1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/export.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #if DEBUG > 1 43 #define dprintk printk 44 #else 45 #define dprintk(x...) do { ; } while (0) 46 #endif 47 48 /*------ sysctl variables----*/ 49 static DEFINE_SPINLOCK(aio_nr_lock); 50 unsigned long aio_nr; /* current system wide number of aio requests */ 51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 52 /*----end sysctl variables---*/ 53 54 static struct kmem_cache *kiocb_cachep; 55 static struct kmem_cache *kioctx_cachep; 56 57 static struct workqueue_struct *aio_wq; 58 59 /* Used for rare fput completion. */ 60 static void aio_fput_routine(struct work_struct *); 61 static DECLARE_WORK(fput_work, aio_fput_routine); 62 63 static DEFINE_SPINLOCK(fput_lock); 64 static LIST_HEAD(fput_head); 65 66 static void aio_kick_handler(struct work_struct *); 67 static void aio_queue_work(struct kioctx *); 68 69 /* aio_setup 70 * Creates the slab caches used by the aio routines, panic on 71 * failure as this is done early during the boot sequence. 72 */ 73 static int __init aio_setup(void) 74 { 75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 77 78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ 79 BUG_ON(!aio_wq); 80 81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 82 83 return 0; 84 } 85 __initcall(aio_setup); 86 87 static void aio_free_ring(struct kioctx *ctx) 88 { 89 struct aio_ring_info *info = &ctx->ring_info; 90 long i; 91 92 for (i=0; i<info->nr_pages; i++) 93 put_page(info->ring_pages[i]); 94 95 if (info->mmap_size) { 96 BUG_ON(ctx->mm != current->mm); 97 vm_munmap(info->mmap_base, info->mmap_size); 98 } 99 100 if (info->ring_pages && info->ring_pages != info->internal_pages) 101 kfree(info->ring_pages); 102 info->ring_pages = NULL; 103 info->nr = 0; 104 } 105 106 static int aio_setup_ring(struct kioctx *ctx) 107 { 108 struct aio_ring *ring; 109 struct aio_ring_info *info = &ctx->ring_info; 110 unsigned nr_events = ctx->max_reqs; 111 unsigned long size; 112 int nr_pages; 113 114 /* Compensate for the ring buffer's head/tail overlap entry */ 115 nr_events += 2; /* 1 is required, 2 for good luck */ 116 117 size = sizeof(struct aio_ring); 118 size += sizeof(struct io_event) * nr_events; 119 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 120 121 if (nr_pages < 0) 122 return -EINVAL; 123 124 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 125 126 info->nr = 0; 127 info->ring_pages = info->internal_pages; 128 if (nr_pages > AIO_RING_PAGES) { 129 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 130 if (!info->ring_pages) 131 return -ENOMEM; 132 } 133 134 info->mmap_size = nr_pages * PAGE_SIZE; 135 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 136 down_write(&ctx->mm->mmap_sem); 137 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 138 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 139 0); 140 if (IS_ERR((void *)info->mmap_base)) { 141 up_write(&ctx->mm->mmap_sem); 142 info->mmap_size = 0; 143 aio_free_ring(ctx); 144 return -EAGAIN; 145 } 146 147 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 148 info->nr_pages = get_user_pages(current, ctx->mm, 149 info->mmap_base, nr_pages, 150 1, 0, info->ring_pages, NULL); 151 up_write(&ctx->mm->mmap_sem); 152 153 if (unlikely(info->nr_pages != nr_pages)) { 154 aio_free_ring(ctx); 155 return -EAGAIN; 156 } 157 158 ctx->user_id = info->mmap_base; 159 160 info->nr = nr_events; /* trusted copy */ 161 162 ring = kmap_atomic(info->ring_pages[0]); 163 ring->nr = nr_events; /* user copy */ 164 ring->id = ctx->user_id; 165 ring->head = ring->tail = 0; 166 ring->magic = AIO_RING_MAGIC; 167 ring->compat_features = AIO_RING_COMPAT_FEATURES; 168 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 169 ring->header_length = sizeof(struct aio_ring); 170 kunmap_atomic(ring); 171 172 return 0; 173 } 174 175 176 /* aio_ring_event: returns a pointer to the event at the given index from 177 * kmap_atomic(). Release the pointer with put_aio_ring_event(); 178 */ 179 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 180 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 181 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 182 183 #define aio_ring_event(info, nr) ({ \ 184 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 185 struct io_event *__event; \ 186 __event = kmap_atomic( \ 187 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \ 188 __event += pos % AIO_EVENTS_PER_PAGE; \ 189 __event; \ 190 }) 191 192 #define put_aio_ring_event(event) do { \ 193 struct io_event *__event = (event); \ 194 (void)__event; \ 195 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \ 196 } while(0) 197 198 static void ctx_rcu_free(struct rcu_head *head) 199 { 200 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 201 kmem_cache_free(kioctx_cachep, ctx); 202 } 203 204 /* __put_ioctx 205 * Called when the last user of an aio context has gone away, 206 * and the struct needs to be freed. 207 */ 208 static void __put_ioctx(struct kioctx *ctx) 209 { 210 unsigned nr_events = ctx->max_reqs; 211 BUG_ON(ctx->reqs_active); 212 213 cancel_delayed_work_sync(&ctx->wq); 214 aio_free_ring(ctx); 215 mmdrop(ctx->mm); 216 ctx->mm = NULL; 217 if (nr_events) { 218 spin_lock(&aio_nr_lock); 219 BUG_ON(aio_nr - nr_events > aio_nr); 220 aio_nr -= nr_events; 221 spin_unlock(&aio_nr_lock); 222 } 223 pr_debug("__put_ioctx: freeing %p\n", ctx); 224 call_rcu(&ctx->rcu_head, ctx_rcu_free); 225 } 226 227 static inline int try_get_ioctx(struct kioctx *kioctx) 228 { 229 return atomic_inc_not_zero(&kioctx->users); 230 } 231 232 static inline void put_ioctx(struct kioctx *kioctx) 233 { 234 BUG_ON(atomic_read(&kioctx->users) <= 0); 235 if (unlikely(atomic_dec_and_test(&kioctx->users))) 236 __put_ioctx(kioctx); 237 } 238 239 /* ioctx_alloc 240 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 241 */ 242 static struct kioctx *ioctx_alloc(unsigned nr_events) 243 { 244 struct mm_struct *mm; 245 struct kioctx *ctx; 246 int err = -ENOMEM; 247 248 /* Prevent overflows */ 249 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 250 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 251 pr_debug("ENOMEM: nr_events too high\n"); 252 return ERR_PTR(-EINVAL); 253 } 254 255 if (!nr_events || (unsigned long)nr_events > aio_max_nr) 256 return ERR_PTR(-EAGAIN); 257 258 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 259 if (!ctx) 260 return ERR_PTR(-ENOMEM); 261 262 ctx->max_reqs = nr_events; 263 mm = ctx->mm = current->mm; 264 atomic_inc(&mm->mm_count); 265 266 atomic_set(&ctx->users, 2); 267 spin_lock_init(&ctx->ctx_lock); 268 spin_lock_init(&ctx->ring_info.ring_lock); 269 init_waitqueue_head(&ctx->wait); 270 271 INIT_LIST_HEAD(&ctx->active_reqs); 272 INIT_LIST_HEAD(&ctx->run_list); 273 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 274 275 if (aio_setup_ring(ctx) < 0) 276 goto out_freectx; 277 278 /* limit the number of system wide aios */ 279 spin_lock(&aio_nr_lock); 280 if (aio_nr + nr_events > aio_max_nr || 281 aio_nr + nr_events < aio_nr) { 282 spin_unlock(&aio_nr_lock); 283 goto out_cleanup; 284 } 285 aio_nr += ctx->max_reqs; 286 spin_unlock(&aio_nr_lock); 287 288 /* now link into global list. */ 289 spin_lock(&mm->ioctx_lock); 290 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 291 spin_unlock(&mm->ioctx_lock); 292 293 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 294 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 295 return ctx; 296 297 out_cleanup: 298 err = -EAGAIN; 299 aio_free_ring(ctx); 300 out_freectx: 301 mmdrop(mm); 302 kmem_cache_free(kioctx_cachep, ctx); 303 dprintk("aio: error allocating ioctx %d\n", err); 304 return ERR_PTR(err); 305 } 306 307 /* kill_ctx 308 * Cancels all outstanding aio requests on an aio context. Used 309 * when the processes owning a context have all exited to encourage 310 * the rapid destruction of the kioctx. 311 */ 312 static void kill_ctx(struct kioctx *ctx) 313 { 314 int (*cancel)(struct kiocb *, struct io_event *); 315 struct task_struct *tsk = current; 316 DECLARE_WAITQUEUE(wait, tsk); 317 struct io_event res; 318 319 spin_lock_irq(&ctx->ctx_lock); 320 ctx->dead = 1; 321 while (!list_empty(&ctx->active_reqs)) { 322 struct list_head *pos = ctx->active_reqs.next; 323 struct kiocb *iocb = list_kiocb(pos); 324 list_del_init(&iocb->ki_list); 325 cancel = iocb->ki_cancel; 326 kiocbSetCancelled(iocb); 327 if (cancel) { 328 iocb->ki_users++; 329 spin_unlock_irq(&ctx->ctx_lock); 330 cancel(iocb, &res); 331 spin_lock_irq(&ctx->ctx_lock); 332 } 333 } 334 335 if (!ctx->reqs_active) 336 goto out; 337 338 add_wait_queue(&ctx->wait, &wait); 339 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 340 while (ctx->reqs_active) { 341 spin_unlock_irq(&ctx->ctx_lock); 342 io_schedule(); 343 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 344 spin_lock_irq(&ctx->ctx_lock); 345 } 346 __set_task_state(tsk, TASK_RUNNING); 347 remove_wait_queue(&ctx->wait, &wait); 348 349 out: 350 spin_unlock_irq(&ctx->ctx_lock); 351 } 352 353 /* wait_on_sync_kiocb: 354 * Waits on the given sync kiocb to complete. 355 */ 356 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 357 { 358 while (iocb->ki_users) { 359 set_current_state(TASK_UNINTERRUPTIBLE); 360 if (!iocb->ki_users) 361 break; 362 io_schedule(); 363 } 364 __set_current_state(TASK_RUNNING); 365 return iocb->ki_user_data; 366 } 367 EXPORT_SYMBOL(wait_on_sync_kiocb); 368 369 /* exit_aio: called when the last user of mm goes away. At this point, 370 * there is no way for any new requests to be submited or any of the 371 * io_* syscalls to be called on the context. However, there may be 372 * outstanding requests which hold references to the context; as they 373 * go away, they will call put_ioctx and release any pinned memory 374 * associated with the request (held via struct page * references). 375 */ 376 void exit_aio(struct mm_struct *mm) 377 { 378 struct kioctx *ctx; 379 380 while (!hlist_empty(&mm->ioctx_list)) { 381 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 382 hlist_del_rcu(&ctx->list); 383 384 kill_ctx(ctx); 385 386 if (1 != atomic_read(&ctx->users)) 387 printk(KERN_DEBUG 388 "exit_aio:ioctx still alive: %d %d %d\n", 389 atomic_read(&ctx->users), ctx->dead, 390 ctx->reqs_active); 391 /* 392 * We don't need to bother with munmap() here - 393 * exit_mmap(mm) is coming and it'll unmap everything. 394 * Since aio_free_ring() uses non-zero ->mmap_size 395 * as indicator that it needs to unmap the area, 396 * just set it to 0; aio_free_ring() is the only 397 * place that uses ->mmap_size, so it's safe. 398 * That way we get all munmap done to current->mm - 399 * all other callers have ctx->mm == current->mm. 400 */ 401 ctx->ring_info.mmap_size = 0; 402 put_ioctx(ctx); 403 } 404 } 405 406 /* aio_get_req 407 * Allocate a slot for an aio request. Increments the users count 408 * of the kioctx so that the kioctx stays around until all requests are 409 * complete. Returns NULL if no requests are free. 410 * 411 * Returns with kiocb->users set to 2. The io submit code path holds 412 * an extra reference while submitting the i/o. 413 * This prevents races between the aio code path referencing the 414 * req (after submitting it) and aio_complete() freeing the req. 415 */ 416 static struct kiocb *__aio_get_req(struct kioctx *ctx) 417 { 418 struct kiocb *req = NULL; 419 420 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 421 if (unlikely(!req)) 422 return NULL; 423 424 req->ki_flags = 0; 425 req->ki_users = 2; 426 req->ki_key = 0; 427 req->ki_ctx = ctx; 428 req->ki_cancel = NULL; 429 req->ki_retry = NULL; 430 req->ki_dtor = NULL; 431 req->private = NULL; 432 req->ki_iovec = NULL; 433 INIT_LIST_HEAD(&req->ki_run_list); 434 req->ki_eventfd = NULL; 435 436 return req; 437 } 438 439 /* 440 * struct kiocb's are allocated in batches to reduce the number of 441 * times the ctx lock is acquired and released. 442 */ 443 #define KIOCB_BATCH_SIZE 32L 444 struct kiocb_batch { 445 struct list_head head; 446 long count; /* number of requests left to allocate */ 447 }; 448 449 static void kiocb_batch_init(struct kiocb_batch *batch, long total) 450 { 451 INIT_LIST_HEAD(&batch->head); 452 batch->count = total; 453 } 454 455 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch) 456 { 457 struct kiocb *req, *n; 458 459 if (list_empty(&batch->head)) 460 return; 461 462 spin_lock_irq(&ctx->ctx_lock); 463 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 464 list_del(&req->ki_batch); 465 list_del(&req->ki_list); 466 kmem_cache_free(kiocb_cachep, req); 467 ctx->reqs_active--; 468 } 469 if (unlikely(!ctx->reqs_active && ctx->dead)) 470 wake_up_all(&ctx->wait); 471 spin_unlock_irq(&ctx->ctx_lock); 472 } 473 474 /* 475 * Allocate a batch of kiocbs. This avoids taking and dropping the 476 * context lock a lot during setup. 477 */ 478 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) 479 { 480 unsigned short allocated, to_alloc; 481 long avail; 482 bool called_fput = false; 483 struct kiocb *req, *n; 484 struct aio_ring *ring; 485 486 to_alloc = min(batch->count, KIOCB_BATCH_SIZE); 487 for (allocated = 0; allocated < to_alloc; allocated++) { 488 req = __aio_get_req(ctx); 489 if (!req) 490 /* allocation failed, go with what we've got */ 491 break; 492 list_add(&req->ki_batch, &batch->head); 493 } 494 495 if (allocated == 0) 496 goto out; 497 498 retry: 499 spin_lock_irq(&ctx->ctx_lock); 500 ring = kmap_atomic(ctx->ring_info.ring_pages[0]); 501 502 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; 503 BUG_ON(avail < 0); 504 if (avail == 0 && !called_fput) { 505 /* 506 * Handle a potential starvation case. It is possible that 507 * we hold the last reference on a struct file, causing us 508 * to delay the final fput to non-irq context. In this case, 509 * ctx->reqs_active is artificially high. Calling the fput 510 * routine here may free up a slot in the event completion 511 * ring, allowing this allocation to succeed. 512 */ 513 kunmap_atomic(ring); 514 spin_unlock_irq(&ctx->ctx_lock); 515 aio_fput_routine(NULL); 516 called_fput = true; 517 goto retry; 518 } 519 520 if (avail < allocated) { 521 /* Trim back the number of requests. */ 522 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 523 list_del(&req->ki_batch); 524 kmem_cache_free(kiocb_cachep, req); 525 if (--allocated <= avail) 526 break; 527 } 528 } 529 530 batch->count -= allocated; 531 list_for_each_entry(req, &batch->head, ki_batch) { 532 list_add(&req->ki_list, &ctx->active_reqs); 533 ctx->reqs_active++; 534 } 535 536 kunmap_atomic(ring); 537 spin_unlock_irq(&ctx->ctx_lock); 538 539 out: 540 return allocated; 541 } 542 543 static inline struct kiocb *aio_get_req(struct kioctx *ctx, 544 struct kiocb_batch *batch) 545 { 546 struct kiocb *req; 547 548 if (list_empty(&batch->head)) 549 if (kiocb_batch_refill(ctx, batch) == 0) 550 return NULL; 551 req = list_first_entry(&batch->head, struct kiocb, ki_batch); 552 list_del(&req->ki_batch); 553 return req; 554 } 555 556 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 557 { 558 assert_spin_locked(&ctx->ctx_lock); 559 560 if (req->ki_eventfd != NULL) 561 eventfd_ctx_put(req->ki_eventfd); 562 if (req->ki_dtor) 563 req->ki_dtor(req); 564 if (req->ki_iovec != &req->ki_inline_vec) 565 kfree(req->ki_iovec); 566 kmem_cache_free(kiocb_cachep, req); 567 ctx->reqs_active--; 568 569 if (unlikely(!ctx->reqs_active && ctx->dead)) 570 wake_up_all(&ctx->wait); 571 } 572 573 static void aio_fput_routine(struct work_struct *data) 574 { 575 spin_lock_irq(&fput_lock); 576 while (likely(!list_empty(&fput_head))) { 577 struct kiocb *req = list_kiocb(fput_head.next); 578 struct kioctx *ctx = req->ki_ctx; 579 580 list_del(&req->ki_list); 581 spin_unlock_irq(&fput_lock); 582 583 /* Complete the fput(s) */ 584 if (req->ki_filp != NULL) 585 fput(req->ki_filp); 586 587 /* Link the iocb into the context's free list */ 588 rcu_read_lock(); 589 spin_lock_irq(&ctx->ctx_lock); 590 really_put_req(ctx, req); 591 /* 592 * at that point ctx might've been killed, but actual 593 * freeing is RCU'd 594 */ 595 spin_unlock_irq(&ctx->ctx_lock); 596 rcu_read_unlock(); 597 598 spin_lock_irq(&fput_lock); 599 } 600 spin_unlock_irq(&fput_lock); 601 } 602 603 /* __aio_put_req 604 * Returns true if this put was the last user of the request. 605 */ 606 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 607 { 608 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 609 req, atomic_long_read(&req->ki_filp->f_count)); 610 611 assert_spin_locked(&ctx->ctx_lock); 612 613 req->ki_users--; 614 BUG_ON(req->ki_users < 0); 615 if (likely(req->ki_users)) 616 return 0; 617 list_del(&req->ki_list); /* remove from active_reqs */ 618 req->ki_cancel = NULL; 619 req->ki_retry = NULL; 620 621 /* 622 * Try to optimize the aio and eventfd file* puts, by avoiding to 623 * schedule work in case it is not final fput() time. In normal cases, 624 * we would not be holding the last reference to the file*, so 625 * this function will be executed w/out any aio kthread wakeup. 626 */ 627 if (unlikely(!fput_atomic(req->ki_filp))) { 628 spin_lock(&fput_lock); 629 list_add(&req->ki_list, &fput_head); 630 spin_unlock(&fput_lock); 631 schedule_work(&fput_work); 632 } else { 633 req->ki_filp = NULL; 634 really_put_req(ctx, req); 635 } 636 return 1; 637 } 638 639 /* aio_put_req 640 * Returns true if this put was the last user of the kiocb, 641 * false if the request is still in use. 642 */ 643 int aio_put_req(struct kiocb *req) 644 { 645 struct kioctx *ctx = req->ki_ctx; 646 int ret; 647 spin_lock_irq(&ctx->ctx_lock); 648 ret = __aio_put_req(ctx, req); 649 spin_unlock_irq(&ctx->ctx_lock); 650 return ret; 651 } 652 EXPORT_SYMBOL(aio_put_req); 653 654 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 655 { 656 struct mm_struct *mm = current->mm; 657 struct kioctx *ctx, *ret = NULL; 658 struct hlist_node *n; 659 660 rcu_read_lock(); 661 662 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 663 /* 664 * RCU protects us against accessing freed memory but 665 * we have to be careful not to get a reference when the 666 * reference count already dropped to 0 (ctx->dead test 667 * is unreliable because of races). 668 */ 669 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 670 ret = ctx; 671 break; 672 } 673 } 674 675 rcu_read_unlock(); 676 return ret; 677 } 678 679 /* 680 * Queue up a kiocb to be retried. Assumes that the kiocb 681 * has already been marked as kicked, and places it on 682 * the retry run list for the corresponding ioctx, if it 683 * isn't already queued. Returns 1 if it actually queued 684 * the kiocb (to tell the caller to activate the work 685 * queue to process it), or 0, if it found that it was 686 * already queued. 687 */ 688 static inline int __queue_kicked_iocb(struct kiocb *iocb) 689 { 690 struct kioctx *ctx = iocb->ki_ctx; 691 692 assert_spin_locked(&ctx->ctx_lock); 693 694 if (list_empty(&iocb->ki_run_list)) { 695 list_add_tail(&iocb->ki_run_list, 696 &ctx->run_list); 697 return 1; 698 } 699 return 0; 700 } 701 702 /* aio_run_iocb 703 * This is the core aio execution routine. It is 704 * invoked both for initial i/o submission and 705 * subsequent retries via the aio_kick_handler. 706 * Expects to be invoked with iocb->ki_ctx->lock 707 * already held. The lock is released and reacquired 708 * as needed during processing. 709 * 710 * Calls the iocb retry method (already setup for the 711 * iocb on initial submission) for operation specific 712 * handling, but takes care of most of common retry 713 * execution details for a given iocb. The retry method 714 * needs to be non-blocking as far as possible, to avoid 715 * holding up other iocbs waiting to be serviced by the 716 * retry kernel thread. 717 * 718 * The trickier parts in this code have to do with 719 * ensuring that only one retry instance is in progress 720 * for a given iocb at any time. Providing that guarantee 721 * simplifies the coding of individual aio operations as 722 * it avoids various potential races. 723 */ 724 static ssize_t aio_run_iocb(struct kiocb *iocb) 725 { 726 struct kioctx *ctx = iocb->ki_ctx; 727 ssize_t (*retry)(struct kiocb *); 728 ssize_t ret; 729 730 if (!(retry = iocb->ki_retry)) { 731 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 732 return 0; 733 } 734 735 /* 736 * We don't want the next retry iteration for this 737 * operation to start until this one has returned and 738 * updated the iocb state. However, wait_queue functions 739 * can trigger a kick_iocb from interrupt context in the 740 * meantime, indicating that data is available for the next 741 * iteration. We want to remember that and enable the 742 * next retry iteration _after_ we are through with 743 * this one. 744 * 745 * So, in order to be able to register a "kick", but 746 * prevent it from being queued now, we clear the kick 747 * flag, but make the kick code *think* that the iocb is 748 * still on the run list until we are actually done. 749 * When we are done with this iteration, we check if 750 * the iocb was kicked in the meantime and if so, queue 751 * it up afresh. 752 */ 753 754 kiocbClearKicked(iocb); 755 756 /* 757 * This is so that aio_complete knows it doesn't need to 758 * pull the iocb off the run list (We can't just call 759 * INIT_LIST_HEAD because we don't want a kick_iocb to 760 * queue this on the run list yet) 761 */ 762 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 763 spin_unlock_irq(&ctx->ctx_lock); 764 765 /* Quit retrying if the i/o has been cancelled */ 766 if (kiocbIsCancelled(iocb)) { 767 ret = -EINTR; 768 aio_complete(iocb, ret, 0); 769 /* must not access the iocb after this */ 770 goto out; 771 } 772 773 /* 774 * Now we are all set to call the retry method in async 775 * context. 776 */ 777 ret = retry(iocb); 778 779 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 780 /* 781 * There's no easy way to restart the syscall since other AIO's 782 * may be already running. Just fail this IO with EINTR. 783 */ 784 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 785 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 786 ret = -EINTR; 787 aio_complete(iocb, ret, 0); 788 } 789 out: 790 spin_lock_irq(&ctx->ctx_lock); 791 792 if (-EIOCBRETRY == ret) { 793 /* 794 * OK, now that we are done with this iteration 795 * and know that there is more left to go, 796 * this is where we let go so that a subsequent 797 * "kick" can start the next iteration 798 */ 799 800 /* will make __queue_kicked_iocb succeed from here on */ 801 INIT_LIST_HEAD(&iocb->ki_run_list); 802 /* we must queue the next iteration ourselves, if it 803 * has already been kicked */ 804 if (kiocbIsKicked(iocb)) { 805 __queue_kicked_iocb(iocb); 806 807 /* 808 * __queue_kicked_iocb will always return 1 here, because 809 * iocb->ki_run_list is empty at this point so it should 810 * be safe to unconditionally queue the context into the 811 * work queue. 812 */ 813 aio_queue_work(ctx); 814 } 815 } 816 return ret; 817 } 818 819 /* 820 * __aio_run_iocbs: 821 * Process all pending retries queued on the ioctx 822 * run list. 823 * Assumes it is operating within the aio issuer's mm 824 * context. 825 */ 826 static int __aio_run_iocbs(struct kioctx *ctx) 827 { 828 struct kiocb *iocb; 829 struct list_head run_list; 830 831 assert_spin_locked(&ctx->ctx_lock); 832 833 list_replace_init(&ctx->run_list, &run_list); 834 while (!list_empty(&run_list)) { 835 iocb = list_entry(run_list.next, struct kiocb, 836 ki_run_list); 837 list_del(&iocb->ki_run_list); 838 /* 839 * Hold an extra reference while retrying i/o. 840 */ 841 iocb->ki_users++; /* grab extra reference */ 842 aio_run_iocb(iocb); 843 __aio_put_req(ctx, iocb); 844 } 845 if (!list_empty(&ctx->run_list)) 846 return 1; 847 return 0; 848 } 849 850 static void aio_queue_work(struct kioctx * ctx) 851 { 852 unsigned long timeout; 853 /* 854 * if someone is waiting, get the work started right 855 * away, otherwise, use a longer delay 856 */ 857 smp_mb(); 858 if (waitqueue_active(&ctx->wait)) 859 timeout = 1; 860 else 861 timeout = HZ/10; 862 queue_delayed_work(aio_wq, &ctx->wq, timeout); 863 } 864 865 /* 866 * aio_run_all_iocbs: 867 * Process all pending retries queued on the ioctx 868 * run list, and keep running them until the list 869 * stays empty. 870 * Assumes it is operating within the aio issuer's mm context. 871 */ 872 static inline void aio_run_all_iocbs(struct kioctx *ctx) 873 { 874 spin_lock_irq(&ctx->ctx_lock); 875 while (__aio_run_iocbs(ctx)) 876 ; 877 spin_unlock_irq(&ctx->ctx_lock); 878 } 879 880 /* 881 * aio_kick_handler: 882 * Work queue handler triggered to process pending 883 * retries on an ioctx. Takes on the aio issuer's 884 * mm context before running the iocbs, so that 885 * copy_xxx_user operates on the issuer's address 886 * space. 887 * Run on aiod's context. 888 */ 889 static void aio_kick_handler(struct work_struct *work) 890 { 891 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 892 mm_segment_t oldfs = get_fs(); 893 struct mm_struct *mm; 894 int requeue; 895 896 set_fs(USER_DS); 897 use_mm(ctx->mm); 898 spin_lock_irq(&ctx->ctx_lock); 899 requeue =__aio_run_iocbs(ctx); 900 mm = ctx->mm; 901 spin_unlock_irq(&ctx->ctx_lock); 902 unuse_mm(mm); 903 set_fs(oldfs); 904 /* 905 * we're in a worker thread already; no point using non-zero delay 906 */ 907 if (requeue) 908 queue_delayed_work(aio_wq, &ctx->wq, 0); 909 } 910 911 912 /* 913 * Called by kick_iocb to queue the kiocb for retry 914 * and if required activate the aio work queue to process 915 * it 916 */ 917 static void try_queue_kicked_iocb(struct kiocb *iocb) 918 { 919 struct kioctx *ctx = iocb->ki_ctx; 920 unsigned long flags; 921 int run = 0; 922 923 spin_lock_irqsave(&ctx->ctx_lock, flags); 924 /* set this inside the lock so that we can't race with aio_run_iocb() 925 * testing it and putting the iocb on the run list under the lock */ 926 if (!kiocbTryKick(iocb)) 927 run = __queue_kicked_iocb(iocb); 928 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 929 if (run) 930 aio_queue_work(ctx); 931 } 932 933 /* 934 * kick_iocb: 935 * Called typically from a wait queue callback context 936 * to trigger a retry of the iocb. 937 * The retry is usually executed by aio workqueue 938 * threads (See aio_kick_handler). 939 */ 940 void kick_iocb(struct kiocb *iocb) 941 { 942 /* sync iocbs are easy: they can only ever be executing from a 943 * single context. */ 944 if (is_sync_kiocb(iocb)) { 945 kiocbSetKicked(iocb); 946 wake_up_process(iocb->ki_obj.tsk); 947 return; 948 } 949 950 try_queue_kicked_iocb(iocb); 951 } 952 EXPORT_SYMBOL(kick_iocb); 953 954 /* aio_complete 955 * Called when the io request on the given iocb is complete. 956 * Returns true if this is the last user of the request. The 957 * only other user of the request can be the cancellation code. 958 */ 959 int aio_complete(struct kiocb *iocb, long res, long res2) 960 { 961 struct kioctx *ctx = iocb->ki_ctx; 962 struct aio_ring_info *info; 963 struct aio_ring *ring; 964 struct io_event *event; 965 unsigned long flags; 966 unsigned long tail; 967 int ret; 968 969 /* 970 * Special case handling for sync iocbs: 971 * - events go directly into the iocb for fast handling 972 * - the sync task with the iocb in its stack holds the single iocb 973 * ref, no other paths have a way to get another ref 974 * - the sync task helpfully left a reference to itself in the iocb 975 */ 976 if (is_sync_kiocb(iocb)) { 977 BUG_ON(iocb->ki_users != 1); 978 iocb->ki_user_data = res; 979 iocb->ki_users = 0; 980 wake_up_process(iocb->ki_obj.tsk); 981 return 1; 982 } 983 984 info = &ctx->ring_info; 985 986 /* add a completion event to the ring buffer. 987 * must be done holding ctx->ctx_lock to prevent 988 * other code from messing with the tail 989 * pointer since we might be called from irq 990 * context. 991 */ 992 spin_lock_irqsave(&ctx->ctx_lock, flags); 993 994 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 995 list_del_init(&iocb->ki_run_list); 996 997 /* 998 * cancelled requests don't get events, userland was given one 999 * when the event got cancelled. 1000 */ 1001 if (kiocbIsCancelled(iocb)) 1002 goto put_rq; 1003 1004 ring = kmap_atomic(info->ring_pages[0]); 1005 1006 tail = info->tail; 1007 event = aio_ring_event(info, tail); 1008 if (++tail >= info->nr) 1009 tail = 0; 1010 1011 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 1012 event->data = iocb->ki_user_data; 1013 event->res = res; 1014 event->res2 = res2; 1015 1016 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 1017 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1018 res, res2); 1019 1020 /* after flagging the request as done, we 1021 * must never even look at it again 1022 */ 1023 smp_wmb(); /* make event visible before updating tail */ 1024 1025 info->tail = tail; 1026 ring->tail = tail; 1027 1028 put_aio_ring_event(event); 1029 kunmap_atomic(ring); 1030 1031 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1032 1033 /* 1034 * Check if the user asked us to deliver the result through an 1035 * eventfd. The eventfd_signal() function is safe to be called 1036 * from IRQ context. 1037 */ 1038 if (iocb->ki_eventfd != NULL) 1039 eventfd_signal(iocb->ki_eventfd, 1); 1040 1041 put_rq: 1042 /* everything turned out well, dispose of the aiocb. */ 1043 ret = __aio_put_req(ctx, iocb); 1044 1045 /* 1046 * We have to order our ring_info tail store above and test 1047 * of the wait list below outside the wait lock. This is 1048 * like in wake_up_bit() where clearing a bit has to be 1049 * ordered with the unlocked test. 1050 */ 1051 smp_mb(); 1052 1053 if (waitqueue_active(&ctx->wait)) 1054 wake_up(&ctx->wait); 1055 1056 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1057 return ret; 1058 } 1059 EXPORT_SYMBOL(aio_complete); 1060 1061 /* aio_read_evt 1062 * Pull an event off of the ioctx's event ring. Returns the number of 1063 * events fetched (0 or 1 ;-) 1064 * FIXME: make this use cmpxchg. 1065 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1066 */ 1067 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1068 { 1069 struct aio_ring_info *info = &ioctx->ring_info; 1070 struct aio_ring *ring; 1071 unsigned long head; 1072 int ret = 0; 1073 1074 ring = kmap_atomic(info->ring_pages[0]); 1075 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1076 (unsigned long)ring->head, (unsigned long)ring->tail, 1077 (unsigned long)ring->nr); 1078 1079 if (ring->head == ring->tail) 1080 goto out; 1081 1082 spin_lock(&info->ring_lock); 1083 1084 head = ring->head % info->nr; 1085 if (head != ring->tail) { 1086 struct io_event *evp = aio_ring_event(info, head); 1087 *ent = *evp; 1088 head = (head + 1) % info->nr; 1089 smp_mb(); /* finish reading the event before updatng the head */ 1090 ring->head = head; 1091 ret = 1; 1092 put_aio_ring_event(evp); 1093 } 1094 spin_unlock(&info->ring_lock); 1095 1096 out: 1097 kunmap_atomic(ring); 1098 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1099 (unsigned long)ring->head, (unsigned long)ring->tail); 1100 return ret; 1101 } 1102 1103 struct aio_timeout { 1104 struct timer_list timer; 1105 int timed_out; 1106 struct task_struct *p; 1107 }; 1108 1109 static void timeout_func(unsigned long data) 1110 { 1111 struct aio_timeout *to = (struct aio_timeout *)data; 1112 1113 to->timed_out = 1; 1114 wake_up_process(to->p); 1115 } 1116 1117 static inline void init_timeout(struct aio_timeout *to) 1118 { 1119 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1120 to->timed_out = 0; 1121 to->p = current; 1122 } 1123 1124 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1125 const struct timespec *ts) 1126 { 1127 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1128 if (time_after(to->timer.expires, jiffies)) 1129 add_timer(&to->timer); 1130 else 1131 to->timed_out = 1; 1132 } 1133 1134 static inline void clear_timeout(struct aio_timeout *to) 1135 { 1136 del_singleshot_timer_sync(&to->timer); 1137 } 1138 1139 static int read_events(struct kioctx *ctx, 1140 long min_nr, long nr, 1141 struct io_event __user *event, 1142 struct timespec __user *timeout) 1143 { 1144 long start_jiffies = jiffies; 1145 struct task_struct *tsk = current; 1146 DECLARE_WAITQUEUE(wait, tsk); 1147 int ret; 1148 int i = 0; 1149 struct io_event ent; 1150 struct aio_timeout to; 1151 int retry = 0; 1152 1153 /* needed to zero any padding within an entry (there shouldn't be 1154 * any, but C is fun! 1155 */ 1156 memset(&ent, 0, sizeof(ent)); 1157 retry: 1158 ret = 0; 1159 while (likely(i < nr)) { 1160 ret = aio_read_evt(ctx, &ent); 1161 if (unlikely(ret <= 0)) 1162 break; 1163 1164 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1165 ent.data, ent.obj, ent.res, ent.res2); 1166 1167 /* Could we split the check in two? */ 1168 ret = -EFAULT; 1169 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1170 dprintk("aio: lost an event due to EFAULT.\n"); 1171 break; 1172 } 1173 ret = 0; 1174 1175 /* Good, event copied to userland, update counts. */ 1176 event ++; 1177 i ++; 1178 } 1179 1180 if (min_nr <= i) 1181 return i; 1182 if (ret) 1183 return ret; 1184 1185 /* End fast path */ 1186 1187 /* racey check, but it gets redone */ 1188 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1189 retry = 1; 1190 aio_run_all_iocbs(ctx); 1191 goto retry; 1192 } 1193 1194 init_timeout(&to); 1195 if (timeout) { 1196 struct timespec ts; 1197 ret = -EFAULT; 1198 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1199 goto out; 1200 1201 set_timeout(start_jiffies, &to, &ts); 1202 } 1203 1204 while (likely(i < nr)) { 1205 add_wait_queue_exclusive(&ctx->wait, &wait); 1206 do { 1207 set_task_state(tsk, TASK_INTERRUPTIBLE); 1208 ret = aio_read_evt(ctx, &ent); 1209 if (ret) 1210 break; 1211 if (min_nr <= i) 1212 break; 1213 if (unlikely(ctx->dead)) { 1214 ret = -EINVAL; 1215 break; 1216 } 1217 if (to.timed_out) /* Only check after read evt */ 1218 break; 1219 /* Try to only show up in io wait if there are ops 1220 * in flight */ 1221 if (ctx->reqs_active) 1222 io_schedule(); 1223 else 1224 schedule(); 1225 if (signal_pending(tsk)) { 1226 ret = -EINTR; 1227 break; 1228 } 1229 /*ret = aio_read_evt(ctx, &ent);*/ 1230 } while (1) ; 1231 1232 set_task_state(tsk, TASK_RUNNING); 1233 remove_wait_queue(&ctx->wait, &wait); 1234 1235 if (unlikely(ret <= 0)) 1236 break; 1237 1238 ret = -EFAULT; 1239 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1240 dprintk("aio: lost an event due to EFAULT.\n"); 1241 break; 1242 } 1243 1244 /* Good, event copied to userland, update counts. */ 1245 event ++; 1246 i ++; 1247 } 1248 1249 if (timeout) 1250 clear_timeout(&to); 1251 out: 1252 destroy_timer_on_stack(&to.timer); 1253 return i ? i : ret; 1254 } 1255 1256 /* Take an ioctx and remove it from the list of ioctx's. Protects 1257 * against races with itself via ->dead. 1258 */ 1259 static void io_destroy(struct kioctx *ioctx) 1260 { 1261 struct mm_struct *mm = current->mm; 1262 int was_dead; 1263 1264 /* delete the entry from the list is someone else hasn't already */ 1265 spin_lock(&mm->ioctx_lock); 1266 was_dead = ioctx->dead; 1267 ioctx->dead = 1; 1268 hlist_del_rcu(&ioctx->list); 1269 spin_unlock(&mm->ioctx_lock); 1270 1271 dprintk("aio_release(%p)\n", ioctx); 1272 if (likely(!was_dead)) 1273 put_ioctx(ioctx); /* twice for the list */ 1274 1275 kill_ctx(ioctx); 1276 1277 /* 1278 * Wake up any waiters. The setting of ctx->dead must be seen 1279 * by other CPUs at this point. Right now, we rely on the 1280 * locking done by the above calls to ensure this consistency. 1281 */ 1282 wake_up_all(&ioctx->wait); 1283 } 1284 1285 /* sys_io_setup: 1286 * Create an aio_context capable of receiving at least nr_events. 1287 * ctxp must not point to an aio_context that already exists, and 1288 * must be initialized to 0 prior to the call. On successful 1289 * creation of the aio_context, *ctxp is filled in with the resulting 1290 * handle. May fail with -EINVAL if *ctxp is not initialized, 1291 * if the specified nr_events exceeds internal limits. May fail 1292 * with -EAGAIN if the specified nr_events exceeds the user's limit 1293 * of available events. May fail with -ENOMEM if insufficient kernel 1294 * resources are available. May fail with -EFAULT if an invalid 1295 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1296 * implemented. 1297 */ 1298 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1299 { 1300 struct kioctx *ioctx = NULL; 1301 unsigned long ctx; 1302 long ret; 1303 1304 ret = get_user(ctx, ctxp); 1305 if (unlikely(ret)) 1306 goto out; 1307 1308 ret = -EINVAL; 1309 if (unlikely(ctx || nr_events == 0)) { 1310 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1311 ctx, nr_events); 1312 goto out; 1313 } 1314 1315 ioctx = ioctx_alloc(nr_events); 1316 ret = PTR_ERR(ioctx); 1317 if (!IS_ERR(ioctx)) { 1318 ret = put_user(ioctx->user_id, ctxp); 1319 if (ret) 1320 io_destroy(ioctx); 1321 put_ioctx(ioctx); 1322 } 1323 1324 out: 1325 return ret; 1326 } 1327 1328 /* sys_io_destroy: 1329 * Destroy the aio_context specified. May cancel any outstanding 1330 * AIOs and block on completion. Will fail with -ENOSYS if not 1331 * implemented. May fail with -EINVAL if the context pointed to 1332 * is invalid. 1333 */ 1334 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1335 { 1336 struct kioctx *ioctx = lookup_ioctx(ctx); 1337 if (likely(NULL != ioctx)) { 1338 io_destroy(ioctx); 1339 put_ioctx(ioctx); 1340 return 0; 1341 } 1342 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1343 return -EINVAL; 1344 } 1345 1346 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1347 { 1348 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1349 1350 BUG_ON(ret <= 0); 1351 1352 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1353 ssize_t this = min((ssize_t)iov->iov_len, ret); 1354 iov->iov_base += this; 1355 iov->iov_len -= this; 1356 iocb->ki_left -= this; 1357 ret -= this; 1358 if (iov->iov_len == 0) { 1359 iocb->ki_cur_seg++; 1360 iov++; 1361 } 1362 } 1363 1364 /* the caller should not have done more io than what fit in 1365 * the remaining iovecs */ 1366 BUG_ON(ret > 0 && iocb->ki_left == 0); 1367 } 1368 1369 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1370 { 1371 struct file *file = iocb->ki_filp; 1372 struct address_space *mapping = file->f_mapping; 1373 struct inode *inode = mapping->host; 1374 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1375 unsigned long, loff_t); 1376 ssize_t ret = 0; 1377 unsigned short opcode; 1378 1379 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1380 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1381 rw_op = file->f_op->aio_read; 1382 opcode = IOCB_CMD_PREADV; 1383 } else { 1384 rw_op = file->f_op->aio_write; 1385 opcode = IOCB_CMD_PWRITEV; 1386 } 1387 1388 /* This matches the pread()/pwrite() logic */ 1389 if (iocb->ki_pos < 0) 1390 return -EINVAL; 1391 1392 do { 1393 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1394 iocb->ki_nr_segs - iocb->ki_cur_seg, 1395 iocb->ki_pos); 1396 if (ret > 0) 1397 aio_advance_iovec(iocb, ret); 1398 1399 /* retry all partial writes. retry partial reads as long as its a 1400 * regular file. */ 1401 } while (ret > 0 && iocb->ki_left > 0 && 1402 (opcode == IOCB_CMD_PWRITEV || 1403 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1404 1405 /* This means we must have transferred all that we could */ 1406 /* No need to retry anymore */ 1407 if ((ret == 0) || (iocb->ki_left == 0)) 1408 ret = iocb->ki_nbytes - iocb->ki_left; 1409 1410 /* If we managed to write some out we return that, rather than 1411 * the eventual error. */ 1412 if (opcode == IOCB_CMD_PWRITEV 1413 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1414 && iocb->ki_nbytes - iocb->ki_left) 1415 ret = iocb->ki_nbytes - iocb->ki_left; 1416 1417 return ret; 1418 } 1419 1420 static ssize_t aio_fdsync(struct kiocb *iocb) 1421 { 1422 struct file *file = iocb->ki_filp; 1423 ssize_t ret = -EINVAL; 1424 1425 if (file->f_op->aio_fsync) 1426 ret = file->f_op->aio_fsync(iocb, 1); 1427 return ret; 1428 } 1429 1430 static ssize_t aio_fsync(struct kiocb *iocb) 1431 { 1432 struct file *file = iocb->ki_filp; 1433 ssize_t ret = -EINVAL; 1434 1435 if (file->f_op->aio_fsync) 1436 ret = file->f_op->aio_fsync(iocb, 0); 1437 return ret; 1438 } 1439 1440 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1441 { 1442 ssize_t ret; 1443 1444 #ifdef CONFIG_COMPAT 1445 if (compat) 1446 ret = compat_rw_copy_check_uvector(type, 1447 (struct compat_iovec __user *)kiocb->ki_buf, 1448 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1449 &kiocb->ki_iovec, 1); 1450 else 1451 #endif 1452 ret = rw_copy_check_uvector(type, 1453 (struct iovec __user *)kiocb->ki_buf, 1454 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1455 &kiocb->ki_iovec, 1); 1456 if (ret < 0) 1457 goto out; 1458 1459 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1460 kiocb->ki_cur_seg = 0; 1461 /* ki_nbytes/left now reflect bytes instead of segs */ 1462 kiocb->ki_nbytes = ret; 1463 kiocb->ki_left = ret; 1464 1465 ret = 0; 1466 out: 1467 return ret; 1468 } 1469 1470 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1471 { 1472 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1473 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1474 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1475 kiocb->ki_nr_segs = 1; 1476 kiocb->ki_cur_seg = 0; 1477 return 0; 1478 } 1479 1480 /* 1481 * aio_setup_iocb: 1482 * Performs the initial checks and aio retry method 1483 * setup for the kiocb at the time of io submission. 1484 */ 1485 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1486 { 1487 struct file *file = kiocb->ki_filp; 1488 ssize_t ret = 0; 1489 1490 switch (kiocb->ki_opcode) { 1491 case IOCB_CMD_PREAD: 1492 ret = -EBADF; 1493 if (unlikely(!(file->f_mode & FMODE_READ))) 1494 break; 1495 ret = -EFAULT; 1496 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1497 kiocb->ki_left))) 1498 break; 1499 ret = security_file_permission(file, MAY_READ); 1500 if (unlikely(ret)) 1501 break; 1502 ret = aio_setup_single_vector(kiocb); 1503 if (ret) 1504 break; 1505 ret = -EINVAL; 1506 if (file->f_op->aio_read) 1507 kiocb->ki_retry = aio_rw_vect_retry; 1508 break; 1509 case IOCB_CMD_PWRITE: 1510 ret = -EBADF; 1511 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1512 break; 1513 ret = -EFAULT; 1514 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1515 kiocb->ki_left))) 1516 break; 1517 ret = security_file_permission(file, MAY_WRITE); 1518 if (unlikely(ret)) 1519 break; 1520 ret = aio_setup_single_vector(kiocb); 1521 if (ret) 1522 break; 1523 ret = -EINVAL; 1524 if (file->f_op->aio_write) 1525 kiocb->ki_retry = aio_rw_vect_retry; 1526 break; 1527 case IOCB_CMD_PREADV: 1528 ret = -EBADF; 1529 if (unlikely(!(file->f_mode & FMODE_READ))) 1530 break; 1531 ret = security_file_permission(file, MAY_READ); 1532 if (unlikely(ret)) 1533 break; 1534 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1535 if (ret) 1536 break; 1537 ret = -EINVAL; 1538 if (file->f_op->aio_read) 1539 kiocb->ki_retry = aio_rw_vect_retry; 1540 break; 1541 case IOCB_CMD_PWRITEV: 1542 ret = -EBADF; 1543 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1544 break; 1545 ret = security_file_permission(file, MAY_WRITE); 1546 if (unlikely(ret)) 1547 break; 1548 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1549 if (ret) 1550 break; 1551 ret = -EINVAL; 1552 if (file->f_op->aio_write) 1553 kiocb->ki_retry = aio_rw_vect_retry; 1554 break; 1555 case IOCB_CMD_FDSYNC: 1556 ret = -EINVAL; 1557 if (file->f_op->aio_fsync) 1558 kiocb->ki_retry = aio_fdsync; 1559 break; 1560 case IOCB_CMD_FSYNC: 1561 ret = -EINVAL; 1562 if (file->f_op->aio_fsync) 1563 kiocb->ki_retry = aio_fsync; 1564 break; 1565 default: 1566 dprintk("EINVAL: io_submit: no operation provided\n"); 1567 ret = -EINVAL; 1568 } 1569 1570 if (!kiocb->ki_retry) 1571 return ret; 1572 1573 return 0; 1574 } 1575 1576 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1577 struct iocb *iocb, struct kiocb_batch *batch, 1578 bool compat) 1579 { 1580 struct kiocb *req; 1581 struct file *file; 1582 ssize_t ret; 1583 1584 /* enforce forwards compatibility on users */ 1585 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1586 pr_debug("EINVAL: io_submit: reserve field set\n"); 1587 return -EINVAL; 1588 } 1589 1590 /* prevent overflows */ 1591 if (unlikely( 1592 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1593 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1594 ((ssize_t)iocb->aio_nbytes < 0) 1595 )) { 1596 pr_debug("EINVAL: io_submit: overflow check\n"); 1597 return -EINVAL; 1598 } 1599 1600 file = fget(iocb->aio_fildes); 1601 if (unlikely(!file)) 1602 return -EBADF; 1603 1604 req = aio_get_req(ctx, batch); /* returns with 2 references to req */ 1605 if (unlikely(!req)) { 1606 fput(file); 1607 return -EAGAIN; 1608 } 1609 req->ki_filp = file; 1610 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1611 /* 1612 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1613 * instance of the file* now. The file descriptor must be 1614 * an eventfd() fd, and will be signaled for each completed 1615 * event using the eventfd_signal() function. 1616 */ 1617 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1618 if (IS_ERR(req->ki_eventfd)) { 1619 ret = PTR_ERR(req->ki_eventfd); 1620 req->ki_eventfd = NULL; 1621 goto out_put_req; 1622 } 1623 } 1624 1625 ret = put_user(req->ki_key, &user_iocb->aio_key); 1626 if (unlikely(ret)) { 1627 dprintk("EFAULT: aio_key\n"); 1628 goto out_put_req; 1629 } 1630 1631 req->ki_obj.user = user_iocb; 1632 req->ki_user_data = iocb->aio_data; 1633 req->ki_pos = iocb->aio_offset; 1634 1635 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1636 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1637 req->ki_opcode = iocb->aio_lio_opcode; 1638 1639 ret = aio_setup_iocb(req, compat); 1640 1641 if (ret) 1642 goto out_put_req; 1643 1644 spin_lock_irq(&ctx->ctx_lock); 1645 /* 1646 * We could have raced with io_destroy() and are currently holding a 1647 * reference to ctx which should be destroyed. We cannot submit IO 1648 * since ctx gets freed as soon as io_submit() puts its reference. The 1649 * check here is reliable: io_destroy() sets ctx->dead before waiting 1650 * for outstanding IO and the barrier between these two is realized by 1651 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1652 * increment ctx->reqs_active before checking for ctx->dead and the 1653 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1654 * don't see ctx->dead set here, io_destroy() waits for our IO to 1655 * finish. 1656 */ 1657 if (ctx->dead) { 1658 spin_unlock_irq(&ctx->ctx_lock); 1659 ret = -EINVAL; 1660 goto out_put_req; 1661 } 1662 aio_run_iocb(req); 1663 if (!list_empty(&ctx->run_list)) { 1664 /* drain the run list */ 1665 while (__aio_run_iocbs(ctx)) 1666 ; 1667 } 1668 spin_unlock_irq(&ctx->ctx_lock); 1669 1670 aio_put_req(req); /* drop extra ref to req */ 1671 return 0; 1672 1673 out_put_req: 1674 aio_put_req(req); /* drop extra ref to req */ 1675 aio_put_req(req); /* drop i/o ref to req */ 1676 return ret; 1677 } 1678 1679 long do_io_submit(aio_context_t ctx_id, long nr, 1680 struct iocb __user *__user *iocbpp, bool compat) 1681 { 1682 struct kioctx *ctx; 1683 long ret = 0; 1684 int i = 0; 1685 struct blk_plug plug; 1686 struct kiocb_batch batch; 1687 1688 if (unlikely(nr < 0)) 1689 return -EINVAL; 1690 1691 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1692 nr = LONG_MAX/sizeof(*iocbpp); 1693 1694 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1695 return -EFAULT; 1696 1697 ctx = lookup_ioctx(ctx_id); 1698 if (unlikely(!ctx)) { 1699 pr_debug("EINVAL: io_submit: invalid context id\n"); 1700 return -EINVAL; 1701 } 1702 1703 kiocb_batch_init(&batch, nr); 1704 1705 blk_start_plug(&plug); 1706 1707 /* 1708 * AKPM: should this return a partial result if some of the IOs were 1709 * successfully submitted? 1710 */ 1711 for (i=0; i<nr; i++) { 1712 struct iocb __user *user_iocb; 1713 struct iocb tmp; 1714 1715 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1716 ret = -EFAULT; 1717 break; 1718 } 1719 1720 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1721 ret = -EFAULT; 1722 break; 1723 } 1724 1725 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); 1726 if (ret) 1727 break; 1728 } 1729 blk_finish_plug(&plug); 1730 1731 kiocb_batch_free(ctx, &batch); 1732 put_ioctx(ctx); 1733 return i ? i : ret; 1734 } 1735 1736 /* sys_io_submit: 1737 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1738 * the number of iocbs queued. May return -EINVAL if the aio_context 1739 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1740 * *iocbpp[0] is not properly initialized, if the operation specified 1741 * is invalid for the file descriptor in the iocb. May fail with 1742 * -EFAULT if any of the data structures point to invalid data. May 1743 * fail with -EBADF if the file descriptor specified in the first 1744 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1745 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1746 * fail with -ENOSYS if not implemented. 1747 */ 1748 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1749 struct iocb __user * __user *, iocbpp) 1750 { 1751 return do_io_submit(ctx_id, nr, iocbpp, 0); 1752 } 1753 1754 /* lookup_kiocb 1755 * Finds a given iocb for cancellation. 1756 */ 1757 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1758 u32 key) 1759 { 1760 struct list_head *pos; 1761 1762 assert_spin_locked(&ctx->ctx_lock); 1763 1764 /* TODO: use a hash or array, this sucks. */ 1765 list_for_each(pos, &ctx->active_reqs) { 1766 struct kiocb *kiocb = list_kiocb(pos); 1767 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1768 return kiocb; 1769 } 1770 return NULL; 1771 } 1772 1773 /* sys_io_cancel: 1774 * Attempts to cancel an iocb previously passed to io_submit. If 1775 * the operation is successfully cancelled, the resulting event is 1776 * copied into the memory pointed to by result without being placed 1777 * into the completion queue and 0 is returned. May fail with 1778 * -EFAULT if any of the data structures pointed to are invalid. 1779 * May fail with -EINVAL if aio_context specified by ctx_id is 1780 * invalid. May fail with -EAGAIN if the iocb specified was not 1781 * cancelled. Will fail with -ENOSYS if not implemented. 1782 */ 1783 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1784 struct io_event __user *, result) 1785 { 1786 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1787 struct kioctx *ctx; 1788 struct kiocb *kiocb; 1789 u32 key; 1790 int ret; 1791 1792 ret = get_user(key, &iocb->aio_key); 1793 if (unlikely(ret)) 1794 return -EFAULT; 1795 1796 ctx = lookup_ioctx(ctx_id); 1797 if (unlikely(!ctx)) 1798 return -EINVAL; 1799 1800 spin_lock_irq(&ctx->ctx_lock); 1801 ret = -EAGAIN; 1802 kiocb = lookup_kiocb(ctx, iocb, key); 1803 if (kiocb && kiocb->ki_cancel) { 1804 cancel = kiocb->ki_cancel; 1805 kiocb->ki_users ++; 1806 kiocbSetCancelled(kiocb); 1807 } else 1808 cancel = NULL; 1809 spin_unlock_irq(&ctx->ctx_lock); 1810 1811 if (NULL != cancel) { 1812 struct io_event tmp; 1813 pr_debug("calling cancel\n"); 1814 memset(&tmp, 0, sizeof(tmp)); 1815 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1816 tmp.data = kiocb->ki_user_data; 1817 ret = cancel(kiocb, &tmp); 1818 if (!ret) { 1819 /* Cancellation succeeded -- copy the result 1820 * into the user's buffer. 1821 */ 1822 if (copy_to_user(result, &tmp, sizeof(tmp))) 1823 ret = -EFAULT; 1824 } 1825 } else 1826 ret = -EINVAL; 1827 1828 put_ioctx(ctx); 1829 1830 return ret; 1831 } 1832 1833 /* io_getevents: 1834 * Attempts to read at least min_nr events and up to nr events from 1835 * the completion queue for the aio_context specified by ctx_id. If 1836 * it succeeds, the number of read events is returned. May fail with 1837 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1838 * out of range, if timeout is out of range. May fail with -EFAULT 1839 * if any of the memory specified is invalid. May return 0 or 1840 * < min_nr if the timeout specified by timeout has elapsed 1841 * before sufficient events are available, where timeout == NULL 1842 * specifies an infinite timeout. Note that the timeout pointed to by 1843 * timeout is relative and will be updated if not NULL and the 1844 * operation blocks. Will fail with -ENOSYS if not implemented. 1845 */ 1846 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1847 long, min_nr, 1848 long, nr, 1849 struct io_event __user *, events, 1850 struct timespec __user *, timeout) 1851 { 1852 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1853 long ret = -EINVAL; 1854 1855 if (likely(ioctx)) { 1856 if (likely(min_nr <= nr && min_nr >= 0)) 1857 ret = read_events(ioctx, min_nr, nr, events, timeout); 1858 put_ioctx(ioctx); 1859 } 1860 1861 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1862 return ret; 1863 } 1864