RING_PAGES]; 154 struct file *aio_ring_file; 155 156 unsigned id; 157 }; 158 159 /* 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either 161 * cancelled or completed (this makes a certain amount of sense because 162 * successful cancellation - io_cancel() - does deliver the completion to 163 * userspace). 164 * 165 * And since most things don't implement kiocb cancellation and we'd really like 166 * kiocb completion to be lockless when possible, we use ki_cancel to 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel(). 169 */ 170 #define KIOCB_CANCELLED ((void *) (~0ULL)) 171 172 struct aio_kiocb { 173 struct kiocb common; 174 175 struct kioctx *ki_ctx; 176 kiocb_cancel_fn *ki_cancel; 177 178 struct iocb __user *ki_user_iocb; /* user's aiocb */ 179 __u64 ki_user_data; /* user's data for completion */ 180 181 struct list_head ki_list; /* the aio core uses this 182 * for cancellation */ 183 184 /* 185 * If the aio_resfd field of the userspace iocb is not zero, 186 * this is the underlying eventfd context to deliver events to. 187 */ 188 struct eventfd_ctx *ki_eventfd; 189 }; 190 191 /*------ sysctl variables----*/ 192 static DEFINE_SPINLOCK(aio_nr_lock); 193 unsigned long aio_nr; /* current system wide number of aio requests */ 194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 195 /*----end sysctl variables---*/ 196 197 static struct kmem_cache *kiocb_cachep; 198 static struct kmem_cache *kioctx_cachep; 199 200 static struct vfsmount *aio_mnt; 201 202 static const struct file_operations aio_ring_fops; 203 static const struct address_space_operations aio_ctx_aops; 204 205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 206 { 207 struct qstr this = QSTR_INIT("[aio]", 5); 208 struct file *file; 209 struct path path; 210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 211 if (IS_ERR(inode)) 212 return ERR_CAST(inode); 213 214 inode->i_mapping->a_ops = &aio_ctx_aops; 215 inode->i_mapping->private_data = ctx; 216 inode->i_size = PAGE_SIZE * nr_pages; 217 218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 219 if (!path.dentry) { 220 iput(inode); 221 return ERR_PTR(-ENOMEM); 222 } 223 path.mnt = mntget(aio_mnt); 224 225 d_instantiate(path.dentry, inode); 226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 227 if (IS_ERR(file)) { 228 path_put(&path); 229 return file; 230 } 231 232 file->f_flags = O_RDWR; 233 return file; 234 } 235 236 static struct dentry *aio_mount(struct file_system_type *fs_type, 237 int flags, const char *dev_name, void *data) 238 { 239 static const struct dentry_operations ops = { 240 .d_dname = simple_dname, 241 }; 242 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); 243 } 244 245 /* aio_setup 246 * Creates the slab caches used by the aio routines, panic on 247 * failure as this is done early during the boot sequence. 248 */ 249 static int __init aio_setup(void) 250 { 251 static struct file_system_type aio_fs = { 252 .name = "aio", 253 .mount = aio_mount, 254 .kill_sb = kill_anon_super, 255 }; 256 aio_mnt = kern_mount(&aio_fs); 257 if (IS_ERR(aio_mnt)) 258 panic("Failed to create aio fs mount."); 259 260 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 261 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 262 263 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 264 265 return 0; 266 } 267 __initcall(aio_setup); 268 269 static void put_aio_ring_file(struct kioctx *ctx) 270 { 271 struct file *aio_ring_file = ctx->aio_ring_file; 272 if (aio_ring_file) { 273 truncate_setsize(aio_ring_file->f_inode, 0); 274 275 /* Prevent further access to the kioctx from migratepages */ 276 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 277 aio_ring_file->f_inode->i_mapping->private_data = NULL; 278 ctx->aio_ring_file = NULL; 279 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 280 281 fput(aio_ring_file); 282 } 283 } 284 285 static void aio_free_ring(struct kioctx *ctx) 286 { 287 int i; 288 289 /* Disconnect the kiotx from the ring file. This prevents future 290 * accesses to the kioctx from page migration. 291 */ 292 put_aio_ring_file(ctx); 293 294 for (i = 0; i < ctx->nr_pages; i++) { 295 struct page *page; 296 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 297 page_count(ctx->ring_pages[i])); 298 page = ctx->ring_pages[i]; 299 if (!page) 300 continue; 301 ctx->ring_pages[i] = NULL; 302 put_page(page); 303 } 304 305 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 306 kfree(ctx->ring_pages); 307 ctx->ring_pages = NULL; 308 } 309 } 310 311 static int aio_ring_mremap(struct vm_area_struct *vma) 312 { 313 struct file *file = vma->vm_file; 314 struct mm_struct *mm = vma->vm_mm; 315 struct kioctx_table *table; 316 int i, res = -EINVAL; 317 318 spin_lock(&mm->ioctx_lock); 319 rcu_read_lock(); 320 table = rcu_dereference(mm->ioctx_table); 321 for (i = 0; i < table->nr; i++) { 322 struct kioctx *ctx; 323 324 ctx = table->table[i]; 325 if (ctx && ctx->aio_ring_file == file) { 326 if (!atomic_read(&ctx->dead)) { 327 ctx->user_id = ctx->mmap_base = vma->vm_start; 328 res = 0; 329 } 330 break; 331 } 332 } 333 334 rcu_read_unlock(); 335 spin_unlock(&mm->ioctx_lock); 336 return res; 337 } 338 339 static const struct vm_operations_struct aio_ring_vm_ops = { 340 .mremap = aio_ring_mremap, 341 #if IS_ENABLED(CONFIG_MMU) 342 .fault = filemap_fault, 343 .map_pages = filemap_map_pages, 344 .page_mkwrite = filemap_page_mkwrite, 345 #endif 346 }; 347 348 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 349 { 350 vma->vm_flags |= VM_DONTEXPAND; 351 vma->vm_ops = &aio_ring_vm_ops; 352 return 0; 353 } 354 355 static const struct file_operations aio_ring_fops = { 356 .mmap = aio_ring_mmap, 357 }; 358 359 #if IS_ENABLED(CONFIG_MIGRATION) 360 static int aio_migratepage(struct address_space *mapping, struct page *new, 361 struct page *old, enum migrate_mode mode) 362 { 363 struct kioctx *ctx; 364 unsigned long flags; 365 pgoff_t idx; 366 int rc; 367 368 rc = 0; 369 370 /* mapping->private_lock here protects against the kioctx teardown. */ 371 spin_lock(&mapping->private_lock); 372 ctx = mapping->private_data; 373 if (!ctx) { 374 rc = -EINVAL; 375 goto out; 376 } 377 378 /* The ring_lock mutex. The prevents aio_read_events() from writing 379 * to the ring's head, and prevents page migration from mucking in 380 * a partially initialized kiotx. 381 */ 382 if (!mutex_trylock(&ctx->ring_lock)) { 383 rc = -EAGAIN; 384 goto out; 385 } 386 387 idx = old->index; 388 if (idx < (pgoff_t)ctx->nr_pages) { 389 /* Make sure the old page hasn't already been changed */ 390 if (ctx->ring_pages[idx] != old) 391 rc = -EAGAIN; 392 } else 393 rc = -EINVAL; 394 395 if (rc != 0) 396 goto out_unlock; 397 398 /* Writeback must be complete */ 399 BUG_ON(PageWriteback(old)); 400 get_page(new); 401 402 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 403 if (rc != MIGRATEPAGE_SUCCESS) { 404 put_page(new); 405 goto out_unlock; 406 } 407 408 /* Take completion_lock to prevent other writes to the ring buffer 409 * while the old page is copied to the new. This prevents new 410 * events from being lost. 411 */ 412 spin_lock_irqsave(&ctx->completion_lock, flags); 413 migrate_page_copy(new, old); 414 BUG_ON(ctx->ring_pages[idx] != old); 415 ctx->ring_pages[idx] = new; 416 spin_unlock_irqrestore(&ctx->completion_lock, flags); 417 418 /* The old page is no longer accessible. */ 419 put_page(old); 420 421 out_unlock: 422 mutex_unlock(&ctx->ring_lock); 423 out: 424 spin_unlock(&mapping->private_lock); 425 return rc; 426 } 427 #endif 428 429 static const struct address_space_operations aio_ctx_aops = { 430 .set_page_dirty = __set_page_dirty_no_writeback, 431 #if IS_ENABLED(CONFIG_MIGRATION) 432 .migratepage = aio_migratepage, 433 #endif 434 }; 435 436 static int aio_setup_ring(struct kioctx *ctx) 437 { 438 struct aio_ring *ring; 439 unsigned nr_events = ctx->max_reqs; 440 struct mm_struct *mm = current->mm; 441 unsigned long size, unused; 442 int nr_pages; 443 int i; 444 struct file *file; 445 446 /* Compensate for the ring buffer's head/tail overlap entry */ 447 nr_events += 2; /* 1 is required, 2 for good luck */ 448 449 size = sizeof(struct aio_ring); 450 size += sizeof(struct io_event) * nr_events; 451 452 nr_pages = PFN_UP(size); 453 if (nr_pages < 0) 454 return -EINVAL; 455 456 file = aio_private_file(ctx, nr_pages); 457 if (IS_ERR(file)) { 458 ctx->aio_ring_file = NULL; 459 return -ENOMEM; 460 } 461 462 ctx->aio_ring_file = file; 463 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 464 / sizeof(struct io_event); 465 466 ctx->ring_pages = ctx->internal_pages; 467 if (nr_pages > AIO_RING_PAGES) { 468 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 469 GFP_KERNEL); 470 if (!ctx->ring_pages) { 471 put_aio_ring_file(ctx); 472 return -ENOMEM; 473 } 474 } 475 476 for (i = 0; i < nr_pages; i++) { 477 struct page *page; 478 page = find_or_create_page(file->f_inode->i_mapping, 479 i, GFP_HIGHUSER | __GFP_ZERO); 480 if (!page) 481 break; 482 pr_debug("pid(%d) page[%d]->count=%d\n", 483 current->pid, i, page_count(page)); 484 SetPageUptodate(page); 485 unlock_page(page); 486 487 ctx->ring_pages[i] = page; 488 } 489 ctx->nr_pages = i; 490 491 if (unlikely(i != nr_pages)) { 492 aio_free_ring(ctx); 493 return -ENOMEM; 494 } 495 496 ctx->mmap_size = nr_pages * PAGE_SIZE; 497 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 498 499 down_write(&mm->mmap_sem); 500 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 501 PROT_READ | PROT_WRITE, 502 MAP_SHARED, 0, &unused); 503 up_write(&mm->mmap_sem); 504 if (IS_ERR((void *)ctx->mmap_base)) { 505 ctx->mmap_size = 0; 506 aio_free_ring(ctx); 507 return -ENOMEM; 508 } 509 510 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 511 512 ctx->user_id = ctx->mmap_base; 513 ctx->nr_events = nr_events; /* trusted copy */ 514 515 ring = kmap_atomic(ctx->ring_pages[0]); 516 ring->nr = nr_events; /* user copy */ 517 ring->id = ~0U; 518 ring->head = ring->tail = 0; 519 ring->magic = AIO_RING_MAGIC; 520 ring->compat_features = AIO_RING_COMPAT_FEATURES; 521 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 522 ring->header_length = sizeof(struct aio_ring); 523 kunmap_atomic(ring); 524 flush_dcache_page(ctx->ring_pages[0]); 525 526 return 0; 527 } 528 529 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 530 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 531 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 532 533 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 534 { 535 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common); 536 struct kioctx *ctx = req->ki_ctx; 537 unsigned long flags; 538 539 spin_lock_irqsave(&ctx->ctx_lock, flags); 540 541 if (!req->ki_list.next) 542 list_add(&req->ki_list, &ctx->active_reqs); 543 544 req->ki_cancel = cancel; 545 546 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 547 } 548 EXPORT_SYMBOL(kiocb_set_cancel_fn); 549 550 static int kiocb_cancel(struct aio_kiocb *kiocb) 551 { 552 kiocb_cancel_fn *old, *cancel; 553 554 /* 555 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 556 * actually has a cancel function, hence the cmpxchg() 557 */ 558 559 cancel = ACCESS_ONCE(kiocb->ki_cancel); 560 do { 561 if (!cancel || cancel == KIOCB_CANCELLED) 562 return -EINVAL; 563 564 old = cancel; 565 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 566 } while (cancel != old); 567 568 return cancel(&kiocb->common); 569 } 570 571 static void free_ioctx(struct work_struct *work) 572 { 573 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 574 575 pr_debug("freeing %p\n", ctx); 576 577 aio_free_ring(ctx); 578 free_percpu(ctx->cpu); 579 percpu_ref_exit(&ctx->reqs); 580 percpu_ref_exit(&ctx->users); 581 kmem_cache_free(kioctx_cachep, ctx); 582 } 583 584 static void free_ioctx_reqs(struct percpu_ref *ref) 585 { 586 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 587 588 /* At this point we know that there are no any in-flight requests */ 589 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 590 complete(&ctx->rq_wait->comp); 591 592 INIT_WORK(&ctx->free_work, free_ioctx); 593 schedule_work(&ctx->free_work); 594 } 595 596 /* 597 * When this function runs, the kioctx has been removed from the "hash table" 598 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 599 * now it's safe to cancel any that need to be. 600 */ 601 static void free_ioctx_users(struct percpu_ref *ref) 602 { 603 struct kioctx *ctx = container_of(ref, struct kioctx, users); 604 struct aio_kiocb *req; 605 606 spin_lock_irq(&ctx->ctx_lock); 607 608 while (!list_empty(&ctx->active_reqs)) { 609 req = list_first_entry(&ctx->active_reqs, 610 struct aio_kiocb, ki_list); 611 612 list_del_init(&req->ki_list); 613 kiocb_cancel(req); 614 } 615 616 spin_unlock_irq(&ctx->ctx_lock); 617 618 percpu_ref_kill(&ctx->reqs); 619 percpu_ref_put(&ctx->reqs); 620 } 621 622 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 623 { 624 unsigned i, new_nr; 625 struct kioctx_table *table, *old; 626 struct aio_ring *ring; 627 628 spin_lock(&mm->ioctx_lock); 629 table = rcu_dereference_raw(mm->ioctx_table); 630 631 while (1) { 632 if (table) 633 for (i = 0; i < table->nr; i++) 634 if (!table->table[i]) { 635 ctx->id = i; 636 table->table[i] = ctx; 637 spin_unlock(&mm->ioctx_lock); 638 639 /* While kioctx setup is in progress, 640 * we are protected from page migration 641 * changes ring_pages by ->ring_lock. 642 */ 643 ring = kmap_atomic(ctx->ring_pages[0]); 644 ring->id = ctx->id; 645 kunmap_atomic(ring); 646 return 0; 647 } 648 649 new_nr = (table ? table->nr : 1) * 4; 650 spin_unlock(&mm->ioctx_lock); 651 652 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 653 new_nr, GFP_KERNEL); 654 if (!table) 655 return -ENOMEM; 656 657 table->nr = new_nr; 658 659 spin_lock(&mm->ioctx_lock); 660 old = rcu_dereference_raw(mm->ioctx_table); 661 662 if (!old) { 663 rcu_assign_pointer(mm->ioctx_table, table); 664 } else if (table->nr > old->nr) { 665 memcpy(table->table, old->table, 666 old->nr * sizeof(struct kioctx *)); 667 668 rcu_assign_pointer(mm->ioctx_table, table); 669 kfree_rcu(old, rcu); 670 } else { 671 kfree(table); 672 table = old; 673 } 674 } 675 } 676 677 static void aio_nr_sub(unsigned nr) 678 { 679 spin_lock(&aio_nr_lock); 680 if (WARN_ON(aio_nr - nr > aio_nr)) 681 aio_nr = 0; 682 else 683 aio_nr -= nr; 684 spin_unlock(&aio_nr_lock); 685 } 686 687 /* ioctx_alloc 688 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 689 */ 690 static struct kioctx *ioctx_alloc(unsigned nr_events) 691 { 692 struct mm_struct *mm = current->mm; 693 struct kioctx *ctx; 694 int err = -ENOMEM; 695 696 /* 697 * We keep track of the number of available ringbuffer slots, to prevent 698 * overflow (reqs_available), and we also use percpu counters for this. 699 * 700 * So since up to half the slots might be on other cpu's percpu counters 701 * and unavailable, double nr_events so userspace sees what they 702 * expected: additionally, we move req_batch slots to/from percpu 703 * counters at a time, so make sure that isn't 0: 704 */ 705 nr_events = max(nr_events, num_possible_cpus() * 4); 706 nr_events *= 2; 707 708 /* Prevent overflows */ 709 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 710 pr_debug("ENOMEM: nr_events too high\n"); 711 return ERR_PTR(-EINVAL); 712 } 713 714 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 715 return ERR_PTR(-EAGAIN); 716 717 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 718 if (!ctx) 719 return ERR_PTR(-ENOMEM); 720 721 ctx->max_reqs = nr_events; 722 723 spin_lock_init(&ctx->ctx_lock); 724 spin_lock_init(&ctx->completion_lock); 725 mutex_init(&ctx->ring_lock); 726 /* Protect against page migration throughout kiotx setup by keeping 727 * the ring_lock mutex held until setup is complete. */ 728 mutex_lock(&ctx->ring_lock); 729 init_waitqueue_head(&ctx->wait); 730 731 INIT_LIST_HEAD(&ctx->active_reqs); 732 733 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 734 goto err; 735 736 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 737 goto err; 738 739 ctx->cpu = alloc_percpu(struct kioctx_cpu); 740 if (!ctx->cpu) 741 goto err; 742 743 err = aio_setup_ring(ctx); 744 if (err < 0) 745 goto err; 746 747 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 748 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 749 if (ctx->req_batch < 1) 750 ctx->req_batch = 1; 751 752 /* limit the number of system wide aios */ 753 spin_lock(&aio_nr_lock); 754 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 755 aio_nr + nr_events < aio_nr) { 756 spin_unlock(&aio_nr_lock); 757 err = -EAGAIN; 758 goto err_ctx; 759 } 760 aio_nr += ctx->max_reqs; 761 spin_unlock(&aio_nr_lock); 762 763 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 764 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 765 766 err = ioctx_add_table(ctx, mm); 767 if (err) 768 goto err_cleanup; 769 770 /* Release the ring_lock mutex now that all setup is complete. */ 771 mutex_unlock(&ctx->ring_lock); 772 773 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 774 ctx, ctx->user_id, mm, ctx->nr_events); 775 return ctx; 776 777 err_cleanup: 778 aio_nr_sub(ctx->max_reqs); 779 err_ctx: 780 atomic_set(&ctx->dead, 1); 781 if (ctx->mmap_size) 782 vm_munmap(ctx->mmap_base, ctx->mmap_size); 783 aio_free_ring(ctx); 784 err: 785 mutex_unlock(&ctx->ring_lock); 786 free_percpu(ctx->cpu); 787 percpu_ref_exit(&ctx->reqs); 788 percpu_ref_exit(&ctx->users); 789 kmem_cache_free(kioctx_cachep, ctx); 790 pr_debug("error allocating ioctx %d\n", err); 791 return ERR_PTR(err); 792 } 793 794 /* kill_ioctx 795 * Cancels all outstanding aio requests on an aio context. Used 796 * when the processes owning a context have all exited to encourage 797 * the rapid destruction of the kioctx. 798 */ 799 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 800 struct ctx_rq_wait *wait) 801 { 802 struct kioctx_table *table; 803 804 spin_lock(&mm->ioctx_lock); 805 if (atomic_xchg(&ctx->dead, 1)) { 806 spin_unlock(&mm->ioctx_lock); 807 return -EINVAL; 808 } 809 810 table = rcu_dereference_raw(mm->ioctx_table); 811 WARN_ON(ctx != table->table[ctx->id]); 812 table->table[ctx->id] = NULL; 813 spin_unlock(&mm->ioctx_lock); 814 815 /* percpu_ref_kill() will do the necessary call_rcu() */ 816 wake_up_all(&ctx->wait); 817 818 /* 819 * It'd be more correct to do this in free_ioctx(), after all 820 * the outstanding kiocbs have finished - but by then io_destroy 821 * has already returned, so io_setup() could potentially return 822 * -EAGAIN with no ioctxs actually in use (as far as userspace 823 * could tell). 824 */ 825 aio_nr_sub(ctx->max_reqs); 826 827 if (ctx->mmap_size) 828 vm_munmap(ctx->mmap_base, ctx->mmap_size); 829 830 ctx->rq_wait = wait; 831 percpu_ref_kill(&ctx->users); 832 return 0; 833 } 834 835 /* 836 * exit_aio: called when the last user of mm goes away. At this point, there is 837 * no way for any new requests to be submited or any of the io_* syscalls to be 838 * called on the context. 839 * 840 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 841 * them. 842 */ 843 void exit_aio(struct mm_struct *mm) 844 { 845 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 846 struct ctx_rq_wait wait; 847 int i, skipped; 848 849 if (!table) 850 return; 851 852 atomic_set(&wait.count, table->nr); 853 init_completion(&wait.comp); 854 855 skipped = 0; 856 for (i = 0; i < table->nr; ++i) { 857 struct kioctx *ctx = table->table[i]; 858 859 if (!ctx) { 860 skipped++; 861 continue; 862 } 863 864 /* 865 * We don't need to bother with munmap() here - exit_mmap(mm) 866 * is coming and it'll unmap everything. And we simply can't, 867 * this is not necessarily our ->mm. 868 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 869 * that it needs to unmap the area, just set it to 0. 870 */ 871 ctx->mmap_size = 0; 872 kill_ioctx(mm, ctx, &wait); 873 } 874 875 if (!atomic_sub_and_test(skipped, &wait.count)) { 876 /* Wait until all IO for the context are done. */ 877 wait_for_completion(&wait.comp); 878 } 879 880 RCU_INIT_POINTER(mm->ioctx_table, NULL); 881 kfree(table); 882 } 883 884 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 885 { 886 struct kioctx_cpu *kcpu; 887 unsigned long flags; 888 889 local_irq_save(flags); 890 kcpu = this_cpu_ptr(ctx->cpu); 891 kcpu->reqs_available += nr; 892 893 while (kcpu->reqs_available >= ctx->req_batch * 2) { 894 kcpu->reqs_available -= ctx->req_batch; 895 atomic_add(ctx->req_batch, &ctx->reqs_available); 896 } 897 898 local_irq_restore(flags); 899 } 900 901 static bool get_reqs_available(struct kioctx *ctx) 902 { 903 struct kioctx_cpu *kcpu; 904 bool ret = false; 905 unsigned long flags; 906 907 local_irq_save(flags); 908 kcpu = this_cpu_ptr(ctx->cpu); 909 if (!kcpu->reqs_available) { 910 int old, avail = atomic_read(&ctx->reqs_available); 911 912 do { 913 if (avail < ctx->req_batch) 914 goto out; 915 916 old = avail; 917 avail = atomic_cmpxchg(&ctx->reqs_available, 918 avail, avail - ctx->req_batch); 919 } while (avail != old); 920 921 kcpu->reqs_available += ctx->req_batch; 922 } 923 924 ret = true; 925 kcpu->reqs_available--; 926 out: 927 local_irq_restore(flags); 928 return ret; 929 } 930 931 /* refill_reqs_available 932 * Updates the reqs_available reference counts used for tracking the 933 * number of free slots in the completion ring. This can be called 934 * from aio_complete() (to optimistically update reqs_available) or 935 * from aio_get_req() (the we're out of events case). It must be 936 * called holding ctx->completion_lock. 937 */ 938 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 939 unsigned tail) 940 { 941 unsigned events_in_ring, completed; 942 943 /* Clamp head since userland can write to it. */ 944 head %= ctx->nr_events; 945 if (head <= tail) 946 events_in_ring = tail - head; 947 else 948 events_in_ring = ctx->nr_events - (head - tail); 949 950 completed = ctx->completed_events; 951 if (events_in_ring < completed) 952 completed -= events_in_ring; 953 else 954 completed = 0; 955 956 if (!completed) 957 return; 958 959 ctx->completed_events -= completed; 960 put_reqs_available(ctx, completed); 961 } 962 963 /* user_refill_reqs_available 964 * Called to refill reqs_available when aio_get_req() encounters an 965 * out of space in the completion ring. 966 */ 967 static void user_refill_reqs_available(struct kioctx *ctx) 968 { 969 spin_lock_irq(&ctx->completion_lock); 970 if (ctx->completed_events) { 971 struct aio_ring *ring; 972 unsigned head; 973 974 /* Access of ring->head may race with aio_read_events_ring() 975 * here, but that's okay since whether we read the old version 976 * or the new version, and either will be valid. The important 977 * part is that head cannot pass tail since we prevent 978 * aio_complete() from updating tail by holding 979 * ctx->completion_lock. Even if head is invalid, the check 980 * against ctx->completed_events below will make sure we do the 981 * safe/right thing. 982 */ 983 ring = kmap_atomic(ctx->ring_pages[0]); 984 head = ring->head; 985 kunmap_atomic(ring); 986 987 refill_reqs_available(ctx, head, ctx->tail); 988 } 989 990 spin_unlock_irq(&ctx->completion_lock); 991 } 992 993 /* aio_get_req 994 * Allocate a slot for an aio request. 995 * Returns NULL if no requests are free. 996 */ 997 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 998 { 999 struct aio_kiocb *req; 1000 1001 if (!get_reqs_available(ctx)) { 1002 user_refill_reqs_available(ctx); 1003 if (!get_reqs_available(ctx)) 1004 return NULL; 1005 } 1006 1007 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1008 if (unlikely(!req)) 1009 goto out_put; 1010 1011 percpu_ref_get(&ctx->reqs); 1012 1013 req->ki_ctx = ctx; 1014 return req; 1015 out_put: 1016 put_reqs_available(ctx, 1); 1017 return NULL; 1018 } 1019 1020 static void kiocb_free(struct aio_kiocb *req) 1021 { 1022 if (req->common.ki_filp) 1023 fput(req->common.ki_filp); 1024 if (req->ki_eventfd != NULL) 1025 eventfd_ctx_put(req->ki_eventfd); 1026 kmem_cache_free(kiocb_cachep, req); 1027 } 1028 1029 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1030 { 1031 struct aio_ring __user *ring = (void __user *)ctx_id; 1032 struct mm_struct *mm = current->mm; 1033 struct kioctx *ctx, *ret = NULL; 1034 struct kioctx_table *table; 1035 unsigned id; 1036 1037 if (get_user(id, &ring->id)) 1038 return NULL; 1039 1040 rcu_read_lock(); 1041 table = rcu_dereference(mm->ioctx_table); 1042 1043 if (!table || id >= table->nr) 1044 goto out; 1045 1046 ctx = table->table[id]; 1047 if (ctx && ctx->user_id == ctx_id) { 1048 percpu_ref_get(&ctx->users); 1049 ret = ctx; 1050 } 1051 out: 1052 rcu_read_unlock(); 1053 return ret; 1054 } 1055 1056 /* aio_complete 1057 * Called when the io request on the given iocb is complete. 1058 */ 1059 static void aio_complete(struct kiocb *kiocb, long res, long res2) 1060 { 1061 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common); 1062 struct kioctx *ctx = iocb->ki_ctx; 1063 struct aio_ring *ring; 1064 struct io_event *ev_page, *event; 1065 unsigned tail, pos, head; 1066 unsigned long flags; 1067 1068 /* 1069 * Special case handling for sync iocbs: 1070 * - events go directly into the iocb for fast handling 1071 * - the sync task with the iocb in its stack holds the single iocb 1072 * ref, no other paths have a way to get another ref 1073 * - the sync task helpfully left a reference to itself in the iocb 1074 */ 1075 BUG_ON(is_sync_kiocb(kiocb)); 1076 1077 if (iocb->ki_list.next) { 1078 unsigned long flags; 1079 1080 spin_lock_irqsave(&ctx->ctx_lock, flags); 1081 list_del(&iocb->ki_list); 1082 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1083 } 1084 1085 /* 1086 * Add a completion event to the ring buffer. Must be done holding 1087 * ctx->completion_lock to prevent other code from messing with the tail 1088 * pointer since we might be called from irq context. 1089 */ 1090 spin_lock_irqsave(&ctx->completion_lock, flags); 1091 1092 tail = ctx->tail; 1093 pos = tail + AIO_EVENTS_OFFSET; 1094 1095 if (++tail >= ctx->nr_events) 1096 tail = 0; 1097 1098 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1099 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1100 1101 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1102 event->data = iocb->ki_user_data; 1103 event->res = res; 1104 event->res2 = res2; 1105 1106 kunmap_atomic(ev_page); 1107 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1108 1109 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1110 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1111 res, res2); 1112 1113 /* after flagging the request as done, we 1114 * must never even look at it again 1115 */ 1116 smp_wmb(); /* make event visible before updating tail */ 1117 1118 ctx->tail = tail; 1119 1120 ring = kmap_atomic(ctx->ring_pages[0]); 1121 head = ring->head; 1122 ring->tail = tail; 1123 kunmap_atomic(ring); 1124 flush_dcache_page(ctx->ring_pages[0]); 1125 1126 ctx->completed_events++; 1127 if (ctx->completed_events > 1) 1128 refill_reqs_available(ctx, head, tail); 1129 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1130 1131 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1132 1133 /* 1134 * Check if the user asked us to deliver the result through an 1135 * eventfd. The eventfd_signal() function is safe to be called 1136 * from IRQ context. 1137 */ 1138 if (iocb->ki_eventfd != NULL) 1139 eventfd_signal(iocb->ki_eventfd, 1); 1140 1141 /* everything turned out well, dispose of the aiocb. */ 1142 kiocb_free(iocb); 1143 1144 /* 1145 * We have to order our ring_info tail store above and test 1146 * of the wait list below outside the wait lock. This is 1147 * like in wake_up_bit() where clearing a bit has to be 1148 * ordered with the unlocked test. 1149 */ 1150 smp_mb(); 1151 1152 if (waitqueue_active(&ctx->wait)) 1153 wake_up(&ctx->wait); 1154 1155 percpu_ref_put(&ctx->reqs); 1156 } 1157 1158 /* aio_read_events_ring 1159 * Pull an event off of the ioctx's event ring. Returns the number of 1160 * events fetched 1161 */ 1162 static long aio_read_events_ring(struct kioctx *ctx, 1163 struct io_event __user *event, long nr) 1164 { 1165 struct aio_ring *ring; 1166 unsigned head, tail, pos; 1167 long ret = 0; 1168 int copy_ret; 1169 1170 /* 1171 * The mutex can block and wake us up and that will cause 1172 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1173 * and repeat. This should be rare enough that it doesn't cause 1174 * peformance issues. See the comment in read_events() for more detail. 1175 */ 1176 sched_annotate_sleep(); 1177 mutex_lock(&ctx->ring_lock); 1178 1179 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1180 ring = kmap_atomic(ctx->ring_pages[0]); 1181 head = ring->head; 1182 tail = ring->tail; 1183 kunmap_atomic(ring); 1184 1185 /* 1186 * Ensure that once we've read the current tail pointer, that 1187 * we also see the events that were stored up to the tail. 1188 */ 1189 smp_rmb(); 1190 1191 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1192 1193 if (head == tail) 1194 goto out; 1195 1196 head %= ctx->nr_events; 1197 tail %= ctx->nr_events; 1198 1199 while (ret < nr) { 1200 long avail; 1201 struct io_event *ev; 1202 struct page *page; 1203 1204 avail = (head <= tail ? tail : ctx->nr_events) - head; 1205 if (head == tail) 1206 break; 1207 1208 avail = min(avail, nr - ret); 1209 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1210 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1211 1212 pos = head + AIO_EVENTS_OFFSET; 1213 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1214 pos %= AIO_EVENTS_PER_PAGE; 1215 1216 ev = kmap(page); 1217 copy_ret = copy_to_user(event + ret, ev + pos, 1218 sizeof(*ev) * avail); 1219 kunmap(page); 1220 1221 if (unlikely(copy_ret)) { 1222 ret = -EFAULT; 1223 goto out; 1224 } 1225 1226 ret += avail; 1227 head += avail; 1228 head %= ctx->nr_events; 1229 } 1230 1231 ring = kmap_atomic(ctx->ring_pages[0]); 1232 ring->head = head; 1233 kunmap_atomic(ring); 1234 flush_dcache_page(ctx->ring_pages[0]); 1235 1236 pr_debug("%li h%u t%u\n", ret, head, tail); 1237 out: 1238 mutex_unlock(&ctx->ring_lock); 1239 1240 return ret; 1241 } 1242 1243 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1244 struct io_event __user *event, long *i) 1245 { 1246 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1247 1248 if (ret > 0) 1249 *i += ret; 1250 1251 if (unlikely(atomic_read(&ctx->dead))) 1252 ret = -EINVAL; 1253 1254 if (!*i) 1255 *i = ret; 1256 1257 return ret < 0 || *i >= min_nr; 1258 } 1259 1260 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1261 struct io_event __user *event, 1262 struct timespec __user *timeout) 1263 { 1264 ktime_t until = { .tv64 = KTIME_MAX }; 1265 long ret = 0; 1266 1267 if (timeout) { 1268 struct timespec ts; 1269 1270 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1271 return -EFAULT; 1272 1273 until = timespec_to_ktime(ts); 1274 } 1275 1276 /* 1277 * Note that aio_read_events() is being called as the conditional - i.e. 1278 * we're calling it after prepare_to_wait() has set task state to 1279 * TASK_INTERRUPTIBLE. 1280 * 1281 * But aio_read_events() can block, and if it blocks it's going to flip 1282 * the task state back to TASK_RUNNING. 1283 * 1284 * This should be ok, provided it doesn't flip the state back to 1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1286 * will only happen if the mutex_lock() call blocks, and we then find 1287 * the ringbuffer empty. So in practice we should be ok, but it's 1288 * something to be aware of when touching this code. 1289 */ 1290 if (until.tv64 == 0) 1291 aio_read_events(ctx, min_nr, nr, event, &ret); 1292 else 1293 wait_event_interruptible_hrtimeout(ctx->wait, 1294 aio_read_events(ctx, min_nr, nr, event, &ret), 1295 until); 1296 1297 if (!ret && signal_pending(current)) 1298 ret = -EINTR; 1299 1300 return ret; 1301 } 1302 1303 /* sys_io_setup: 1304 * Create an aio_context capable of receiving at least nr_events. 1305 * ctxp must not point to an aio_context that already exists, and 1306 * must be initialized to 0 prior to the call. On successful 1307 * creation of the aio_context, *ctxp is filled in with the resulting 1308 * handle. May fail with -EINVAL if *ctxp is not initialized, 1309 * if the specified nr_events exceeds internal limits. May fail 1310 * with -EAGAIN if the specified nr_events exceeds the user's limit 1311 * of available events. May fail with -ENOMEM if insufficient kernel 1312 * resources are available. May fail with -EFAULT if an invalid 1313 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1314 * implemented. 1315 */ 1316 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1317 { 1318 struct kioctx *ioctx = NULL; 1319 unsigned long ctx; 1320 long ret; 1321 1322 ret = get_user(ctx, ctxp); 1323 if (unlikely(ret)) 1324 goto out; 1325 1326 ret = -EINVAL; 1327 if (unlikely(ctx || nr_events == 0)) { 1328 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1329 ctx, nr_events); 1330 goto out; 1331 } 1332 1333 ioctx = ioctx_alloc(nr_events); 1334 ret = PTR_ERR(ioctx); 1335 if (!IS_ERR(ioctx)) { 1336 ret = put_user(ioctx->user_id, ctxp); 1337 if (ret) 1338 kill_ioctx(current->mm, ioctx, NULL); 1339 percpu_ref_put(&ioctx->users); 1340 } 1341 1342 out: 1343 return ret; 1344 } 1345 1346 /* sys_io_destroy: 1347 * Destroy the aio_context specified. May cancel any outstanding 1348 * AIOs and block on completion. Will fail with -ENOSYS if not 1349 * implemented. May fail with -EINVAL if the context pointed to 1350 * is invalid. 1351 */ 1352 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1353 { 1354 struct kioctx *ioctx = lookup_ioctx(ctx); 1355 if (likely(NULL != ioctx)) { 1356 struct ctx_rq_wait wait; 1357 int ret; 1358 1359 init_completion(&wait.comp); 1360 atomic_set(&wait.count, 1); 1361 1362 /* Pass requests_done to kill_ioctx() where it can be set 1363 * in a thread-safe way. If we try to set it here then we have 1364 * a race condition if two io_destroy() called simultaneously. 1365 */ 1366 ret = kill_ioctx(current->mm, ioctx, &wait); 1367 percpu_ref_put(&ioctx->users); 1368 1369 /* Wait until all IO for the context are done. Otherwise kernel 1370 * keep using user-space buffers even if user thinks the context 1371 * is destroyed. 1372 */ 1373 if (!ret) 1374 wait_for_completion(&wait.comp); 1375 1376 return ret; 1377 } 1378 pr_debug("EINVAL: invalid context id\n"); 1379 return -EINVAL; 1380 } 1381 1382 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1383 1384 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len, 1385 struct iovec **iovec, 1386 bool compat, 1387 struct iov_iter *iter) 1388 { 1389 #ifdef CONFIG_COMPAT 1390 if (compat) 1391 return compat_import_iovec(rw, 1392 (struct compat_iovec __user *)buf, 1393 len, UIO_FASTIOV, iovec, iter); 1394 #endif 1395 return import_iovec(rw, (struct iovec __user *)buf, 1396 len, UIO_FASTIOV, iovec, iter); 1397 } 1398 1399 /* 1400 * aio_run_iocb: 1401 * Performs the initial checks and io submission. 1402 */ 1403 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1404 char __user *buf, size_t len, bool compat) 1405 { 1406 struct file *file = req->ki_filp; 1407 ssize_t ret; 1408 int rw; 1409 fmode_t mode; 1410 rw_iter_op *iter_op; 1411 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1412 struct iov_iter iter; 1413 1414 switch (opcode) { 1415 case IOCB_CMD_PREAD: 1416 case IOCB_CMD_PREADV: 1417 mode = FMODE_READ; 1418 rw = READ; 1419 iter_op = file->f_op->read_iter; 1420 goto rw_common; 1421 1422 case IOCB_CMD_PWRITE: 1423 case IOCB_CMD_PWRITEV: 1424 mode = FMODE_WRITE; 1425 rw = WRITE; 1426 iter_op = file->f_op->write_iter; 1427 goto rw_common; 1428 rw_common: 1429 if (unlikely(!(file->f_mode & mode))) 1430 return -EBADF; 1431 1432 if (!iter_op) 1433 return -EINVAL; 1434 1435 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV) 1436 ret = aio_setup_vectored_rw(rw, buf, len, 1437 &iovec, compat, &iter); 1438 else { 1439 ret = import_single_range(rw, buf, len, iovec, &iter); 1440 iovec = NULL; 1441 } 1442 if (!ret) 1443 ret = rw_verify_area(rw, file, &req->ki_pos, 1444 iov_iter_count(&iter)); 1445 if (ret < 0) { 1446 kfree(iovec); 1447 return ret; 1448 } 1449 1450 len = ret; 1451 1452 if (rw == WRITE) 1453 file_start_write(file); 1454 1455 ret = iter_op(req, &iter); 1456 1457 if (rw == WRITE) 1458 file_end_write(file); 1459 kfree(iovec); 1460 break; 1461 1462 case IOCB_CMD_FDSYNC: 1463 if (!file->f_op->aio_fsync) 1464 return -EINVAL; 1465 1466 ret = file->f_op->aio_fsync(req, 1); 1467 break; 1468 1469 case IOCB_CMD_FSYNC: 1470 if (!file->f_op->aio_fsync) 1471 return -EINVAL; 1472 1473 ret = file->f_op->aio_fsync(req, 0); 1474 break; 1475 1476 default: 1477 pr_debug("EINVAL: no operation provided\n"); 1478 return -EINVAL; 1479 } 1480 1481 if (ret != -EIOCBQUEUED) { 1482 /* 1483 * There's no easy way to restart the syscall since other AIO's 1484 * may be already running. Just fail this IO with EINTR. 1485 */ 1486 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1487 ret == -ERESTARTNOHAND || 1488 ret == -ERESTART_RESTARTBLOCK)) 1489 ret = -EINTR; 1490 aio_complete(req, ret, 0); 1491 } 1492 1493 return 0; 1494 } 1495 1496 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1497 struct iocb *iocb, bool compat) 1498 { 1499 struct aio_kiocb *req; 1500 ssize_t ret; 1501 1502 /* enforce forwards compatibility on users */ 1503 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1504 pr_debug("EINVAL: reserve field set\n"); 1505 return -EINVAL; 1506 } 1507 1508 /* prevent overflows */ 1509 if (unlikely( 1510 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1511 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1512 ((ssize_t)iocb->aio_nbytes < 0) 1513 )) { 1514 pr_debug("EINVAL: overflow check\n"); 1515 return -EINVAL; 1516 } 1517 1518 req = aio_get_req(ctx); 1519 if (unlikely(!req)) 1520 return -EAGAIN; 1521 1522 req->common.ki_filp = fget(iocb->aio_fildes); 1523 if (unlikely(!req->common.ki_filp)) { 1524 ret = -EBADF; 1525 goto out_put_req; 1526 } 1527 req->common.ki_pos = iocb->aio_offset; 1528 req->common.ki_complete = aio_complete; 1529 req->common.ki_flags = iocb_flags(req->common.ki_filp); 1530 1531 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1532 /* 1533 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1534 * instance of the file* now. The file descriptor must be 1535 * an eventfd() fd, and will be signaled for each completed 1536 * event using the eventfd_signal() function. 1537 */ 1538 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1539 if (IS_ERR(req->ki_eventfd)) { 1540 ret = PTR_ERR(req->ki_eventfd); 1541 req->ki_eventfd = NULL; 1542 goto out_put_req; 1543 } 1544 1545 req->common.ki_flags |= IOCB_EVENTFD; 1546 } 1547 1548 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1549 if (unlikely(ret)) { 1550 pr_debug("EFAULT: aio_key\n"); 1551 goto out_put_req; 1552 } 1553 1554 req->ki_user_iocb = user_iocb; 1555 req->ki_user_data = iocb->aio_data; 1556 1557 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode, 1558 (char __user *)(unsigned long)iocb->aio_buf, 1559 iocb->aio_nbytes, 1560 compat); 1561 if (ret) 1562 goto out_put_req; 1563 1564 return 0; 1565 out_put_req: 1566 put_reqs_available(ctx, 1); 1567 percpu_ref_put(&ctx->reqs); 1568 kiocb_free(req); 1569 return ret; 1570 } 1571 1572 long do_io_submit(aio_context_t ctx_id, long nr, 1573 struct iocb __user *__user *iocbpp, bool compat) 1574 { 1575 struct kioctx *ctx; 1576 long ret = 0; 1577 int i = 0; 1578 struct blk_plug plug; 1579 1580 if (unlikely(nr < 0)) 1581 return -EINVAL; 1582 1583 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1584 nr = LONG_MAX/sizeof(*iocbpp); 1585 1586 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1587 return -EFAULT; 1588 1589 ctx = lookup_ioctx(ctx_id); 1590 if (unlikely(!ctx)) { 1591 pr_debug("EINVAL: invalid context id\n"); 1592 return -EINVAL; 1593 } 1594 1595 blk_start_plug(&plug); 1596 1597 /* 1598 * AKPM: should this return a partial result if some of the IOs were 1599 * successfully submitted? 1600 */ 1601 for (i=0; i<nr; i++) { 1602 struct iocb __user *user_iocb; 1603 struct iocb tmp; 1604 1605 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1606 ret = -EFAULT; 1607 break; 1608 } 1609 1610 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1611 ret = -EFAULT; 1612 break; 1613 } 1614 1615 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1616 if (ret) 1617 break; 1618 } 1619 blk_finish_plug(&plug); 1620 1621 percpu_ref_put(&ctx->users); 1622 return i ? i : ret; 1623 } 1624 1625 /* sys_io_submit: 1626 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1627 * the number of iocbs queued. May return -EINVAL if the aio_context 1628 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1629 * *iocbpp[0] is not properly initialized, if the operation specified 1630 * is invalid for the file descriptor in the iocb. May fail with 1631 * -EFAULT if any of the data structures point to invalid data. May 1632 * fail with -EBADF if the file descriptor specified in the first 1633 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1634 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1635 * fail with -ENOSYS if not implemented. 1636 */ 1637 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1638 struct iocb __user * __user *, iocbpp) 1639 { 1640 return do_io_submit(ctx_id, nr, iocbpp, 0); 1641 } 1642 1643 /* lookup_kiocb 1644 * Finds a given iocb for cancellation. 1645 */ 1646 static struct aio_kiocb * 1647 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) 1648 { 1649 struct aio_kiocb *kiocb; 1650 1651 assert_spin_locked(&ctx->ctx_lock); 1652 1653 if (key != KIOCB_KEY) 1654 return NULL; 1655 1656 /* TODO: use a hash or array, this sucks. */ 1657 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1658 if (kiocb->ki_user_iocb == iocb) 1659 return kiocb; 1660 } 1661 return NULL; 1662 } 1663 1664 /* sys_io_cancel: 1665 * Attempts to cancel an iocb previously passed to io_submit. If 1666 * the operation is successfully cancelled, the resulting event is 1667 * copied into the memory pointed to by result without being placed 1668 * into the completion queue and 0 is returned. May fail with 1669 * -EFAULT if any of the data structures pointed to are invalid. 1670 * May fail with -EINVAL if aio_context specified by ctx_id is 1671 * invalid. May fail with -EAGAIN if the iocb specified was not 1672 * cancelled. Will fail with -ENOSYS if not implemented. 1673 */ 1674 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1675 struct io_event __user *, result) 1676 { 1677 struct kioctx *ctx; 1678 struct aio_kiocb *kiocb; 1679 u32 key; 1680 int ret; 1681 1682 ret = get_user(key, &iocb->aio_key); 1683 if (unlikely(ret)) 1684 return -EFAULT; 1685 1686 ctx = lookup_ioctx(ctx_id); 1687 if (unlikely(!ctx)) 1688 return -EINVAL; 1689 1690 spin_lock_irq(&ctx->ctx_lock); 1691 1692 kiocb = lookup_kiocb(ctx, iocb, key); 1693 if (kiocb) 1694 ret = kiocb_cancel(kiocb); 1695 else 1696 ret = -EINVAL; 1697 1698 spin_unlock_irq(&ctx->ctx_lock); 1699 1700 if (!ret) { 1701 /* 1702 * The result argument is no longer used - the io_event is 1703 * always delivered via the ring buffer. -EINPROGRESS indicates 1704 * cancellation is progress: 1705 */ 1706 ret = -EINPROGRESS; 1707 } 1708 1709 percpu_ref_put(&ctx->users); 1710 1711 return ret; 1712 } 1713 1714 /* io_getevents: 1715 * Attempts to read at least min_nr events and up to nr events from 1716 * the completion queue for the aio_context specified by ctx_id. If 1717 * it succeeds, the number of read events is returned. May fail with 1718 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1719 * out of range, if timeout is out of range. May fail with -EFAULT 1720 * if any of the memory specified is invalid. May return 0 or 1721 * < min_nr if the timeout specified by timeout has elapsed 1722 * before sufficient events are available, where timeout == NULL 1723 * specifies an infinite timeout. Note that the timeout pointed to by 1724 * timeout is relative. Will fail with -ENOSYS if not implemented. 1725 */ 1726 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1727 long, min_nr, 1728 long, nr, 1729 struct io_event __user *, events, 1730 struct timespec __user *, timeout) 1731 { 1732 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1733 long ret = -EINVAL; 1734 1735 if (likely(ioctx)) { 1736 if (likely(min_nr <= nr && min_nr >= 0)) 1737 ret = read_events(ioctx, min_nr, nr, events, timeout); 1738 percpu_ref_put(&ioctx->users); 1739 } 1740 return ret; 1741 } 1742