xref: /openbmc/linux/fs/aio.c (revision 9ac8d3fb)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 
195 /* __put_ioctx
196  *	Called when the last user of an aio context has gone away,
197  *	and the struct needs to be freed.
198  */
199 static void __put_ioctx(struct kioctx *ctx)
200 {
201 	unsigned nr_events = ctx->max_reqs;
202 
203 	BUG_ON(ctx->reqs_active);
204 
205 	cancel_delayed_work(&ctx->wq);
206 	cancel_work_sync(&ctx->wq.work);
207 	aio_free_ring(ctx);
208 	mmdrop(ctx->mm);
209 	ctx->mm = NULL;
210 	pr_debug("__put_ioctx: freeing %p\n", ctx);
211 	kmem_cache_free(kioctx_cachep, ctx);
212 
213 	if (nr_events) {
214 		spin_lock(&aio_nr_lock);
215 		BUG_ON(aio_nr - nr_events > aio_nr);
216 		aio_nr -= nr_events;
217 		spin_unlock(&aio_nr_lock);
218 	}
219 }
220 
221 #define get_ioctx(kioctx) do {						\
222 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
223 	atomic_inc(&(kioctx)->users);					\
224 } while (0)
225 #define put_ioctx(kioctx) do {						\
226 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
227 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
228 		__put_ioctx(kioctx);					\
229 } while (0)
230 
231 /* ioctx_alloc
232  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
233  */
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
235 {
236 	struct mm_struct *mm;
237 	struct kioctx *ctx;
238 
239 	/* Prevent overflows */
240 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 		pr_debug("ENOMEM: nr_events too high\n");
243 		return ERR_PTR(-EINVAL);
244 	}
245 
246 	if ((unsigned long)nr_events > aio_max_nr)
247 		return ERR_PTR(-EAGAIN);
248 
249 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 	if (!ctx)
251 		return ERR_PTR(-ENOMEM);
252 
253 	ctx->max_reqs = nr_events;
254 	mm = ctx->mm = current->mm;
255 	atomic_inc(&mm->mm_count);
256 
257 	atomic_set(&ctx->users, 1);
258 	spin_lock_init(&ctx->ctx_lock);
259 	spin_lock_init(&ctx->ring_info.ring_lock);
260 	init_waitqueue_head(&ctx->wait);
261 
262 	INIT_LIST_HEAD(&ctx->active_reqs);
263 	INIT_LIST_HEAD(&ctx->run_list);
264 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
265 
266 	if (aio_setup_ring(ctx) < 0)
267 		goto out_freectx;
268 
269 	/* limit the number of system wide aios */
270 	spin_lock(&aio_nr_lock);
271 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 	    aio_nr + ctx->max_reqs < aio_nr)
273 		ctx->max_reqs = 0;
274 	else
275 		aio_nr += ctx->max_reqs;
276 	spin_unlock(&aio_nr_lock);
277 	if (ctx->max_reqs == 0)
278 		goto out_cleanup;
279 
280 	/* now link into global list. */
281 	write_lock(&mm->ioctx_list_lock);
282 	ctx->next = mm->ioctx_list;
283 	mm->ioctx_list = ctx;
284 	write_unlock(&mm->ioctx_list_lock);
285 
286 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 	return ctx;
289 
290 out_cleanup:
291 	__put_ioctx(ctx);
292 	return ERR_PTR(-EAGAIN);
293 
294 out_freectx:
295 	mmdrop(mm);
296 	kmem_cache_free(kioctx_cachep, ctx);
297 	ctx = ERR_PTR(-ENOMEM);
298 
299 	dprintk("aio: error allocating ioctx %p\n", ctx);
300 	return ctx;
301 }
302 
303 /* aio_cancel_all
304  *	Cancels all outstanding aio requests on an aio context.  Used
305  *	when the processes owning a context have all exited to encourage
306  *	the rapid destruction of the kioctx.
307  */
308 static void aio_cancel_all(struct kioctx *ctx)
309 {
310 	int (*cancel)(struct kiocb *, struct io_event *);
311 	struct io_event res;
312 	spin_lock_irq(&ctx->ctx_lock);
313 	ctx->dead = 1;
314 	while (!list_empty(&ctx->active_reqs)) {
315 		struct list_head *pos = ctx->active_reqs.next;
316 		struct kiocb *iocb = list_kiocb(pos);
317 		list_del_init(&iocb->ki_list);
318 		cancel = iocb->ki_cancel;
319 		kiocbSetCancelled(iocb);
320 		if (cancel) {
321 			iocb->ki_users++;
322 			spin_unlock_irq(&ctx->ctx_lock);
323 			cancel(iocb, &res);
324 			spin_lock_irq(&ctx->ctx_lock);
325 		}
326 	}
327 	spin_unlock_irq(&ctx->ctx_lock);
328 }
329 
330 static void wait_for_all_aios(struct kioctx *ctx)
331 {
332 	struct task_struct *tsk = current;
333 	DECLARE_WAITQUEUE(wait, tsk);
334 
335 	spin_lock_irq(&ctx->ctx_lock);
336 	if (!ctx->reqs_active)
337 		goto out;
338 
339 	add_wait_queue(&ctx->wait, &wait);
340 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 	while (ctx->reqs_active) {
342 		spin_unlock_irq(&ctx->ctx_lock);
343 		io_schedule();
344 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 		spin_lock_irq(&ctx->ctx_lock);
346 	}
347 	__set_task_state(tsk, TASK_RUNNING);
348 	remove_wait_queue(&ctx->wait, &wait);
349 
350 out:
351 	spin_unlock_irq(&ctx->ctx_lock);
352 }
353 
354 /* wait_on_sync_kiocb:
355  *	Waits on the given sync kiocb to complete.
356  */
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
358 {
359 	while (iocb->ki_users) {
360 		set_current_state(TASK_UNINTERRUPTIBLE);
361 		if (!iocb->ki_users)
362 			break;
363 		io_schedule();
364 	}
365 	__set_current_state(TASK_RUNNING);
366 	return iocb->ki_user_data;
367 }
368 
369 /* exit_aio: called when the last user of mm goes away.  At this point,
370  * there is no way for any new requests to be submited or any of the
371  * io_* syscalls to be called on the context.  However, there may be
372  * outstanding requests which hold references to the context; as they
373  * go away, they will call put_ioctx and release any pinned memory
374  * associated with the request (held via struct page * references).
375  */
376 void exit_aio(struct mm_struct *mm)
377 {
378 	struct kioctx *ctx = mm->ioctx_list;
379 	mm->ioctx_list = NULL;
380 	while (ctx) {
381 		struct kioctx *next = ctx->next;
382 		ctx->next = NULL;
383 		aio_cancel_all(ctx);
384 
385 		wait_for_all_aios(ctx);
386 		/*
387 		 * Ensure we don't leave the ctx on the aio_wq
388 		 */
389 		cancel_work_sync(&ctx->wq.work);
390 
391 		if (1 != atomic_read(&ctx->users))
392 			printk(KERN_DEBUG
393 				"exit_aio:ioctx still alive: %d %d %d\n",
394 				atomic_read(&ctx->users), ctx->dead,
395 				ctx->reqs_active);
396 		put_ioctx(ctx);
397 		ctx = next;
398 	}
399 }
400 
401 /* aio_get_req
402  *	Allocate a slot for an aio request.  Increments the users count
403  * of the kioctx so that the kioctx stays around until all requests are
404  * complete.  Returns NULL if no requests are free.
405  *
406  * Returns with kiocb->users set to 2.  The io submit code path holds
407  * an extra reference while submitting the i/o.
408  * This prevents races between the aio code path referencing the
409  * req (after submitting it) and aio_complete() freeing the req.
410  */
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
412 {
413 	struct kiocb *req = NULL;
414 	struct aio_ring *ring;
415 	int okay = 0;
416 
417 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 	if (unlikely(!req))
419 		return NULL;
420 
421 	req->ki_flags = 0;
422 	req->ki_users = 2;
423 	req->ki_key = 0;
424 	req->ki_ctx = ctx;
425 	req->ki_cancel = NULL;
426 	req->ki_retry = NULL;
427 	req->ki_dtor = NULL;
428 	req->private = NULL;
429 	req->ki_iovec = NULL;
430 	INIT_LIST_HEAD(&req->ki_run_list);
431 	req->ki_eventfd = ERR_PTR(-EINVAL);
432 
433 	/* Check if the completion queue has enough free space to
434 	 * accept an event from this io.
435 	 */
436 	spin_lock_irq(&ctx->ctx_lock);
437 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 		list_add(&req->ki_list, &ctx->active_reqs);
440 		ctx->reqs_active++;
441 		okay = 1;
442 	}
443 	kunmap_atomic(ring, KM_USER0);
444 	spin_unlock_irq(&ctx->ctx_lock);
445 
446 	if (!okay) {
447 		kmem_cache_free(kiocb_cachep, req);
448 		req = NULL;
449 	}
450 
451 	return req;
452 }
453 
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
455 {
456 	struct kiocb *req;
457 	/* Handle a potential starvation case -- should be exceedingly rare as
458 	 * requests will be stuck on fput_head only if the aio_fput_routine is
459 	 * delayed and the requests were the last user of the struct file.
460 	 */
461 	req = __aio_get_req(ctx);
462 	if (unlikely(NULL == req)) {
463 		aio_fput_routine(NULL);
464 		req = __aio_get_req(ctx);
465 	}
466 	return req;
467 }
468 
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
470 {
471 	assert_spin_locked(&ctx->ctx_lock);
472 
473 	if (!IS_ERR(req->ki_eventfd))
474 		fput(req->ki_eventfd);
475 	if (req->ki_dtor)
476 		req->ki_dtor(req);
477 	if (req->ki_iovec != &req->ki_inline_vec)
478 		kfree(req->ki_iovec);
479 	kmem_cache_free(kiocb_cachep, req);
480 	ctx->reqs_active--;
481 
482 	if (unlikely(!ctx->reqs_active && ctx->dead))
483 		wake_up(&ctx->wait);
484 }
485 
486 static void aio_fput_routine(struct work_struct *data)
487 {
488 	spin_lock_irq(&fput_lock);
489 	while (likely(!list_empty(&fput_head))) {
490 		struct kiocb *req = list_kiocb(fput_head.next);
491 		struct kioctx *ctx = req->ki_ctx;
492 
493 		list_del(&req->ki_list);
494 		spin_unlock_irq(&fput_lock);
495 
496 		/* Complete the fput */
497 		__fput(req->ki_filp);
498 
499 		/* Link the iocb into the context's free list */
500 		spin_lock_irq(&ctx->ctx_lock);
501 		really_put_req(ctx, req);
502 		spin_unlock_irq(&ctx->ctx_lock);
503 
504 		put_ioctx(ctx);
505 		spin_lock_irq(&fput_lock);
506 	}
507 	spin_unlock_irq(&fput_lock);
508 }
509 
510 /* __aio_put_req
511  *	Returns true if this put was the last user of the request.
512  */
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
514 {
515 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
516 		req, atomic_long_read(&req->ki_filp->f_count));
517 
518 	assert_spin_locked(&ctx->ctx_lock);
519 
520 	req->ki_users --;
521 	BUG_ON(req->ki_users < 0);
522 	if (likely(req->ki_users))
523 		return 0;
524 	list_del(&req->ki_list);		/* remove from active_reqs */
525 	req->ki_cancel = NULL;
526 	req->ki_retry = NULL;
527 
528 	/* Must be done under the lock to serialise against cancellation.
529 	 * Call this aio_fput as it duplicates fput via the fput_work.
530 	 */
531 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
532 		get_ioctx(ctx);
533 		spin_lock(&fput_lock);
534 		list_add(&req->ki_list, &fput_head);
535 		spin_unlock(&fput_lock);
536 		queue_work(aio_wq, &fput_work);
537 	} else
538 		really_put_req(ctx, req);
539 	return 1;
540 }
541 
542 /* aio_put_req
543  *	Returns true if this put was the last user of the kiocb,
544  *	false if the request is still in use.
545  */
546 int aio_put_req(struct kiocb *req)
547 {
548 	struct kioctx *ctx = req->ki_ctx;
549 	int ret;
550 	spin_lock_irq(&ctx->ctx_lock);
551 	ret = __aio_put_req(ctx, req);
552 	spin_unlock_irq(&ctx->ctx_lock);
553 	return ret;
554 }
555 
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
557 {
558 	struct kioctx *ioctx;
559 	struct mm_struct *mm;
560 
561 	mm = current->mm;
562 	read_lock(&mm->ioctx_list_lock);
563 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
564 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
565 			get_ioctx(ioctx);
566 			break;
567 		}
568 	read_unlock(&mm->ioctx_list_lock);
569 
570 	return ioctx;
571 }
572 
573 /*
574  * use_mm
575  *	Makes the calling kernel thread take on the specified
576  *	mm context.
577  *	Called by the retry thread execute retries within the
578  *	iocb issuer's mm context, so that copy_from/to_user
579  *	operations work seamlessly for aio.
580  *	(Note: this routine is intended to be called only
581  *	from a kernel thread context)
582  */
583 static void use_mm(struct mm_struct *mm)
584 {
585 	struct mm_struct *active_mm;
586 	struct task_struct *tsk = current;
587 
588 	task_lock(tsk);
589 	active_mm = tsk->active_mm;
590 	atomic_inc(&mm->mm_count);
591 	tsk->mm = mm;
592 	tsk->active_mm = mm;
593 	switch_mm(active_mm, mm, tsk);
594 	task_unlock(tsk);
595 
596 	mmdrop(active_mm);
597 }
598 
599 /*
600  * unuse_mm
601  *	Reverses the effect of use_mm, i.e. releases the
602  *	specified mm context which was earlier taken on
603  *	by the calling kernel thread
604  *	(Note: this routine is intended to be called only
605  *	from a kernel thread context)
606  */
607 static void unuse_mm(struct mm_struct *mm)
608 {
609 	struct task_struct *tsk = current;
610 
611 	task_lock(tsk);
612 	tsk->mm = NULL;
613 	/* active_mm is still 'mm' */
614 	enter_lazy_tlb(mm, tsk);
615 	task_unlock(tsk);
616 }
617 
618 /*
619  * Queue up a kiocb to be retried. Assumes that the kiocb
620  * has already been marked as kicked, and places it on
621  * the retry run list for the corresponding ioctx, if it
622  * isn't already queued. Returns 1 if it actually queued
623  * the kiocb (to tell the caller to activate the work
624  * queue to process it), or 0, if it found that it was
625  * already queued.
626  */
627 static inline int __queue_kicked_iocb(struct kiocb *iocb)
628 {
629 	struct kioctx *ctx = iocb->ki_ctx;
630 
631 	assert_spin_locked(&ctx->ctx_lock);
632 
633 	if (list_empty(&iocb->ki_run_list)) {
634 		list_add_tail(&iocb->ki_run_list,
635 			&ctx->run_list);
636 		return 1;
637 	}
638 	return 0;
639 }
640 
641 /* aio_run_iocb
642  *	This is the core aio execution routine. It is
643  *	invoked both for initial i/o submission and
644  *	subsequent retries via the aio_kick_handler.
645  *	Expects to be invoked with iocb->ki_ctx->lock
646  *	already held. The lock is released and reacquired
647  *	as needed during processing.
648  *
649  * Calls the iocb retry method (already setup for the
650  * iocb on initial submission) for operation specific
651  * handling, but takes care of most of common retry
652  * execution details for a given iocb. The retry method
653  * needs to be non-blocking as far as possible, to avoid
654  * holding up other iocbs waiting to be serviced by the
655  * retry kernel thread.
656  *
657  * The trickier parts in this code have to do with
658  * ensuring that only one retry instance is in progress
659  * for a given iocb at any time. Providing that guarantee
660  * simplifies the coding of individual aio operations as
661  * it avoids various potential races.
662  */
663 static ssize_t aio_run_iocb(struct kiocb *iocb)
664 {
665 	struct kioctx	*ctx = iocb->ki_ctx;
666 	ssize_t (*retry)(struct kiocb *);
667 	ssize_t ret;
668 
669 	if (!(retry = iocb->ki_retry)) {
670 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
671 		return 0;
672 	}
673 
674 	/*
675 	 * We don't want the next retry iteration for this
676 	 * operation to start until this one has returned and
677 	 * updated the iocb state. However, wait_queue functions
678 	 * can trigger a kick_iocb from interrupt context in the
679 	 * meantime, indicating that data is available for the next
680 	 * iteration. We want to remember that and enable the
681 	 * next retry iteration _after_ we are through with
682 	 * this one.
683 	 *
684 	 * So, in order to be able to register a "kick", but
685 	 * prevent it from being queued now, we clear the kick
686 	 * flag, but make the kick code *think* that the iocb is
687 	 * still on the run list until we are actually done.
688 	 * When we are done with this iteration, we check if
689 	 * the iocb was kicked in the meantime and if so, queue
690 	 * it up afresh.
691 	 */
692 
693 	kiocbClearKicked(iocb);
694 
695 	/*
696 	 * This is so that aio_complete knows it doesn't need to
697 	 * pull the iocb off the run list (We can't just call
698 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
699 	 * queue this on the run list yet)
700 	 */
701 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
702 	spin_unlock_irq(&ctx->ctx_lock);
703 
704 	/* Quit retrying if the i/o has been cancelled */
705 	if (kiocbIsCancelled(iocb)) {
706 		ret = -EINTR;
707 		aio_complete(iocb, ret, 0);
708 		/* must not access the iocb after this */
709 		goto out;
710 	}
711 
712 	/*
713 	 * Now we are all set to call the retry method in async
714 	 * context.
715 	 */
716 	ret = retry(iocb);
717 
718 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
719 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
720 		aio_complete(iocb, ret, 0);
721 	}
722 out:
723 	spin_lock_irq(&ctx->ctx_lock);
724 
725 	if (-EIOCBRETRY == ret) {
726 		/*
727 		 * OK, now that we are done with this iteration
728 		 * and know that there is more left to go,
729 		 * this is where we let go so that a subsequent
730 		 * "kick" can start the next iteration
731 		 */
732 
733 		/* will make __queue_kicked_iocb succeed from here on */
734 		INIT_LIST_HEAD(&iocb->ki_run_list);
735 		/* we must queue the next iteration ourselves, if it
736 		 * has already been kicked */
737 		if (kiocbIsKicked(iocb)) {
738 			__queue_kicked_iocb(iocb);
739 
740 			/*
741 			 * __queue_kicked_iocb will always return 1 here, because
742 			 * iocb->ki_run_list is empty at this point so it should
743 			 * be safe to unconditionally queue the context into the
744 			 * work queue.
745 			 */
746 			aio_queue_work(ctx);
747 		}
748 	}
749 	return ret;
750 }
751 
752 /*
753  * __aio_run_iocbs:
754  * 	Process all pending retries queued on the ioctx
755  * 	run list.
756  * Assumes it is operating within the aio issuer's mm
757  * context.
758  */
759 static int __aio_run_iocbs(struct kioctx *ctx)
760 {
761 	struct kiocb *iocb;
762 	struct list_head run_list;
763 
764 	assert_spin_locked(&ctx->ctx_lock);
765 
766 	list_replace_init(&ctx->run_list, &run_list);
767 	while (!list_empty(&run_list)) {
768 		iocb = list_entry(run_list.next, struct kiocb,
769 			ki_run_list);
770 		list_del(&iocb->ki_run_list);
771 		/*
772 		 * Hold an extra reference while retrying i/o.
773 		 */
774 		iocb->ki_users++;       /* grab extra reference */
775 		aio_run_iocb(iocb);
776 		__aio_put_req(ctx, iocb);
777  	}
778 	if (!list_empty(&ctx->run_list))
779 		return 1;
780 	return 0;
781 }
782 
783 static void aio_queue_work(struct kioctx * ctx)
784 {
785 	unsigned long timeout;
786 	/*
787 	 * if someone is waiting, get the work started right
788 	 * away, otherwise, use a longer delay
789 	 */
790 	smp_mb();
791 	if (waitqueue_active(&ctx->wait))
792 		timeout = 1;
793 	else
794 		timeout = HZ/10;
795 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
796 }
797 
798 
799 /*
800  * aio_run_iocbs:
801  * 	Process all pending retries queued on the ioctx
802  * 	run list.
803  * Assumes it is operating within the aio issuer's mm
804  * context.
805  */
806 static inline void aio_run_iocbs(struct kioctx *ctx)
807 {
808 	int requeue;
809 
810 	spin_lock_irq(&ctx->ctx_lock);
811 
812 	requeue = __aio_run_iocbs(ctx);
813 	spin_unlock_irq(&ctx->ctx_lock);
814 	if (requeue)
815 		aio_queue_work(ctx);
816 }
817 
818 /*
819  * just like aio_run_iocbs, but keeps running them until
820  * the list stays empty
821  */
822 static inline void aio_run_all_iocbs(struct kioctx *ctx)
823 {
824 	spin_lock_irq(&ctx->ctx_lock);
825 	while (__aio_run_iocbs(ctx))
826 		;
827 	spin_unlock_irq(&ctx->ctx_lock);
828 }
829 
830 /*
831  * aio_kick_handler:
832  * 	Work queue handler triggered to process pending
833  * 	retries on an ioctx. Takes on the aio issuer's
834  *	mm context before running the iocbs, so that
835  *	copy_xxx_user operates on the issuer's address
836  *      space.
837  * Run on aiod's context.
838  */
839 static void aio_kick_handler(struct work_struct *work)
840 {
841 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
842 	mm_segment_t oldfs = get_fs();
843 	struct mm_struct *mm;
844 	int requeue;
845 
846 	set_fs(USER_DS);
847 	use_mm(ctx->mm);
848 	spin_lock_irq(&ctx->ctx_lock);
849 	requeue =__aio_run_iocbs(ctx);
850 	mm = ctx->mm;
851 	spin_unlock_irq(&ctx->ctx_lock);
852  	unuse_mm(mm);
853 	set_fs(oldfs);
854 	/*
855 	 * we're in a worker thread already, don't use queue_delayed_work,
856 	 */
857 	if (requeue)
858 		queue_delayed_work(aio_wq, &ctx->wq, 0);
859 }
860 
861 
862 /*
863  * Called by kick_iocb to queue the kiocb for retry
864  * and if required activate the aio work queue to process
865  * it
866  */
867 static void try_queue_kicked_iocb(struct kiocb *iocb)
868 {
869  	struct kioctx	*ctx = iocb->ki_ctx;
870 	unsigned long flags;
871 	int run = 0;
872 
873 	/* We're supposed to be the only path putting the iocb back on the run
874 	 * list.  If we find that the iocb is *back* on a wait queue already
875 	 * than retry has happened before we could queue the iocb.  This also
876 	 * means that the retry could have completed and freed our iocb, no
877 	 * good. */
878 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
879 
880 	spin_lock_irqsave(&ctx->ctx_lock, flags);
881 	/* set this inside the lock so that we can't race with aio_run_iocb()
882 	 * testing it and putting the iocb on the run list under the lock */
883 	if (!kiocbTryKick(iocb))
884 		run = __queue_kicked_iocb(iocb);
885 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
886 	if (run)
887 		aio_queue_work(ctx);
888 }
889 
890 /*
891  * kick_iocb:
892  *      Called typically from a wait queue callback context
893  *      (aio_wake_function) to trigger a retry of the iocb.
894  *      The retry is usually executed by aio workqueue
895  *      threads (See aio_kick_handler).
896  */
897 void kick_iocb(struct kiocb *iocb)
898 {
899 	/* sync iocbs are easy: they can only ever be executing from a
900 	 * single context. */
901 	if (is_sync_kiocb(iocb)) {
902 		kiocbSetKicked(iocb);
903 	        wake_up_process(iocb->ki_obj.tsk);
904 		return;
905 	}
906 
907 	try_queue_kicked_iocb(iocb);
908 }
909 EXPORT_SYMBOL(kick_iocb);
910 
911 /* aio_complete
912  *	Called when the io request on the given iocb is complete.
913  *	Returns true if this is the last user of the request.  The
914  *	only other user of the request can be the cancellation code.
915  */
916 int aio_complete(struct kiocb *iocb, long res, long res2)
917 {
918 	struct kioctx	*ctx = iocb->ki_ctx;
919 	struct aio_ring_info	*info;
920 	struct aio_ring	*ring;
921 	struct io_event	*event;
922 	unsigned long	flags;
923 	unsigned long	tail;
924 	int		ret;
925 
926 	/*
927 	 * Special case handling for sync iocbs:
928 	 *  - events go directly into the iocb for fast handling
929 	 *  - the sync task with the iocb in its stack holds the single iocb
930 	 *    ref, no other paths have a way to get another ref
931 	 *  - the sync task helpfully left a reference to itself in the iocb
932 	 */
933 	if (is_sync_kiocb(iocb)) {
934 		BUG_ON(iocb->ki_users != 1);
935 		iocb->ki_user_data = res;
936 		iocb->ki_users = 0;
937 		wake_up_process(iocb->ki_obj.tsk);
938 		return 1;
939 	}
940 
941 	info = &ctx->ring_info;
942 
943 	/* add a completion event to the ring buffer.
944 	 * must be done holding ctx->ctx_lock to prevent
945 	 * other code from messing with the tail
946 	 * pointer since we might be called from irq
947 	 * context.
948 	 */
949 	spin_lock_irqsave(&ctx->ctx_lock, flags);
950 
951 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
952 		list_del_init(&iocb->ki_run_list);
953 
954 	/*
955 	 * cancelled requests don't get events, userland was given one
956 	 * when the event got cancelled.
957 	 */
958 	if (kiocbIsCancelled(iocb))
959 		goto put_rq;
960 
961 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
962 
963 	tail = info->tail;
964 	event = aio_ring_event(info, tail, KM_IRQ0);
965 	if (++tail >= info->nr)
966 		tail = 0;
967 
968 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
969 	event->data = iocb->ki_user_data;
970 	event->res = res;
971 	event->res2 = res2;
972 
973 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
974 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
975 		res, res2);
976 
977 	/* after flagging the request as done, we
978 	 * must never even look at it again
979 	 */
980 	smp_wmb();	/* make event visible before updating tail */
981 
982 	info->tail = tail;
983 	ring->tail = tail;
984 
985 	put_aio_ring_event(event, KM_IRQ0);
986 	kunmap_atomic(ring, KM_IRQ1);
987 
988 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
989 
990 	/*
991 	 * Check if the user asked us to deliver the result through an
992 	 * eventfd. The eventfd_signal() function is safe to be called
993 	 * from IRQ context.
994 	 */
995 	if (!IS_ERR(iocb->ki_eventfd))
996 		eventfd_signal(iocb->ki_eventfd, 1);
997 
998 put_rq:
999 	/* everything turned out well, dispose of the aiocb. */
1000 	ret = __aio_put_req(ctx, iocb);
1001 
1002 	/*
1003 	 * We have to order our ring_info tail store above and test
1004 	 * of the wait list below outside the wait lock.  This is
1005 	 * like in wake_up_bit() where clearing a bit has to be
1006 	 * ordered with the unlocked test.
1007 	 */
1008 	smp_mb();
1009 
1010 	if (waitqueue_active(&ctx->wait))
1011 		wake_up(&ctx->wait);
1012 
1013 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1014 	return ret;
1015 }
1016 
1017 /* aio_read_evt
1018  *	Pull an event off of the ioctx's event ring.  Returns the number of
1019  *	events fetched (0 or 1 ;-)
1020  *	FIXME: make this use cmpxchg.
1021  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1022  */
1023 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1024 {
1025 	struct aio_ring_info *info = &ioctx->ring_info;
1026 	struct aio_ring *ring;
1027 	unsigned long head;
1028 	int ret = 0;
1029 
1030 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1031 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1032 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1033 		 (unsigned long)ring->nr);
1034 
1035 	if (ring->head == ring->tail)
1036 		goto out;
1037 
1038 	spin_lock(&info->ring_lock);
1039 
1040 	head = ring->head % info->nr;
1041 	if (head != ring->tail) {
1042 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1043 		*ent = *evp;
1044 		head = (head + 1) % info->nr;
1045 		smp_mb(); /* finish reading the event before updatng the head */
1046 		ring->head = head;
1047 		ret = 1;
1048 		put_aio_ring_event(evp, KM_USER1);
1049 	}
1050 	spin_unlock(&info->ring_lock);
1051 
1052 out:
1053 	kunmap_atomic(ring, KM_USER0);
1054 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1055 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1056 	return ret;
1057 }
1058 
1059 struct aio_timeout {
1060 	struct timer_list	timer;
1061 	int			timed_out;
1062 	struct task_struct	*p;
1063 };
1064 
1065 static void timeout_func(unsigned long data)
1066 {
1067 	struct aio_timeout *to = (struct aio_timeout *)data;
1068 
1069 	to->timed_out = 1;
1070 	wake_up_process(to->p);
1071 }
1072 
1073 static inline void init_timeout(struct aio_timeout *to)
1074 {
1075 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1076 	to->timed_out = 0;
1077 	to->p = current;
1078 }
1079 
1080 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1081 			       const struct timespec *ts)
1082 {
1083 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1084 	if (time_after(to->timer.expires, jiffies))
1085 		add_timer(&to->timer);
1086 	else
1087 		to->timed_out = 1;
1088 }
1089 
1090 static inline void clear_timeout(struct aio_timeout *to)
1091 {
1092 	del_singleshot_timer_sync(&to->timer);
1093 }
1094 
1095 static int read_events(struct kioctx *ctx,
1096 			long min_nr, long nr,
1097 			struct io_event __user *event,
1098 			struct timespec __user *timeout)
1099 {
1100 	long			start_jiffies = jiffies;
1101 	struct task_struct	*tsk = current;
1102 	DECLARE_WAITQUEUE(wait, tsk);
1103 	int			ret;
1104 	int			i = 0;
1105 	struct io_event		ent;
1106 	struct aio_timeout	to;
1107 	int			retry = 0;
1108 
1109 	/* needed to zero any padding within an entry (there shouldn't be
1110 	 * any, but C is fun!
1111 	 */
1112 	memset(&ent, 0, sizeof(ent));
1113 retry:
1114 	ret = 0;
1115 	while (likely(i < nr)) {
1116 		ret = aio_read_evt(ctx, &ent);
1117 		if (unlikely(ret <= 0))
1118 			break;
1119 
1120 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1121 			ent.data, ent.obj, ent.res, ent.res2);
1122 
1123 		/* Could we split the check in two? */
1124 		ret = -EFAULT;
1125 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1126 			dprintk("aio: lost an event due to EFAULT.\n");
1127 			break;
1128 		}
1129 		ret = 0;
1130 
1131 		/* Good, event copied to userland, update counts. */
1132 		event ++;
1133 		i ++;
1134 	}
1135 
1136 	if (min_nr <= i)
1137 		return i;
1138 	if (ret)
1139 		return ret;
1140 
1141 	/* End fast path */
1142 
1143 	/* racey check, but it gets redone */
1144 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1145 		retry = 1;
1146 		aio_run_all_iocbs(ctx);
1147 		goto retry;
1148 	}
1149 
1150 	init_timeout(&to);
1151 	if (timeout) {
1152 		struct timespec	ts;
1153 		ret = -EFAULT;
1154 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1155 			goto out;
1156 
1157 		set_timeout(start_jiffies, &to, &ts);
1158 	}
1159 
1160 	while (likely(i < nr)) {
1161 		add_wait_queue_exclusive(&ctx->wait, &wait);
1162 		do {
1163 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1164 			ret = aio_read_evt(ctx, &ent);
1165 			if (ret)
1166 				break;
1167 			if (min_nr <= i)
1168 				break;
1169 			if (unlikely(ctx->dead)) {
1170 				ret = -EINVAL;
1171 				break;
1172 			}
1173 			if (to.timed_out)	/* Only check after read evt */
1174 				break;
1175 			/* Try to only show up in io wait if there are ops
1176 			 *  in flight */
1177 			if (ctx->reqs_active)
1178 				io_schedule();
1179 			else
1180 				schedule();
1181 			if (signal_pending(tsk)) {
1182 				ret = -EINTR;
1183 				break;
1184 			}
1185 			/*ret = aio_read_evt(ctx, &ent);*/
1186 		} while (1) ;
1187 
1188 		set_task_state(tsk, TASK_RUNNING);
1189 		remove_wait_queue(&ctx->wait, &wait);
1190 
1191 		if (unlikely(ret <= 0))
1192 			break;
1193 
1194 		ret = -EFAULT;
1195 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1196 			dprintk("aio: lost an event due to EFAULT.\n");
1197 			break;
1198 		}
1199 
1200 		/* Good, event copied to userland, update counts. */
1201 		event ++;
1202 		i ++;
1203 	}
1204 
1205 	if (timeout)
1206 		clear_timeout(&to);
1207 out:
1208 	destroy_timer_on_stack(&to.timer);
1209 	return i ? i : ret;
1210 }
1211 
1212 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1213  * against races with itself via ->dead.
1214  */
1215 static void io_destroy(struct kioctx *ioctx)
1216 {
1217 	struct mm_struct *mm = current->mm;
1218 	struct kioctx **tmp;
1219 	int was_dead;
1220 
1221 	/* delete the entry from the list is someone else hasn't already */
1222 	write_lock(&mm->ioctx_list_lock);
1223 	was_dead = ioctx->dead;
1224 	ioctx->dead = 1;
1225 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1226 	     tmp = &(*tmp)->next)
1227 		;
1228 	if (*tmp)
1229 		*tmp = ioctx->next;
1230 	write_unlock(&mm->ioctx_list_lock);
1231 
1232 	dprintk("aio_release(%p)\n", ioctx);
1233 	if (likely(!was_dead))
1234 		put_ioctx(ioctx);	/* twice for the list */
1235 
1236 	aio_cancel_all(ioctx);
1237 	wait_for_all_aios(ioctx);
1238 
1239 	/*
1240 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1241 	 * by other CPUs at this point.  Right now, we rely on the
1242 	 * locking done by the above calls to ensure this consistency.
1243 	 */
1244 	wake_up(&ioctx->wait);
1245 	put_ioctx(ioctx);	/* once for the lookup */
1246 }
1247 
1248 /* sys_io_setup:
1249  *	Create an aio_context capable of receiving at least nr_events.
1250  *	ctxp must not point to an aio_context that already exists, and
1251  *	must be initialized to 0 prior to the call.  On successful
1252  *	creation of the aio_context, *ctxp is filled in with the resulting
1253  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1254  *	if the specified nr_events exceeds internal limits.  May fail
1255  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1256  *	of available events.  May fail with -ENOMEM if insufficient kernel
1257  *	resources are available.  May fail with -EFAULT if an invalid
1258  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1259  *	implemented.
1260  */
1261 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1262 {
1263 	struct kioctx *ioctx = NULL;
1264 	unsigned long ctx;
1265 	long ret;
1266 
1267 	ret = get_user(ctx, ctxp);
1268 	if (unlikely(ret))
1269 		goto out;
1270 
1271 	ret = -EINVAL;
1272 	if (unlikely(ctx || nr_events == 0)) {
1273 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1274 		         ctx, nr_events);
1275 		goto out;
1276 	}
1277 
1278 	ioctx = ioctx_alloc(nr_events);
1279 	ret = PTR_ERR(ioctx);
1280 	if (!IS_ERR(ioctx)) {
1281 		ret = put_user(ioctx->user_id, ctxp);
1282 		if (!ret)
1283 			return 0;
1284 
1285 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1286 		io_destroy(ioctx);
1287 	}
1288 
1289 out:
1290 	return ret;
1291 }
1292 
1293 /* sys_io_destroy:
1294  *	Destroy the aio_context specified.  May cancel any outstanding
1295  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1296  *	implemented.  May fail with -EFAULT if the context pointed to
1297  *	is invalid.
1298  */
1299 asmlinkage long sys_io_destroy(aio_context_t ctx)
1300 {
1301 	struct kioctx *ioctx = lookup_ioctx(ctx);
1302 	if (likely(NULL != ioctx)) {
1303 		io_destroy(ioctx);
1304 		return 0;
1305 	}
1306 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1307 	return -EINVAL;
1308 }
1309 
1310 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1311 {
1312 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1313 
1314 	BUG_ON(ret <= 0);
1315 
1316 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1317 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1318 		iov->iov_base += this;
1319 		iov->iov_len -= this;
1320 		iocb->ki_left -= this;
1321 		ret -= this;
1322 		if (iov->iov_len == 0) {
1323 			iocb->ki_cur_seg++;
1324 			iov++;
1325 		}
1326 	}
1327 
1328 	/* the caller should not have done more io than what fit in
1329 	 * the remaining iovecs */
1330 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1331 }
1332 
1333 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1334 {
1335 	struct file *file = iocb->ki_filp;
1336 	struct address_space *mapping = file->f_mapping;
1337 	struct inode *inode = mapping->host;
1338 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1339 			 unsigned long, loff_t);
1340 	ssize_t ret = 0;
1341 	unsigned short opcode;
1342 
1343 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1344 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1345 		rw_op = file->f_op->aio_read;
1346 		opcode = IOCB_CMD_PREADV;
1347 	} else {
1348 		rw_op = file->f_op->aio_write;
1349 		opcode = IOCB_CMD_PWRITEV;
1350 	}
1351 
1352 	/* This matches the pread()/pwrite() logic */
1353 	if (iocb->ki_pos < 0)
1354 		return -EINVAL;
1355 
1356 	do {
1357 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1358 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1359 			    iocb->ki_pos);
1360 		if (ret > 0)
1361 			aio_advance_iovec(iocb, ret);
1362 
1363 	/* retry all partial writes.  retry partial reads as long as its a
1364 	 * regular file. */
1365 	} while (ret > 0 && iocb->ki_left > 0 &&
1366 		 (opcode == IOCB_CMD_PWRITEV ||
1367 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1368 
1369 	/* This means we must have transferred all that we could */
1370 	/* No need to retry anymore */
1371 	if ((ret == 0) || (iocb->ki_left == 0))
1372 		ret = iocb->ki_nbytes - iocb->ki_left;
1373 
1374 	/* If we managed to write some out we return that, rather than
1375 	 * the eventual error. */
1376 	if (opcode == IOCB_CMD_PWRITEV
1377 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1378 	    && iocb->ki_nbytes - iocb->ki_left)
1379 		ret = iocb->ki_nbytes - iocb->ki_left;
1380 
1381 	return ret;
1382 }
1383 
1384 static ssize_t aio_fdsync(struct kiocb *iocb)
1385 {
1386 	struct file *file = iocb->ki_filp;
1387 	ssize_t ret = -EINVAL;
1388 
1389 	if (file->f_op->aio_fsync)
1390 		ret = file->f_op->aio_fsync(iocb, 1);
1391 	return ret;
1392 }
1393 
1394 static ssize_t aio_fsync(struct kiocb *iocb)
1395 {
1396 	struct file *file = iocb->ki_filp;
1397 	ssize_t ret = -EINVAL;
1398 
1399 	if (file->f_op->aio_fsync)
1400 		ret = file->f_op->aio_fsync(iocb, 0);
1401 	return ret;
1402 }
1403 
1404 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1405 {
1406 	ssize_t ret;
1407 
1408 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1409 				    kiocb->ki_nbytes, 1,
1410 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1411 	if (ret < 0)
1412 		goto out;
1413 
1414 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1415 	kiocb->ki_cur_seg = 0;
1416 	/* ki_nbytes/left now reflect bytes instead of segs */
1417 	kiocb->ki_nbytes = ret;
1418 	kiocb->ki_left = ret;
1419 
1420 	ret = 0;
1421 out:
1422 	return ret;
1423 }
1424 
1425 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1426 {
1427 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1428 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1429 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1430 	kiocb->ki_nr_segs = 1;
1431 	kiocb->ki_cur_seg = 0;
1432 	return 0;
1433 }
1434 
1435 /*
1436  * aio_setup_iocb:
1437  *	Performs the initial checks and aio retry method
1438  *	setup for the kiocb at the time of io submission.
1439  */
1440 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1441 {
1442 	struct file *file = kiocb->ki_filp;
1443 	ssize_t ret = 0;
1444 
1445 	switch (kiocb->ki_opcode) {
1446 	case IOCB_CMD_PREAD:
1447 		ret = -EBADF;
1448 		if (unlikely(!(file->f_mode & FMODE_READ)))
1449 			break;
1450 		ret = -EFAULT;
1451 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1452 			kiocb->ki_left)))
1453 			break;
1454 		ret = security_file_permission(file, MAY_READ);
1455 		if (unlikely(ret))
1456 			break;
1457 		ret = aio_setup_single_vector(kiocb);
1458 		if (ret)
1459 			break;
1460 		ret = -EINVAL;
1461 		if (file->f_op->aio_read)
1462 			kiocb->ki_retry = aio_rw_vect_retry;
1463 		break;
1464 	case IOCB_CMD_PWRITE:
1465 		ret = -EBADF;
1466 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1467 			break;
1468 		ret = -EFAULT;
1469 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1470 			kiocb->ki_left)))
1471 			break;
1472 		ret = security_file_permission(file, MAY_WRITE);
1473 		if (unlikely(ret))
1474 			break;
1475 		ret = aio_setup_single_vector(kiocb);
1476 		if (ret)
1477 			break;
1478 		ret = -EINVAL;
1479 		if (file->f_op->aio_write)
1480 			kiocb->ki_retry = aio_rw_vect_retry;
1481 		break;
1482 	case IOCB_CMD_PREADV:
1483 		ret = -EBADF;
1484 		if (unlikely(!(file->f_mode & FMODE_READ)))
1485 			break;
1486 		ret = security_file_permission(file, MAY_READ);
1487 		if (unlikely(ret))
1488 			break;
1489 		ret = aio_setup_vectored_rw(READ, kiocb);
1490 		if (ret)
1491 			break;
1492 		ret = -EINVAL;
1493 		if (file->f_op->aio_read)
1494 			kiocb->ki_retry = aio_rw_vect_retry;
1495 		break;
1496 	case IOCB_CMD_PWRITEV:
1497 		ret = -EBADF;
1498 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1499 			break;
1500 		ret = security_file_permission(file, MAY_WRITE);
1501 		if (unlikely(ret))
1502 			break;
1503 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1504 		if (ret)
1505 			break;
1506 		ret = -EINVAL;
1507 		if (file->f_op->aio_write)
1508 			kiocb->ki_retry = aio_rw_vect_retry;
1509 		break;
1510 	case IOCB_CMD_FDSYNC:
1511 		ret = -EINVAL;
1512 		if (file->f_op->aio_fsync)
1513 			kiocb->ki_retry = aio_fdsync;
1514 		break;
1515 	case IOCB_CMD_FSYNC:
1516 		ret = -EINVAL;
1517 		if (file->f_op->aio_fsync)
1518 			kiocb->ki_retry = aio_fsync;
1519 		break;
1520 	default:
1521 		dprintk("EINVAL: io_submit: no operation provided\n");
1522 		ret = -EINVAL;
1523 	}
1524 
1525 	if (!kiocb->ki_retry)
1526 		return ret;
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * aio_wake_function:
1533  * 	wait queue callback function for aio notification,
1534  * 	Simply triggers a retry of the operation via kick_iocb.
1535  *
1536  * 	This callback is specified in the wait queue entry in
1537  *	a kiocb.
1538  *
1539  * Note:
1540  * This routine is executed with the wait queue lock held.
1541  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1542  * the ioctx lock inside the wait queue lock. This is safe
1543  * because this callback isn't used for wait queues which
1544  * are nested inside ioctx lock (i.e. ctx->wait)
1545  */
1546 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1547 			     int sync, void *key)
1548 {
1549 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1550 
1551 	list_del_init(&wait->task_list);
1552 	kick_iocb(iocb);
1553 	return 1;
1554 }
1555 
1556 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1557 			 struct iocb *iocb)
1558 {
1559 	struct kiocb *req;
1560 	struct file *file;
1561 	ssize_t ret;
1562 
1563 	/* enforce forwards compatibility on users */
1564 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1565 		pr_debug("EINVAL: io_submit: reserve field set\n");
1566 		return -EINVAL;
1567 	}
1568 
1569 	/* prevent overflows */
1570 	if (unlikely(
1571 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1572 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1573 	    ((ssize_t)iocb->aio_nbytes < 0)
1574 	   )) {
1575 		pr_debug("EINVAL: io_submit: overflow check\n");
1576 		return -EINVAL;
1577 	}
1578 
1579 	file = fget(iocb->aio_fildes);
1580 	if (unlikely(!file))
1581 		return -EBADF;
1582 
1583 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1584 	if (unlikely(!req)) {
1585 		fput(file);
1586 		return -EAGAIN;
1587 	}
1588 	req->ki_filp = file;
1589 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1590 		/*
1591 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1592 		 * instance of the file* now. The file descriptor must be
1593 		 * an eventfd() fd, and will be signaled for each completed
1594 		 * event using the eventfd_signal() function.
1595 		 */
1596 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1597 		if (IS_ERR(req->ki_eventfd)) {
1598 			ret = PTR_ERR(req->ki_eventfd);
1599 			goto out_put_req;
1600 		}
1601 	}
1602 
1603 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1604 	if (unlikely(ret)) {
1605 		dprintk("EFAULT: aio_key\n");
1606 		goto out_put_req;
1607 	}
1608 
1609 	req->ki_obj.user = user_iocb;
1610 	req->ki_user_data = iocb->aio_data;
1611 	req->ki_pos = iocb->aio_offset;
1612 
1613 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1614 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1615 	req->ki_opcode = iocb->aio_lio_opcode;
1616 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1617 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1618 
1619 	ret = aio_setup_iocb(req);
1620 
1621 	if (ret)
1622 		goto out_put_req;
1623 
1624 	spin_lock_irq(&ctx->ctx_lock);
1625 	aio_run_iocb(req);
1626 	if (!list_empty(&ctx->run_list)) {
1627 		/* drain the run list */
1628 		while (__aio_run_iocbs(ctx))
1629 			;
1630 	}
1631 	spin_unlock_irq(&ctx->ctx_lock);
1632 	aio_put_req(req);	/* drop extra ref to req */
1633 	return 0;
1634 
1635 out_put_req:
1636 	aio_put_req(req);	/* drop extra ref to req */
1637 	aio_put_req(req);	/* drop i/o ref to req */
1638 	return ret;
1639 }
1640 
1641 /* sys_io_submit:
1642  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1643  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1644  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1645  *	*iocbpp[0] is not properly initialized, if the operation specified
1646  *	is invalid for the file descriptor in the iocb.  May fail with
1647  *	-EFAULT if any of the data structures point to invalid data.  May
1648  *	fail with -EBADF if the file descriptor specified in the first
1649  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1650  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1651  *	fail with -ENOSYS if not implemented.
1652  */
1653 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1654 			      struct iocb __user * __user *iocbpp)
1655 {
1656 	struct kioctx *ctx;
1657 	long ret = 0;
1658 	int i;
1659 
1660 	if (unlikely(nr < 0))
1661 		return -EINVAL;
1662 
1663 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1664 		return -EFAULT;
1665 
1666 	ctx = lookup_ioctx(ctx_id);
1667 	if (unlikely(!ctx)) {
1668 		pr_debug("EINVAL: io_submit: invalid context id\n");
1669 		return -EINVAL;
1670 	}
1671 
1672 	/*
1673 	 * AKPM: should this return a partial result if some of the IOs were
1674 	 * successfully submitted?
1675 	 */
1676 	for (i=0; i<nr; i++) {
1677 		struct iocb __user *user_iocb;
1678 		struct iocb tmp;
1679 
1680 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1681 			ret = -EFAULT;
1682 			break;
1683 		}
1684 
1685 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1686 			ret = -EFAULT;
1687 			break;
1688 		}
1689 
1690 		ret = io_submit_one(ctx, user_iocb, &tmp);
1691 		if (ret)
1692 			break;
1693 	}
1694 
1695 	put_ioctx(ctx);
1696 	return i ? i : ret;
1697 }
1698 
1699 /* lookup_kiocb
1700  *	Finds a given iocb for cancellation.
1701  */
1702 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1703 				  u32 key)
1704 {
1705 	struct list_head *pos;
1706 
1707 	assert_spin_locked(&ctx->ctx_lock);
1708 
1709 	/* TODO: use a hash or array, this sucks. */
1710 	list_for_each(pos, &ctx->active_reqs) {
1711 		struct kiocb *kiocb = list_kiocb(pos);
1712 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1713 			return kiocb;
1714 	}
1715 	return NULL;
1716 }
1717 
1718 /* sys_io_cancel:
1719  *	Attempts to cancel an iocb previously passed to io_submit.  If
1720  *	the operation is successfully cancelled, the resulting event is
1721  *	copied into the memory pointed to by result without being placed
1722  *	into the completion queue and 0 is returned.  May fail with
1723  *	-EFAULT if any of the data structures pointed to are invalid.
1724  *	May fail with -EINVAL if aio_context specified by ctx_id is
1725  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1726  *	cancelled.  Will fail with -ENOSYS if not implemented.
1727  */
1728 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1729 			      struct io_event __user *result)
1730 {
1731 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1732 	struct kioctx *ctx;
1733 	struct kiocb *kiocb;
1734 	u32 key;
1735 	int ret;
1736 
1737 	ret = get_user(key, &iocb->aio_key);
1738 	if (unlikely(ret))
1739 		return -EFAULT;
1740 
1741 	ctx = lookup_ioctx(ctx_id);
1742 	if (unlikely(!ctx))
1743 		return -EINVAL;
1744 
1745 	spin_lock_irq(&ctx->ctx_lock);
1746 	ret = -EAGAIN;
1747 	kiocb = lookup_kiocb(ctx, iocb, key);
1748 	if (kiocb && kiocb->ki_cancel) {
1749 		cancel = kiocb->ki_cancel;
1750 		kiocb->ki_users ++;
1751 		kiocbSetCancelled(kiocb);
1752 	} else
1753 		cancel = NULL;
1754 	spin_unlock_irq(&ctx->ctx_lock);
1755 
1756 	if (NULL != cancel) {
1757 		struct io_event tmp;
1758 		pr_debug("calling cancel\n");
1759 		memset(&tmp, 0, sizeof(tmp));
1760 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1761 		tmp.data = kiocb->ki_user_data;
1762 		ret = cancel(kiocb, &tmp);
1763 		if (!ret) {
1764 			/* Cancellation succeeded -- copy the result
1765 			 * into the user's buffer.
1766 			 */
1767 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1768 				ret = -EFAULT;
1769 		}
1770 	} else
1771 		ret = -EINVAL;
1772 
1773 	put_ioctx(ctx);
1774 
1775 	return ret;
1776 }
1777 
1778 /* io_getevents:
1779  *	Attempts to read at least min_nr events and up to nr events from
1780  *	the completion queue for the aio_context specified by ctx_id.  May
1781  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1782  *	if nr is out of range, if when is out of range.  May fail with
1783  *	-EFAULT if any of the memory specified to is invalid.  May return
1784  *	0 or < min_nr if no events are available and the timeout specified
1785  *	by when	has elapsed, where when == NULL specifies an infinite
1786  *	timeout.  Note that the timeout pointed to by when is relative and
1787  *	will be updated if not NULL and the operation blocks.  Will fail
1788  *	with -ENOSYS if not implemented.
1789  */
1790 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1791 				 long min_nr,
1792 				 long nr,
1793 				 struct io_event __user *events,
1794 				 struct timespec __user *timeout)
1795 {
1796 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1797 	long ret = -EINVAL;
1798 
1799 	if (likely(ioctx)) {
1800 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1801 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1802 		put_ioctx(ioctx);
1803 	}
1804 
1805 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1806 	return ret;
1807 }
1808 
1809 __initcall(aio_setup);
1810 
1811 EXPORT_SYMBOL(aio_complete);
1812 EXPORT_SYMBOL(aio_put_req);
1813 EXPORT_SYMBOL(wait_on_sync_kiocb);
1814