xref: /openbmc/linux/fs/aio.c (revision 90741096769bd75152a5fe397343e5893c7d905a)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->private_lock);
320 		i_mapping->private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	for (i = 0; i < table->nr; i++) {
365 		struct kioctx *ctx;
366 
367 		ctx = rcu_dereference(table->table[i]);
368 		if (ctx && ctx->aio_ring_file == file) {
369 			if (!atomic_read(&ctx->dead)) {
370 				ctx->user_id = ctx->mmap_base = vma->vm_start;
371 				res = 0;
372 			}
373 			break;
374 		}
375 	}
376 
377 	rcu_read_unlock();
378 	spin_unlock(&mm->ioctx_lock);
379 	return res;
380 }
381 
382 static const struct vm_operations_struct aio_ring_vm_ops = {
383 	.mremap		= aio_ring_mremap,
384 #if IS_ENABLED(CONFIG_MMU)
385 	.fault		= filemap_fault,
386 	.map_pages	= filemap_map_pages,
387 	.page_mkwrite	= filemap_page_mkwrite,
388 #endif
389 };
390 
391 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
392 {
393 	vma->vm_flags |= VM_DONTEXPAND;
394 	vma->vm_ops = &aio_ring_vm_ops;
395 	return 0;
396 }
397 
398 static const struct file_operations aio_ring_fops = {
399 	.mmap = aio_ring_mmap,
400 };
401 
402 #if IS_ENABLED(CONFIG_MIGRATION)
403 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
404 			struct folio *src, enum migrate_mode mode)
405 {
406 	struct kioctx *ctx;
407 	unsigned long flags;
408 	pgoff_t idx;
409 	int rc;
410 
411 	/*
412 	 * We cannot support the _NO_COPY case here, because copy needs to
413 	 * happen under the ctx->completion_lock. That does not work with the
414 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
415 	 */
416 	if (mode == MIGRATE_SYNC_NO_COPY)
417 		return -EINVAL;
418 
419 	rc = 0;
420 
421 	/* mapping->private_lock here protects against the kioctx teardown.  */
422 	spin_lock(&mapping->private_lock);
423 	ctx = mapping->private_data;
424 	if (!ctx) {
425 		rc = -EINVAL;
426 		goto out;
427 	}
428 
429 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
430 	 * to the ring's head, and prevents page migration from mucking in
431 	 * a partially initialized kiotx.
432 	 */
433 	if (!mutex_trylock(&ctx->ring_lock)) {
434 		rc = -EAGAIN;
435 		goto out;
436 	}
437 
438 	idx = src->index;
439 	if (idx < (pgoff_t)ctx->nr_pages) {
440 		/* Make sure the old folio hasn't already been changed */
441 		if (ctx->ring_pages[idx] != &src->page)
442 			rc = -EAGAIN;
443 	} else
444 		rc = -EINVAL;
445 
446 	if (rc != 0)
447 		goto out_unlock;
448 
449 	/* Writeback must be complete */
450 	BUG_ON(folio_test_writeback(src));
451 	folio_get(dst);
452 
453 	rc = folio_migrate_mapping(mapping, dst, src, 1);
454 	if (rc != MIGRATEPAGE_SUCCESS) {
455 		folio_put(dst);
456 		goto out_unlock;
457 	}
458 
459 	/* Take completion_lock to prevent other writes to the ring buffer
460 	 * while the old folio is copied to the new.  This prevents new
461 	 * events from being lost.
462 	 */
463 	spin_lock_irqsave(&ctx->completion_lock, flags);
464 	folio_migrate_copy(dst, src);
465 	BUG_ON(ctx->ring_pages[idx] != &src->page);
466 	ctx->ring_pages[idx] = &dst->page;
467 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
468 
469 	/* The old folio is no longer accessible. */
470 	folio_put(src);
471 
472 out_unlock:
473 	mutex_unlock(&ctx->ring_lock);
474 out:
475 	spin_unlock(&mapping->private_lock);
476 	return rc;
477 }
478 #else
479 #define aio_migrate_folio NULL
480 #endif
481 
482 static const struct address_space_operations aio_ctx_aops = {
483 	.dirty_folio	= noop_dirty_folio,
484 	.migrate_folio	= aio_migrate_folio,
485 };
486 
487 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
488 {
489 	struct aio_ring *ring;
490 	struct mm_struct *mm = current->mm;
491 	unsigned long size, unused;
492 	int nr_pages;
493 	int i;
494 	struct file *file;
495 
496 	/* Compensate for the ring buffer's head/tail overlap entry */
497 	nr_events += 2;	/* 1 is required, 2 for good luck */
498 
499 	size = sizeof(struct aio_ring);
500 	size += sizeof(struct io_event) * nr_events;
501 
502 	nr_pages = PFN_UP(size);
503 	if (nr_pages < 0)
504 		return -EINVAL;
505 
506 	file = aio_private_file(ctx, nr_pages);
507 	if (IS_ERR(file)) {
508 		ctx->aio_ring_file = NULL;
509 		return -ENOMEM;
510 	}
511 
512 	ctx->aio_ring_file = file;
513 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
514 			/ sizeof(struct io_event);
515 
516 	ctx->ring_pages = ctx->internal_pages;
517 	if (nr_pages > AIO_RING_PAGES) {
518 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
519 					  GFP_KERNEL);
520 		if (!ctx->ring_pages) {
521 			put_aio_ring_file(ctx);
522 			return -ENOMEM;
523 		}
524 	}
525 
526 	for (i = 0; i < nr_pages; i++) {
527 		struct page *page;
528 		page = find_or_create_page(file->f_mapping,
529 					   i, GFP_HIGHUSER | __GFP_ZERO);
530 		if (!page)
531 			break;
532 		pr_debug("pid(%d) page[%d]->count=%d\n",
533 			 current->pid, i, page_count(page));
534 		SetPageUptodate(page);
535 		unlock_page(page);
536 
537 		ctx->ring_pages[i] = page;
538 	}
539 	ctx->nr_pages = i;
540 
541 	if (unlikely(i != nr_pages)) {
542 		aio_free_ring(ctx);
543 		return -ENOMEM;
544 	}
545 
546 	ctx->mmap_size = nr_pages * PAGE_SIZE;
547 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
548 
549 	if (mmap_write_lock_killable(mm)) {
550 		ctx->mmap_size = 0;
551 		aio_free_ring(ctx);
552 		return -EINTR;
553 	}
554 
555 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
556 				 PROT_READ | PROT_WRITE,
557 				 MAP_SHARED, 0, &unused, NULL);
558 	mmap_write_unlock(mm);
559 	if (IS_ERR((void *)ctx->mmap_base)) {
560 		ctx->mmap_size = 0;
561 		aio_free_ring(ctx);
562 		return -ENOMEM;
563 	}
564 
565 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
566 
567 	ctx->user_id = ctx->mmap_base;
568 	ctx->nr_events = nr_events; /* trusted copy */
569 
570 	ring = kmap_atomic(ctx->ring_pages[0]);
571 	ring->nr = nr_events;	/* user copy */
572 	ring->id = ~0U;
573 	ring->head = ring->tail = 0;
574 	ring->magic = AIO_RING_MAGIC;
575 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
576 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
577 	ring->header_length = sizeof(struct aio_ring);
578 	kunmap_atomic(ring);
579 	flush_dcache_page(ctx->ring_pages[0]);
580 
581 	return 0;
582 }
583 
584 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
585 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
586 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
587 
588 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
589 {
590 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
591 	struct kioctx *ctx = req->ki_ctx;
592 	unsigned long flags;
593 
594 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
595 		return;
596 
597 	spin_lock_irqsave(&ctx->ctx_lock, flags);
598 	list_add_tail(&req->ki_list, &ctx->active_reqs);
599 	req->ki_cancel = cancel;
600 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
601 }
602 EXPORT_SYMBOL(kiocb_set_cancel_fn);
603 
604 /*
605  * free_ioctx() should be RCU delayed to synchronize against the RCU
606  * protected lookup_ioctx() and also needs process context to call
607  * aio_free_ring().  Use rcu_work.
608  */
609 static void free_ioctx(struct work_struct *work)
610 {
611 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
612 					  free_rwork);
613 	pr_debug("freeing %p\n", ctx);
614 
615 	aio_free_ring(ctx);
616 	free_percpu(ctx->cpu);
617 	percpu_ref_exit(&ctx->reqs);
618 	percpu_ref_exit(&ctx->users);
619 	kmem_cache_free(kioctx_cachep, ctx);
620 }
621 
622 static void free_ioctx_reqs(struct percpu_ref *ref)
623 {
624 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
625 
626 	/* At this point we know that there are no any in-flight requests */
627 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
628 		complete(&ctx->rq_wait->comp);
629 
630 	/* Synchronize against RCU protected table->table[] dereferences */
631 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
632 	queue_rcu_work(system_wq, &ctx->free_rwork);
633 }
634 
635 /*
636  * When this function runs, the kioctx has been removed from the "hash table"
637  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
638  * now it's safe to cancel any that need to be.
639  */
640 static void free_ioctx_users(struct percpu_ref *ref)
641 {
642 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
643 	struct aio_kiocb *req;
644 
645 	spin_lock_irq(&ctx->ctx_lock);
646 
647 	while (!list_empty(&ctx->active_reqs)) {
648 		req = list_first_entry(&ctx->active_reqs,
649 				       struct aio_kiocb, ki_list);
650 		req->ki_cancel(&req->rw);
651 		list_del_init(&req->ki_list);
652 	}
653 
654 	spin_unlock_irq(&ctx->ctx_lock);
655 
656 	percpu_ref_kill(&ctx->reqs);
657 	percpu_ref_put(&ctx->reqs);
658 }
659 
660 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
661 {
662 	unsigned i, new_nr;
663 	struct kioctx_table *table, *old;
664 	struct aio_ring *ring;
665 
666 	spin_lock(&mm->ioctx_lock);
667 	table = rcu_dereference_raw(mm->ioctx_table);
668 
669 	while (1) {
670 		if (table)
671 			for (i = 0; i < table->nr; i++)
672 				if (!rcu_access_pointer(table->table[i])) {
673 					ctx->id = i;
674 					rcu_assign_pointer(table->table[i], ctx);
675 					spin_unlock(&mm->ioctx_lock);
676 
677 					/* While kioctx setup is in progress,
678 					 * we are protected from page migration
679 					 * changes ring_pages by ->ring_lock.
680 					 */
681 					ring = kmap_atomic(ctx->ring_pages[0]);
682 					ring->id = ctx->id;
683 					kunmap_atomic(ring);
684 					return 0;
685 				}
686 
687 		new_nr = (table ? table->nr : 1) * 4;
688 		spin_unlock(&mm->ioctx_lock);
689 
690 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
691 		if (!table)
692 			return -ENOMEM;
693 
694 		table->nr = new_nr;
695 
696 		spin_lock(&mm->ioctx_lock);
697 		old = rcu_dereference_raw(mm->ioctx_table);
698 
699 		if (!old) {
700 			rcu_assign_pointer(mm->ioctx_table, table);
701 		} else if (table->nr > old->nr) {
702 			memcpy(table->table, old->table,
703 			       old->nr * sizeof(struct kioctx *));
704 
705 			rcu_assign_pointer(mm->ioctx_table, table);
706 			kfree_rcu(old, rcu);
707 		} else {
708 			kfree(table);
709 			table = old;
710 		}
711 	}
712 }
713 
714 static void aio_nr_sub(unsigned nr)
715 {
716 	spin_lock(&aio_nr_lock);
717 	if (WARN_ON(aio_nr - nr > aio_nr))
718 		aio_nr = 0;
719 	else
720 		aio_nr -= nr;
721 	spin_unlock(&aio_nr_lock);
722 }
723 
724 /* ioctx_alloc
725  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
726  */
727 static struct kioctx *ioctx_alloc(unsigned nr_events)
728 {
729 	struct mm_struct *mm = current->mm;
730 	struct kioctx *ctx;
731 	int err = -ENOMEM;
732 
733 	/*
734 	 * Store the original nr_events -- what userspace passed to io_setup(),
735 	 * for counting against the global limit -- before it changes.
736 	 */
737 	unsigned int max_reqs = nr_events;
738 
739 	/*
740 	 * We keep track of the number of available ringbuffer slots, to prevent
741 	 * overflow (reqs_available), and we also use percpu counters for this.
742 	 *
743 	 * So since up to half the slots might be on other cpu's percpu counters
744 	 * and unavailable, double nr_events so userspace sees what they
745 	 * expected: additionally, we move req_batch slots to/from percpu
746 	 * counters at a time, so make sure that isn't 0:
747 	 */
748 	nr_events = max(nr_events, num_possible_cpus() * 4);
749 	nr_events *= 2;
750 
751 	/* Prevent overflows */
752 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
753 		pr_debug("ENOMEM: nr_events too high\n");
754 		return ERR_PTR(-EINVAL);
755 	}
756 
757 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
758 		return ERR_PTR(-EAGAIN);
759 
760 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
761 	if (!ctx)
762 		return ERR_PTR(-ENOMEM);
763 
764 	ctx->max_reqs = max_reqs;
765 
766 	spin_lock_init(&ctx->ctx_lock);
767 	spin_lock_init(&ctx->completion_lock);
768 	mutex_init(&ctx->ring_lock);
769 	/* Protect against page migration throughout kiotx setup by keeping
770 	 * the ring_lock mutex held until setup is complete. */
771 	mutex_lock(&ctx->ring_lock);
772 	init_waitqueue_head(&ctx->wait);
773 
774 	INIT_LIST_HEAD(&ctx->active_reqs);
775 
776 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
777 		goto err;
778 
779 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
780 		goto err;
781 
782 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
783 	if (!ctx->cpu)
784 		goto err;
785 
786 	err = aio_setup_ring(ctx, nr_events);
787 	if (err < 0)
788 		goto err;
789 
790 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
791 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
792 	if (ctx->req_batch < 1)
793 		ctx->req_batch = 1;
794 
795 	/* limit the number of system wide aios */
796 	spin_lock(&aio_nr_lock);
797 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
798 	    aio_nr + ctx->max_reqs < aio_nr) {
799 		spin_unlock(&aio_nr_lock);
800 		err = -EAGAIN;
801 		goto err_ctx;
802 	}
803 	aio_nr += ctx->max_reqs;
804 	spin_unlock(&aio_nr_lock);
805 
806 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
807 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
808 
809 	err = ioctx_add_table(ctx, mm);
810 	if (err)
811 		goto err_cleanup;
812 
813 	/* Release the ring_lock mutex now that all setup is complete. */
814 	mutex_unlock(&ctx->ring_lock);
815 
816 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
817 		 ctx, ctx->user_id, mm, ctx->nr_events);
818 	return ctx;
819 
820 err_cleanup:
821 	aio_nr_sub(ctx->max_reqs);
822 err_ctx:
823 	atomic_set(&ctx->dead, 1);
824 	if (ctx->mmap_size)
825 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
826 	aio_free_ring(ctx);
827 err:
828 	mutex_unlock(&ctx->ring_lock);
829 	free_percpu(ctx->cpu);
830 	percpu_ref_exit(&ctx->reqs);
831 	percpu_ref_exit(&ctx->users);
832 	kmem_cache_free(kioctx_cachep, ctx);
833 	pr_debug("error allocating ioctx %d\n", err);
834 	return ERR_PTR(err);
835 }
836 
837 /* kill_ioctx
838  *	Cancels all outstanding aio requests on an aio context.  Used
839  *	when the processes owning a context have all exited to encourage
840  *	the rapid destruction of the kioctx.
841  */
842 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
843 		      struct ctx_rq_wait *wait)
844 {
845 	struct kioctx_table *table;
846 
847 	spin_lock(&mm->ioctx_lock);
848 	if (atomic_xchg(&ctx->dead, 1)) {
849 		spin_unlock(&mm->ioctx_lock);
850 		return -EINVAL;
851 	}
852 
853 	table = rcu_dereference_raw(mm->ioctx_table);
854 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
855 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
856 	spin_unlock(&mm->ioctx_lock);
857 
858 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
859 	wake_up_all(&ctx->wait);
860 
861 	/*
862 	 * It'd be more correct to do this in free_ioctx(), after all
863 	 * the outstanding kiocbs have finished - but by then io_destroy
864 	 * has already returned, so io_setup() could potentially return
865 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
866 	 *  could tell).
867 	 */
868 	aio_nr_sub(ctx->max_reqs);
869 
870 	if (ctx->mmap_size)
871 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
872 
873 	ctx->rq_wait = wait;
874 	percpu_ref_kill(&ctx->users);
875 	return 0;
876 }
877 
878 /*
879  * exit_aio: called when the last user of mm goes away.  At this point, there is
880  * no way for any new requests to be submited or any of the io_* syscalls to be
881  * called on the context.
882  *
883  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
884  * them.
885  */
886 void exit_aio(struct mm_struct *mm)
887 {
888 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
889 	struct ctx_rq_wait wait;
890 	int i, skipped;
891 
892 	if (!table)
893 		return;
894 
895 	atomic_set(&wait.count, table->nr);
896 	init_completion(&wait.comp);
897 
898 	skipped = 0;
899 	for (i = 0; i < table->nr; ++i) {
900 		struct kioctx *ctx =
901 			rcu_dereference_protected(table->table[i], true);
902 
903 		if (!ctx) {
904 			skipped++;
905 			continue;
906 		}
907 
908 		/*
909 		 * We don't need to bother with munmap() here - exit_mmap(mm)
910 		 * is coming and it'll unmap everything. And we simply can't,
911 		 * this is not necessarily our ->mm.
912 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
913 		 * that it needs to unmap the area, just set it to 0.
914 		 */
915 		ctx->mmap_size = 0;
916 		kill_ioctx(mm, ctx, &wait);
917 	}
918 
919 	if (!atomic_sub_and_test(skipped, &wait.count)) {
920 		/* Wait until all IO for the context are done. */
921 		wait_for_completion(&wait.comp);
922 	}
923 
924 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
925 	kfree(table);
926 }
927 
928 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
929 {
930 	struct kioctx_cpu *kcpu;
931 	unsigned long flags;
932 
933 	local_irq_save(flags);
934 	kcpu = this_cpu_ptr(ctx->cpu);
935 	kcpu->reqs_available += nr;
936 
937 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
938 		kcpu->reqs_available -= ctx->req_batch;
939 		atomic_add(ctx->req_batch, &ctx->reqs_available);
940 	}
941 
942 	local_irq_restore(flags);
943 }
944 
945 static bool __get_reqs_available(struct kioctx *ctx)
946 {
947 	struct kioctx_cpu *kcpu;
948 	bool ret = false;
949 	unsigned long flags;
950 
951 	local_irq_save(flags);
952 	kcpu = this_cpu_ptr(ctx->cpu);
953 	if (!kcpu->reqs_available) {
954 		int avail = atomic_read(&ctx->reqs_available);
955 
956 		do {
957 			if (avail < ctx->req_batch)
958 				goto out;
959 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
960 					     &avail, avail - ctx->req_batch));
961 
962 		kcpu->reqs_available += ctx->req_batch;
963 	}
964 
965 	ret = true;
966 	kcpu->reqs_available--;
967 out:
968 	local_irq_restore(flags);
969 	return ret;
970 }
971 
972 /* refill_reqs_available
973  *	Updates the reqs_available reference counts used for tracking the
974  *	number of free slots in the completion ring.  This can be called
975  *	from aio_complete() (to optimistically update reqs_available) or
976  *	from aio_get_req() (the we're out of events case).  It must be
977  *	called holding ctx->completion_lock.
978  */
979 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
980                                   unsigned tail)
981 {
982 	unsigned events_in_ring, completed;
983 
984 	/* Clamp head since userland can write to it. */
985 	head %= ctx->nr_events;
986 	if (head <= tail)
987 		events_in_ring = tail - head;
988 	else
989 		events_in_ring = ctx->nr_events - (head - tail);
990 
991 	completed = ctx->completed_events;
992 	if (events_in_ring < completed)
993 		completed -= events_in_ring;
994 	else
995 		completed = 0;
996 
997 	if (!completed)
998 		return;
999 
1000 	ctx->completed_events -= completed;
1001 	put_reqs_available(ctx, completed);
1002 }
1003 
1004 /* user_refill_reqs_available
1005  *	Called to refill reqs_available when aio_get_req() encounters an
1006  *	out of space in the completion ring.
1007  */
1008 static void user_refill_reqs_available(struct kioctx *ctx)
1009 {
1010 	spin_lock_irq(&ctx->completion_lock);
1011 	if (ctx->completed_events) {
1012 		struct aio_ring *ring;
1013 		unsigned head;
1014 
1015 		/* Access of ring->head may race with aio_read_events_ring()
1016 		 * here, but that's okay since whether we read the old version
1017 		 * or the new version, and either will be valid.  The important
1018 		 * part is that head cannot pass tail since we prevent
1019 		 * aio_complete() from updating tail by holding
1020 		 * ctx->completion_lock.  Even if head is invalid, the check
1021 		 * against ctx->completed_events below will make sure we do the
1022 		 * safe/right thing.
1023 		 */
1024 		ring = kmap_atomic(ctx->ring_pages[0]);
1025 		head = ring->head;
1026 		kunmap_atomic(ring);
1027 
1028 		refill_reqs_available(ctx, head, ctx->tail);
1029 	}
1030 
1031 	spin_unlock_irq(&ctx->completion_lock);
1032 }
1033 
1034 static bool get_reqs_available(struct kioctx *ctx)
1035 {
1036 	if (__get_reqs_available(ctx))
1037 		return true;
1038 	user_refill_reqs_available(ctx);
1039 	return __get_reqs_available(ctx);
1040 }
1041 
1042 /* aio_get_req
1043  *	Allocate a slot for an aio request.
1044  * Returns NULL if no requests are free.
1045  *
1046  * The refcount is initialized to 2 - one for the async op completion,
1047  * one for the synchronous code that does this.
1048  */
1049 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1050 {
1051 	struct aio_kiocb *req;
1052 
1053 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1054 	if (unlikely(!req))
1055 		return NULL;
1056 
1057 	if (unlikely(!get_reqs_available(ctx))) {
1058 		kmem_cache_free(kiocb_cachep, req);
1059 		return NULL;
1060 	}
1061 
1062 	percpu_ref_get(&ctx->reqs);
1063 	req->ki_ctx = ctx;
1064 	INIT_LIST_HEAD(&req->ki_list);
1065 	refcount_set(&req->ki_refcnt, 2);
1066 	req->ki_eventfd = NULL;
1067 	return req;
1068 }
1069 
1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1071 {
1072 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1073 	struct mm_struct *mm = current->mm;
1074 	struct kioctx *ctx, *ret = NULL;
1075 	struct kioctx_table *table;
1076 	unsigned id;
1077 
1078 	if (get_user(id, &ring->id))
1079 		return NULL;
1080 
1081 	rcu_read_lock();
1082 	table = rcu_dereference(mm->ioctx_table);
1083 
1084 	if (!table || id >= table->nr)
1085 		goto out;
1086 
1087 	id = array_index_nospec(id, table->nr);
1088 	ctx = rcu_dereference(table->table[id]);
1089 	if (ctx && ctx->user_id == ctx_id) {
1090 		if (percpu_ref_tryget_live(&ctx->users))
1091 			ret = ctx;
1092 	}
1093 out:
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 
1098 static inline void iocb_destroy(struct aio_kiocb *iocb)
1099 {
1100 	if (iocb->ki_eventfd)
1101 		eventfd_ctx_put(iocb->ki_eventfd);
1102 	if (iocb->ki_filp)
1103 		fput(iocb->ki_filp);
1104 	percpu_ref_put(&iocb->ki_ctx->reqs);
1105 	kmem_cache_free(kiocb_cachep, iocb);
1106 }
1107 
1108 /* aio_complete
1109  *	Called when the io request on the given iocb is complete.
1110  */
1111 static void aio_complete(struct aio_kiocb *iocb)
1112 {
1113 	struct kioctx	*ctx = iocb->ki_ctx;
1114 	struct aio_ring	*ring;
1115 	struct io_event	*ev_page, *event;
1116 	unsigned tail, pos, head;
1117 	unsigned long	flags;
1118 
1119 	/*
1120 	 * Add a completion event to the ring buffer. Must be done holding
1121 	 * ctx->completion_lock to prevent other code from messing with the tail
1122 	 * pointer since we might be called from irq context.
1123 	 */
1124 	spin_lock_irqsave(&ctx->completion_lock, flags);
1125 
1126 	tail = ctx->tail;
1127 	pos = tail + AIO_EVENTS_OFFSET;
1128 
1129 	if (++tail >= ctx->nr_events)
1130 		tail = 0;
1131 
1132 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1133 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1134 
1135 	*event = iocb->ki_res;
1136 
1137 	kunmap_atomic(ev_page);
1138 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1139 
1140 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1141 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1142 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1143 
1144 	/* after flagging the request as done, we
1145 	 * must never even look at it again
1146 	 */
1147 	smp_wmb();	/* make event visible before updating tail */
1148 
1149 	ctx->tail = tail;
1150 
1151 	ring = kmap_atomic(ctx->ring_pages[0]);
1152 	head = ring->head;
1153 	ring->tail = tail;
1154 	kunmap_atomic(ring);
1155 	flush_dcache_page(ctx->ring_pages[0]);
1156 
1157 	ctx->completed_events++;
1158 	if (ctx->completed_events > 1)
1159 		refill_reqs_available(ctx, head, tail);
1160 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1161 
1162 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1163 
1164 	/*
1165 	 * Check if the user asked us to deliver the result through an
1166 	 * eventfd. The eventfd_signal() function is safe to be called
1167 	 * from IRQ context.
1168 	 */
1169 	if (iocb->ki_eventfd)
1170 		eventfd_signal(iocb->ki_eventfd, 1);
1171 
1172 	/*
1173 	 * We have to order our ring_info tail store above and test
1174 	 * of the wait list below outside the wait lock.  This is
1175 	 * like in wake_up_bit() where clearing a bit has to be
1176 	 * ordered with the unlocked test.
1177 	 */
1178 	smp_mb();
1179 
1180 	if (waitqueue_active(&ctx->wait))
1181 		wake_up(&ctx->wait);
1182 }
1183 
1184 static inline void iocb_put(struct aio_kiocb *iocb)
1185 {
1186 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1187 		aio_complete(iocb);
1188 		iocb_destroy(iocb);
1189 	}
1190 }
1191 
1192 /* aio_read_events_ring
1193  *	Pull an event off of the ioctx's event ring.  Returns the number of
1194  *	events fetched
1195  */
1196 static long aio_read_events_ring(struct kioctx *ctx,
1197 				 struct io_event __user *event, long nr)
1198 {
1199 	struct aio_ring *ring;
1200 	unsigned head, tail, pos;
1201 	long ret = 0;
1202 	int copy_ret;
1203 
1204 	/*
1205 	 * The mutex can block and wake us up and that will cause
1206 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1207 	 * and repeat. This should be rare enough that it doesn't cause
1208 	 * peformance issues. See the comment in read_events() for more detail.
1209 	 */
1210 	sched_annotate_sleep();
1211 	mutex_lock(&ctx->ring_lock);
1212 
1213 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1214 	ring = kmap_atomic(ctx->ring_pages[0]);
1215 	head = ring->head;
1216 	tail = ring->tail;
1217 	kunmap_atomic(ring);
1218 
1219 	/*
1220 	 * Ensure that once we've read the current tail pointer, that
1221 	 * we also see the events that were stored up to the tail.
1222 	 */
1223 	smp_rmb();
1224 
1225 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1226 
1227 	if (head == tail)
1228 		goto out;
1229 
1230 	head %= ctx->nr_events;
1231 	tail %= ctx->nr_events;
1232 
1233 	while (ret < nr) {
1234 		long avail;
1235 		struct io_event *ev;
1236 		struct page *page;
1237 
1238 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1239 		if (head == tail)
1240 			break;
1241 
1242 		pos = head + AIO_EVENTS_OFFSET;
1243 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1244 		pos %= AIO_EVENTS_PER_PAGE;
1245 
1246 		avail = min(avail, nr - ret);
1247 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1248 
1249 		ev = kmap(page);
1250 		copy_ret = copy_to_user(event + ret, ev + pos,
1251 					sizeof(*ev) * avail);
1252 		kunmap(page);
1253 
1254 		if (unlikely(copy_ret)) {
1255 			ret = -EFAULT;
1256 			goto out;
1257 		}
1258 
1259 		ret += avail;
1260 		head += avail;
1261 		head %= ctx->nr_events;
1262 	}
1263 
1264 	ring = kmap_atomic(ctx->ring_pages[0]);
1265 	ring->head = head;
1266 	kunmap_atomic(ring);
1267 	flush_dcache_page(ctx->ring_pages[0]);
1268 
1269 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1270 out:
1271 	mutex_unlock(&ctx->ring_lock);
1272 
1273 	return ret;
1274 }
1275 
1276 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1277 			    struct io_event __user *event, long *i)
1278 {
1279 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1280 
1281 	if (ret > 0)
1282 		*i += ret;
1283 
1284 	if (unlikely(atomic_read(&ctx->dead)))
1285 		ret = -EINVAL;
1286 
1287 	if (!*i)
1288 		*i = ret;
1289 
1290 	return ret < 0 || *i >= min_nr;
1291 }
1292 
1293 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1294 			struct io_event __user *event,
1295 			ktime_t until)
1296 {
1297 	long ret = 0;
1298 
1299 	/*
1300 	 * Note that aio_read_events() is being called as the conditional - i.e.
1301 	 * we're calling it after prepare_to_wait() has set task state to
1302 	 * TASK_INTERRUPTIBLE.
1303 	 *
1304 	 * But aio_read_events() can block, and if it blocks it's going to flip
1305 	 * the task state back to TASK_RUNNING.
1306 	 *
1307 	 * This should be ok, provided it doesn't flip the state back to
1308 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1309 	 * will only happen if the mutex_lock() call blocks, and we then find
1310 	 * the ringbuffer empty. So in practice we should be ok, but it's
1311 	 * something to be aware of when touching this code.
1312 	 */
1313 	if (until == 0)
1314 		aio_read_events(ctx, min_nr, nr, event, &ret);
1315 	else
1316 		wait_event_interruptible_hrtimeout(ctx->wait,
1317 				aio_read_events(ctx, min_nr, nr, event, &ret),
1318 				until);
1319 	return ret;
1320 }
1321 
1322 /* sys_io_setup:
1323  *	Create an aio_context capable of receiving at least nr_events.
1324  *	ctxp must not point to an aio_context that already exists, and
1325  *	must be initialized to 0 prior to the call.  On successful
1326  *	creation of the aio_context, *ctxp is filled in with the resulting
1327  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1328  *	if the specified nr_events exceeds internal limits.  May fail
1329  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1330  *	of available events.  May fail with -ENOMEM if insufficient kernel
1331  *	resources are available.  May fail with -EFAULT if an invalid
1332  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1333  *	implemented.
1334  */
1335 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1336 {
1337 	struct kioctx *ioctx = NULL;
1338 	unsigned long ctx;
1339 	long ret;
1340 
1341 	ret = get_user(ctx, ctxp);
1342 	if (unlikely(ret))
1343 		goto out;
1344 
1345 	ret = -EINVAL;
1346 	if (unlikely(ctx || nr_events == 0)) {
1347 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1348 		         ctx, nr_events);
1349 		goto out;
1350 	}
1351 
1352 	ioctx = ioctx_alloc(nr_events);
1353 	ret = PTR_ERR(ioctx);
1354 	if (!IS_ERR(ioctx)) {
1355 		ret = put_user(ioctx->user_id, ctxp);
1356 		if (ret)
1357 			kill_ioctx(current->mm, ioctx, NULL);
1358 		percpu_ref_put(&ioctx->users);
1359 	}
1360 
1361 out:
1362 	return ret;
1363 }
1364 
1365 #ifdef CONFIG_COMPAT
1366 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1367 {
1368 	struct kioctx *ioctx = NULL;
1369 	unsigned long ctx;
1370 	long ret;
1371 
1372 	ret = get_user(ctx, ctx32p);
1373 	if (unlikely(ret))
1374 		goto out;
1375 
1376 	ret = -EINVAL;
1377 	if (unlikely(ctx || nr_events == 0)) {
1378 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1379 		         ctx, nr_events);
1380 		goto out;
1381 	}
1382 
1383 	ioctx = ioctx_alloc(nr_events);
1384 	ret = PTR_ERR(ioctx);
1385 	if (!IS_ERR(ioctx)) {
1386 		/* truncating is ok because it's a user address */
1387 		ret = put_user((u32)ioctx->user_id, ctx32p);
1388 		if (ret)
1389 			kill_ioctx(current->mm, ioctx, NULL);
1390 		percpu_ref_put(&ioctx->users);
1391 	}
1392 
1393 out:
1394 	return ret;
1395 }
1396 #endif
1397 
1398 /* sys_io_destroy:
1399  *	Destroy the aio_context specified.  May cancel any outstanding
1400  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1401  *	implemented.  May fail with -EINVAL if the context pointed to
1402  *	is invalid.
1403  */
1404 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1405 {
1406 	struct kioctx *ioctx = lookup_ioctx(ctx);
1407 	if (likely(NULL != ioctx)) {
1408 		struct ctx_rq_wait wait;
1409 		int ret;
1410 
1411 		init_completion(&wait.comp);
1412 		atomic_set(&wait.count, 1);
1413 
1414 		/* Pass requests_done to kill_ioctx() where it can be set
1415 		 * in a thread-safe way. If we try to set it here then we have
1416 		 * a race condition if two io_destroy() called simultaneously.
1417 		 */
1418 		ret = kill_ioctx(current->mm, ioctx, &wait);
1419 		percpu_ref_put(&ioctx->users);
1420 
1421 		/* Wait until all IO for the context are done. Otherwise kernel
1422 		 * keep using user-space buffers even if user thinks the context
1423 		 * is destroyed.
1424 		 */
1425 		if (!ret)
1426 			wait_for_completion(&wait.comp);
1427 
1428 		return ret;
1429 	}
1430 	pr_debug("EINVAL: invalid context id\n");
1431 	return -EINVAL;
1432 }
1433 
1434 static void aio_remove_iocb(struct aio_kiocb *iocb)
1435 {
1436 	struct kioctx *ctx = iocb->ki_ctx;
1437 	unsigned long flags;
1438 
1439 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1440 	list_del(&iocb->ki_list);
1441 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1442 }
1443 
1444 static void aio_complete_rw(struct kiocb *kiocb, long res)
1445 {
1446 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1447 
1448 	if (!list_empty_careful(&iocb->ki_list))
1449 		aio_remove_iocb(iocb);
1450 
1451 	if (kiocb->ki_flags & IOCB_WRITE) {
1452 		struct inode *inode = file_inode(kiocb->ki_filp);
1453 
1454 		/*
1455 		 * Tell lockdep we inherited freeze protection from submission
1456 		 * thread.
1457 		 */
1458 		if (S_ISREG(inode->i_mode))
1459 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1460 		file_end_write(kiocb->ki_filp);
1461 	}
1462 
1463 	iocb->ki_res.res = res;
1464 	iocb->ki_res.res2 = 0;
1465 	iocb_put(iocb);
1466 }
1467 
1468 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1469 {
1470 	int ret;
1471 
1472 	req->ki_complete = aio_complete_rw;
1473 	req->private = NULL;
1474 	req->ki_pos = iocb->aio_offset;
1475 	req->ki_flags = req->ki_filp->f_iocb_flags;
1476 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1477 		req->ki_flags |= IOCB_EVENTFD;
1478 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1479 		/*
1480 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1481 		 * aio_reqprio is interpreted as an I/O scheduling
1482 		 * class and priority.
1483 		 */
1484 		ret = ioprio_check_cap(iocb->aio_reqprio);
1485 		if (ret) {
1486 			pr_debug("aio ioprio check cap error: %d\n", ret);
1487 			return ret;
1488 		}
1489 
1490 		req->ki_ioprio = iocb->aio_reqprio;
1491 	} else
1492 		req->ki_ioprio = get_current_ioprio();
1493 
1494 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1495 	if (unlikely(ret))
1496 		return ret;
1497 
1498 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1499 	return 0;
1500 }
1501 
1502 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1503 		struct iovec **iovec, bool vectored, bool compat,
1504 		struct iov_iter *iter)
1505 {
1506 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1507 	size_t len = iocb->aio_nbytes;
1508 
1509 	if (!vectored) {
1510 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1511 		*iovec = NULL;
1512 		return ret;
1513 	}
1514 
1515 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1516 }
1517 
1518 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1519 {
1520 	switch (ret) {
1521 	case -EIOCBQUEUED:
1522 		break;
1523 	case -ERESTARTSYS:
1524 	case -ERESTARTNOINTR:
1525 	case -ERESTARTNOHAND:
1526 	case -ERESTART_RESTARTBLOCK:
1527 		/*
1528 		 * There's no easy way to restart the syscall since other AIO's
1529 		 * may be already running. Just fail this IO with EINTR.
1530 		 */
1531 		ret = -EINTR;
1532 		fallthrough;
1533 	default:
1534 		req->ki_complete(req, ret);
1535 	}
1536 }
1537 
1538 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1539 			bool vectored, bool compat)
1540 {
1541 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1542 	struct iov_iter iter;
1543 	struct file *file;
1544 	int ret;
1545 
1546 	ret = aio_prep_rw(req, iocb);
1547 	if (ret)
1548 		return ret;
1549 	file = req->ki_filp;
1550 	if (unlikely(!(file->f_mode & FMODE_READ)))
1551 		return -EBADF;
1552 	if (unlikely(!file->f_op->read_iter))
1553 		return -EINVAL;
1554 
1555 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1556 	if (ret < 0)
1557 		return ret;
1558 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1559 	if (!ret)
1560 		aio_rw_done(req, call_read_iter(file, req, &iter));
1561 	kfree(iovec);
1562 	return ret;
1563 }
1564 
1565 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1566 			 bool vectored, bool compat)
1567 {
1568 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1569 	struct iov_iter iter;
1570 	struct file *file;
1571 	int ret;
1572 
1573 	ret = aio_prep_rw(req, iocb);
1574 	if (ret)
1575 		return ret;
1576 	file = req->ki_filp;
1577 
1578 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1579 		return -EBADF;
1580 	if (unlikely(!file->f_op->write_iter))
1581 		return -EINVAL;
1582 
1583 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1584 	if (ret < 0)
1585 		return ret;
1586 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1587 	if (!ret) {
1588 		/*
1589 		 * Open-code file_start_write here to grab freeze protection,
1590 		 * which will be released by another thread in
1591 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1592 		 * released so that it doesn't complain about the held lock when
1593 		 * we return to userspace.
1594 		 */
1595 		if (S_ISREG(file_inode(file)->i_mode)) {
1596 			sb_start_write(file_inode(file)->i_sb);
1597 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1598 		}
1599 		req->ki_flags |= IOCB_WRITE;
1600 		aio_rw_done(req, call_write_iter(file, req, &iter));
1601 	}
1602 	kfree(iovec);
1603 	return ret;
1604 }
1605 
1606 static void aio_fsync_work(struct work_struct *work)
1607 {
1608 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1609 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1610 
1611 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1612 	revert_creds(old_cred);
1613 	put_cred(iocb->fsync.creds);
1614 	iocb_put(iocb);
1615 }
1616 
1617 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1618 		     bool datasync)
1619 {
1620 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1621 			iocb->aio_rw_flags))
1622 		return -EINVAL;
1623 
1624 	if (unlikely(!req->file->f_op->fsync))
1625 		return -EINVAL;
1626 
1627 	req->creds = prepare_creds();
1628 	if (!req->creds)
1629 		return -ENOMEM;
1630 
1631 	req->datasync = datasync;
1632 	INIT_WORK(&req->work, aio_fsync_work);
1633 	schedule_work(&req->work);
1634 	return 0;
1635 }
1636 
1637 static void aio_poll_put_work(struct work_struct *work)
1638 {
1639 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1640 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1641 
1642 	iocb_put(iocb);
1643 }
1644 
1645 /*
1646  * Safely lock the waitqueue which the request is on, synchronizing with the
1647  * case where the ->poll() provider decides to free its waitqueue early.
1648  *
1649  * Returns true on success, meaning that req->head->lock was locked, req->wait
1650  * is on req->head, and an RCU read lock was taken.  Returns false if the
1651  * request was already removed from its waitqueue (which might no longer exist).
1652  */
1653 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1654 {
1655 	wait_queue_head_t *head;
1656 
1657 	/*
1658 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1659 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1660 	 * lock in the first place can race with the waitqueue being freed.
1661 	 *
1662 	 * We solve this as eventpoll does: by taking advantage of the fact that
1663 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1664 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1665 	 * non-NULL, we can then lock it without the memory being freed out from
1666 	 * under us, then check whether the request is still on the queue.
1667 	 *
1668 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1669 	 * case the caller deletes the entry from the queue, leaving it empty.
1670 	 * In that case, only RCU prevents the queue memory from being freed.
1671 	 */
1672 	rcu_read_lock();
1673 	head = smp_load_acquire(&req->head);
1674 	if (head) {
1675 		spin_lock(&head->lock);
1676 		if (!list_empty(&req->wait.entry))
1677 			return true;
1678 		spin_unlock(&head->lock);
1679 	}
1680 	rcu_read_unlock();
1681 	return false;
1682 }
1683 
1684 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1685 {
1686 	spin_unlock(&req->head->lock);
1687 	rcu_read_unlock();
1688 }
1689 
1690 static void aio_poll_complete_work(struct work_struct *work)
1691 {
1692 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1693 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1694 	struct poll_table_struct pt = { ._key = req->events };
1695 	struct kioctx *ctx = iocb->ki_ctx;
1696 	__poll_t mask = 0;
1697 
1698 	if (!READ_ONCE(req->cancelled))
1699 		mask = vfs_poll(req->file, &pt) & req->events;
1700 
1701 	/*
1702 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1703 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1704 	 * synchronize with them.  In the cancellation case the list_del_init
1705 	 * itself is not actually needed, but harmless so we keep it in to
1706 	 * avoid further branches in the fast path.
1707 	 */
1708 	spin_lock_irq(&ctx->ctx_lock);
1709 	if (poll_iocb_lock_wq(req)) {
1710 		if (!mask && !READ_ONCE(req->cancelled)) {
1711 			/*
1712 			 * The request isn't actually ready to be completed yet.
1713 			 * Reschedule completion if another wakeup came in.
1714 			 */
1715 			if (req->work_need_resched) {
1716 				schedule_work(&req->work);
1717 				req->work_need_resched = false;
1718 			} else {
1719 				req->work_scheduled = false;
1720 			}
1721 			poll_iocb_unlock_wq(req);
1722 			spin_unlock_irq(&ctx->ctx_lock);
1723 			return;
1724 		}
1725 		list_del_init(&req->wait.entry);
1726 		poll_iocb_unlock_wq(req);
1727 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1728 	list_del_init(&iocb->ki_list);
1729 	iocb->ki_res.res = mangle_poll(mask);
1730 	spin_unlock_irq(&ctx->ctx_lock);
1731 
1732 	iocb_put(iocb);
1733 }
1734 
1735 /* assumes we are called with irqs disabled */
1736 static int aio_poll_cancel(struct kiocb *iocb)
1737 {
1738 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1739 	struct poll_iocb *req = &aiocb->poll;
1740 
1741 	if (poll_iocb_lock_wq(req)) {
1742 		WRITE_ONCE(req->cancelled, true);
1743 		if (!req->work_scheduled) {
1744 			schedule_work(&aiocb->poll.work);
1745 			req->work_scheduled = true;
1746 		}
1747 		poll_iocb_unlock_wq(req);
1748 	} /* else, the request was force-cancelled by POLLFREE already */
1749 
1750 	return 0;
1751 }
1752 
1753 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1754 		void *key)
1755 {
1756 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1757 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1758 	__poll_t mask = key_to_poll(key);
1759 	unsigned long flags;
1760 
1761 	/* for instances that support it check for an event match first: */
1762 	if (mask && !(mask & req->events))
1763 		return 0;
1764 
1765 	/*
1766 	 * Complete the request inline if possible.  This requires that three
1767 	 * conditions be met:
1768 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1769 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1770 	 *	the events, so inline completion isn't possible.
1771 	 *   2. The completion work must not have already been scheduled.
1772 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1773 	 *	already hold the waitqueue lock, so this inverts the normal
1774 	 *	locking order.  Use irqsave/irqrestore because not all
1775 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1776 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1777 	 */
1778 	if (mask && !req->work_scheduled &&
1779 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1780 		struct kioctx *ctx = iocb->ki_ctx;
1781 
1782 		list_del_init(&req->wait.entry);
1783 		list_del(&iocb->ki_list);
1784 		iocb->ki_res.res = mangle_poll(mask);
1785 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1786 			iocb = NULL;
1787 			INIT_WORK(&req->work, aio_poll_put_work);
1788 			schedule_work(&req->work);
1789 		}
1790 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1791 		if (iocb)
1792 			iocb_put(iocb);
1793 	} else {
1794 		/*
1795 		 * Schedule the completion work if needed.  If it was already
1796 		 * scheduled, record that another wakeup came in.
1797 		 *
1798 		 * Don't remove the request from the waitqueue here, as it might
1799 		 * not actually be complete yet (we won't know until vfs_poll()
1800 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1801 		 * exception to this; see below.
1802 		 */
1803 		if (req->work_scheduled) {
1804 			req->work_need_resched = true;
1805 		} else {
1806 			schedule_work(&req->work);
1807 			req->work_scheduled = true;
1808 		}
1809 
1810 		/*
1811 		 * If the waitqueue is being freed early but we can't complete
1812 		 * the request inline, we have to tear down the request as best
1813 		 * we can.  That means immediately removing the request from its
1814 		 * waitqueue and preventing all further accesses to the
1815 		 * waitqueue via the request.  We also need to schedule the
1816 		 * completion work (done above).  Also mark the request as
1817 		 * cancelled, to potentially skip an unneeded call to ->poll().
1818 		 */
1819 		if (mask & POLLFREE) {
1820 			WRITE_ONCE(req->cancelled, true);
1821 			list_del_init(&req->wait.entry);
1822 
1823 			/*
1824 			 * Careful: this *must* be the last step, since as soon
1825 			 * as req->head is NULL'ed out, the request can be
1826 			 * completed and freed, since aio_poll_complete_work()
1827 			 * will no longer need to take the waitqueue lock.
1828 			 */
1829 			smp_store_release(&req->head, NULL);
1830 		}
1831 	}
1832 	return 1;
1833 }
1834 
1835 struct aio_poll_table {
1836 	struct poll_table_struct	pt;
1837 	struct aio_kiocb		*iocb;
1838 	bool				queued;
1839 	int				error;
1840 };
1841 
1842 static void
1843 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1844 		struct poll_table_struct *p)
1845 {
1846 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1847 
1848 	/* multiple wait queues per file are not supported */
1849 	if (unlikely(pt->queued)) {
1850 		pt->error = -EINVAL;
1851 		return;
1852 	}
1853 
1854 	pt->queued = true;
1855 	pt->error = 0;
1856 	pt->iocb->poll.head = head;
1857 	add_wait_queue(head, &pt->iocb->poll.wait);
1858 }
1859 
1860 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1861 {
1862 	struct kioctx *ctx = aiocb->ki_ctx;
1863 	struct poll_iocb *req = &aiocb->poll;
1864 	struct aio_poll_table apt;
1865 	bool cancel = false;
1866 	__poll_t mask;
1867 
1868 	/* reject any unknown events outside the normal event mask. */
1869 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1870 		return -EINVAL;
1871 	/* reject fields that are not defined for poll */
1872 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1873 		return -EINVAL;
1874 
1875 	INIT_WORK(&req->work, aio_poll_complete_work);
1876 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1877 
1878 	req->head = NULL;
1879 	req->cancelled = false;
1880 	req->work_scheduled = false;
1881 	req->work_need_resched = false;
1882 
1883 	apt.pt._qproc = aio_poll_queue_proc;
1884 	apt.pt._key = req->events;
1885 	apt.iocb = aiocb;
1886 	apt.queued = false;
1887 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1888 
1889 	/* initialized the list so that we can do list_empty checks */
1890 	INIT_LIST_HEAD(&req->wait.entry);
1891 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1892 
1893 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1894 	spin_lock_irq(&ctx->ctx_lock);
1895 	if (likely(apt.queued)) {
1896 		bool on_queue = poll_iocb_lock_wq(req);
1897 
1898 		if (!on_queue || req->work_scheduled) {
1899 			/*
1900 			 * aio_poll_wake() already either scheduled the async
1901 			 * completion work, or completed the request inline.
1902 			 */
1903 			if (apt.error) /* unsupported case: multiple queues */
1904 				cancel = true;
1905 			apt.error = 0;
1906 			mask = 0;
1907 		}
1908 		if (mask || apt.error) {
1909 			/* Steal to complete synchronously. */
1910 			list_del_init(&req->wait.entry);
1911 		} else if (cancel) {
1912 			/* Cancel if possible (may be too late though). */
1913 			WRITE_ONCE(req->cancelled, true);
1914 		} else if (on_queue) {
1915 			/*
1916 			 * Actually waiting for an event, so add the request to
1917 			 * active_reqs so that it can be cancelled if needed.
1918 			 */
1919 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1920 			aiocb->ki_cancel = aio_poll_cancel;
1921 		}
1922 		if (on_queue)
1923 			poll_iocb_unlock_wq(req);
1924 	}
1925 	if (mask) { /* no async, we'd stolen it */
1926 		aiocb->ki_res.res = mangle_poll(mask);
1927 		apt.error = 0;
1928 	}
1929 	spin_unlock_irq(&ctx->ctx_lock);
1930 	if (mask)
1931 		iocb_put(aiocb);
1932 	return apt.error;
1933 }
1934 
1935 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1936 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1937 			   bool compat)
1938 {
1939 	req->ki_filp = fget(iocb->aio_fildes);
1940 	if (unlikely(!req->ki_filp))
1941 		return -EBADF;
1942 
1943 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1944 		struct eventfd_ctx *eventfd;
1945 		/*
1946 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1947 		 * instance of the file* now. The file descriptor must be
1948 		 * an eventfd() fd, and will be signaled for each completed
1949 		 * event using the eventfd_signal() function.
1950 		 */
1951 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1952 		if (IS_ERR(eventfd))
1953 			return PTR_ERR(eventfd);
1954 
1955 		req->ki_eventfd = eventfd;
1956 	}
1957 
1958 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1959 		pr_debug("EFAULT: aio_key\n");
1960 		return -EFAULT;
1961 	}
1962 
1963 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1964 	req->ki_res.data = iocb->aio_data;
1965 	req->ki_res.res = 0;
1966 	req->ki_res.res2 = 0;
1967 
1968 	switch (iocb->aio_lio_opcode) {
1969 	case IOCB_CMD_PREAD:
1970 		return aio_read(&req->rw, iocb, false, compat);
1971 	case IOCB_CMD_PWRITE:
1972 		return aio_write(&req->rw, iocb, false, compat);
1973 	case IOCB_CMD_PREADV:
1974 		return aio_read(&req->rw, iocb, true, compat);
1975 	case IOCB_CMD_PWRITEV:
1976 		return aio_write(&req->rw, iocb, true, compat);
1977 	case IOCB_CMD_FSYNC:
1978 		return aio_fsync(&req->fsync, iocb, false);
1979 	case IOCB_CMD_FDSYNC:
1980 		return aio_fsync(&req->fsync, iocb, true);
1981 	case IOCB_CMD_POLL:
1982 		return aio_poll(req, iocb);
1983 	default:
1984 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1985 		return -EINVAL;
1986 	}
1987 }
1988 
1989 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1990 			 bool compat)
1991 {
1992 	struct aio_kiocb *req;
1993 	struct iocb iocb;
1994 	int err;
1995 
1996 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1997 		return -EFAULT;
1998 
1999 	/* enforce forwards compatibility on users */
2000 	if (unlikely(iocb.aio_reserved2)) {
2001 		pr_debug("EINVAL: reserve field set\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	/* prevent overflows */
2006 	if (unlikely(
2007 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2008 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2009 	    ((ssize_t)iocb.aio_nbytes < 0)
2010 	   )) {
2011 		pr_debug("EINVAL: overflow check\n");
2012 		return -EINVAL;
2013 	}
2014 
2015 	req = aio_get_req(ctx);
2016 	if (unlikely(!req))
2017 		return -EAGAIN;
2018 
2019 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2020 
2021 	/* Done with the synchronous reference */
2022 	iocb_put(req);
2023 
2024 	/*
2025 	 * If err is 0, we'd either done aio_complete() ourselves or have
2026 	 * arranged for that to be done asynchronously.  Anything non-zero
2027 	 * means that we need to destroy req ourselves.
2028 	 */
2029 	if (unlikely(err)) {
2030 		iocb_destroy(req);
2031 		put_reqs_available(ctx, 1);
2032 	}
2033 	return err;
2034 }
2035 
2036 /* sys_io_submit:
2037  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2038  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2039  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2040  *	*iocbpp[0] is not properly initialized, if the operation specified
2041  *	is invalid for the file descriptor in the iocb.  May fail with
2042  *	-EFAULT if any of the data structures point to invalid data.  May
2043  *	fail with -EBADF if the file descriptor specified in the first
2044  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2045  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2046  *	fail with -ENOSYS if not implemented.
2047  */
2048 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2049 		struct iocb __user * __user *, iocbpp)
2050 {
2051 	struct kioctx *ctx;
2052 	long ret = 0;
2053 	int i = 0;
2054 	struct blk_plug plug;
2055 
2056 	if (unlikely(nr < 0))
2057 		return -EINVAL;
2058 
2059 	ctx = lookup_ioctx(ctx_id);
2060 	if (unlikely(!ctx)) {
2061 		pr_debug("EINVAL: invalid context id\n");
2062 		return -EINVAL;
2063 	}
2064 
2065 	if (nr > ctx->nr_events)
2066 		nr = ctx->nr_events;
2067 
2068 	if (nr > AIO_PLUG_THRESHOLD)
2069 		blk_start_plug(&plug);
2070 	for (i = 0; i < nr; i++) {
2071 		struct iocb __user *user_iocb;
2072 
2073 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2074 			ret = -EFAULT;
2075 			break;
2076 		}
2077 
2078 		ret = io_submit_one(ctx, user_iocb, false);
2079 		if (ret)
2080 			break;
2081 	}
2082 	if (nr > AIO_PLUG_THRESHOLD)
2083 		blk_finish_plug(&plug);
2084 
2085 	percpu_ref_put(&ctx->users);
2086 	return i ? i : ret;
2087 }
2088 
2089 #ifdef CONFIG_COMPAT
2090 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2091 		       int, nr, compat_uptr_t __user *, iocbpp)
2092 {
2093 	struct kioctx *ctx;
2094 	long ret = 0;
2095 	int i = 0;
2096 	struct blk_plug plug;
2097 
2098 	if (unlikely(nr < 0))
2099 		return -EINVAL;
2100 
2101 	ctx = lookup_ioctx(ctx_id);
2102 	if (unlikely(!ctx)) {
2103 		pr_debug("EINVAL: invalid context id\n");
2104 		return -EINVAL;
2105 	}
2106 
2107 	if (nr > ctx->nr_events)
2108 		nr = ctx->nr_events;
2109 
2110 	if (nr > AIO_PLUG_THRESHOLD)
2111 		blk_start_plug(&plug);
2112 	for (i = 0; i < nr; i++) {
2113 		compat_uptr_t user_iocb;
2114 
2115 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2116 			ret = -EFAULT;
2117 			break;
2118 		}
2119 
2120 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2121 		if (ret)
2122 			break;
2123 	}
2124 	if (nr > AIO_PLUG_THRESHOLD)
2125 		blk_finish_plug(&plug);
2126 
2127 	percpu_ref_put(&ctx->users);
2128 	return i ? i : ret;
2129 }
2130 #endif
2131 
2132 /* sys_io_cancel:
2133  *	Attempts to cancel an iocb previously passed to io_submit.  If
2134  *	the operation is successfully cancelled, the resulting event is
2135  *	copied into the memory pointed to by result without being placed
2136  *	into the completion queue and 0 is returned.  May fail with
2137  *	-EFAULT if any of the data structures pointed to are invalid.
2138  *	May fail with -EINVAL if aio_context specified by ctx_id is
2139  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2140  *	cancelled.  Will fail with -ENOSYS if not implemented.
2141  */
2142 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2143 		struct io_event __user *, result)
2144 {
2145 	struct kioctx *ctx;
2146 	struct aio_kiocb *kiocb;
2147 	int ret = -EINVAL;
2148 	u32 key;
2149 	u64 obj = (u64)(unsigned long)iocb;
2150 
2151 	if (unlikely(get_user(key, &iocb->aio_key)))
2152 		return -EFAULT;
2153 	if (unlikely(key != KIOCB_KEY))
2154 		return -EINVAL;
2155 
2156 	ctx = lookup_ioctx(ctx_id);
2157 	if (unlikely(!ctx))
2158 		return -EINVAL;
2159 
2160 	spin_lock_irq(&ctx->ctx_lock);
2161 	/* TODO: use a hash or array, this sucks. */
2162 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2163 		if (kiocb->ki_res.obj == obj) {
2164 			ret = kiocb->ki_cancel(&kiocb->rw);
2165 			list_del_init(&kiocb->ki_list);
2166 			break;
2167 		}
2168 	}
2169 	spin_unlock_irq(&ctx->ctx_lock);
2170 
2171 	if (!ret) {
2172 		/*
2173 		 * The result argument is no longer used - the io_event is
2174 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2175 		 * cancellation is progress:
2176 		 */
2177 		ret = -EINPROGRESS;
2178 	}
2179 
2180 	percpu_ref_put(&ctx->users);
2181 
2182 	return ret;
2183 }
2184 
2185 static long do_io_getevents(aio_context_t ctx_id,
2186 		long min_nr,
2187 		long nr,
2188 		struct io_event __user *events,
2189 		struct timespec64 *ts)
2190 {
2191 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2192 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2193 	long ret = -EINVAL;
2194 
2195 	if (likely(ioctx)) {
2196 		if (likely(min_nr <= nr && min_nr >= 0))
2197 			ret = read_events(ioctx, min_nr, nr, events, until);
2198 		percpu_ref_put(&ioctx->users);
2199 	}
2200 
2201 	return ret;
2202 }
2203 
2204 /* io_getevents:
2205  *	Attempts to read at least min_nr events and up to nr events from
2206  *	the completion queue for the aio_context specified by ctx_id. If
2207  *	it succeeds, the number of read events is returned. May fail with
2208  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2209  *	out of range, if timeout is out of range.  May fail with -EFAULT
2210  *	if any of the memory specified is invalid.  May return 0 or
2211  *	< min_nr if the timeout specified by timeout has elapsed
2212  *	before sufficient events are available, where timeout == NULL
2213  *	specifies an infinite timeout. Note that the timeout pointed to by
2214  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2215  */
2216 #ifdef CONFIG_64BIT
2217 
2218 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2219 		long, min_nr,
2220 		long, nr,
2221 		struct io_event __user *, events,
2222 		struct __kernel_timespec __user *, timeout)
2223 {
2224 	struct timespec64	ts;
2225 	int			ret;
2226 
2227 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2228 		return -EFAULT;
2229 
2230 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2231 	if (!ret && signal_pending(current))
2232 		ret = -EINTR;
2233 	return ret;
2234 }
2235 
2236 #endif
2237 
2238 struct __aio_sigset {
2239 	const sigset_t __user	*sigmask;
2240 	size_t		sigsetsize;
2241 };
2242 
2243 SYSCALL_DEFINE6(io_pgetevents,
2244 		aio_context_t, ctx_id,
2245 		long, min_nr,
2246 		long, nr,
2247 		struct io_event __user *, events,
2248 		struct __kernel_timespec __user *, timeout,
2249 		const struct __aio_sigset __user *, usig)
2250 {
2251 	struct __aio_sigset	ksig = { NULL, };
2252 	struct timespec64	ts;
2253 	bool interrupted;
2254 	int ret;
2255 
2256 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2257 		return -EFAULT;
2258 
2259 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2260 		return -EFAULT;
2261 
2262 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2263 	if (ret)
2264 		return ret;
2265 
2266 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2267 
2268 	interrupted = signal_pending(current);
2269 	restore_saved_sigmask_unless(interrupted);
2270 	if (interrupted && !ret)
2271 		ret = -ERESTARTNOHAND;
2272 
2273 	return ret;
2274 }
2275 
2276 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2277 
2278 SYSCALL_DEFINE6(io_pgetevents_time32,
2279 		aio_context_t, ctx_id,
2280 		long, min_nr,
2281 		long, nr,
2282 		struct io_event __user *, events,
2283 		struct old_timespec32 __user *, timeout,
2284 		const struct __aio_sigset __user *, usig)
2285 {
2286 	struct __aio_sigset	ksig = { NULL, };
2287 	struct timespec64	ts;
2288 	bool interrupted;
2289 	int ret;
2290 
2291 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2292 		return -EFAULT;
2293 
2294 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2295 		return -EFAULT;
2296 
2297 
2298 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2299 	if (ret)
2300 		return ret;
2301 
2302 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2303 
2304 	interrupted = signal_pending(current);
2305 	restore_saved_sigmask_unless(interrupted);
2306 	if (interrupted && !ret)
2307 		ret = -ERESTARTNOHAND;
2308 
2309 	return ret;
2310 }
2311 
2312 #endif
2313 
2314 #if defined(CONFIG_COMPAT_32BIT_TIME)
2315 
2316 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2317 		__s32, min_nr,
2318 		__s32, nr,
2319 		struct io_event __user *, events,
2320 		struct old_timespec32 __user *, timeout)
2321 {
2322 	struct timespec64 t;
2323 	int ret;
2324 
2325 	if (timeout && get_old_timespec32(&t, timeout))
2326 		return -EFAULT;
2327 
2328 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2329 	if (!ret && signal_pending(current))
2330 		ret = -EINTR;
2331 	return ret;
2332 }
2333 
2334 #endif
2335 
2336 #ifdef CONFIG_COMPAT
2337 
2338 struct __compat_aio_sigset {
2339 	compat_uptr_t		sigmask;
2340 	compat_size_t		sigsetsize;
2341 };
2342 
2343 #if defined(CONFIG_COMPAT_32BIT_TIME)
2344 
2345 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2346 		compat_aio_context_t, ctx_id,
2347 		compat_long_t, min_nr,
2348 		compat_long_t, nr,
2349 		struct io_event __user *, events,
2350 		struct old_timespec32 __user *, timeout,
2351 		const struct __compat_aio_sigset __user *, usig)
2352 {
2353 	struct __compat_aio_sigset ksig = { 0, };
2354 	struct timespec64 t;
2355 	bool interrupted;
2356 	int ret;
2357 
2358 	if (timeout && get_old_timespec32(&t, timeout))
2359 		return -EFAULT;
2360 
2361 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2362 		return -EFAULT;
2363 
2364 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2365 	if (ret)
2366 		return ret;
2367 
2368 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2369 
2370 	interrupted = signal_pending(current);
2371 	restore_saved_sigmask_unless(interrupted);
2372 	if (interrupted && !ret)
2373 		ret = -ERESTARTNOHAND;
2374 
2375 	return ret;
2376 }
2377 
2378 #endif
2379 
2380 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2381 		compat_aio_context_t, ctx_id,
2382 		compat_long_t, min_nr,
2383 		compat_long_t, nr,
2384 		struct io_event __user *, events,
2385 		struct __kernel_timespec __user *, timeout,
2386 		const struct __compat_aio_sigset __user *, usig)
2387 {
2388 	struct __compat_aio_sigset ksig = { 0, };
2389 	struct timespec64 t;
2390 	bool interrupted;
2391 	int ret;
2392 
2393 	if (timeout && get_timespec64(&t, timeout))
2394 		return -EFAULT;
2395 
2396 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2397 		return -EFAULT;
2398 
2399 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2400 	if (ret)
2401 		return ret;
2402 
2403 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2404 
2405 	interrupted = signal_pending(current);
2406 	restore_saved_sigmask_unless(interrupted);
2407 	if (interrupted && !ret)
2408 		ret = -ERESTARTNOHAND;
2409 
2410 	return ret;
2411 }
2412 #endif
2413