1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_table { 70 struct rcu_head rcu; 71 unsigned nr; 72 struct kioctx *table[]; 73 }; 74 75 struct kioctx_cpu { 76 unsigned reqs_available; 77 }; 78 79 struct kioctx { 80 struct percpu_ref users; 81 atomic_t dead; 82 83 struct percpu_ref reqs; 84 85 unsigned long user_id; 86 87 struct __percpu kioctx_cpu *cpu; 88 89 /* 90 * For percpu reqs_available, number of slots we move to/from global 91 * counter at a time: 92 */ 93 unsigned req_batch; 94 /* 95 * This is what userspace passed to io_setup(), it's not used for 96 * anything but counting against the global max_reqs quota. 97 * 98 * The real limit is nr_events - 1, which will be larger (see 99 * aio_setup_ring()) 100 */ 101 unsigned max_reqs; 102 103 /* Size of ringbuffer, in units of struct io_event */ 104 unsigned nr_events; 105 106 unsigned long mmap_base; 107 unsigned long mmap_size; 108 109 struct page **ring_pages; 110 long nr_pages; 111 112 struct work_struct free_work; 113 114 struct { 115 /* 116 * This counts the number of available slots in the ringbuffer, 117 * so we avoid overflowing it: it's decremented (if positive) 118 * when allocating a kiocb and incremented when the resulting 119 * io_event is pulled off the ringbuffer. 120 * 121 * We batch accesses to it with a percpu version. 122 */ 123 atomic_t reqs_available; 124 } ____cacheline_aligned_in_smp; 125 126 struct { 127 spinlock_t ctx_lock; 128 struct list_head active_reqs; /* used for cancellation */ 129 } ____cacheline_aligned_in_smp; 130 131 struct { 132 struct mutex ring_lock; 133 wait_queue_head_t wait; 134 } ____cacheline_aligned_in_smp; 135 136 struct { 137 unsigned tail; 138 spinlock_t completion_lock; 139 } ____cacheline_aligned_in_smp; 140 141 struct page *internal_pages[AIO_RING_PAGES]; 142 struct file *aio_ring_file; 143 144 unsigned id; 145 }; 146 147 /*------ sysctl variables----*/ 148 static DEFINE_SPINLOCK(aio_nr_lock); 149 unsigned long aio_nr; /* current system wide number of aio requests */ 150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 151 /*----end sysctl variables---*/ 152 153 static struct kmem_cache *kiocb_cachep; 154 static struct kmem_cache *kioctx_cachep; 155 156 static struct vfsmount *aio_mnt; 157 158 static const struct file_operations aio_ring_fops; 159 static const struct address_space_operations aio_ctx_aops; 160 161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 162 { 163 struct qstr this = QSTR_INIT("[aio]", 5); 164 struct file *file; 165 struct path path; 166 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 167 if (IS_ERR(inode)) 168 return ERR_CAST(inode); 169 170 inode->i_mapping->a_ops = &aio_ctx_aops; 171 inode->i_mapping->private_data = ctx; 172 inode->i_size = PAGE_SIZE * nr_pages; 173 174 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 175 if (!path.dentry) { 176 iput(inode); 177 return ERR_PTR(-ENOMEM); 178 } 179 path.mnt = mntget(aio_mnt); 180 181 d_instantiate(path.dentry, inode); 182 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 183 if (IS_ERR(file)) { 184 path_put(&path); 185 return file; 186 } 187 188 file->f_flags = O_RDWR; 189 file->private_data = ctx; 190 return file; 191 } 192 193 static struct dentry *aio_mount(struct file_system_type *fs_type, 194 int flags, const char *dev_name, void *data) 195 { 196 static const struct dentry_operations ops = { 197 .d_dname = simple_dname, 198 }; 199 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 200 } 201 202 /* aio_setup 203 * Creates the slab caches used by the aio routines, panic on 204 * failure as this is done early during the boot sequence. 205 */ 206 static int __init aio_setup(void) 207 { 208 static struct file_system_type aio_fs = { 209 .name = "aio", 210 .mount = aio_mount, 211 .kill_sb = kill_anon_super, 212 }; 213 aio_mnt = kern_mount(&aio_fs); 214 if (IS_ERR(aio_mnt)) 215 panic("Failed to create aio fs mount."); 216 217 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 218 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 219 220 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 221 222 return 0; 223 } 224 __initcall(aio_setup); 225 226 static void put_aio_ring_file(struct kioctx *ctx) 227 { 228 struct file *aio_ring_file = ctx->aio_ring_file; 229 if (aio_ring_file) { 230 truncate_setsize(aio_ring_file->f_inode, 0); 231 232 /* Prevent further access to the kioctx from migratepages */ 233 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 234 aio_ring_file->f_inode->i_mapping->private_data = NULL; 235 ctx->aio_ring_file = NULL; 236 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 237 238 fput(aio_ring_file); 239 } 240 } 241 242 static void aio_free_ring(struct kioctx *ctx) 243 { 244 int i; 245 246 for (i = 0; i < ctx->nr_pages; i++) { 247 struct page *page; 248 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 249 page_count(ctx->ring_pages[i])); 250 page = ctx->ring_pages[i]; 251 if (!page) 252 continue; 253 ctx->ring_pages[i] = NULL; 254 put_page(page); 255 } 256 257 put_aio_ring_file(ctx); 258 259 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 260 kfree(ctx->ring_pages); 261 ctx->ring_pages = NULL; 262 } 263 } 264 265 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 266 { 267 vma->vm_ops = &generic_file_vm_ops; 268 return 0; 269 } 270 271 static const struct file_operations aio_ring_fops = { 272 .mmap = aio_ring_mmap, 273 }; 274 275 static int aio_set_page_dirty(struct page *page) 276 { 277 return 0; 278 } 279 280 #if IS_ENABLED(CONFIG_MIGRATION) 281 static int aio_migratepage(struct address_space *mapping, struct page *new, 282 struct page *old, enum migrate_mode mode) 283 { 284 struct kioctx *ctx; 285 unsigned long flags; 286 int rc; 287 288 rc = 0; 289 290 /* Make sure the old page hasn't already been changed */ 291 spin_lock(&mapping->private_lock); 292 ctx = mapping->private_data; 293 if (ctx) { 294 pgoff_t idx; 295 spin_lock_irqsave(&ctx->completion_lock, flags); 296 idx = old->index; 297 if (idx < (pgoff_t)ctx->nr_pages) { 298 if (ctx->ring_pages[idx] != old) 299 rc = -EAGAIN; 300 } else 301 rc = -EINVAL; 302 spin_unlock_irqrestore(&ctx->completion_lock, flags); 303 } else 304 rc = -EINVAL; 305 spin_unlock(&mapping->private_lock); 306 307 if (rc != 0) 308 return rc; 309 310 /* Writeback must be complete */ 311 BUG_ON(PageWriteback(old)); 312 get_page(new); 313 314 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 315 if (rc != MIGRATEPAGE_SUCCESS) { 316 put_page(new); 317 return rc; 318 } 319 320 /* We can potentially race against kioctx teardown here. Use the 321 * address_space's private data lock to protect the mapping's 322 * private_data. 323 */ 324 spin_lock(&mapping->private_lock); 325 ctx = mapping->private_data; 326 if (ctx) { 327 pgoff_t idx; 328 spin_lock_irqsave(&ctx->completion_lock, flags); 329 migrate_page_copy(new, old); 330 idx = old->index; 331 if (idx < (pgoff_t)ctx->nr_pages) { 332 /* And only do the move if things haven't changed */ 333 if (ctx->ring_pages[idx] == old) 334 ctx->ring_pages[idx] = new; 335 else 336 rc = -EAGAIN; 337 } else 338 rc = -EINVAL; 339 spin_unlock_irqrestore(&ctx->completion_lock, flags); 340 } else 341 rc = -EBUSY; 342 spin_unlock(&mapping->private_lock); 343 344 if (rc == MIGRATEPAGE_SUCCESS) 345 put_page(old); 346 else 347 put_page(new); 348 349 return rc; 350 } 351 #endif 352 353 static const struct address_space_operations aio_ctx_aops = { 354 .set_page_dirty = aio_set_page_dirty, 355 #if IS_ENABLED(CONFIG_MIGRATION) 356 .migratepage = aio_migratepage, 357 #endif 358 }; 359 360 static int aio_setup_ring(struct kioctx *ctx) 361 { 362 struct aio_ring *ring; 363 unsigned nr_events = ctx->max_reqs; 364 struct mm_struct *mm = current->mm; 365 unsigned long size, unused; 366 int nr_pages; 367 int i; 368 struct file *file; 369 370 /* Compensate for the ring buffer's head/tail overlap entry */ 371 nr_events += 2; /* 1 is required, 2 for good luck */ 372 373 size = sizeof(struct aio_ring); 374 size += sizeof(struct io_event) * nr_events; 375 376 nr_pages = PFN_UP(size); 377 if (nr_pages < 0) 378 return -EINVAL; 379 380 file = aio_private_file(ctx, nr_pages); 381 if (IS_ERR(file)) { 382 ctx->aio_ring_file = NULL; 383 return -EAGAIN; 384 } 385 386 ctx->aio_ring_file = file; 387 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 388 / sizeof(struct io_event); 389 390 ctx->ring_pages = ctx->internal_pages; 391 if (nr_pages > AIO_RING_PAGES) { 392 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 393 GFP_KERNEL); 394 if (!ctx->ring_pages) { 395 put_aio_ring_file(ctx); 396 return -ENOMEM; 397 } 398 } 399 400 for (i = 0; i < nr_pages; i++) { 401 struct page *page; 402 page = find_or_create_page(file->f_inode->i_mapping, 403 i, GFP_HIGHUSER | __GFP_ZERO); 404 if (!page) 405 break; 406 pr_debug("pid(%d) page[%d]->count=%d\n", 407 current->pid, i, page_count(page)); 408 SetPageUptodate(page); 409 SetPageDirty(page); 410 unlock_page(page); 411 412 ctx->ring_pages[i] = page; 413 } 414 ctx->nr_pages = i; 415 416 if (unlikely(i != nr_pages)) { 417 aio_free_ring(ctx); 418 return -EAGAIN; 419 } 420 421 ctx->mmap_size = nr_pages * PAGE_SIZE; 422 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 423 424 down_write(&mm->mmap_sem); 425 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 426 PROT_READ | PROT_WRITE, 427 MAP_SHARED, 0, &unused); 428 up_write(&mm->mmap_sem); 429 if (IS_ERR((void *)ctx->mmap_base)) { 430 ctx->mmap_size = 0; 431 aio_free_ring(ctx); 432 return -EAGAIN; 433 } 434 435 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 436 437 ctx->user_id = ctx->mmap_base; 438 ctx->nr_events = nr_events; /* trusted copy */ 439 440 ring = kmap_atomic(ctx->ring_pages[0]); 441 ring->nr = nr_events; /* user copy */ 442 ring->id = ~0U; 443 ring->head = ring->tail = 0; 444 ring->magic = AIO_RING_MAGIC; 445 ring->compat_features = AIO_RING_COMPAT_FEATURES; 446 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 447 ring->header_length = sizeof(struct aio_ring); 448 kunmap_atomic(ring); 449 flush_dcache_page(ctx->ring_pages[0]); 450 451 return 0; 452 } 453 454 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 455 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 456 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 457 458 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 459 { 460 struct kioctx *ctx = req->ki_ctx; 461 unsigned long flags; 462 463 spin_lock_irqsave(&ctx->ctx_lock, flags); 464 465 if (!req->ki_list.next) 466 list_add(&req->ki_list, &ctx->active_reqs); 467 468 req->ki_cancel = cancel; 469 470 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 471 } 472 EXPORT_SYMBOL(kiocb_set_cancel_fn); 473 474 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 475 { 476 kiocb_cancel_fn *old, *cancel; 477 478 /* 479 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 480 * actually has a cancel function, hence the cmpxchg() 481 */ 482 483 cancel = ACCESS_ONCE(kiocb->ki_cancel); 484 do { 485 if (!cancel || cancel == KIOCB_CANCELLED) 486 return -EINVAL; 487 488 old = cancel; 489 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 490 } while (cancel != old); 491 492 return cancel(kiocb); 493 } 494 495 static void free_ioctx(struct work_struct *work) 496 { 497 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 498 499 pr_debug("freeing %p\n", ctx); 500 501 aio_free_ring(ctx); 502 free_percpu(ctx->cpu); 503 kmem_cache_free(kioctx_cachep, ctx); 504 } 505 506 static void free_ioctx_reqs(struct percpu_ref *ref) 507 { 508 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 509 510 INIT_WORK(&ctx->free_work, free_ioctx); 511 schedule_work(&ctx->free_work); 512 } 513 514 /* 515 * When this function runs, the kioctx has been removed from the "hash table" 516 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 517 * now it's safe to cancel any that need to be. 518 */ 519 static void free_ioctx_users(struct percpu_ref *ref) 520 { 521 struct kioctx *ctx = container_of(ref, struct kioctx, users); 522 struct kiocb *req; 523 524 spin_lock_irq(&ctx->ctx_lock); 525 526 while (!list_empty(&ctx->active_reqs)) { 527 req = list_first_entry(&ctx->active_reqs, 528 struct kiocb, ki_list); 529 530 list_del_init(&req->ki_list); 531 kiocb_cancel(ctx, req); 532 } 533 534 spin_unlock_irq(&ctx->ctx_lock); 535 536 percpu_ref_kill(&ctx->reqs); 537 percpu_ref_put(&ctx->reqs); 538 } 539 540 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 541 { 542 unsigned i, new_nr; 543 struct kioctx_table *table, *old; 544 struct aio_ring *ring; 545 546 spin_lock(&mm->ioctx_lock); 547 rcu_read_lock(); 548 table = rcu_dereference(mm->ioctx_table); 549 550 while (1) { 551 if (table) 552 for (i = 0; i < table->nr; i++) 553 if (!table->table[i]) { 554 ctx->id = i; 555 table->table[i] = ctx; 556 rcu_read_unlock(); 557 spin_unlock(&mm->ioctx_lock); 558 559 ring = kmap_atomic(ctx->ring_pages[0]); 560 ring->id = ctx->id; 561 kunmap_atomic(ring); 562 return 0; 563 } 564 565 new_nr = (table ? table->nr : 1) * 4; 566 567 rcu_read_unlock(); 568 spin_unlock(&mm->ioctx_lock); 569 570 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 571 new_nr, GFP_KERNEL); 572 if (!table) 573 return -ENOMEM; 574 575 table->nr = new_nr; 576 577 spin_lock(&mm->ioctx_lock); 578 rcu_read_lock(); 579 old = rcu_dereference(mm->ioctx_table); 580 581 if (!old) { 582 rcu_assign_pointer(mm->ioctx_table, table); 583 } else if (table->nr > old->nr) { 584 memcpy(table->table, old->table, 585 old->nr * sizeof(struct kioctx *)); 586 587 rcu_assign_pointer(mm->ioctx_table, table); 588 kfree_rcu(old, rcu); 589 } else { 590 kfree(table); 591 table = old; 592 } 593 } 594 } 595 596 static void aio_nr_sub(unsigned nr) 597 { 598 spin_lock(&aio_nr_lock); 599 if (WARN_ON(aio_nr - nr > aio_nr)) 600 aio_nr = 0; 601 else 602 aio_nr -= nr; 603 spin_unlock(&aio_nr_lock); 604 } 605 606 /* ioctx_alloc 607 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 608 */ 609 static struct kioctx *ioctx_alloc(unsigned nr_events) 610 { 611 struct mm_struct *mm = current->mm; 612 struct kioctx *ctx; 613 int err = -ENOMEM; 614 615 /* 616 * We keep track of the number of available ringbuffer slots, to prevent 617 * overflow (reqs_available), and we also use percpu counters for this. 618 * 619 * So since up to half the slots might be on other cpu's percpu counters 620 * and unavailable, double nr_events so userspace sees what they 621 * expected: additionally, we move req_batch slots to/from percpu 622 * counters at a time, so make sure that isn't 0: 623 */ 624 nr_events = max(nr_events, num_possible_cpus() * 4); 625 nr_events *= 2; 626 627 /* Prevent overflows */ 628 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 629 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 630 pr_debug("ENOMEM: nr_events too high\n"); 631 return ERR_PTR(-EINVAL); 632 } 633 634 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 635 return ERR_PTR(-EAGAIN); 636 637 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 638 if (!ctx) 639 return ERR_PTR(-ENOMEM); 640 641 ctx->max_reqs = nr_events; 642 643 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 644 goto err; 645 646 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 647 goto err; 648 649 spin_lock_init(&ctx->ctx_lock); 650 spin_lock_init(&ctx->completion_lock); 651 mutex_init(&ctx->ring_lock); 652 init_waitqueue_head(&ctx->wait); 653 654 INIT_LIST_HEAD(&ctx->active_reqs); 655 656 ctx->cpu = alloc_percpu(struct kioctx_cpu); 657 if (!ctx->cpu) 658 goto err; 659 660 if (aio_setup_ring(ctx) < 0) 661 goto err; 662 663 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 664 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 665 if (ctx->req_batch < 1) 666 ctx->req_batch = 1; 667 668 /* limit the number of system wide aios */ 669 spin_lock(&aio_nr_lock); 670 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 671 aio_nr + nr_events < aio_nr) { 672 spin_unlock(&aio_nr_lock); 673 err = -EAGAIN; 674 goto err_ctx; 675 } 676 aio_nr += ctx->max_reqs; 677 spin_unlock(&aio_nr_lock); 678 679 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 680 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 681 682 err = ioctx_add_table(ctx, mm); 683 if (err) 684 goto err_cleanup; 685 686 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 687 ctx, ctx->user_id, mm, ctx->nr_events); 688 return ctx; 689 690 err_cleanup: 691 aio_nr_sub(ctx->max_reqs); 692 err_ctx: 693 aio_free_ring(ctx); 694 err: 695 free_percpu(ctx->cpu); 696 free_percpu(ctx->reqs.pcpu_count); 697 free_percpu(ctx->users.pcpu_count); 698 kmem_cache_free(kioctx_cachep, ctx); 699 pr_debug("error allocating ioctx %d\n", err); 700 return ERR_PTR(err); 701 } 702 703 /* kill_ioctx 704 * Cancels all outstanding aio requests on an aio context. Used 705 * when the processes owning a context have all exited to encourage 706 * the rapid destruction of the kioctx. 707 */ 708 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 709 { 710 if (!atomic_xchg(&ctx->dead, 1)) { 711 struct kioctx_table *table; 712 713 spin_lock(&mm->ioctx_lock); 714 rcu_read_lock(); 715 table = rcu_dereference(mm->ioctx_table); 716 717 WARN_ON(ctx != table->table[ctx->id]); 718 table->table[ctx->id] = NULL; 719 rcu_read_unlock(); 720 spin_unlock(&mm->ioctx_lock); 721 722 /* percpu_ref_kill() will do the necessary call_rcu() */ 723 wake_up_all(&ctx->wait); 724 725 /* 726 * It'd be more correct to do this in free_ioctx(), after all 727 * the outstanding kiocbs have finished - but by then io_destroy 728 * has already returned, so io_setup() could potentially return 729 * -EAGAIN with no ioctxs actually in use (as far as userspace 730 * could tell). 731 */ 732 aio_nr_sub(ctx->max_reqs); 733 734 if (ctx->mmap_size) 735 vm_munmap(ctx->mmap_base, ctx->mmap_size); 736 737 percpu_ref_kill(&ctx->users); 738 } 739 } 740 741 /* wait_on_sync_kiocb: 742 * Waits on the given sync kiocb to complete. 743 */ 744 ssize_t wait_on_sync_kiocb(struct kiocb *req) 745 { 746 while (!req->ki_ctx) { 747 set_current_state(TASK_UNINTERRUPTIBLE); 748 if (req->ki_ctx) 749 break; 750 io_schedule(); 751 } 752 __set_current_state(TASK_RUNNING); 753 return req->ki_user_data; 754 } 755 EXPORT_SYMBOL(wait_on_sync_kiocb); 756 757 /* 758 * exit_aio: called when the last user of mm goes away. At this point, there is 759 * no way for any new requests to be submited or any of the io_* syscalls to be 760 * called on the context. 761 * 762 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 763 * them. 764 */ 765 void exit_aio(struct mm_struct *mm) 766 { 767 struct kioctx_table *table; 768 struct kioctx *ctx; 769 unsigned i = 0; 770 771 while (1) { 772 rcu_read_lock(); 773 table = rcu_dereference(mm->ioctx_table); 774 775 do { 776 if (!table || i >= table->nr) { 777 rcu_read_unlock(); 778 rcu_assign_pointer(mm->ioctx_table, NULL); 779 if (table) 780 kfree(table); 781 return; 782 } 783 784 ctx = table->table[i++]; 785 } while (!ctx); 786 787 rcu_read_unlock(); 788 789 /* 790 * We don't need to bother with munmap() here - 791 * exit_mmap(mm) is coming and it'll unmap everything. 792 * Since aio_free_ring() uses non-zero ->mmap_size 793 * as indicator that it needs to unmap the area, 794 * just set it to 0; aio_free_ring() is the only 795 * place that uses ->mmap_size, so it's safe. 796 */ 797 ctx->mmap_size = 0; 798 799 kill_ioctx(mm, ctx); 800 } 801 } 802 803 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 804 { 805 struct kioctx_cpu *kcpu; 806 807 preempt_disable(); 808 kcpu = this_cpu_ptr(ctx->cpu); 809 810 kcpu->reqs_available += nr; 811 while (kcpu->reqs_available >= ctx->req_batch * 2) { 812 kcpu->reqs_available -= ctx->req_batch; 813 atomic_add(ctx->req_batch, &ctx->reqs_available); 814 } 815 816 preempt_enable(); 817 } 818 819 static bool get_reqs_available(struct kioctx *ctx) 820 { 821 struct kioctx_cpu *kcpu; 822 bool ret = false; 823 824 preempt_disable(); 825 kcpu = this_cpu_ptr(ctx->cpu); 826 827 if (!kcpu->reqs_available) { 828 int old, avail = atomic_read(&ctx->reqs_available); 829 830 do { 831 if (avail < ctx->req_batch) 832 goto out; 833 834 old = avail; 835 avail = atomic_cmpxchg(&ctx->reqs_available, 836 avail, avail - ctx->req_batch); 837 } while (avail != old); 838 839 kcpu->reqs_available += ctx->req_batch; 840 } 841 842 ret = true; 843 kcpu->reqs_available--; 844 out: 845 preempt_enable(); 846 return ret; 847 } 848 849 /* aio_get_req 850 * Allocate a slot for an aio request. 851 * Returns NULL if no requests are free. 852 */ 853 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 854 { 855 struct kiocb *req; 856 857 if (!get_reqs_available(ctx)) 858 return NULL; 859 860 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 861 if (unlikely(!req)) 862 goto out_put; 863 864 percpu_ref_get(&ctx->reqs); 865 866 req->ki_ctx = ctx; 867 return req; 868 out_put: 869 put_reqs_available(ctx, 1); 870 return NULL; 871 } 872 873 static void kiocb_free(struct kiocb *req) 874 { 875 if (req->ki_filp) 876 fput(req->ki_filp); 877 if (req->ki_eventfd != NULL) 878 eventfd_ctx_put(req->ki_eventfd); 879 kmem_cache_free(kiocb_cachep, req); 880 } 881 882 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 883 { 884 struct aio_ring __user *ring = (void __user *)ctx_id; 885 struct mm_struct *mm = current->mm; 886 struct kioctx *ctx, *ret = NULL; 887 struct kioctx_table *table; 888 unsigned id; 889 890 if (get_user(id, &ring->id)) 891 return NULL; 892 893 rcu_read_lock(); 894 table = rcu_dereference(mm->ioctx_table); 895 896 if (!table || id >= table->nr) 897 goto out; 898 899 ctx = table->table[id]; 900 if (ctx && ctx->user_id == ctx_id) { 901 percpu_ref_get(&ctx->users); 902 ret = ctx; 903 } 904 out: 905 rcu_read_unlock(); 906 return ret; 907 } 908 909 /* aio_complete 910 * Called when the io request on the given iocb is complete. 911 */ 912 void aio_complete(struct kiocb *iocb, long res, long res2) 913 { 914 struct kioctx *ctx = iocb->ki_ctx; 915 struct aio_ring *ring; 916 struct io_event *ev_page, *event; 917 unsigned long flags; 918 unsigned tail, pos; 919 920 /* 921 * Special case handling for sync iocbs: 922 * - events go directly into the iocb for fast handling 923 * - the sync task with the iocb in its stack holds the single iocb 924 * ref, no other paths have a way to get another ref 925 * - the sync task helpfully left a reference to itself in the iocb 926 */ 927 if (is_sync_kiocb(iocb)) { 928 iocb->ki_user_data = res; 929 smp_wmb(); 930 iocb->ki_ctx = ERR_PTR(-EXDEV); 931 wake_up_process(iocb->ki_obj.tsk); 932 return; 933 } 934 935 if (iocb->ki_list.next) { 936 unsigned long flags; 937 938 spin_lock_irqsave(&ctx->ctx_lock, flags); 939 list_del(&iocb->ki_list); 940 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 941 } 942 943 /* 944 * Add a completion event to the ring buffer. Must be done holding 945 * ctx->completion_lock to prevent other code from messing with the tail 946 * pointer since we might be called from irq context. 947 */ 948 spin_lock_irqsave(&ctx->completion_lock, flags); 949 950 tail = ctx->tail; 951 pos = tail + AIO_EVENTS_OFFSET; 952 953 if (++tail >= ctx->nr_events) 954 tail = 0; 955 956 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 957 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 958 959 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 960 event->data = iocb->ki_user_data; 961 event->res = res; 962 event->res2 = res2; 963 964 kunmap_atomic(ev_page); 965 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 966 967 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 968 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 969 res, res2); 970 971 /* after flagging the request as done, we 972 * must never even look at it again 973 */ 974 smp_wmb(); /* make event visible before updating tail */ 975 976 ctx->tail = tail; 977 978 ring = kmap_atomic(ctx->ring_pages[0]); 979 ring->tail = tail; 980 kunmap_atomic(ring); 981 flush_dcache_page(ctx->ring_pages[0]); 982 983 spin_unlock_irqrestore(&ctx->completion_lock, flags); 984 985 pr_debug("added to ring %p at [%u]\n", iocb, tail); 986 987 /* 988 * Check if the user asked us to deliver the result through an 989 * eventfd. The eventfd_signal() function is safe to be called 990 * from IRQ context. 991 */ 992 if (iocb->ki_eventfd != NULL) 993 eventfd_signal(iocb->ki_eventfd, 1); 994 995 /* everything turned out well, dispose of the aiocb. */ 996 kiocb_free(iocb); 997 998 /* 999 * We have to order our ring_info tail store above and test 1000 * of the wait list below outside the wait lock. This is 1001 * like in wake_up_bit() where clearing a bit has to be 1002 * ordered with the unlocked test. 1003 */ 1004 smp_mb(); 1005 1006 if (waitqueue_active(&ctx->wait)) 1007 wake_up(&ctx->wait); 1008 1009 percpu_ref_put(&ctx->reqs); 1010 } 1011 EXPORT_SYMBOL(aio_complete); 1012 1013 /* aio_read_events 1014 * Pull an event off of the ioctx's event ring. Returns the number of 1015 * events fetched 1016 */ 1017 static long aio_read_events_ring(struct kioctx *ctx, 1018 struct io_event __user *event, long nr) 1019 { 1020 struct aio_ring *ring; 1021 unsigned head, tail, pos; 1022 long ret = 0; 1023 int copy_ret; 1024 1025 mutex_lock(&ctx->ring_lock); 1026 1027 ring = kmap_atomic(ctx->ring_pages[0]); 1028 head = ring->head; 1029 tail = ring->tail; 1030 kunmap_atomic(ring); 1031 1032 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1033 1034 if (head == tail) 1035 goto out; 1036 1037 while (ret < nr) { 1038 long avail; 1039 struct io_event *ev; 1040 struct page *page; 1041 1042 avail = (head <= tail ? tail : ctx->nr_events) - head; 1043 if (head == tail) 1044 break; 1045 1046 avail = min(avail, nr - ret); 1047 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1048 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1049 1050 pos = head + AIO_EVENTS_OFFSET; 1051 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1052 pos %= AIO_EVENTS_PER_PAGE; 1053 1054 ev = kmap(page); 1055 copy_ret = copy_to_user(event + ret, ev + pos, 1056 sizeof(*ev) * avail); 1057 kunmap(page); 1058 1059 if (unlikely(copy_ret)) { 1060 ret = -EFAULT; 1061 goto out; 1062 } 1063 1064 ret += avail; 1065 head += avail; 1066 head %= ctx->nr_events; 1067 } 1068 1069 ring = kmap_atomic(ctx->ring_pages[0]); 1070 ring->head = head; 1071 kunmap_atomic(ring); 1072 flush_dcache_page(ctx->ring_pages[0]); 1073 1074 pr_debug("%li h%u t%u\n", ret, head, tail); 1075 1076 put_reqs_available(ctx, ret); 1077 out: 1078 mutex_unlock(&ctx->ring_lock); 1079 1080 return ret; 1081 } 1082 1083 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1084 struct io_event __user *event, long *i) 1085 { 1086 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1087 1088 if (ret > 0) 1089 *i += ret; 1090 1091 if (unlikely(atomic_read(&ctx->dead))) 1092 ret = -EINVAL; 1093 1094 if (!*i) 1095 *i = ret; 1096 1097 return ret < 0 || *i >= min_nr; 1098 } 1099 1100 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1101 struct io_event __user *event, 1102 struct timespec __user *timeout) 1103 { 1104 ktime_t until = { .tv64 = KTIME_MAX }; 1105 long ret = 0; 1106 1107 if (timeout) { 1108 struct timespec ts; 1109 1110 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1111 return -EFAULT; 1112 1113 until = timespec_to_ktime(ts); 1114 } 1115 1116 /* 1117 * Note that aio_read_events() is being called as the conditional - i.e. 1118 * we're calling it after prepare_to_wait() has set task state to 1119 * TASK_INTERRUPTIBLE. 1120 * 1121 * But aio_read_events() can block, and if it blocks it's going to flip 1122 * the task state back to TASK_RUNNING. 1123 * 1124 * This should be ok, provided it doesn't flip the state back to 1125 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1126 * will only happen if the mutex_lock() call blocks, and we then find 1127 * the ringbuffer empty. So in practice we should be ok, but it's 1128 * something to be aware of when touching this code. 1129 */ 1130 wait_event_interruptible_hrtimeout(ctx->wait, 1131 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1132 1133 if (!ret && signal_pending(current)) 1134 ret = -EINTR; 1135 1136 return ret; 1137 } 1138 1139 /* sys_io_setup: 1140 * Create an aio_context capable of receiving at least nr_events. 1141 * ctxp must not point to an aio_context that already exists, and 1142 * must be initialized to 0 prior to the call. On successful 1143 * creation of the aio_context, *ctxp is filled in with the resulting 1144 * handle. May fail with -EINVAL if *ctxp is not initialized, 1145 * if the specified nr_events exceeds internal limits. May fail 1146 * with -EAGAIN if the specified nr_events exceeds the user's limit 1147 * of available events. May fail with -ENOMEM if insufficient kernel 1148 * resources are available. May fail with -EFAULT if an invalid 1149 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1150 * implemented. 1151 */ 1152 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1153 { 1154 struct kioctx *ioctx = NULL; 1155 unsigned long ctx; 1156 long ret; 1157 1158 ret = get_user(ctx, ctxp); 1159 if (unlikely(ret)) 1160 goto out; 1161 1162 ret = -EINVAL; 1163 if (unlikely(ctx || nr_events == 0)) { 1164 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1165 ctx, nr_events); 1166 goto out; 1167 } 1168 1169 ioctx = ioctx_alloc(nr_events); 1170 ret = PTR_ERR(ioctx); 1171 if (!IS_ERR(ioctx)) { 1172 ret = put_user(ioctx->user_id, ctxp); 1173 if (ret) 1174 kill_ioctx(current->mm, ioctx); 1175 percpu_ref_put(&ioctx->users); 1176 } 1177 1178 out: 1179 return ret; 1180 } 1181 1182 /* sys_io_destroy: 1183 * Destroy the aio_context specified. May cancel any outstanding 1184 * AIOs and block on completion. Will fail with -ENOSYS if not 1185 * implemented. May fail with -EINVAL if the context pointed to 1186 * is invalid. 1187 */ 1188 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1189 { 1190 struct kioctx *ioctx = lookup_ioctx(ctx); 1191 if (likely(NULL != ioctx)) { 1192 kill_ioctx(current->mm, ioctx); 1193 percpu_ref_put(&ioctx->users); 1194 return 0; 1195 } 1196 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1197 return -EINVAL; 1198 } 1199 1200 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1201 unsigned long, loff_t); 1202 1203 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1204 int rw, char __user *buf, 1205 unsigned long *nr_segs, 1206 struct iovec **iovec, 1207 bool compat) 1208 { 1209 ssize_t ret; 1210 1211 *nr_segs = kiocb->ki_nbytes; 1212 1213 #ifdef CONFIG_COMPAT 1214 if (compat) 1215 ret = compat_rw_copy_check_uvector(rw, 1216 (struct compat_iovec __user *)buf, 1217 *nr_segs, 1, *iovec, iovec); 1218 else 1219 #endif 1220 ret = rw_copy_check_uvector(rw, 1221 (struct iovec __user *)buf, 1222 *nr_segs, 1, *iovec, iovec); 1223 if (ret < 0) 1224 return ret; 1225 1226 /* ki_nbytes now reflect bytes instead of segs */ 1227 kiocb->ki_nbytes = ret; 1228 return 0; 1229 } 1230 1231 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1232 int rw, char __user *buf, 1233 unsigned long *nr_segs, 1234 struct iovec *iovec) 1235 { 1236 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1237 return -EFAULT; 1238 1239 iovec->iov_base = buf; 1240 iovec->iov_len = kiocb->ki_nbytes; 1241 *nr_segs = 1; 1242 return 0; 1243 } 1244 1245 /* 1246 * aio_setup_iocb: 1247 * Performs the initial checks and aio retry method 1248 * setup for the kiocb at the time of io submission. 1249 */ 1250 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1251 char __user *buf, bool compat) 1252 { 1253 struct file *file = req->ki_filp; 1254 ssize_t ret; 1255 unsigned long nr_segs; 1256 int rw; 1257 fmode_t mode; 1258 aio_rw_op *rw_op; 1259 struct iovec inline_vec, *iovec = &inline_vec; 1260 1261 switch (opcode) { 1262 case IOCB_CMD_PREAD: 1263 case IOCB_CMD_PREADV: 1264 mode = FMODE_READ; 1265 rw = READ; 1266 rw_op = file->f_op->aio_read; 1267 goto rw_common; 1268 1269 case IOCB_CMD_PWRITE: 1270 case IOCB_CMD_PWRITEV: 1271 mode = FMODE_WRITE; 1272 rw = WRITE; 1273 rw_op = file->f_op->aio_write; 1274 goto rw_common; 1275 rw_common: 1276 if (unlikely(!(file->f_mode & mode))) 1277 return -EBADF; 1278 1279 if (!rw_op) 1280 return -EINVAL; 1281 1282 ret = (opcode == IOCB_CMD_PREADV || 1283 opcode == IOCB_CMD_PWRITEV) 1284 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1285 &iovec, compat) 1286 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1287 iovec); 1288 if (ret) 1289 return ret; 1290 1291 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1292 if (ret < 0) { 1293 if (iovec != &inline_vec) 1294 kfree(iovec); 1295 return ret; 1296 } 1297 1298 req->ki_nbytes = ret; 1299 1300 /* XXX: move/kill - rw_verify_area()? */ 1301 /* This matches the pread()/pwrite() logic */ 1302 if (req->ki_pos < 0) { 1303 ret = -EINVAL; 1304 break; 1305 } 1306 1307 if (rw == WRITE) 1308 file_start_write(file); 1309 1310 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1311 1312 if (rw == WRITE) 1313 file_end_write(file); 1314 break; 1315 1316 case IOCB_CMD_FDSYNC: 1317 if (!file->f_op->aio_fsync) 1318 return -EINVAL; 1319 1320 ret = file->f_op->aio_fsync(req, 1); 1321 break; 1322 1323 case IOCB_CMD_FSYNC: 1324 if (!file->f_op->aio_fsync) 1325 return -EINVAL; 1326 1327 ret = file->f_op->aio_fsync(req, 0); 1328 break; 1329 1330 default: 1331 pr_debug("EINVAL: no operation provided\n"); 1332 return -EINVAL; 1333 } 1334 1335 if (iovec != &inline_vec) 1336 kfree(iovec); 1337 1338 if (ret != -EIOCBQUEUED) { 1339 /* 1340 * There's no easy way to restart the syscall since other AIO's 1341 * may be already running. Just fail this IO with EINTR. 1342 */ 1343 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1344 ret == -ERESTARTNOHAND || 1345 ret == -ERESTART_RESTARTBLOCK)) 1346 ret = -EINTR; 1347 aio_complete(req, ret, 0); 1348 } 1349 1350 return 0; 1351 } 1352 1353 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1354 struct iocb *iocb, bool compat) 1355 { 1356 struct kiocb *req; 1357 ssize_t ret; 1358 1359 /* enforce forwards compatibility on users */ 1360 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1361 pr_debug("EINVAL: reserve field set\n"); 1362 return -EINVAL; 1363 } 1364 1365 /* prevent overflows */ 1366 if (unlikely( 1367 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1368 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1369 ((ssize_t)iocb->aio_nbytes < 0) 1370 )) { 1371 pr_debug("EINVAL: io_submit: overflow check\n"); 1372 return -EINVAL; 1373 } 1374 1375 req = aio_get_req(ctx); 1376 if (unlikely(!req)) 1377 return -EAGAIN; 1378 1379 req->ki_filp = fget(iocb->aio_fildes); 1380 if (unlikely(!req->ki_filp)) { 1381 ret = -EBADF; 1382 goto out_put_req; 1383 } 1384 1385 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1386 /* 1387 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1388 * instance of the file* now. The file descriptor must be 1389 * an eventfd() fd, and will be signaled for each completed 1390 * event using the eventfd_signal() function. 1391 */ 1392 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1393 if (IS_ERR(req->ki_eventfd)) { 1394 ret = PTR_ERR(req->ki_eventfd); 1395 req->ki_eventfd = NULL; 1396 goto out_put_req; 1397 } 1398 } 1399 1400 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1401 if (unlikely(ret)) { 1402 pr_debug("EFAULT: aio_key\n"); 1403 goto out_put_req; 1404 } 1405 1406 req->ki_obj.user = user_iocb; 1407 req->ki_user_data = iocb->aio_data; 1408 req->ki_pos = iocb->aio_offset; 1409 req->ki_nbytes = iocb->aio_nbytes; 1410 1411 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1412 (char __user *)(unsigned long)iocb->aio_buf, 1413 compat); 1414 if (ret) 1415 goto out_put_req; 1416 1417 return 0; 1418 out_put_req: 1419 put_reqs_available(ctx, 1); 1420 percpu_ref_put(&ctx->reqs); 1421 kiocb_free(req); 1422 return ret; 1423 } 1424 1425 long do_io_submit(aio_context_t ctx_id, long nr, 1426 struct iocb __user *__user *iocbpp, bool compat) 1427 { 1428 struct kioctx *ctx; 1429 long ret = 0; 1430 int i = 0; 1431 struct blk_plug plug; 1432 1433 if (unlikely(nr < 0)) 1434 return -EINVAL; 1435 1436 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1437 nr = LONG_MAX/sizeof(*iocbpp); 1438 1439 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1440 return -EFAULT; 1441 1442 ctx = lookup_ioctx(ctx_id); 1443 if (unlikely(!ctx)) { 1444 pr_debug("EINVAL: invalid context id\n"); 1445 return -EINVAL; 1446 } 1447 1448 blk_start_plug(&plug); 1449 1450 /* 1451 * AKPM: should this return a partial result if some of the IOs were 1452 * successfully submitted? 1453 */ 1454 for (i=0; i<nr; i++) { 1455 struct iocb __user *user_iocb; 1456 struct iocb tmp; 1457 1458 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1459 ret = -EFAULT; 1460 break; 1461 } 1462 1463 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1464 ret = -EFAULT; 1465 break; 1466 } 1467 1468 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1469 if (ret) 1470 break; 1471 } 1472 blk_finish_plug(&plug); 1473 1474 percpu_ref_put(&ctx->users); 1475 return i ? i : ret; 1476 } 1477 1478 /* sys_io_submit: 1479 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1480 * the number of iocbs queued. May return -EINVAL if the aio_context 1481 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1482 * *iocbpp[0] is not properly initialized, if the operation specified 1483 * is invalid for the file descriptor in the iocb. May fail with 1484 * -EFAULT if any of the data structures point to invalid data. May 1485 * fail with -EBADF if the file descriptor specified in the first 1486 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1487 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1488 * fail with -ENOSYS if not implemented. 1489 */ 1490 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1491 struct iocb __user * __user *, iocbpp) 1492 { 1493 return do_io_submit(ctx_id, nr, iocbpp, 0); 1494 } 1495 1496 /* lookup_kiocb 1497 * Finds a given iocb for cancellation. 1498 */ 1499 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1500 u32 key) 1501 { 1502 struct list_head *pos; 1503 1504 assert_spin_locked(&ctx->ctx_lock); 1505 1506 if (key != KIOCB_KEY) 1507 return NULL; 1508 1509 /* TODO: use a hash or array, this sucks. */ 1510 list_for_each(pos, &ctx->active_reqs) { 1511 struct kiocb *kiocb = list_kiocb(pos); 1512 if (kiocb->ki_obj.user == iocb) 1513 return kiocb; 1514 } 1515 return NULL; 1516 } 1517 1518 /* sys_io_cancel: 1519 * Attempts to cancel an iocb previously passed to io_submit. If 1520 * the operation is successfully cancelled, the resulting event is 1521 * copied into the memory pointed to by result without being placed 1522 * into the completion queue and 0 is returned. May fail with 1523 * -EFAULT if any of the data structures pointed to are invalid. 1524 * May fail with -EINVAL if aio_context specified by ctx_id is 1525 * invalid. May fail with -EAGAIN if the iocb specified was not 1526 * cancelled. Will fail with -ENOSYS if not implemented. 1527 */ 1528 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1529 struct io_event __user *, result) 1530 { 1531 struct kioctx *ctx; 1532 struct kiocb *kiocb; 1533 u32 key; 1534 int ret; 1535 1536 ret = get_user(key, &iocb->aio_key); 1537 if (unlikely(ret)) 1538 return -EFAULT; 1539 1540 ctx = lookup_ioctx(ctx_id); 1541 if (unlikely(!ctx)) 1542 return -EINVAL; 1543 1544 spin_lock_irq(&ctx->ctx_lock); 1545 1546 kiocb = lookup_kiocb(ctx, iocb, key); 1547 if (kiocb) 1548 ret = kiocb_cancel(ctx, kiocb); 1549 else 1550 ret = -EINVAL; 1551 1552 spin_unlock_irq(&ctx->ctx_lock); 1553 1554 if (!ret) { 1555 /* 1556 * The result argument is no longer used - the io_event is 1557 * always delivered via the ring buffer. -EINPROGRESS indicates 1558 * cancellation is progress: 1559 */ 1560 ret = -EINPROGRESS; 1561 } 1562 1563 percpu_ref_put(&ctx->users); 1564 1565 return ret; 1566 } 1567 1568 /* io_getevents: 1569 * Attempts to read at least min_nr events and up to nr events from 1570 * the completion queue for the aio_context specified by ctx_id. If 1571 * it succeeds, the number of read events is returned. May fail with 1572 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1573 * out of range, if timeout is out of range. May fail with -EFAULT 1574 * if any of the memory specified is invalid. May return 0 or 1575 * < min_nr if the timeout specified by timeout has elapsed 1576 * before sufficient events are available, where timeout == NULL 1577 * specifies an infinite timeout. Note that the timeout pointed to by 1578 * timeout is relative. Will fail with -ENOSYS if not implemented. 1579 */ 1580 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1581 long, min_nr, 1582 long, nr, 1583 struct io_event __user *, events, 1584 struct timespec __user *, timeout) 1585 { 1586 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1587 long ret = -EINVAL; 1588 1589 if (likely(ioctx)) { 1590 if (likely(min_nr <= nr && min_nr >= 0)) 1591 ret = read_events(ioctx, min_nr, nr, events, timeout); 1592 percpu_ref_put(&ioctx->users); 1593 } 1594 return ret; 1595 } 1596