xref: /openbmc/linux/fs/aio.c (revision 90099433)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
62 
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
65 
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
68 
69 /* aio_setup
70  *	Creates the slab caches used by the aio routines, panic on
71  *	failure as this is done early during the boot sequence.
72  */
73 static int __init aio_setup(void)
74 {
75 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77 
78 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
79 	BUG_ON(!aio_wq);
80 
81 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 
83 	return 0;
84 }
85 __initcall(aio_setup);
86 
87 static void aio_free_ring(struct kioctx *ctx)
88 {
89 	struct aio_ring_info *info = &ctx->ring_info;
90 	long i;
91 
92 	for (i=0; i<info->nr_pages; i++)
93 		put_page(info->ring_pages[i]);
94 
95 	if (info->mmap_size) {
96 		BUG_ON(ctx->mm != current->mm);
97 		vm_munmap(info->mmap_base, info->mmap_size);
98 	}
99 
100 	if (info->ring_pages && info->ring_pages != info->internal_pages)
101 		kfree(info->ring_pages);
102 	info->ring_pages = NULL;
103 	info->nr = 0;
104 }
105 
106 static int aio_setup_ring(struct kioctx *ctx)
107 {
108 	struct aio_ring *ring;
109 	struct aio_ring_info *info = &ctx->ring_info;
110 	unsigned nr_events = ctx->max_reqs;
111 	unsigned long size;
112 	int nr_pages;
113 
114 	/* Compensate for the ring buffer's head/tail overlap entry */
115 	nr_events += 2;	/* 1 is required, 2 for good luck */
116 
117 	size = sizeof(struct aio_ring);
118 	size += sizeof(struct io_event) * nr_events;
119 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
120 
121 	if (nr_pages < 0)
122 		return -EINVAL;
123 
124 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
125 
126 	info->nr = 0;
127 	info->ring_pages = info->internal_pages;
128 	if (nr_pages > AIO_RING_PAGES) {
129 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
130 		if (!info->ring_pages)
131 			return -ENOMEM;
132 	}
133 
134 	info->mmap_size = nr_pages * PAGE_SIZE;
135 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
136 	down_write(&ctx->mm->mmap_sem);
137 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
138 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
139 				  0);
140 	if (IS_ERR((void *)info->mmap_base)) {
141 		up_write(&ctx->mm->mmap_sem);
142 		info->mmap_size = 0;
143 		aio_free_ring(ctx);
144 		return -EAGAIN;
145 	}
146 
147 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
148 	info->nr_pages = get_user_pages(current, ctx->mm,
149 					info->mmap_base, nr_pages,
150 					1, 0, info->ring_pages, NULL);
151 	up_write(&ctx->mm->mmap_sem);
152 
153 	if (unlikely(info->nr_pages != nr_pages)) {
154 		aio_free_ring(ctx);
155 		return -EAGAIN;
156 	}
157 
158 	ctx->user_id = info->mmap_base;
159 
160 	info->nr = nr_events;		/* trusted copy */
161 
162 	ring = kmap_atomic(info->ring_pages[0]);
163 	ring->nr = nr_events;	/* user copy */
164 	ring->id = ctx->user_id;
165 	ring->head = ring->tail = 0;
166 	ring->magic = AIO_RING_MAGIC;
167 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
168 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
169 	ring->header_length = sizeof(struct aio_ring);
170 	kunmap_atomic(ring);
171 
172 	return 0;
173 }
174 
175 
176 /* aio_ring_event: returns a pointer to the event at the given index from
177  * kmap_atomic().  Release the pointer with put_aio_ring_event();
178  */
179 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
180 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
181 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
182 
183 #define aio_ring_event(info, nr) ({					\
184 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
185 	struct io_event *__event;					\
186 	__event = kmap_atomic(						\
187 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
188 	__event += pos % AIO_EVENTS_PER_PAGE;				\
189 	__event;							\
190 })
191 
192 #define put_aio_ring_event(event) do {		\
193 	struct io_event *__event = (event);	\
194 	(void)__event;				\
195 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
196 } while(0)
197 
198 static void ctx_rcu_free(struct rcu_head *head)
199 {
200 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
201 	kmem_cache_free(kioctx_cachep, ctx);
202 }
203 
204 /* __put_ioctx
205  *	Called when the last user of an aio context has gone away,
206  *	and the struct needs to be freed.
207  */
208 static void __put_ioctx(struct kioctx *ctx)
209 {
210 	unsigned nr_events = ctx->max_reqs;
211 	BUG_ON(ctx->reqs_active);
212 
213 	cancel_delayed_work_sync(&ctx->wq);
214 	aio_free_ring(ctx);
215 	mmdrop(ctx->mm);
216 	ctx->mm = NULL;
217 	if (nr_events) {
218 		spin_lock(&aio_nr_lock);
219 		BUG_ON(aio_nr - nr_events > aio_nr);
220 		aio_nr -= nr_events;
221 		spin_unlock(&aio_nr_lock);
222 	}
223 	pr_debug("__put_ioctx: freeing %p\n", ctx);
224 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
225 }
226 
227 static inline int try_get_ioctx(struct kioctx *kioctx)
228 {
229 	return atomic_inc_not_zero(&kioctx->users);
230 }
231 
232 static inline void put_ioctx(struct kioctx *kioctx)
233 {
234 	BUG_ON(atomic_read(&kioctx->users) <= 0);
235 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
236 		__put_ioctx(kioctx);
237 }
238 
239 /* ioctx_alloc
240  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
241  */
242 static struct kioctx *ioctx_alloc(unsigned nr_events)
243 {
244 	struct mm_struct *mm;
245 	struct kioctx *ctx;
246 	int err = -ENOMEM;
247 
248 	/* Prevent overflows */
249 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
250 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
251 		pr_debug("ENOMEM: nr_events too high\n");
252 		return ERR_PTR(-EINVAL);
253 	}
254 
255 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
256 		return ERR_PTR(-EAGAIN);
257 
258 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
259 	if (!ctx)
260 		return ERR_PTR(-ENOMEM);
261 
262 	ctx->max_reqs = nr_events;
263 	mm = ctx->mm = current->mm;
264 	atomic_inc(&mm->mm_count);
265 
266 	atomic_set(&ctx->users, 2);
267 	spin_lock_init(&ctx->ctx_lock);
268 	spin_lock_init(&ctx->ring_info.ring_lock);
269 	init_waitqueue_head(&ctx->wait);
270 
271 	INIT_LIST_HEAD(&ctx->active_reqs);
272 	INIT_LIST_HEAD(&ctx->run_list);
273 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
274 
275 	if (aio_setup_ring(ctx) < 0)
276 		goto out_freectx;
277 
278 	/* limit the number of system wide aios */
279 	spin_lock(&aio_nr_lock);
280 	if (aio_nr + nr_events > aio_max_nr ||
281 	    aio_nr + nr_events < aio_nr) {
282 		spin_unlock(&aio_nr_lock);
283 		goto out_cleanup;
284 	}
285 	aio_nr += ctx->max_reqs;
286 	spin_unlock(&aio_nr_lock);
287 
288 	/* now link into global list. */
289 	spin_lock(&mm->ioctx_lock);
290 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
291 	spin_unlock(&mm->ioctx_lock);
292 
293 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
294 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
295 	return ctx;
296 
297 out_cleanup:
298 	err = -EAGAIN;
299 	aio_free_ring(ctx);
300 out_freectx:
301 	mmdrop(mm);
302 	kmem_cache_free(kioctx_cachep, ctx);
303 	dprintk("aio: error allocating ioctx %d\n", err);
304 	return ERR_PTR(err);
305 }
306 
307 /* kill_ctx
308  *	Cancels all outstanding aio requests on an aio context.  Used
309  *	when the processes owning a context have all exited to encourage
310  *	the rapid destruction of the kioctx.
311  */
312 static void kill_ctx(struct kioctx *ctx)
313 {
314 	int (*cancel)(struct kiocb *, struct io_event *);
315 	struct task_struct *tsk = current;
316 	DECLARE_WAITQUEUE(wait, tsk);
317 	struct io_event res;
318 
319 	spin_lock_irq(&ctx->ctx_lock);
320 	ctx->dead = 1;
321 	while (!list_empty(&ctx->active_reqs)) {
322 		struct list_head *pos = ctx->active_reqs.next;
323 		struct kiocb *iocb = list_kiocb(pos);
324 		list_del_init(&iocb->ki_list);
325 		cancel = iocb->ki_cancel;
326 		kiocbSetCancelled(iocb);
327 		if (cancel) {
328 			iocb->ki_users++;
329 			spin_unlock_irq(&ctx->ctx_lock);
330 			cancel(iocb, &res);
331 			spin_lock_irq(&ctx->ctx_lock);
332 		}
333 	}
334 
335 	if (!ctx->reqs_active)
336 		goto out;
337 
338 	add_wait_queue(&ctx->wait, &wait);
339 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
340 	while (ctx->reqs_active) {
341 		spin_unlock_irq(&ctx->ctx_lock);
342 		io_schedule();
343 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
344 		spin_lock_irq(&ctx->ctx_lock);
345 	}
346 	__set_task_state(tsk, TASK_RUNNING);
347 	remove_wait_queue(&ctx->wait, &wait);
348 
349 out:
350 	spin_unlock_irq(&ctx->ctx_lock);
351 }
352 
353 /* wait_on_sync_kiocb:
354  *	Waits on the given sync kiocb to complete.
355  */
356 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
357 {
358 	while (iocb->ki_users) {
359 		set_current_state(TASK_UNINTERRUPTIBLE);
360 		if (!iocb->ki_users)
361 			break;
362 		io_schedule();
363 	}
364 	__set_current_state(TASK_RUNNING);
365 	return iocb->ki_user_data;
366 }
367 EXPORT_SYMBOL(wait_on_sync_kiocb);
368 
369 /* exit_aio: called when the last user of mm goes away.  At this point,
370  * there is no way for any new requests to be submited or any of the
371  * io_* syscalls to be called on the context.  However, there may be
372  * outstanding requests which hold references to the context; as they
373  * go away, they will call put_ioctx and release any pinned memory
374  * associated with the request (held via struct page * references).
375  */
376 void exit_aio(struct mm_struct *mm)
377 {
378 	struct kioctx *ctx;
379 
380 	while (!hlist_empty(&mm->ioctx_list)) {
381 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
382 		hlist_del_rcu(&ctx->list);
383 
384 		kill_ctx(ctx);
385 
386 		if (1 != atomic_read(&ctx->users))
387 			printk(KERN_DEBUG
388 				"exit_aio:ioctx still alive: %d %d %d\n",
389 				atomic_read(&ctx->users), ctx->dead,
390 				ctx->reqs_active);
391 		/*
392 		 * We don't need to bother with munmap() here -
393 		 * exit_mmap(mm) is coming and it'll unmap everything.
394 		 * Since aio_free_ring() uses non-zero ->mmap_size
395 		 * as indicator that it needs to unmap the area,
396 		 * just set it to 0; aio_free_ring() is the only
397 		 * place that uses ->mmap_size, so it's safe.
398 		 * That way we get all munmap done to current->mm -
399 		 * all other callers have ctx->mm == current->mm.
400 		 */
401 		ctx->ring_info.mmap_size = 0;
402 		put_ioctx(ctx);
403 	}
404 }
405 
406 /* aio_get_req
407  *	Allocate a slot for an aio request.  Increments the users count
408  * of the kioctx so that the kioctx stays around until all requests are
409  * complete.  Returns NULL if no requests are free.
410  *
411  * Returns with kiocb->users set to 2.  The io submit code path holds
412  * an extra reference while submitting the i/o.
413  * This prevents races between the aio code path referencing the
414  * req (after submitting it) and aio_complete() freeing the req.
415  */
416 static struct kiocb *__aio_get_req(struct kioctx *ctx)
417 {
418 	struct kiocb *req = NULL;
419 
420 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
421 	if (unlikely(!req))
422 		return NULL;
423 
424 	req->ki_flags = 0;
425 	req->ki_users = 2;
426 	req->ki_key = 0;
427 	req->ki_ctx = ctx;
428 	req->ki_cancel = NULL;
429 	req->ki_retry = NULL;
430 	req->ki_dtor = NULL;
431 	req->private = NULL;
432 	req->ki_iovec = NULL;
433 	INIT_LIST_HEAD(&req->ki_run_list);
434 	req->ki_eventfd = NULL;
435 
436 	return req;
437 }
438 
439 /*
440  * struct kiocb's are allocated in batches to reduce the number of
441  * times the ctx lock is acquired and released.
442  */
443 #define KIOCB_BATCH_SIZE	32L
444 struct kiocb_batch {
445 	struct list_head head;
446 	long count; /* number of requests left to allocate */
447 };
448 
449 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
450 {
451 	INIT_LIST_HEAD(&batch->head);
452 	batch->count = total;
453 }
454 
455 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
456 {
457 	struct kiocb *req, *n;
458 
459 	if (list_empty(&batch->head))
460 		return;
461 
462 	spin_lock_irq(&ctx->ctx_lock);
463 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
464 		list_del(&req->ki_batch);
465 		list_del(&req->ki_list);
466 		kmem_cache_free(kiocb_cachep, req);
467 		ctx->reqs_active--;
468 	}
469 	if (unlikely(!ctx->reqs_active && ctx->dead))
470 		wake_up_all(&ctx->wait);
471 	spin_unlock_irq(&ctx->ctx_lock);
472 }
473 
474 /*
475  * Allocate a batch of kiocbs.  This avoids taking and dropping the
476  * context lock a lot during setup.
477  */
478 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
479 {
480 	unsigned short allocated, to_alloc;
481 	long avail;
482 	bool called_fput = false;
483 	struct kiocb *req, *n;
484 	struct aio_ring *ring;
485 
486 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
487 	for (allocated = 0; allocated < to_alloc; allocated++) {
488 		req = __aio_get_req(ctx);
489 		if (!req)
490 			/* allocation failed, go with what we've got */
491 			break;
492 		list_add(&req->ki_batch, &batch->head);
493 	}
494 
495 	if (allocated == 0)
496 		goto out;
497 
498 retry:
499 	spin_lock_irq(&ctx->ctx_lock);
500 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
501 
502 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
503 	BUG_ON(avail < 0);
504 	if (avail == 0 && !called_fput) {
505 		/*
506 		 * Handle a potential starvation case.  It is possible that
507 		 * we hold the last reference on a struct file, causing us
508 		 * to delay the final fput to non-irq context.  In this case,
509 		 * ctx->reqs_active is artificially high.  Calling the fput
510 		 * routine here may free up a slot in the event completion
511 		 * ring, allowing this allocation to succeed.
512 		 */
513 		kunmap_atomic(ring);
514 		spin_unlock_irq(&ctx->ctx_lock);
515 		aio_fput_routine(NULL);
516 		called_fput = true;
517 		goto retry;
518 	}
519 
520 	if (avail < allocated) {
521 		/* Trim back the number of requests. */
522 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
523 			list_del(&req->ki_batch);
524 			kmem_cache_free(kiocb_cachep, req);
525 			if (--allocated <= avail)
526 				break;
527 		}
528 	}
529 
530 	batch->count -= allocated;
531 	list_for_each_entry(req, &batch->head, ki_batch) {
532 		list_add(&req->ki_list, &ctx->active_reqs);
533 		ctx->reqs_active++;
534 	}
535 
536 	kunmap_atomic(ring);
537 	spin_unlock_irq(&ctx->ctx_lock);
538 
539 out:
540 	return allocated;
541 }
542 
543 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
544 					struct kiocb_batch *batch)
545 {
546 	struct kiocb *req;
547 
548 	if (list_empty(&batch->head))
549 		if (kiocb_batch_refill(ctx, batch) == 0)
550 			return NULL;
551 	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
552 	list_del(&req->ki_batch);
553 	return req;
554 }
555 
556 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
557 {
558 	assert_spin_locked(&ctx->ctx_lock);
559 
560 	if (req->ki_eventfd != NULL)
561 		eventfd_ctx_put(req->ki_eventfd);
562 	if (req->ki_dtor)
563 		req->ki_dtor(req);
564 	if (req->ki_iovec != &req->ki_inline_vec)
565 		kfree(req->ki_iovec);
566 	kmem_cache_free(kiocb_cachep, req);
567 	ctx->reqs_active--;
568 
569 	if (unlikely(!ctx->reqs_active && ctx->dead))
570 		wake_up_all(&ctx->wait);
571 }
572 
573 static void aio_fput_routine(struct work_struct *data)
574 {
575 	spin_lock_irq(&fput_lock);
576 	while (likely(!list_empty(&fput_head))) {
577 		struct kiocb *req = list_kiocb(fput_head.next);
578 		struct kioctx *ctx = req->ki_ctx;
579 
580 		list_del(&req->ki_list);
581 		spin_unlock_irq(&fput_lock);
582 
583 		/* Complete the fput(s) */
584 		if (req->ki_filp != NULL)
585 			fput(req->ki_filp);
586 
587 		/* Link the iocb into the context's free list */
588 		rcu_read_lock();
589 		spin_lock_irq(&ctx->ctx_lock);
590 		really_put_req(ctx, req);
591 		/*
592 		 * at that point ctx might've been killed, but actual
593 		 * freeing is RCU'd
594 		 */
595 		spin_unlock_irq(&ctx->ctx_lock);
596 		rcu_read_unlock();
597 
598 		spin_lock_irq(&fput_lock);
599 	}
600 	spin_unlock_irq(&fput_lock);
601 }
602 
603 /* __aio_put_req
604  *	Returns true if this put was the last user of the request.
605  */
606 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
607 {
608 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
609 		req, atomic_long_read(&req->ki_filp->f_count));
610 
611 	assert_spin_locked(&ctx->ctx_lock);
612 
613 	req->ki_users--;
614 	BUG_ON(req->ki_users < 0);
615 	if (likely(req->ki_users))
616 		return 0;
617 	list_del(&req->ki_list);		/* remove from active_reqs */
618 	req->ki_cancel = NULL;
619 	req->ki_retry = NULL;
620 
621 	/*
622 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
623 	 * schedule work in case it is not final fput() time. In normal cases,
624 	 * we would not be holding the last reference to the file*, so
625 	 * this function will be executed w/out any aio kthread wakeup.
626 	 */
627 	if (unlikely(!fput_atomic(req->ki_filp))) {
628 		spin_lock(&fput_lock);
629 		list_add(&req->ki_list, &fput_head);
630 		spin_unlock(&fput_lock);
631 		schedule_work(&fput_work);
632 	} else {
633 		req->ki_filp = NULL;
634 		really_put_req(ctx, req);
635 	}
636 	return 1;
637 }
638 
639 /* aio_put_req
640  *	Returns true if this put was the last user of the kiocb,
641  *	false if the request is still in use.
642  */
643 int aio_put_req(struct kiocb *req)
644 {
645 	struct kioctx *ctx = req->ki_ctx;
646 	int ret;
647 	spin_lock_irq(&ctx->ctx_lock);
648 	ret = __aio_put_req(ctx, req);
649 	spin_unlock_irq(&ctx->ctx_lock);
650 	return ret;
651 }
652 EXPORT_SYMBOL(aio_put_req);
653 
654 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
655 {
656 	struct mm_struct *mm = current->mm;
657 	struct kioctx *ctx, *ret = NULL;
658 	struct hlist_node *n;
659 
660 	rcu_read_lock();
661 
662 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
663 		/*
664 		 * RCU protects us against accessing freed memory but
665 		 * we have to be careful not to get a reference when the
666 		 * reference count already dropped to 0 (ctx->dead test
667 		 * is unreliable because of races).
668 		 */
669 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
670 			ret = ctx;
671 			break;
672 		}
673 	}
674 
675 	rcu_read_unlock();
676 	return ret;
677 }
678 
679 /*
680  * Queue up a kiocb to be retried. Assumes that the kiocb
681  * has already been marked as kicked, and places it on
682  * the retry run list for the corresponding ioctx, if it
683  * isn't already queued. Returns 1 if it actually queued
684  * the kiocb (to tell the caller to activate the work
685  * queue to process it), or 0, if it found that it was
686  * already queued.
687  */
688 static inline int __queue_kicked_iocb(struct kiocb *iocb)
689 {
690 	struct kioctx *ctx = iocb->ki_ctx;
691 
692 	assert_spin_locked(&ctx->ctx_lock);
693 
694 	if (list_empty(&iocb->ki_run_list)) {
695 		list_add_tail(&iocb->ki_run_list,
696 			&ctx->run_list);
697 		return 1;
698 	}
699 	return 0;
700 }
701 
702 /* aio_run_iocb
703  *	This is the core aio execution routine. It is
704  *	invoked both for initial i/o submission and
705  *	subsequent retries via the aio_kick_handler.
706  *	Expects to be invoked with iocb->ki_ctx->lock
707  *	already held. The lock is released and reacquired
708  *	as needed during processing.
709  *
710  * Calls the iocb retry method (already setup for the
711  * iocb on initial submission) for operation specific
712  * handling, but takes care of most of common retry
713  * execution details for a given iocb. The retry method
714  * needs to be non-blocking as far as possible, to avoid
715  * holding up other iocbs waiting to be serviced by the
716  * retry kernel thread.
717  *
718  * The trickier parts in this code have to do with
719  * ensuring that only one retry instance is in progress
720  * for a given iocb at any time. Providing that guarantee
721  * simplifies the coding of individual aio operations as
722  * it avoids various potential races.
723  */
724 static ssize_t aio_run_iocb(struct kiocb *iocb)
725 {
726 	struct kioctx	*ctx = iocb->ki_ctx;
727 	ssize_t (*retry)(struct kiocb *);
728 	ssize_t ret;
729 
730 	if (!(retry = iocb->ki_retry)) {
731 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
732 		return 0;
733 	}
734 
735 	/*
736 	 * We don't want the next retry iteration for this
737 	 * operation to start until this one has returned and
738 	 * updated the iocb state. However, wait_queue functions
739 	 * can trigger a kick_iocb from interrupt context in the
740 	 * meantime, indicating that data is available for the next
741 	 * iteration. We want to remember that and enable the
742 	 * next retry iteration _after_ we are through with
743 	 * this one.
744 	 *
745 	 * So, in order to be able to register a "kick", but
746 	 * prevent it from being queued now, we clear the kick
747 	 * flag, but make the kick code *think* that the iocb is
748 	 * still on the run list until we are actually done.
749 	 * When we are done with this iteration, we check if
750 	 * the iocb was kicked in the meantime and if so, queue
751 	 * it up afresh.
752 	 */
753 
754 	kiocbClearKicked(iocb);
755 
756 	/*
757 	 * This is so that aio_complete knows it doesn't need to
758 	 * pull the iocb off the run list (We can't just call
759 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
760 	 * queue this on the run list yet)
761 	 */
762 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
763 	spin_unlock_irq(&ctx->ctx_lock);
764 
765 	/* Quit retrying if the i/o has been cancelled */
766 	if (kiocbIsCancelled(iocb)) {
767 		ret = -EINTR;
768 		aio_complete(iocb, ret, 0);
769 		/* must not access the iocb after this */
770 		goto out;
771 	}
772 
773 	/*
774 	 * Now we are all set to call the retry method in async
775 	 * context.
776 	 */
777 	ret = retry(iocb);
778 
779 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
780 		/*
781 		 * There's no easy way to restart the syscall since other AIO's
782 		 * may be already running. Just fail this IO with EINTR.
783 		 */
784 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
785 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
786 			ret = -EINTR;
787 		aio_complete(iocb, ret, 0);
788 	}
789 out:
790 	spin_lock_irq(&ctx->ctx_lock);
791 
792 	if (-EIOCBRETRY == ret) {
793 		/*
794 		 * OK, now that we are done with this iteration
795 		 * and know that there is more left to go,
796 		 * this is where we let go so that a subsequent
797 		 * "kick" can start the next iteration
798 		 */
799 
800 		/* will make __queue_kicked_iocb succeed from here on */
801 		INIT_LIST_HEAD(&iocb->ki_run_list);
802 		/* we must queue the next iteration ourselves, if it
803 		 * has already been kicked */
804 		if (kiocbIsKicked(iocb)) {
805 			__queue_kicked_iocb(iocb);
806 
807 			/*
808 			 * __queue_kicked_iocb will always return 1 here, because
809 			 * iocb->ki_run_list is empty at this point so it should
810 			 * be safe to unconditionally queue the context into the
811 			 * work queue.
812 			 */
813 			aio_queue_work(ctx);
814 		}
815 	}
816 	return ret;
817 }
818 
819 /*
820  * __aio_run_iocbs:
821  * 	Process all pending retries queued on the ioctx
822  * 	run list.
823  * Assumes it is operating within the aio issuer's mm
824  * context.
825  */
826 static int __aio_run_iocbs(struct kioctx *ctx)
827 {
828 	struct kiocb *iocb;
829 	struct list_head run_list;
830 
831 	assert_spin_locked(&ctx->ctx_lock);
832 
833 	list_replace_init(&ctx->run_list, &run_list);
834 	while (!list_empty(&run_list)) {
835 		iocb = list_entry(run_list.next, struct kiocb,
836 			ki_run_list);
837 		list_del(&iocb->ki_run_list);
838 		/*
839 		 * Hold an extra reference while retrying i/o.
840 		 */
841 		iocb->ki_users++;       /* grab extra reference */
842 		aio_run_iocb(iocb);
843 		__aio_put_req(ctx, iocb);
844  	}
845 	if (!list_empty(&ctx->run_list))
846 		return 1;
847 	return 0;
848 }
849 
850 static void aio_queue_work(struct kioctx * ctx)
851 {
852 	unsigned long timeout;
853 	/*
854 	 * if someone is waiting, get the work started right
855 	 * away, otherwise, use a longer delay
856 	 */
857 	smp_mb();
858 	if (waitqueue_active(&ctx->wait))
859 		timeout = 1;
860 	else
861 		timeout = HZ/10;
862 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
863 }
864 
865 /*
866  * aio_run_all_iocbs:
867  *	Process all pending retries queued on the ioctx
868  *	run list, and keep running them until the list
869  *	stays empty.
870  * Assumes it is operating within the aio issuer's mm context.
871  */
872 static inline void aio_run_all_iocbs(struct kioctx *ctx)
873 {
874 	spin_lock_irq(&ctx->ctx_lock);
875 	while (__aio_run_iocbs(ctx))
876 		;
877 	spin_unlock_irq(&ctx->ctx_lock);
878 }
879 
880 /*
881  * aio_kick_handler:
882  * 	Work queue handler triggered to process pending
883  * 	retries on an ioctx. Takes on the aio issuer's
884  *	mm context before running the iocbs, so that
885  *	copy_xxx_user operates on the issuer's address
886  *      space.
887  * Run on aiod's context.
888  */
889 static void aio_kick_handler(struct work_struct *work)
890 {
891 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
892 	mm_segment_t oldfs = get_fs();
893 	struct mm_struct *mm;
894 	int requeue;
895 
896 	set_fs(USER_DS);
897 	use_mm(ctx->mm);
898 	spin_lock_irq(&ctx->ctx_lock);
899 	requeue =__aio_run_iocbs(ctx);
900 	mm = ctx->mm;
901 	spin_unlock_irq(&ctx->ctx_lock);
902  	unuse_mm(mm);
903 	set_fs(oldfs);
904 	/*
905 	 * we're in a worker thread already; no point using non-zero delay
906 	 */
907 	if (requeue)
908 		queue_delayed_work(aio_wq, &ctx->wq, 0);
909 }
910 
911 
912 /*
913  * Called by kick_iocb to queue the kiocb for retry
914  * and if required activate the aio work queue to process
915  * it
916  */
917 static void try_queue_kicked_iocb(struct kiocb *iocb)
918 {
919  	struct kioctx	*ctx = iocb->ki_ctx;
920 	unsigned long flags;
921 	int run = 0;
922 
923 	spin_lock_irqsave(&ctx->ctx_lock, flags);
924 	/* set this inside the lock so that we can't race with aio_run_iocb()
925 	 * testing it and putting the iocb on the run list under the lock */
926 	if (!kiocbTryKick(iocb))
927 		run = __queue_kicked_iocb(iocb);
928 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
929 	if (run)
930 		aio_queue_work(ctx);
931 }
932 
933 /*
934  * kick_iocb:
935  *      Called typically from a wait queue callback context
936  *      to trigger a retry of the iocb.
937  *      The retry is usually executed by aio workqueue
938  *      threads (See aio_kick_handler).
939  */
940 void kick_iocb(struct kiocb *iocb)
941 {
942 	/* sync iocbs are easy: they can only ever be executing from a
943 	 * single context. */
944 	if (is_sync_kiocb(iocb)) {
945 		kiocbSetKicked(iocb);
946 	        wake_up_process(iocb->ki_obj.tsk);
947 		return;
948 	}
949 
950 	try_queue_kicked_iocb(iocb);
951 }
952 EXPORT_SYMBOL(kick_iocb);
953 
954 /* aio_complete
955  *	Called when the io request on the given iocb is complete.
956  *	Returns true if this is the last user of the request.  The
957  *	only other user of the request can be the cancellation code.
958  */
959 int aio_complete(struct kiocb *iocb, long res, long res2)
960 {
961 	struct kioctx	*ctx = iocb->ki_ctx;
962 	struct aio_ring_info	*info;
963 	struct aio_ring	*ring;
964 	struct io_event	*event;
965 	unsigned long	flags;
966 	unsigned long	tail;
967 	int		ret;
968 
969 	/*
970 	 * Special case handling for sync iocbs:
971 	 *  - events go directly into the iocb for fast handling
972 	 *  - the sync task with the iocb in its stack holds the single iocb
973 	 *    ref, no other paths have a way to get another ref
974 	 *  - the sync task helpfully left a reference to itself in the iocb
975 	 */
976 	if (is_sync_kiocb(iocb)) {
977 		BUG_ON(iocb->ki_users != 1);
978 		iocb->ki_user_data = res;
979 		iocb->ki_users = 0;
980 		wake_up_process(iocb->ki_obj.tsk);
981 		return 1;
982 	}
983 
984 	info = &ctx->ring_info;
985 
986 	/* add a completion event to the ring buffer.
987 	 * must be done holding ctx->ctx_lock to prevent
988 	 * other code from messing with the tail
989 	 * pointer since we might be called from irq
990 	 * context.
991 	 */
992 	spin_lock_irqsave(&ctx->ctx_lock, flags);
993 
994 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
995 		list_del_init(&iocb->ki_run_list);
996 
997 	/*
998 	 * cancelled requests don't get events, userland was given one
999 	 * when the event got cancelled.
1000 	 */
1001 	if (kiocbIsCancelled(iocb))
1002 		goto put_rq;
1003 
1004 	ring = kmap_atomic(info->ring_pages[0]);
1005 
1006 	tail = info->tail;
1007 	event = aio_ring_event(info, tail);
1008 	if (++tail >= info->nr)
1009 		tail = 0;
1010 
1011 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1012 	event->data = iocb->ki_user_data;
1013 	event->res = res;
1014 	event->res2 = res2;
1015 
1016 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1017 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1018 		res, res2);
1019 
1020 	/* after flagging the request as done, we
1021 	 * must never even look at it again
1022 	 */
1023 	smp_wmb();	/* make event visible before updating tail */
1024 
1025 	info->tail = tail;
1026 	ring->tail = tail;
1027 
1028 	put_aio_ring_event(event);
1029 	kunmap_atomic(ring);
1030 
1031 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1032 
1033 	/*
1034 	 * Check if the user asked us to deliver the result through an
1035 	 * eventfd. The eventfd_signal() function is safe to be called
1036 	 * from IRQ context.
1037 	 */
1038 	if (iocb->ki_eventfd != NULL)
1039 		eventfd_signal(iocb->ki_eventfd, 1);
1040 
1041 put_rq:
1042 	/* everything turned out well, dispose of the aiocb. */
1043 	ret = __aio_put_req(ctx, iocb);
1044 
1045 	/*
1046 	 * We have to order our ring_info tail store above and test
1047 	 * of the wait list below outside the wait lock.  This is
1048 	 * like in wake_up_bit() where clearing a bit has to be
1049 	 * ordered with the unlocked test.
1050 	 */
1051 	smp_mb();
1052 
1053 	if (waitqueue_active(&ctx->wait))
1054 		wake_up(&ctx->wait);
1055 
1056 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1057 	return ret;
1058 }
1059 EXPORT_SYMBOL(aio_complete);
1060 
1061 /* aio_read_evt
1062  *	Pull an event off of the ioctx's event ring.  Returns the number of
1063  *	events fetched (0 or 1 ;-)
1064  *	FIXME: make this use cmpxchg.
1065  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1066  */
1067 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1068 {
1069 	struct aio_ring_info *info = &ioctx->ring_info;
1070 	struct aio_ring *ring;
1071 	unsigned long head;
1072 	int ret = 0;
1073 
1074 	ring = kmap_atomic(info->ring_pages[0]);
1075 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1076 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1077 		 (unsigned long)ring->nr);
1078 
1079 	if (ring->head == ring->tail)
1080 		goto out;
1081 
1082 	spin_lock(&info->ring_lock);
1083 
1084 	head = ring->head % info->nr;
1085 	if (head != ring->tail) {
1086 		struct io_event *evp = aio_ring_event(info, head);
1087 		*ent = *evp;
1088 		head = (head + 1) % info->nr;
1089 		smp_mb(); /* finish reading the event before updatng the head */
1090 		ring->head = head;
1091 		ret = 1;
1092 		put_aio_ring_event(evp);
1093 	}
1094 	spin_unlock(&info->ring_lock);
1095 
1096 out:
1097 	kunmap_atomic(ring);
1098 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1099 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1100 	return ret;
1101 }
1102 
1103 struct aio_timeout {
1104 	struct timer_list	timer;
1105 	int			timed_out;
1106 	struct task_struct	*p;
1107 };
1108 
1109 static void timeout_func(unsigned long data)
1110 {
1111 	struct aio_timeout *to = (struct aio_timeout *)data;
1112 
1113 	to->timed_out = 1;
1114 	wake_up_process(to->p);
1115 }
1116 
1117 static inline void init_timeout(struct aio_timeout *to)
1118 {
1119 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1120 	to->timed_out = 0;
1121 	to->p = current;
1122 }
1123 
1124 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1125 			       const struct timespec *ts)
1126 {
1127 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1128 	if (time_after(to->timer.expires, jiffies))
1129 		add_timer(&to->timer);
1130 	else
1131 		to->timed_out = 1;
1132 }
1133 
1134 static inline void clear_timeout(struct aio_timeout *to)
1135 {
1136 	del_singleshot_timer_sync(&to->timer);
1137 }
1138 
1139 static int read_events(struct kioctx *ctx,
1140 			long min_nr, long nr,
1141 			struct io_event __user *event,
1142 			struct timespec __user *timeout)
1143 {
1144 	long			start_jiffies = jiffies;
1145 	struct task_struct	*tsk = current;
1146 	DECLARE_WAITQUEUE(wait, tsk);
1147 	int			ret;
1148 	int			i = 0;
1149 	struct io_event		ent;
1150 	struct aio_timeout	to;
1151 	int			retry = 0;
1152 
1153 	/* needed to zero any padding within an entry (there shouldn't be
1154 	 * any, but C is fun!
1155 	 */
1156 	memset(&ent, 0, sizeof(ent));
1157 retry:
1158 	ret = 0;
1159 	while (likely(i < nr)) {
1160 		ret = aio_read_evt(ctx, &ent);
1161 		if (unlikely(ret <= 0))
1162 			break;
1163 
1164 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1165 			ent.data, ent.obj, ent.res, ent.res2);
1166 
1167 		/* Could we split the check in two? */
1168 		ret = -EFAULT;
1169 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1170 			dprintk("aio: lost an event due to EFAULT.\n");
1171 			break;
1172 		}
1173 		ret = 0;
1174 
1175 		/* Good, event copied to userland, update counts. */
1176 		event ++;
1177 		i ++;
1178 	}
1179 
1180 	if (min_nr <= i)
1181 		return i;
1182 	if (ret)
1183 		return ret;
1184 
1185 	/* End fast path */
1186 
1187 	/* racey check, but it gets redone */
1188 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1189 		retry = 1;
1190 		aio_run_all_iocbs(ctx);
1191 		goto retry;
1192 	}
1193 
1194 	init_timeout(&to);
1195 	if (timeout) {
1196 		struct timespec	ts;
1197 		ret = -EFAULT;
1198 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1199 			goto out;
1200 
1201 		set_timeout(start_jiffies, &to, &ts);
1202 	}
1203 
1204 	while (likely(i < nr)) {
1205 		add_wait_queue_exclusive(&ctx->wait, &wait);
1206 		do {
1207 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1208 			ret = aio_read_evt(ctx, &ent);
1209 			if (ret)
1210 				break;
1211 			if (min_nr <= i)
1212 				break;
1213 			if (unlikely(ctx->dead)) {
1214 				ret = -EINVAL;
1215 				break;
1216 			}
1217 			if (to.timed_out)	/* Only check after read evt */
1218 				break;
1219 			/* Try to only show up in io wait if there are ops
1220 			 *  in flight */
1221 			if (ctx->reqs_active)
1222 				io_schedule();
1223 			else
1224 				schedule();
1225 			if (signal_pending(tsk)) {
1226 				ret = -EINTR;
1227 				break;
1228 			}
1229 			/*ret = aio_read_evt(ctx, &ent);*/
1230 		} while (1) ;
1231 
1232 		set_task_state(tsk, TASK_RUNNING);
1233 		remove_wait_queue(&ctx->wait, &wait);
1234 
1235 		if (unlikely(ret <= 0))
1236 			break;
1237 
1238 		ret = -EFAULT;
1239 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1240 			dprintk("aio: lost an event due to EFAULT.\n");
1241 			break;
1242 		}
1243 
1244 		/* Good, event copied to userland, update counts. */
1245 		event ++;
1246 		i ++;
1247 	}
1248 
1249 	if (timeout)
1250 		clear_timeout(&to);
1251 out:
1252 	destroy_timer_on_stack(&to.timer);
1253 	return i ? i : ret;
1254 }
1255 
1256 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1257  * against races with itself via ->dead.
1258  */
1259 static void io_destroy(struct kioctx *ioctx)
1260 {
1261 	struct mm_struct *mm = current->mm;
1262 	int was_dead;
1263 
1264 	/* delete the entry from the list is someone else hasn't already */
1265 	spin_lock(&mm->ioctx_lock);
1266 	was_dead = ioctx->dead;
1267 	ioctx->dead = 1;
1268 	hlist_del_rcu(&ioctx->list);
1269 	spin_unlock(&mm->ioctx_lock);
1270 
1271 	dprintk("aio_release(%p)\n", ioctx);
1272 	if (likely(!was_dead))
1273 		put_ioctx(ioctx);	/* twice for the list */
1274 
1275 	kill_ctx(ioctx);
1276 
1277 	/*
1278 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1279 	 * by other CPUs at this point.  Right now, we rely on the
1280 	 * locking done by the above calls to ensure this consistency.
1281 	 */
1282 	wake_up_all(&ioctx->wait);
1283 }
1284 
1285 /* sys_io_setup:
1286  *	Create an aio_context capable of receiving at least nr_events.
1287  *	ctxp must not point to an aio_context that already exists, and
1288  *	must be initialized to 0 prior to the call.  On successful
1289  *	creation of the aio_context, *ctxp is filled in with the resulting
1290  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1291  *	if the specified nr_events exceeds internal limits.  May fail
1292  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1293  *	of available events.  May fail with -ENOMEM if insufficient kernel
1294  *	resources are available.  May fail with -EFAULT if an invalid
1295  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1296  *	implemented.
1297  */
1298 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1299 {
1300 	struct kioctx *ioctx = NULL;
1301 	unsigned long ctx;
1302 	long ret;
1303 
1304 	ret = get_user(ctx, ctxp);
1305 	if (unlikely(ret))
1306 		goto out;
1307 
1308 	ret = -EINVAL;
1309 	if (unlikely(ctx || nr_events == 0)) {
1310 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1311 		         ctx, nr_events);
1312 		goto out;
1313 	}
1314 
1315 	ioctx = ioctx_alloc(nr_events);
1316 	ret = PTR_ERR(ioctx);
1317 	if (!IS_ERR(ioctx)) {
1318 		ret = put_user(ioctx->user_id, ctxp);
1319 		if (ret)
1320 			io_destroy(ioctx);
1321 		put_ioctx(ioctx);
1322 	}
1323 
1324 out:
1325 	return ret;
1326 }
1327 
1328 /* sys_io_destroy:
1329  *	Destroy the aio_context specified.  May cancel any outstanding
1330  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1331  *	implemented.  May fail with -EINVAL if the context pointed to
1332  *	is invalid.
1333  */
1334 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1335 {
1336 	struct kioctx *ioctx = lookup_ioctx(ctx);
1337 	if (likely(NULL != ioctx)) {
1338 		io_destroy(ioctx);
1339 		put_ioctx(ioctx);
1340 		return 0;
1341 	}
1342 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1343 	return -EINVAL;
1344 }
1345 
1346 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1347 {
1348 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1349 
1350 	BUG_ON(ret <= 0);
1351 
1352 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1353 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1354 		iov->iov_base += this;
1355 		iov->iov_len -= this;
1356 		iocb->ki_left -= this;
1357 		ret -= this;
1358 		if (iov->iov_len == 0) {
1359 			iocb->ki_cur_seg++;
1360 			iov++;
1361 		}
1362 	}
1363 
1364 	/* the caller should not have done more io than what fit in
1365 	 * the remaining iovecs */
1366 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1367 }
1368 
1369 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1370 {
1371 	struct file *file = iocb->ki_filp;
1372 	struct address_space *mapping = file->f_mapping;
1373 	struct inode *inode = mapping->host;
1374 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1375 			 unsigned long, loff_t);
1376 	ssize_t ret = 0;
1377 	unsigned short opcode;
1378 
1379 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1380 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1381 		rw_op = file->f_op->aio_read;
1382 		opcode = IOCB_CMD_PREADV;
1383 	} else {
1384 		rw_op = file->f_op->aio_write;
1385 		opcode = IOCB_CMD_PWRITEV;
1386 	}
1387 
1388 	/* This matches the pread()/pwrite() logic */
1389 	if (iocb->ki_pos < 0)
1390 		return -EINVAL;
1391 
1392 	do {
1393 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1394 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1395 			    iocb->ki_pos);
1396 		if (ret > 0)
1397 			aio_advance_iovec(iocb, ret);
1398 
1399 	/* retry all partial writes.  retry partial reads as long as its a
1400 	 * regular file. */
1401 	} while (ret > 0 && iocb->ki_left > 0 &&
1402 		 (opcode == IOCB_CMD_PWRITEV ||
1403 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1404 
1405 	/* This means we must have transferred all that we could */
1406 	/* No need to retry anymore */
1407 	if ((ret == 0) || (iocb->ki_left == 0))
1408 		ret = iocb->ki_nbytes - iocb->ki_left;
1409 
1410 	/* If we managed to write some out we return that, rather than
1411 	 * the eventual error. */
1412 	if (opcode == IOCB_CMD_PWRITEV
1413 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1414 	    && iocb->ki_nbytes - iocb->ki_left)
1415 		ret = iocb->ki_nbytes - iocb->ki_left;
1416 
1417 	return ret;
1418 }
1419 
1420 static ssize_t aio_fdsync(struct kiocb *iocb)
1421 {
1422 	struct file *file = iocb->ki_filp;
1423 	ssize_t ret = -EINVAL;
1424 
1425 	if (file->f_op->aio_fsync)
1426 		ret = file->f_op->aio_fsync(iocb, 1);
1427 	return ret;
1428 }
1429 
1430 static ssize_t aio_fsync(struct kiocb *iocb)
1431 {
1432 	struct file *file = iocb->ki_filp;
1433 	ssize_t ret = -EINVAL;
1434 
1435 	if (file->f_op->aio_fsync)
1436 		ret = file->f_op->aio_fsync(iocb, 0);
1437 	return ret;
1438 }
1439 
1440 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1441 {
1442 	ssize_t ret;
1443 
1444 #ifdef CONFIG_COMPAT
1445 	if (compat)
1446 		ret = compat_rw_copy_check_uvector(type,
1447 				(struct compat_iovec __user *)kiocb->ki_buf,
1448 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1449 				&kiocb->ki_iovec, 1);
1450 	else
1451 #endif
1452 		ret = rw_copy_check_uvector(type,
1453 				(struct iovec __user *)kiocb->ki_buf,
1454 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1455 				&kiocb->ki_iovec, 1);
1456 	if (ret < 0)
1457 		goto out;
1458 
1459 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1460 	kiocb->ki_cur_seg = 0;
1461 	/* ki_nbytes/left now reflect bytes instead of segs */
1462 	kiocb->ki_nbytes = ret;
1463 	kiocb->ki_left = ret;
1464 
1465 	ret = 0;
1466 out:
1467 	return ret;
1468 }
1469 
1470 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1471 {
1472 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1473 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1474 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1475 	kiocb->ki_nr_segs = 1;
1476 	kiocb->ki_cur_seg = 0;
1477 	return 0;
1478 }
1479 
1480 /*
1481  * aio_setup_iocb:
1482  *	Performs the initial checks and aio retry method
1483  *	setup for the kiocb at the time of io submission.
1484  */
1485 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1486 {
1487 	struct file *file = kiocb->ki_filp;
1488 	ssize_t ret = 0;
1489 
1490 	switch (kiocb->ki_opcode) {
1491 	case IOCB_CMD_PREAD:
1492 		ret = -EBADF;
1493 		if (unlikely(!(file->f_mode & FMODE_READ)))
1494 			break;
1495 		ret = -EFAULT;
1496 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1497 			kiocb->ki_left)))
1498 			break;
1499 		ret = security_file_permission(file, MAY_READ);
1500 		if (unlikely(ret))
1501 			break;
1502 		ret = aio_setup_single_vector(kiocb);
1503 		if (ret)
1504 			break;
1505 		ret = -EINVAL;
1506 		if (file->f_op->aio_read)
1507 			kiocb->ki_retry = aio_rw_vect_retry;
1508 		break;
1509 	case IOCB_CMD_PWRITE:
1510 		ret = -EBADF;
1511 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1512 			break;
1513 		ret = -EFAULT;
1514 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1515 			kiocb->ki_left)))
1516 			break;
1517 		ret = security_file_permission(file, MAY_WRITE);
1518 		if (unlikely(ret))
1519 			break;
1520 		ret = aio_setup_single_vector(kiocb);
1521 		if (ret)
1522 			break;
1523 		ret = -EINVAL;
1524 		if (file->f_op->aio_write)
1525 			kiocb->ki_retry = aio_rw_vect_retry;
1526 		break;
1527 	case IOCB_CMD_PREADV:
1528 		ret = -EBADF;
1529 		if (unlikely(!(file->f_mode & FMODE_READ)))
1530 			break;
1531 		ret = security_file_permission(file, MAY_READ);
1532 		if (unlikely(ret))
1533 			break;
1534 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1535 		if (ret)
1536 			break;
1537 		ret = -EINVAL;
1538 		if (file->f_op->aio_read)
1539 			kiocb->ki_retry = aio_rw_vect_retry;
1540 		break;
1541 	case IOCB_CMD_PWRITEV:
1542 		ret = -EBADF;
1543 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1544 			break;
1545 		ret = security_file_permission(file, MAY_WRITE);
1546 		if (unlikely(ret))
1547 			break;
1548 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1549 		if (ret)
1550 			break;
1551 		ret = -EINVAL;
1552 		if (file->f_op->aio_write)
1553 			kiocb->ki_retry = aio_rw_vect_retry;
1554 		break;
1555 	case IOCB_CMD_FDSYNC:
1556 		ret = -EINVAL;
1557 		if (file->f_op->aio_fsync)
1558 			kiocb->ki_retry = aio_fdsync;
1559 		break;
1560 	case IOCB_CMD_FSYNC:
1561 		ret = -EINVAL;
1562 		if (file->f_op->aio_fsync)
1563 			kiocb->ki_retry = aio_fsync;
1564 		break;
1565 	default:
1566 		dprintk("EINVAL: io_submit: no operation provided\n");
1567 		ret = -EINVAL;
1568 	}
1569 
1570 	if (!kiocb->ki_retry)
1571 		return ret;
1572 
1573 	return 0;
1574 }
1575 
1576 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1577 			 struct iocb *iocb, struct kiocb_batch *batch,
1578 			 bool compat)
1579 {
1580 	struct kiocb *req;
1581 	struct file *file;
1582 	ssize_t ret;
1583 
1584 	/* enforce forwards compatibility on users */
1585 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1586 		pr_debug("EINVAL: io_submit: reserve field set\n");
1587 		return -EINVAL;
1588 	}
1589 
1590 	/* prevent overflows */
1591 	if (unlikely(
1592 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1593 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1594 	    ((ssize_t)iocb->aio_nbytes < 0)
1595 	   )) {
1596 		pr_debug("EINVAL: io_submit: overflow check\n");
1597 		return -EINVAL;
1598 	}
1599 
1600 	file = fget(iocb->aio_fildes);
1601 	if (unlikely(!file))
1602 		return -EBADF;
1603 
1604 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1605 	if (unlikely(!req)) {
1606 		fput(file);
1607 		return -EAGAIN;
1608 	}
1609 	req->ki_filp = file;
1610 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1611 		/*
1612 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1613 		 * instance of the file* now. The file descriptor must be
1614 		 * an eventfd() fd, and will be signaled for each completed
1615 		 * event using the eventfd_signal() function.
1616 		 */
1617 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1618 		if (IS_ERR(req->ki_eventfd)) {
1619 			ret = PTR_ERR(req->ki_eventfd);
1620 			req->ki_eventfd = NULL;
1621 			goto out_put_req;
1622 		}
1623 	}
1624 
1625 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1626 	if (unlikely(ret)) {
1627 		dprintk("EFAULT: aio_key\n");
1628 		goto out_put_req;
1629 	}
1630 
1631 	req->ki_obj.user = user_iocb;
1632 	req->ki_user_data = iocb->aio_data;
1633 	req->ki_pos = iocb->aio_offset;
1634 
1635 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1636 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1637 	req->ki_opcode = iocb->aio_lio_opcode;
1638 
1639 	ret = aio_setup_iocb(req, compat);
1640 
1641 	if (ret)
1642 		goto out_put_req;
1643 
1644 	spin_lock_irq(&ctx->ctx_lock);
1645 	/*
1646 	 * We could have raced with io_destroy() and are currently holding a
1647 	 * reference to ctx which should be destroyed. We cannot submit IO
1648 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1649 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1650 	 * for outstanding IO and the barrier between these two is realized by
1651 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1652 	 * increment ctx->reqs_active before checking for ctx->dead and the
1653 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1654 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1655 	 * finish.
1656 	 */
1657 	if (ctx->dead) {
1658 		spin_unlock_irq(&ctx->ctx_lock);
1659 		ret = -EINVAL;
1660 		goto out_put_req;
1661 	}
1662 	aio_run_iocb(req);
1663 	if (!list_empty(&ctx->run_list)) {
1664 		/* drain the run list */
1665 		while (__aio_run_iocbs(ctx))
1666 			;
1667 	}
1668 	spin_unlock_irq(&ctx->ctx_lock);
1669 
1670 	aio_put_req(req);	/* drop extra ref to req */
1671 	return 0;
1672 
1673 out_put_req:
1674 	aio_put_req(req);	/* drop extra ref to req */
1675 	aio_put_req(req);	/* drop i/o ref to req */
1676 	return ret;
1677 }
1678 
1679 long do_io_submit(aio_context_t ctx_id, long nr,
1680 		  struct iocb __user *__user *iocbpp, bool compat)
1681 {
1682 	struct kioctx *ctx;
1683 	long ret = 0;
1684 	int i = 0;
1685 	struct blk_plug plug;
1686 	struct kiocb_batch batch;
1687 
1688 	if (unlikely(nr < 0))
1689 		return -EINVAL;
1690 
1691 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1692 		nr = LONG_MAX/sizeof(*iocbpp);
1693 
1694 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1695 		return -EFAULT;
1696 
1697 	ctx = lookup_ioctx(ctx_id);
1698 	if (unlikely(!ctx)) {
1699 		pr_debug("EINVAL: io_submit: invalid context id\n");
1700 		return -EINVAL;
1701 	}
1702 
1703 	kiocb_batch_init(&batch, nr);
1704 
1705 	blk_start_plug(&plug);
1706 
1707 	/*
1708 	 * AKPM: should this return a partial result if some of the IOs were
1709 	 * successfully submitted?
1710 	 */
1711 	for (i=0; i<nr; i++) {
1712 		struct iocb __user *user_iocb;
1713 		struct iocb tmp;
1714 
1715 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1716 			ret = -EFAULT;
1717 			break;
1718 		}
1719 
1720 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1721 			ret = -EFAULT;
1722 			break;
1723 		}
1724 
1725 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1726 		if (ret)
1727 			break;
1728 	}
1729 	blk_finish_plug(&plug);
1730 
1731 	kiocb_batch_free(ctx, &batch);
1732 	put_ioctx(ctx);
1733 	return i ? i : ret;
1734 }
1735 
1736 /* sys_io_submit:
1737  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1738  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1739  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1740  *	*iocbpp[0] is not properly initialized, if the operation specified
1741  *	is invalid for the file descriptor in the iocb.  May fail with
1742  *	-EFAULT if any of the data structures point to invalid data.  May
1743  *	fail with -EBADF if the file descriptor specified in the first
1744  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1745  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1746  *	fail with -ENOSYS if not implemented.
1747  */
1748 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1749 		struct iocb __user * __user *, iocbpp)
1750 {
1751 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1752 }
1753 
1754 /* lookup_kiocb
1755  *	Finds a given iocb for cancellation.
1756  */
1757 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1758 				  u32 key)
1759 {
1760 	struct list_head *pos;
1761 
1762 	assert_spin_locked(&ctx->ctx_lock);
1763 
1764 	/* TODO: use a hash or array, this sucks. */
1765 	list_for_each(pos, &ctx->active_reqs) {
1766 		struct kiocb *kiocb = list_kiocb(pos);
1767 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1768 			return kiocb;
1769 	}
1770 	return NULL;
1771 }
1772 
1773 /* sys_io_cancel:
1774  *	Attempts to cancel an iocb previously passed to io_submit.  If
1775  *	the operation is successfully cancelled, the resulting event is
1776  *	copied into the memory pointed to by result without being placed
1777  *	into the completion queue and 0 is returned.  May fail with
1778  *	-EFAULT if any of the data structures pointed to are invalid.
1779  *	May fail with -EINVAL if aio_context specified by ctx_id is
1780  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1781  *	cancelled.  Will fail with -ENOSYS if not implemented.
1782  */
1783 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1784 		struct io_event __user *, result)
1785 {
1786 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1787 	struct kioctx *ctx;
1788 	struct kiocb *kiocb;
1789 	u32 key;
1790 	int ret;
1791 
1792 	ret = get_user(key, &iocb->aio_key);
1793 	if (unlikely(ret))
1794 		return -EFAULT;
1795 
1796 	ctx = lookup_ioctx(ctx_id);
1797 	if (unlikely(!ctx))
1798 		return -EINVAL;
1799 
1800 	spin_lock_irq(&ctx->ctx_lock);
1801 	ret = -EAGAIN;
1802 	kiocb = lookup_kiocb(ctx, iocb, key);
1803 	if (kiocb && kiocb->ki_cancel) {
1804 		cancel = kiocb->ki_cancel;
1805 		kiocb->ki_users ++;
1806 		kiocbSetCancelled(kiocb);
1807 	} else
1808 		cancel = NULL;
1809 	spin_unlock_irq(&ctx->ctx_lock);
1810 
1811 	if (NULL != cancel) {
1812 		struct io_event tmp;
1813 		pr_debug("calling cancel\n");
1814 		memset(&tmp, 0, sizeof(tmp));
1815 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1816 		tmp.data = kiocb->ki_user_data;
1817 		ret = cancel(kiocb, &tmp);
1818 		if (!ret) {
1819 			/* Cancellation succeeded -- copy the result
1820 			 * into the user's buffer.
1821 			 */
1822 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1823 				ret = -EFAULT;
1824 		}
1825 	} else
1826 		ret = -EINVAL;
1827 
1828 	put_ioctx(ctx);
1829 
1830 	return ret;
1831 }
1832 
1833 /* io_getevents:
1834  *	Attempts to read at least min_nr events and up to nr events from
1835  *	the completion queue for the aio_context specified by ctx_id. If
1836  *	it succeeds, the number of read events is returned. May fail with
1837  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1838  *	out of range, if timeout is out of range.  May fail with -EFAULT
1839  *	if any of the memory specified is invalid.  May return 0 or
1840  *	< min_nr if the timeout specified by timeout has elapsed
1841  *	before sufficient events are available, where timeout == NULL
1842  *	specifies an infinite timeout. Note that the timeout pointed to by
1843  *	timeout is relative and will be updated if not NULL and the
1844  *	operation blocks. Will fail with -ENOSYS if not implemented.
1845  */
1846 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1847 		long, min_nr,
1848 		long, nr,
1849 		struct io_event __user *, events,
1850 		struct timespec __user *, timeout)
1851 {
1852 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1853 	long ret = -EINVAL;
1854 
1855 	if (likely(ioctx)) {
1856 		if (likely(min_nr <= nr && min_nr >= 0))
1857 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1858 		put_ioctx(ioctx);
1859 	}
1860 
1861 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1862 	return ret;
1863 }
1864