1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/export.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #if DEBUG > 1 43 #define dprintk printk 44 #else 45 #define dprintk(x...) do { ; } while (0) 46 #endif 47 48 /*------ sysctl variables----*/ 49 static DEFINE_SPINLOCK(aio_nr_lock); 50 unsigned long aio_nr; /* current system wide number of aio requests */ 51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 52 /*----end sysctl variables---*/ 53 54 static struct kmem_cache *kiocb_cachep; 55 static struct kmem_cache *kioctx_cachep; 56 57 static struct workqueue_struct *aio_wq; 58 59 static void aio_kick_handler(struct work_struct *); 60 static void aio_queue_work(struct kioctx *); 61 62 /* aio_setup 63 * Creates the slab caches used by the aio routines, panic on 64 * failure as this is done early during the boot sequence. 65 */ 66 static int __init aio_setup(void) 67 { 68 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 69 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 70 71 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ 72 BUG_ON(!aio_wq); 73 74 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 75 76 return 0; 77 } 78 __initcall(aio_setup); 79 80 static void aio_free_ring(struct kioctx *ctx) 81 { 82 struct aio_ring_info *info = &ctx->ring_info; 83 long i; 84 85 for (i=0; i<info->nr_pages; i++) 86 put_page(info->ring_pages[i]); 87 88 if (info->mmap_size) { 89 BUG_ON(ctx->mm != current->mm); 90 vm_munmap(info->mmap_base, info->mmap_size); 91 } 92 93 if (info->ring_pages && info->ring_pages != info->internal_pages) 94 kfree(info->ring_pages); 95 info->ring_pages = NULL; 96 info->nr = 0; 97 } 98 99 static int aio_setup_ring(struct kioctx *ctx) 100 { 101 struct aio_ring *ring; 102 struct aio_ring_info *info = &ctx->ring_info; 103 unsigned nr_events = ctx->max_reqs; 104 unsigned long size, populate; 105 int nr_pages; 106 107 /* Compensate for the ring buffer's head/tail overlap entry */ 108 nr_events += 2; /* 1 is required, 2 for good luck */ 109 110 size = sizeof(struct aio_ring); 111 size += sizeof(struct io_event) * nr_events; 112 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 113 114 if (nr_pages < 0) 115 return -EINVAL; 116 117 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 118 119 info->nr = 0; 120 info->ring_pages = info->internal_pages; 121 if (nr_pages > AIO_RING_PAGES) { 122 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 123 if (!info->ring_pages) 124 return -ENOMEM; 125 } 126 127 info->mmap_size = nr_pages * PAGE_SIZE; 128 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 129 down_write(&ctx->mm->mmap_sem); 130 info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size, 131 PROT_READ|PROT_WRITE, 132 MAP_ANONYMOUS|MAP_PRIVATE, 0, 133 &populate); 134 if (IS_ERR((void *)info->mmap_base)) { 135 up_write(&ctx->mm->mmap_sem); 136 info->mmap_size = 0; 137 aio_free_ring(ctx); 138 return -EAGAIN; 139 } 140 141 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 142 info->nr_pages = get_user_pages(current, ctx->mm, 143 info->mmap_base, nr_pages, 144 1, 0, info->ring_pages, NULL); 145 up_write(&ctx->mm->mmap_sem); 146 147 if (unlikely(info->nr_pages != nr_pages)) { 148 aio_free_ring(ctx); 149 return -EAGAIN; 150 } 151 if (populate) 152 mm_populate(info->mmap_base, populate); 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0]); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \ 192 } while(0) 193 194 static void ctx_rcu_free(struct rcu_head *head) 195 { 196 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 197 kmem_cache_free(kioctx_cachep, ctx); 198 } 199 200 /* __put_ioctx 201 * Called when the last user of an aio context has gone away, 202 * and the struct needs to be freed. 203 */ 204 static void __put_ioctx(struct kioctx *ctx) 205 { 206 unsigned nr_events = ctx->max_reqs; 207 BUG_ON(ctx->reqs_active); 208 209 cancel_delayed_work_sync(&ctx->wq); 210 aio_free_ring(ctx); 211 mmdrop(ctx->mm); 212 ctx->mm = NULL; 213 if (nr_events) { 214 spin_lock(&aio_nr_lock); 215 BUG_ON(aio_nr - nr_events > aio_nr); 216 aio_nr -= nr_events; 217 spin_unlock(&aio_nr_lock); 218 } 219 pr_debug("__put_ioctx: freeing %p\n", ctx); 220 call_rcu(&ctx->rcu_head, ctx_rcu_free); 221 } 222 223 static inline int try_get_ioctx(struct kioctx *kioctx) 224 { 225 return atomic_inc_not_zero(&kioctx->users); 226 } 227 228 static inline void put_ioctx(struct kioctx *kioctx) 229 { 230 BUG_ON(atomic_read(&kioctx->users) <= 0); 231 if (unlikely(atomic_dec_and_test(&kioctx->users))) 232 __put_ioctx(kioctx); 233 } 234 235 /* ioctx_alloc 236 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 237 */ 238 static struct kioctx *ioctx_alloc(unsigned nr_events) 239 { 240 struct mm_struct *mm; 241 struct kioctx *ctx; 242 int err = -ENOMEM; 243 244 /* Prevent overflows */ 245 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 246 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 247 pr_debug("ENOMEM: nr_events too high\n"); 248 return ERR_PTR(-EINVAL); 249 } 250 251 if (!nr_events || (unsigned long)nr_events > aio_max_nr) 252 return ERR_PTR(-EAGAIN); 253 254 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 255 if (!ctx) 256 return ERR_PTR(-ENOMEM); 257 258 ctx->max_reqs = nr_events; 259 mm = ctx->mm = current->mm; 260 atomic_inc(&mm->mm_count); 261 262 atomic_set(&ctx->users, 2); 263 spin_lock_init(&ctx->ctx_lock); 264 spin_lock_init(&ctx->ring_info.ring_lock); 265 init_waitqueue_head(&ctx->wait); 266 267 INIT_LIST_HEAD(&ctx->active_reqs); 268 INIT_LIST_HEAD(&ctx->run_list); 269 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 270 271 if (aio_setup_ring(ctx) < 0) 272 goto out_freectx; 273 274 /* limit the number of system wide aios */ 275 spin_lock(&aio_nr_lock); 276 if (aio_nr + nr_events > aio_max_nr || 277 aio_nr + nr_events < aio_nr) { 278 spin_unlock(&aio_nr_lock); 279 goto out_cleanup; 280 } 281 aio_nr += ctx->max_reqs; 282 spin_unlock(&aio_nr_lock); 283 284 /* now link into global list. */ 285 spin_lock(&mm->ioctx_lock); 286 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 287 spin_unlock(&mm->ioctx_lock); 288 289 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 290 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 291 return ctx; 292 293 out_cleanup: 294 err = -EAGAIN; 295 aio_free_ring(ctx); 296 out_freectx: 297 mmdrop(mm); 298 kmem_cache_free(kioctx_cachep, ctx); 299 dprintk("aio: error allocating ioctx %d\n", err); 300 return ERR_PTR(err); 301 } 302 303 /* kill_ctx 304 * Cancels all outstanding aio requests on an aio context. Used 305 * when the processes owning a context have all exited to encourage 306 * the rapid destruction of the kioctx. 307 */ 308 static void kill_ctx(struct kioctx *ctx) 309 { 310 int (*cancel)(struct kiocb *, struct io_event *); 311 struct task_struct *tsk = current; 312 DECLARE_WAITQUEUE(wait, tsk); 313 struct io_event res; 314 315 spin_lock_irq(&ctx->ctx_lock); 316 ctx->dead = 1; 317 while (!list_empty(&ctx->active_reqs)) { 318 struct list_head *pos = ctx->active_reqs.next; 319 struct kiocb *iocb = list_kiocb(pos); 320 list_del_init(&iocb->ki_list); 321 cancel = iocb->ki_cancel; 322 kiocbSetCancelled(iocb); 323 if (cancel) { 324 iocb->ki_users++; 325 spin_unlock_irq(&ctx->ctx_lock); 326 cancel(iocb, &res); 327 spin_lock_irq(&ctx->ctx_lock); 328 } 329 } 330 331 if (!ctx->reqs_active) 332 goto out; 333 334 add_wait_queue(&ctx->wait, &wait); 335 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 336 while (ctx->reqs_active) { 337 spin_unlock_irq(&ctx->ctx_lock); 338 io_schedule(); 339 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 340 spin_lock_irq(&ctx->ctx_lock); 341 } 342 __set_task_state(tsk, TASK_RUNNING); 343 remove_wait_queue(&ctx->wait, &wait); 344 345 out: 346 spin_unlock_irq(&ctx->ctx_lock); 347 } 348 349 /* wait_on_sync_kiocb: 350 * Waits on the given sync kiocb to complete. 351 */ 352 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 353 { 354 while (iocb->ki_users) { 355 set_current_state(TASK_UNINTERRUPTIBLE); 356 if (!iocb->ki_users) 357 break; 358 io_schedule(); 359 } 360 __set_current_state(TASK_RUNNING); 361 return iocb->ki_user_data; 362 } 363 EXPORT_SYMBOL(wait_on_sync_kiocb); 364 365 /* exit_aio: called when the last user of mm goes away. At this point, 366 * there is no way for any new requests to be submited or any of the 367 * io_* syscalls to be called on the context. However, there may be 368 * outstanding requests which hold references to the context; as they 369 * go away, they will call put_ioctx and release any pinned memory 370 * associated with the request (held via struct page * references). 371 */ 372 void exit_aio(struct mm_struct *mm) 373 { 374 struct kioctx *ctx; 375 376 while (!hlist_empty(&mm->ioctx_list)) { 377 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 378 hlist_del_rcu(&ctx->list); 379 380 kill_ctx(ctx); 381 382 if (1 != atomic_read(&ctx->users)) 383 printk(KERN_DEBUG 384 "exit_aio:ioctx still alive: %d %d %d\n", 385 atomic_read(&ctx->users), ctx->dead, 386 ctx->reqs_active); 387 /* 388 * We don't need to bother with munmap() here - 389 * exit_mmap(mm) is coming and it'll unmap everything. 390 * Since aio_free_ring() uses non-zero ->mmap_size 391 * as indicator that it needs to unmap the area, 392 * just set it to 0; aio_free_ring() is the only 393 * place that uses ->mmap_size, so it's safe. 394 * That way we get all munmap done to current->mm - 395 * all other callers have ctx->mm == current->mm. 396 */ 397 ctx->ring_info.mmap_size = 0; 398 put_ioctx(ctx); 399 } 400 } 401 402 /* aio_get_req 403 * Allocate a slot for an aio request. Increments the users count 404 * of the kioctx so that the kioctx stays around until all requests are 405 * complete. Returns NULL if no requests are free. 406 * 407 * Returns with kiocb->users set to 2. The io submit code path holds 408 * an extra reference while submitting the i/o. 409 * This prevents races between the aio code path referencing the 410 * req (after submitting it) and aio_complete() freeing the req. 411 */ 412 static struct kiocb *__aio_get_req(struct kioctx *ctx) 413 { 414 struct kiocb *req = NULL; 415 416 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 417 if (unlikely(!req)) 418 return NULL; 419 420 req->ki_flags = 0; 421 req->ki_users = 2; 422 req->ki_key = 0; 423 req->ki_ctx = ctx; 424 req->ki_cancel = NULL; 425 req->ki_retry = NULL; 426 req->ki_dtor = NULL; 427 req->private = NULL; 428 req->ki_iovec = NULL; 429 INIT_LIST_HEAD(&req->ki_run_list); 430 req->ki_eventfd = NULL; 431 432 return req; 433 } 434 435 /* 436 * struct kiocb's are allocated in batches to reduce the number of 437 * times the ctx lock is acquired and released. 438 */ 439 #define KIOCB_BATCH_SIZE 32L 440 struct kiocb_batch { 441 struct list_head head; 442 long count; /* number of requests left to allocate */ 443 }; 444 445 static void kiocb_batch_init(struct kiocb_batch *batch, long total) 446 { 447 INIT_LIST_HEAD(&batch->head); 448 batch->count = total; 449 } 450 451 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) 452 { 453 struct kiocb *req, *n; 454 455 if (list_empty(&batch->head)) 456 return; 457 458 spin_lock_irq(&ctx->ctx_lock); 459 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 460 list_del(&req->ki_batch); 461 list_del(&req->ki_list); 462 kmem_cache_free(kiocb_cachep, req); 463 ctx->reqs_active--; 464 } 465 if (unlikely(!ctx->reqs_active && ctx->dead)) 466 wake_up_all(&ctx->wait); 467 spin_unlock_irq(&ctx->ctx_lock); 468 } 469 470 /* 471 * Allocate a batch of kiocbs. This avoids taking and dropping the 472 * context lock a lot during setup. 473 */ 474 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) 475 { 476 unsigned short allocated, to_alloc; 477 long avail; 478 struct kiocb *req, *n; 479 struct aio_ring *ring; 480 481 to_alloc = min(batch->count, KIOCB_BATCH_SIZE); 482 for (allocated = 0; allocated < to_alloc; allocated++) { 483 req = __aio_get_req(ctx); 484 if (!req) 485 /* allocation failed, go with what we've got */ 486 break; 487 list_add(&req->ki_batch, &batch->head); 488 } 489 490 if (allocated == 0) 491 goto out; 492 493 spin_lock_irq(&ctx->ctx_lock); 494 ring = kmap_atomic(ctx->ring_info.ring_pages[0]); 495 496 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; 497 BUG_ON(avail < 0); 498 if (avail < allocated) { 499 /* Trim back the number of requests. */ 500 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 501 list_del(&req->ki_batch); 502 kmem_cache_free(kiocb_cachep, req); 503 if (--allocated <= avail) 504 break; 505 } 506 } 507 508 batch->count -= allocated; 509 list_for_each_entry(req, &batch->head, ki_batch) { 510 list_add(&req->ki_list, &ctx->active_reqs); 511 ctx->reqs_active++; 512 } 513 514 kunmap_atomic(ring); 515 spin_unlock_irq(&ctx->ctx_lock); 516 517 out: 518 return allocated; 519 } 520 521 static inline struct kiocb *aio_get_req(struct kioctx *ctx, 522 struct kiocb_batch *batch) 523 { 524 struct kiocb *req; 525 526 if (list_empty(&batch->head)) 527 if (kiocb_batch_refill(ctx, batch) == 0) 528 return NULL; 529 req = list_first_entry(&batch->head, struct kiocb, ki_batch); 530 list_del(&req->ki_batch); 531 return req; 532 } 533 534 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 535 { 536 assert_spin_locked(&ctx->ctx_lock); 537 538 if (req->ki_eventfd != NULL) 539 eventfd_ctx_put(req->ki_eventfd); 540 if (req->ki_dtor) 541 req->ki_dtor(req); 542 if (req->ki_iovec != &req->ki_inline_vec) 543 kfree(req->ki_iovec); 544 kmem_cache_free(kiocb_cachep, req); 545 ctx->reqs_active--; 546 547 if (unlikely(!ctx->reqs_active && ctx->dead)) 548 wake_up_all(&ctx->wait); 549 } 550 551 /* __aio_put_req 552 * Returns true if this put was the last user of the request. 553 */ 554 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 555 { 556 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 557 req, atomic_long_read(&req->ki_filp->f_count)); 558 559 assert_spin_locked(&ctx->ctx_lock); 560 561 req->ki_users--; 562 BUG_ON(req->ki_users < 0); 563 if (likely(req->ki_users)) 564 return 0; 565 list_del(&req->ki_list); /* remove from active_reqs */ 566 req->ki_cancel = NULL; 567 req->ki_retry = NULL; 568 569 fput(req->ki_filp); 570 req->ki_filp = NULL; 571 really_put_req(ctx, req); 572 return 1; 573 } 574 575 /* aio_put_req 576 * Returns true if this put was the last user of the kiocb, 577 * false if the request is still in use. 578 */ 579 int aio_put_req(struct kiocb *req) 580 { 581 struct kioctx *ctx = req->ki_ctx; 582 int ret; 583 spin_lock_irq(&ctx->ctx_lock); 584 ret = __aio_put_req(ctx, req); 585 spin_unlock_irq(&ctx->ctx_lock); 586 return ret; 587 } 588 EXPORT_SYMBOL(aio_put_req); 589 590 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 591 { 592 struct mm_struct *mm = current->mm; 593 struct kioctx *ctx, *ret = NULL; 594 595 rcu_read_lock(); 596 597 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { 598 /* 599 * RCU protects us against accessing freed memory but 600 * we have to be careful not to get a reference when the 601 * reference count already dropped to 0 (ctx->dead test 602 * is unreliable because of races). 603 */ 604 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 605 ret = ctx; 606 break; 607 } 608 } 609 610 rcu_read_unlock(); 611 return ret; 612 } 613 614 /* 615 * Queue up a kiocb to be retried. Assumes that the kiocb 616 * has already been marked as kicked, and places it on 617 * the retry run list for the corresponding ioctx, if it 618 * isn't already queued. Returns 1 if it actually queued 619 * the kiocb (to tell the caller to activate the work 620 * queue to process it), or 0, if it found that it was 621 * already queued. 622 */ 623 static inline int __queue_kicked_iocb(struct kiocb *iocb) 624 { 625 struct kioctx *ctx = iocb->ki_ctx; 626 627 assert_spin_locked(&ctx->ctx_lock); 628 629 if (list_empty(&iocb->ki_run_list)) { 630 list_add_tail(&iocb->ki_run_list, 631 &ctx->run_list); 632 return 1; 633 } 634 return 0; 635 } 636 637 /* aio_run_iocb 638 * This is the core aio execution routine. It is 639 * invoked both for initial i/o submission and 640 * subsequent retries via the aio_kick_handler. 641 * Expects to be invoked with iocb->ki_ctx->lock 642 * already held. The lock is released and reacquired 643 * as needed during processing. 644 * 645 * Calls the iocb retry method (already setup for the 646 * iocb on initial submission) for operation specific 647 * handling, but takes care of most of common retry 648 * execution details for a given iocb. The retry method 649 * needs to be non-blocking as far as possible, to avoid 650 * holding up other iocbs waiting to be serviced by the 651 * retry kernel thread. 652 * 653 * The trickier parts in this code have to do with 654 * ensuring that only one retry instance is in progress 655 * for a given iocb at any time. Providing that guarantee 656 * simplifies the coding of individual aio operations as 657 * it avoids various potential races. 658 */ 659 static ssize_t aio_run_iocb(struct kiocb *iocb) 660 { 661 struct kioctx *ctx = iocb->ki_ctx; 662 ssize_t (*retry)(struct kiocb *); 663 ssize_t ret; 664 665 if (!(retry = iocb->ki_retry)) { 666 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 667 return 0; 668 } 669 670 /* 671 * We don't want the next retry iteration for this 672 * operation to start until this one has returned and 673 * updated the iocb state. However, wait_queue functions 674 * can trigger a kick_iocb from interrupt context in the 675 * meantime, indicating that data is available for the next 676 * iteration. We want to remember that and enable the 677 * next retry iteration _after_ we are through with 678 * this one. 679 * 680 * So, in order to be able to register a "kick", but 681 * prevent it from being queued now, we clear the kick 682 * flag, but make the kick code *think* that the iocb is 683 * still on the run list until we are actually done. 684 * When we are done with this iteration, we check if 685 * the iocb was kicked in the meantime and if so, queue 686 * it up afresh. 687 */ 688 689 kiocbClearKicked(iocb); 690 691 /* 692 * This is so that aio_complete knows it doesn't need to 693 * pull the iocb off the run list (We can't just call 694 * INIT_LIST_HEAD because we don't want a kick_iocb to 695 * queue this on the run list yet) 696 */ 697 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 698 spin_unlock_irq(&ctx->ctx_lock); 699 700 /* Quit retrying if the i/o has been cancelled */ 701 if (kiocbIsCancelled(iocb)) { 702 ret = -EINTR; 703 aio_complete(iocb, ret, 0); 704 /* must not access the iocb after this */ 705 goto out; 706 } 707 708 /* 709 * Now we are all set to call the retry method in async 710 * context. 711 */ 712 ret = retry(iocb); 713 714 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 715 /* 716 * There's no easy way to restart the syscall since other AIO's 717 * may be already running. Just fail this IO with EINTR. 718 */ 719 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 720 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 721 ret = -EINTR; 722 aio_complete(iocb, ret, 0); 723 } 724 out: 725 spin_lock_irq(&ctx->ctx_lock); 726 727 if (-EIOCBRETRY == ret) { 728 /* 729 * OK, now that we are done with this iteration 730 * and know that there is more left to go, 731 * this is where we let go so that a subsequent 732 * "kick" can start the next iteration 733 */ 734 735 /* will make __queue_kicked_iocb succeed from here on */ 736 INIT_LIST_HEAD(&iocb->ki_run_list); 737 /* we must queue the next iteration ourselves, if it 738 * has already been kicked */ 739 if (kiocbIsKicked(iocb)) { 740 __queue_kicked_iocb(iocb); 741 742 /* 743 * __queue_kicked_iocb will always return 1 here, because 744 * iocb->ki_run_list is empty at this point so it should 745 * be safe to unconditionally queue the context into the 746 * work queue. 747 */ 748 aio_queue_work(ctx); 749 } 750 } 751 return ret; 752 } 753 754 /* 755 * __aio_run_iocbs: 756 * Process all pending retries queued on the ioctx 757 * run list. 758 * Assumes it is operating within the aio issuer's mm 759 * context. 760 */ 761 static int __aio_run_iocbs(struct kioctx *ctx) 762 { 763 struct kiocb *iocb; 764 struct list_head run_list; 765 766 assert_spin_locked(&ctx->ctx_lock); 767 768 list_replace_init(&ctx->run_list, &run_list); 769 while (!list_empty(&run_list)) { 770 iocb = list_entry(run_list.next, struct kiocb, 771 ki_run_list); 772 list_del(&iocb->ki_run_list); 773 /* 774 * Hold an extra reference while retrying i/o. 775 */ 776 iocb->ki_users++; /* grab extra reference */ 777 aio_run_iocb(iocb); 778 __aio_put_req(ctx, iocb); 779 } 780 if (!list_empty(&ctx->run_list)) 781 return 1; 782 return 0; 783 } 784 785 static void aio_queue_work(struct kioctx * ctx) 786 { 787 unsigned long timeout; 788 /* 789 * if someone is waiting, get the work started right 790 * away, otherwise, use a longer delay 791 */ 792 smp_mb(); 793 if (waitqueue_active(&ctx->wait)) 794 timeout = 1; 795 else 796 timeout = HZ/10; 797 queue_delayed_work(aio_wq, &ctx->wq, timeout); 798 } 799 800 /* 801 * aio_run_all_iocbs: 802 * Process all pending retries queued on the ioctx 803 * run list, and keep running them until the list 804 * stays empty. 805 * Assumes it is operating within the aio issuer's mm context. 806 */ 807 static inline void aio_run_all_iocbs(struct kioctx *ctx) 808 { 809 spin_lock_irq(&ctx->ctx_lock); 810 while (__aio_run_iocbs(ctx)) 811 ; 812 spin_unlock_irq(&ctx->ctx_lock); 813 } 814 815 /* 816 * aio_kick_handler: 817 * Work queue handler triggered to process pending 818 * retries on an ioctx. Takes on the aio issuer's 819 * mm context before running the iocbs, so that 820 * copy_xxx_user operates on the issuer's address 821 * space. 822 * Run on aiod's context. 823 */ 824 static void aio_kick_handler(struct work_struct *work) 825 { 826 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 827 mm_segment_t oldfs = get_fs(); 828 struct mm_struct *mm; 829 int requeue; 830 831 set_fs(USER_DS); 832 use_mm(ctx->mm); 833 spin_lock_irq(&ctx->ctx_lock); 834 requeue =__aio_run_iocbs(ctx); 835 mm = ctx->mm; 836 spin_unlock_irq(&ctx->ctx_lock); 837 unuse_mm(mm); 838 set_fs(oldfs); 839 /* 840 * we're in a worker thread already; no point using non-zero delay 841 */ 842 if (requeue) 843 queue_delayed_work(aio_wq, &ctx->wq, 0); 844 } 845 846 847 /* 848 * Called by kick_iocb to queue the kiocb for retry 849 * and if required activate the aio work queue to process 850 * it 851 */ 852 static void try_queue_kicked_iocb(struct kiocb *iocb) 853 { 854 struct kioctx *ctx = iocb->ki_ctx; 855 unsigned long flags; 856 int run = 0; 857 858 spin_lock_irqsave(&ctx->ctx_lock, flags); 859 /* set this inside the lock so that we can't race with aio_run_iocb() 860 * testing it and putting the iocb on the run list under the lock */ 861 if (!kiocbTryKick(iocb)) 862 run = __queue_kicked_iocb(iocb); 863 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 864 if (run) 865 aio_queue_work(ctx); 866 } 867 868 /* 869 * kick_iocb: 870 * Called typically from a wait queue callback context 871 * to trigger a retry of the iocb. 872 * The retry is usually executed by aio workqueue 873 * threads (See aio_kick_handler). 874 */ 875 void kick_iocb(struct kiocb *iocb) 876 { 877 /* sync iocbs are easy: they can only ever be executing from a 878 * single context. */ 879 if (is_sync_kiocb(iocb)) { 880 kiocbSetKicked(iocb); 881 wake_up_process(iocb->ki_obj.tsk); 882 return; 883 } 884 885 try_queue_kicked_iocb(iocb); 886 } 887 EXPORT_SYMBOL(kick_iocb); 888 889 /* aio_complete 890 * Called when the io request on the given iocb is complete. 891 * Returns true if this is the last user of the request. The 892 * only other user of the request can be the cancellation code. 893 */ 894 int aio_complete(struct kiocb *iocb, long res, long res2) 895 { 896 struct kioctx *ctx = iocb->ki_ctx; 897 struct aio_ring_info *info; 898 struct aio_ring *ring; 899 struct io_event *event; 900 unsigned long flags; 901 unsigned long tail; 902 int ret; 903 904 /* 905 * Special case handling for sync iocbs: 906 * - events go directly into the iocb for fast handling 907 * - the sync task with the iocb in its stack holds the single iocb 908 * ref, no other paths have a way to get another ref 909 * - the sync task helpfully left a reference to itself in the iocb 910 */ 911 if (is_sync_kiocb(iocb)) { 912 BUG_ON(iocb->ki_users != 1); 913 iocb->ki_user_data = res; 914 iocb->ki_users = 0; 915 wake_up_process(iocb->ki_obj.tsk); 916 return 1; 917 } 918 919 info = &ctx->ring_info; 920 921 /* add a completion event to the ring buffer. 922 * must be done holding ctx->ctx_lock to prevent 923 * other code from messing with the tail 924 * pointer since we might be called from irq 925 * context. 926 */ 927 spin_lock_irqsave(&ctx->ctx_lock, flags); 928 929 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 930 list_del_init(&iocb->ki_run_list); 931 932 /* 933 * cancelled requests don't get events, userland was given one 934 * when the event got cancelled. 935 */ 936 if (kiocbIsCancelled(iocb)) 937 goto put_rq; 938 939 ring = kmap_atomic(info->ring_pages[0]); 940 941 tail = info->tail; 942 event = aio_ring_event(info, tail); 943 if (++tail >= info->nr) 944 tail = 0; 945 946 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 947 event->data = iocb->ki_user_data; 948 event->res = res; 949 event->res2 = res2; 950 951 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 952 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 953 res, res2); 954 955 /* after flagging the request as done, we 956 * must never even look at it again 957 */ 958 smp_wmb(); /* make event visible before updating tail */ 959 960 info->tail = tail; 961 ring->tail = tail; 962 963 put_aio_ring_event(event); 964 kunmap_atomic(ring); 965 966 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 967 968 /* 969 * Check if the user asked us to deliver the result through an 970 * eventfd. The eventfd_signal() function is safe to be called 971 * from IRQ context. 972 */ 973 if (iocb->ki_eventfd != NULL) 974 eventfd_signal(iocb->ki_eventfd, 1); 975 976 put_rq: 977 /* everything turned out well, dispose of the aiocb. */ 978 ret = __aio_put_req(ctx, iocb); 979 980 /* 981 * We have to order our ring_info tail store above and test 982 * of the wait list below outside the wait lock. This is 983 * like in wake_up_bit() where clearing a bit has to be 984 * ordered with the unlocked test. 985 */ 986 smp_mb(); 987 988 if (waitqueue_active(&ctx->wait)) 989 wake_up(&ctx->wait); 990 991 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 992 return ret; 993 } 994 EXPORT_SYMBOL(aio_complete); 995 996 /* aio_read_evt 997 * Pull an event off of the ioctx's event ring. Returns the number of 998 * events fetched (0 or 1 ;-) 999 * FIXME: make this use cmpxchg. 1000 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1001 */ 1002 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1003 { 1004 struct aio_ring_info *info = &ioctx->ring_info; 1005 struct aio_ring *ring; 1006 unsigned long head; 1007 int ret = 0; 1008 1009 ring = kmap_atomic(info->ring_pages[0]); 1010 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1011 (unsigned long)ring->head, (unsigned long)ring->tail, 1012 (unsigned long)ring->nr); 1013 1014 if (ring->head == ring->tail) 1015 goto out; 1016 1017 spin_lock(&info->ring_lock); 1018 1019 head = ring->head % info->nr; 1020 if (head != ring->tail) { 1021 struct io_event *evp = aio_ring_event(info, head); 1022 *ent = *evp; 1023 head = (head + 1) % info->nr; 1024 smp_mb(); /* finish reading the event before updatng the head */ 1025 ring->head = head; 1026 ret = 1; 1027 put_aio_ring_event(evp); 1028 } 1029 spin_unlock(&info->ring_lock); 1030 1031 out: 1032 kunmap_atomic(ring); 1033 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1034 (unsigned long)ring->head, (unsigned long)ring->tail); 1035 return ret; 1036 } 1037 1038 struct aio_timeout { 1039 struct timer_list timer; 1040 int timed_out; 1041 struct task_struct *p; 1042 }; 1043 1044 static void timeout_func(unsigned long data) 1045 { 1046 struct aio_timeout *to = (struct aio_timeout *)data; 1047 1048 to->timed_out = 1; 1049 wake_up_process(to->p); 1050 } 1051 1052 static inline void init_timeout(struct aio_timeout *to) 1053 { 1054 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1055 to->timed_out = 0; 1056 to->p = current; 1057 } 1058 1059 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1060 const struct timespec *ts) 1061 { 1062 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1063 if (time_after(to->timer.expires, jiffies)) 1064 add_timer(&to->timer); 1065 else 1066 to->timed_out = 1; 1067 } 1068 1069 static inline void clear_timeout(struct aio_timeout *to) 1070 { 1071 del_singleshot_timer_sync(&to->timer); 1072 } 1073 1074 static int read_events(struct kioctx *ctx, 1075 long min_nr, long nr, 1076 struct io_event __user *event, 1077 struct timespec __user *timeout) 1078 { 1079 long start_jiffies = jiffies; 1080 struct task_struct *tsk = current; 1081 DECLARE_WAITQUEUE(wait, tsk); 1082 int ret; 1083 int i = 0; 1084 struct io_event ent; 1085 struct aio_timeout to; 1086 int retry = 0; 1087 1088 /* needed to zero any padding within an entry (there shouldn't be 1089 * any, but C is fun! 1090 */ 1091 memset(&ent, 0, sizeof(ent)); 1092 retry: 1093 ret = 0; 1094 while (likely(i < nr)) { 1095 ret = aio_read_evt(ctx, &ent); 1096 if (unlikely(ret <= 0)) 1097 break; 1098 1099 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1100 ent.data, ent.obj, ent.res, ent.res2); 1101 1102 /* Could we split the check in two? */ 1103 ret = -EFAULT; 1104 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1105 dprintk("aio: lost an event due to EFAULT.\n"); 1106 break; 1107 } 1108 ret = 0; 1109 1110 /* Good, event copied to userland, update counts. */ 1111 event ++; 1112 i ++; 1113 } 1114 1115 if (min_nr <= i) 1116 return i; 1117 if (ret) 1118 return ret; 1119 1120 /* End fast path */ 1121 1122 /* racey check, but it gets redone */ 1123 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1124 retry = 1; 1125 aio_run_all_iocbs(ctx); 1126 goto retry; 1127 } 1128 1129 init_timeout(&to); 1130 if (timeout) { 1131 struct timespec ts; 1132 ret = -EFAULT; 1133 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1134 goto out; 1135 1136 set_timeout(start_jiffies, &to, &ts); 1137 } 1138 1139 while (likely(i < nr)) { 1140 add_wait_queue_exclusive(&ctx->wait, &wait); 1141 do { 1142 set_task_state(tsk, TASK_INTERRUPTIBLE); 1143 ret = aio_read_evt(ctx, &ent); 1144 if (ret) 1145 break; 1146 if (min_nr <= i) 1147 break; 1148 if (unlikely(ctx->dead)) { 1149 ret = -EINVAL; 1150 break; 1151 } 1152 if (to.timed_out) /* Only check after read evt */ 1153 break; 1154 /* Try to only show up in io wait if there are ops 1155 * in flight */ 1156 if (ctx->reqs_active) 1157 io_schedule(); 1158 else 1159 schedule(); 1160 if (signal_pending(tsk)) { 1161 ret = -EINTR; 1162 break; 1163 } 1164 /*ret = aio_read_evt(ctx, &ent);*/ 1165 } while (1) ; 1166 1167 set_task_state(tsk, TASK_RUNNING); 1168 remove_wait_queue(&ctx->wait, &wait); 1169 1170 if (unlikely(ret <= 0)) 1171 break; 1172 1173 ret = -EFAULT; 1174 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1175 dprintk("aio: lost an event due to EFAULT.\n"); 1176 break; 1177 } 1178 1179 /* Good, event copied to userland, update counts. */ 1180 event ++; 1181 i ++; 1182 } 1183 1184 if (timeout) 1185 clear_timeout(&to); 1186 out: 1187 destroy_timer_on_stack(&to.timer); 1188 return i ? i : ret; 1189 } 1190 1191 /* Take an ioctx and remove it from the list of ioctx's. Protects 1192 * against races with itself via ->dead. 1193 */ 1194 static void io_destroy(struct kioctx *ioctx) 1195 { 1196 struct mm_struct *mm = current->mm; 1197 int was_dead; 1198 1199 /* delete the entry from the list is someone else hasn't already */ 1200 spin_lock(&mm->ioctx_lock); 1201 was_dead = ioctx->dead; 1202 ioctx->dead = 1; 1203 hlist_del_rcu(&ioctx->list); 1204 spin_unlock(&mm->ioctx_lock); 1205 1206 dprintk("aio_release(%p)\n", ioctx); 1207 if (likely(!was_dead)) 1208 put_ioctx(ioctx); /* twice for the list */ 1209 1210 kill_ctx(ioctx); 1211 1212 /* 1213 * Wake up any waiters. The setting of ctx->dead must be seen 1214 * by other CPUs at this point. Right now, we rely on the 1215 * locking done by the above calls to ensure this consistency. 1216 */ 1217 wake_up_all(&ioctx->wait); 1218 } 1219 1220 /* sys_io_setup: 1221 * Create an aio_context capable of receiving at least nr_events. 1222 * ctxp must not point to an aio_context that already exists, and 1223 * must be initialized to 0 prior to the call. On successful 1224 * creation of the aio_context, *ctxp is filled in with the resulting 1225 * handle. May fail with -EINVAL if *ctxp is not initialized, 1226 * if the specified nr_events exceeds internal limits. May fail 1227 * with -EAGAIN if the specified nr_events exceeds the user's limit 1228 * of available events. May fail with -ENOMEM if insufficient kernel 1229 * resources are available. May fail with -EFAULT if an invalid 1230 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1231 * implemented. 1232 */ 1233 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1234 { 1235 struct kioctx *ioctx = NULL; 1236 unsigned long ctx; 1237 long ret; 1238 1239 ret = get_user(ctx, ctxp); 1240 if (unlikely(ret)) 1241 goto out; 1242 1243 ret = -EINVAL; 1244 if (unlikely(ctx || nr_events == 0)) { 1245 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1246 ctx, nr_events); 1247 goto out; 1248 } 1249 1250 ioctx = ioctx_alloc(nr_events); 1251 ret = PTR_ERR(ioctx); 1252 if (!IS_ERR(ioctx)) { 1253 ret = put_user(ioctx->user_id, ctxp); 1254 if (ret) 1255 io_destroy(ioctx); 1256 put_ioctx(ioctx); 1257 } 1258 1259 out: 1260 return ret; 1261 } 1262 1263 /* sys_io_destroy: 1264 * Destroy the aio_context specified. May cancel any outstanding 1265 * AIOs and block on completion. Will fail with -ENOSYS if not 1266 * implemented. May fail with -EINVAL if the context pointed to 1267 * is invalid. 1268 */ 1269 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1270 { 1271 struct kioctx *ioctx = lookup_ioctx(ctx); 1272 if (likely(NULL != ioctx)) { 1273 io_destroy(ioctx); 1274 put_ioctx(ioctx); 1275 return 0; 1276 } 1277 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1278 return -EINVAL; 1279 } 1280 1281 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1282 { 1283 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1284 1285 BUG_ON(ret <= 0); 1286 1287 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1288 ssize_t this = min((ssize_t)iov->iov_len, ret); 1289 iov->iov_base += this; 1290 iov->iov_len -= this; 1291 iocb->ki_left -= this; 1292 ret -= this; 1293 if (iov->iov_len == 0) { 1294 iocb->ki_cur_seg++; 1295 iov++; 1296 } 1297 } 1298 1299 /* the caller should not have done more io than what fit in 1300 * the remaining iovecs */ 1301 BUG_ON(ret > 0 && iocb->ki_left == 0); 1302 } 1303 1304 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1305 { 1306 struct file *file = iocb->ki_filp; 1307 struct address_space *mapping = file->f_mapping; 1308 struct inode *inode = mapping->host; 1309 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1310 unsigned long, loff_t); 1311 ssize_t ret = 0; 1312 unsigned short opcode; 1313 1314 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1315 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1316 rw_op = file->f_op->aio_read; 1317 opcode = IOCB_CMD_PREADV; 1318 } else { 1319 rw_op = file->f_op->aio_write; 1320 opcode = IOCB_CMD_PWRITEV; 1321 } 1322 1323 /* This matches the pread()/pwrite() logic */ 1324 if (iocb->ki_pos < 0) 1325 return -EINVAL; 1326 1327 do { 1328 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1329 iocb->ki_nr_segs - iocb->ki_cur_seg, 1330 iocb->ki_pos); 1331 if (ret > 0) 1332 aio_advance_iovec(iocb, ret); 1333 1334 /* retry all partial writes. retry partial reads as long as its a 1335 * regular file. */ 1336 } while (ret > 0 && iocb->ki_left > 0 && 1337 (opcode == IOCB_CMD_PWRITEV || 1338 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1339 1340 /* This means we must have transferred all that we could */ 1341 /* No need to retry anymore */ 1342 if ((ret == 0) || (iocb->ki_left == 0)) 1343 ret = iocb->ki_nbytes - iocb->ki_left; 1344 1345 /* If we managed to write some out we return that, rather than 1346 * the eventual error. */ 1347 if (opcode == IOCB_CMD_PWRITEV 1348 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1349 && iocb->ki_nbytes - iocb->ki_left) 1350 ret = iocb->ki_nbytes - iocb->ki_left; 1351 1352 return ret; 1353 } 1354 1355 static ssize_t aio_fdsync(struct kiocb *iocb) 1356 { 1357 struct file *file = iocb->ki_filp; 1358 ssize_t ret = -EINVAL; 1359 1360 if (file->f_op->aio_fsync) 1361 ret = file->f_op->aio_fsync(iocb, 1); 1362 return ret; 1363 } 1364 1365 static ssize_t aio_fsync(struct kiocb *iocb) 1366 { 1367 struct file *file = iocb->ki_filp; 1368 ssize_t ret = -EINVAL; 1369 1370 if (file->f_op->aio_fsync) 1371 ret = file->f_op->aio_fsync(iocb, 0); 1372 return ret; 1373 } 1374 1375 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1376 { 1377 ssize_t ret; 1378 1379 #ifdef CONFIG_COMPAT 1380 if (compat) 1381 ret = compat_rw_copy_check_uvector(type, 1382 (struct compat_iovec __user *)kiocb->ki_buf, 1383 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1384 &kiocb->ki_iovec); 1385 else 1386 #endif 1387 ret = rw_copy_check_uvector(type, 1388 (struct iovec __user *)kiocb->ki_buf, 1389 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1390 &kiocb->ki_iovec); 1391 if (ret < 0) 1392 goto out; 1393 1394 ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret); 1395 if (ret < 0) 1396 goto out; 1397 1398 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1399 kiocb->ki_cur_seg = 0; 1400 /* ki_nbytes/left now reflect bytes instead of segs */ 1401 kiocb->ki_nbytes = ret; 1402 kiocb->ki_left = ret; 1403 1404 ret = 0; 1405 out: 1406 return ret; 1407 } 1408 1409 static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb) 1410 { 1411 int bytes; 1412 1413 bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left); 1414 if (bytes < 0) 1415 return bytes; 1416 1417 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1418 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1419 kiocb->ki_iovec->iov_len = bytes; 1420 kiocb->ki_nr_segs = 1; 1421 kiocb->ki_cur_seg = 0; 1422 return 0; 1423 } 1424 1425 /* 1426 * aio_setup_iocb: 1427 * Performs the initial checks and aio retry method 1428 * setup for the kiocb at the time of io submission. 1429 */ 1430 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1431 { 1432 struct file *file = kiocb->ki_filp; 1433 ssize_t ret = 0; 1434 1435 switch (kiocb->ki_opcode) { 1436 case IOCB_CMD_PREAD: 1437 ret = -EBADF; 1438 if (unlikely(!(file->f_mode & FMODE_READ))) 1439 break; 1440 ret = -EFAULT; 1441 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1442 kiocb->ki_left))) 1443 break; 1444 ret = aio_setup_single_vector(READ, file, kiocb); 1445 if (ret) 1446 break; 1447 ret = -EINVAL; 1448 if (file->f_op->aio_read) 1449 kiocb->ki_retry = aio_rw_vect_retry; 1450 break; 1451 case IOCB_CMD_PWRITE: 1452 ret = -EBADF; 1453 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1454 break; 1455 ret = -EFAULT; 1456 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1457 kiocb->ki_left))) 1458 break; 1459 ret = aio_setup_single_vector(WRITE, file, kiocb); 1460 if (ret) 1461 break; 1462 ret = -EINVAL; 1463 if (file->f_op->aio_write) 1464 kiocb->ki_retry = aio_rw_vect_retry; 1465 break; 1466 case IOCB_CMD_PREADV: 1467 ret = -EBADF; 1468 if (unlikely(!(file->f_mode & FMODE_READ))) 1469 break; 1470 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1471 if (ret) 1472 break; 1473 ret = -EINVAL; 1474 if (file->f_op->aio_read) 1475 kiocb->ki_retry = aio_rw_vect_retry; 1476 break; 1477 case IOCB_CMD_PWRITEV: 1478 ret = -EBADF; 1479 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1480 break; 1481 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1482 if (ret) 1483 break; 1484 ret = -EINVAL; 1485 if (file->f_op->aio_write) 1486 kiocb->ki_retry = aio_rw_vect_retry; 1487 break; 1488 case IOCB_CMD_FDSYNC: 1489 ret = -EINVAL; 1490 if (file->f_op->aio_fsync) 1491 kiocb->ki_retry = aio_fdsync; 1492 break; 1493 case IOCB_CMD_FSYNC: 1494 ret = -EINVAL; 1495 if (file->f_op->aio_fsync) 1496 kiocb->ki_retry = aio_fsync; 1497 break; 1498 default: 1499 dprintk("EINVAL: io_submit: no operation provided\n"); 1500 ret = -EINVAL; 1501 } 1502 1503 if (!kiocb->ki_retry) 1504 return ret; 1505 1506 return 0; 1507 } 1508 1509 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1510 struct iocb *iocb, struct kiocb_batch *batch, 1511 bool compat) 1512 { 1513 struct kiocb *req; 1514 struct file *file; 1515 ssize_t ret; 1516 1517 /* enforce forwards compatibility on users */ 1518 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1519 pr_debug("EINVAL: io_submit: reserve field set\n"); 1520 return -EINVAL; 1521 } 1522 1523 /* prevent overflows */ 1524 if (unlikely( 1525 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1526 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1527 ((ssize_t)iocb->aio_nbytes < 0) 1528 )) { 1529 pr_debug("EINVAL: io_submit: overflow check\n"); 1530 return -EINVAL; 1531 } 1532 1533 file = fget(iocb->aio_fildes); 1534 if (unlikely(!file)) 1535 return -EBADF; 1536 1537 req = aio_get_req(ctx, batch); /* returns with 2 references to req */ 1538 if (unlikely(!req)) { 1539 fput(file); 1540 return -EAGAIN; 1541 } 1542 req->ki_filp = file; 1543 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1544 /* 1545 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1546 * instance of the file* now. The file descriptor must be 1547 * an eventfd() fd, and will be signaled for each completed 1548 * event using the eventfd_signal() function. 1549 */ 1550 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1551 if (IS_ERR(req->ki_eventfd)) { 1552 ret = PTR_ERR(req->ki_eventfd); 1553 req->ki_eventfd = NULL; 1554 goto out_put_req; 1555 } 1556 } 1557 1558 ret = put_user(req->ki_key, &user_iocb->aio_key); 1559 if (unlikely(ret)) { 1560 dprintk("EFAULT: aio_key\n"); 1561 goto out_put_req; 1562 } 1563 1564 req->ki_obj.user = user_iocb; 1565 req->ki_user_data = iocb->aio_data; 1566 req->ki_pos = iocb->aio_offset; 1567 1568 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1569 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1570 req->ki_opcode = iocb->aio_lio_opcode; 1571 1572 ret = aio_setup_iocb(req, compat); 1573 1574 if (ret) 1575 goto out_put_req; 1576 1577 spin_lock_irq(&ctx->ctx_lock); 1578 /* 1579 * We could have raced with io_destroy() and are currently holding a 1580 * reference to ctx which should be destroyed. We cannot submit IO 1581 * since ctx gets freed as soon as io_submit() puts its reference. The 1582 * check here is reliable: io_destroy() sets ctx->dead before waiting 1583 * for outstanding IO and the barrier between these two is realized by 1584 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1585 * increment ctx->reqs_active before checking for ctx->dead and the 1586 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1587 * don't see ctx->dead set here, io_destroy() waits for our IO to 1588 * finish. 1589 */ 1590 if (ctx->dead) { 1591 spin_unlock_irq(&ctx->ctx_lock); 1592 ret = -EINVAL; 1593 goto out_put_req; 1594 } 1595 aio_run_iocb(req); 1596 if (!list_empty(&ctx->run_list)) { 1597 /* drain the run list */ 1598 while (__aio_run_iocbs(ctx)) 1599 ; 1600 } 1601 spin_unlock_irq(&ctx->ctx_lock); 1602 1603 aio_put_req(req); /* drop extra ref to req */ 1604 return 0; 1605 1606 out_put_req: 1607 aio_put_req(req); /* drop extra ref to req */ 1608 aio_put_req(req); /* drop i/o ref to req */ 1609 return ret; 1610 } 1611 1612 long do_io_submit(aio_context_t ctx_id, long nr, 1613 struct iocb __user *__user *iocbpp, bool compat) 1614 { 1615 struct kioctx *ctx; 1616 long ret = 0; 1617 int i = 0; 1618 struct blk_plug plug; 1619 struct kiocb_batch batch; 1620 1621 if (unlikely(nr < 0)) 1622 return -EINVAL; 1623 1624 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1625 nr = LONG_MAX/sizeof(*iocbpp); 1626 1627 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1628 return -EFAULT; 1629 1630 ctx = lookup_ioctx(ctx_id); 1631 if (unlikely(!ctx)) { 1632 pr_debug("EINVAL: io_submit: invalid context id\n"); 1633 return -EINVAL; 1634 } 1635 1636 kiocb_batch_init(&batch, nr); 1637 1638 blk_start_plug(&plug); 1639 1640 /* 1641 * AKPM: should this return a partial result if some of the IOs were 1642 * successfully submitted? 1643 */ 1644 for (i=0; i<nr; i++) { 1645 struct iocb __user *user_iocb; 1646 struct iocb tmp; 1647 1648 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1649 ret = -EFAULT; 1650 break; 1651 } 1652 1653 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1654 ret = -EFAULT; 1655 break; 1656 } 1657 1658 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); 1659 if (ret) 1660 break; 1661 } 1662 blk_finish_plug(&plug); 1663 1664 kiocb_batch_free(ctx, &batch); 1665 put_ioctx(ctx); 1666 return i ? i : ret; 1667 } 1668 1669 /* sys_io_submit: 1670 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1671 * the number of iocbs queued. May return -EINVAL if the aio_context 1672 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1673 * *iocbpp[0] is not properly initialized, if the operation specified 1674 * is invalid for the file descriptor in the iocb. May fail with 1675 * -EFAULT if any of the data structures point to invalid data. May 1676 * fail with -EBADF if the file descriptor specified in the first 1677 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1678 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1679 * fail with -ENOSYS if not implemented. 1680 */ 1681 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1682 struct iocb __user * __user *, iocbpp) 1683 { 1684 return do_io_submit(ctx_id, nr, iocbpp, 0); 1685 } 1686 1687 /* lookup_kiocb 1688 * Finds a given iocb for cancellation. 1689 */ 1690 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1691 u32 key) 1692 { 1693 struct list_head *pos; 1694 1695 assert_spin_locked(&ctx->ctx_lock); 1696 1697 /* TODO: use a hash or array, this sucks. */ 1698 list_for_each(pos, &ctx->active_reqs) { 1699 struct kiocb *kiocb = list_kiocb(pos); 1700 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1701 return kiocb; 1702 } 1703 return NULL; 1704 } 1705 1706 /* sys_io_cancel: 1707 * Attempts to cancel an iocb previously passed to io_submit. If 1708 * the operation is successfully cancelled, the resulting event is 1709 * copied into the memory pointed to by result without being placed 1710 * into the completion queue and 0 is returned. May fail with 1711 * -EFAULT if any of the data structures pointed to are invalid. 1712 * May fail with -EINVAL if aio_context specified by ctx_id is 1713 * invalid. May fail with -EAGAIN if the iocb specified was not 1714 * cancelled. Will fail with -ENOSYS if not implemented. 1715 */ 1716 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1717 struct io_event __user *, result) 1718 { 1719 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1720 struct kioctx *ctx; 1721 struct kiocb *kiocb; 1722 u32 key; 1723 int ret; 1724 1725 ret = get_user(key, &iocb->aio_key); 1726 if (unlikely(ret)) 1727 return -EFAULT; 1728 1729 ctx = lookup_ioctx(ctx_id); 1730 if (unlikely(!ctx)) 1731 return -EINVAL; 1732 1733 spin_lock_irq(&ctx->ctx_lock); 1734 ret = -EAGAIN; 1735 kiocb = lookup_kiocb(ctx, iocb, key); 1736 if (kiocb && kiocb->ki_cancel) { 1737 cancel = kiocb->ki_cancel; 1738 kiocb->ki_users ++; 1739 kiocbSetCancelled(kiocb); 1740 } else 1741 cancel = NULL; 1742 spin_unlock_irq(&ctx->ctx_lock); 1743 1744 if (NULL != cancel) { 1745 struct io_event tmp; 1746 pr_debug("calling cancel\n"); 1747 memset(&tmp, 0, sizeof(tmp)); 1748 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1749 tmp.data = kiocb->ki_user_data; 1750 ret = cancel(kiocb, &tmp); 1751 if (!ret) { 1752 /* Cancellation succeeded -- copy the result 1753 * into the user's buffer. 1754 */ 1755 if (copy_to_user(result, &tmp, sizeof(tmp))) 1756 ret = -EFAULT; 1757 } 1758 } else 1759 ret = -EINVAL; 1760 1761 put_ioctx(ctx); 1762 1763 return ret; 1764 } 1765 1766 /* io_getevents: 1767 * Attempts to read at least min_nr events and up to nr events from 1768 * the completion queue for the aio_context specified by ctx_id. If 1769 * it succeeds, the number of read events is returned. May fail with 1770 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1771 * out of range, if timeout is out of range. May fail with -EFAULT 1772 * if any of the memory specified is invalid. May return 0 or 1773 * < min_nr if the timeout specified by timeout has elapsed 1774 * before sufficient events are available, where timeout == NULL 1775 * specifies an infinite timeout. Note that the timeout pointed to by 1776 * timeout is relative and will be updated if not NULL and the 1777 * operation blocks. Will fail with -ENOSYS if not implemented. 1778 */ 1779 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1780 long, min_nr, 1781 long, nr, 1782 struct io_event __user *, events, 1783 struct timespec __user *, timeout) 1784 { 1785 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1786 long ret = -EINVAL; 1787 1788 if (likely(ioctx)) { 1789 if (likely(min_nr <= nr && min_nr >= 0)) 1790 ret = read_events(ioctx, min_nr, nr, events, timeout); 1791 put_ioctx(ioctx); 1792 } 1793 1794 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1795 return ret; 1796 } 1797