xref: /openbmc/linux/fs/aio.c (revision 8b036556)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		unsigned	completed_events;
145 		spinlock_t	completion_lock;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct page		*internal_pages[AIO_RING_PAGES];
149 	struct file		*aio_ring_file;
150 
151 	unsigned		id;
152 };
153 
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr;		/* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
159 
160 static struct kmem_cache	*kiocb_cachep;
161 static struct kmem_cache	*kioctx_cachep;
162 
163 static struct vfsmount *aio_mnt;
164 
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
167 
168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169 {
170 	struct qstr this = QSTR_INIT("[aio]", 5);
171 	struct file *file;
172 	struct path path;
173 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174 	if (IS_ERR(inode))
175 		return ERR_CAST(inode);
176 
177 	inode->i_mapping->a_ops = &aio_ctx_aops;
178 	inode->i_mapping->private_data = ctx;
179 	inode->i_size = PAGE_SIZE * nr_pages;
180 
181 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 	if (!path.dentry) {
183 		iput(inode);
184 		return ERR_PTR(-ENOMEM);
185 	}
186 	path.mnt = mntget(aio_mnt);
187 
188 	d_instantiate(path.dentry, inode);
189 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 	if (IS_ERR(file)) {
191 		path_put(&path);
192 		return file;
193 	}
194 
195 	file->f_flags = O_RDWR;
196 	return file;
197 }
198 
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 				int flags, const char *dev_name, void *data)
201 {
202 	static const struct dentry_operations ops = {
203 		.d_dname	= simple_dname,
204 	};
205 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
206 }
207 
208 /* aio_setup
209  *	Creates the slab caches used by the aio routines, panic on
210  *	failure as this is done early during the boot sequence.
211  */
212 static int __init aio_setup(void)
213 {
214 	static struct file_system_type aio_fs = {
215 		.name		= "aio",
216 		.mount		= aio_mount,
217 		.kill_sb	= kill_anon_super,
218 	};
219 	aio_mnt = kern_mount(&aio_fs);
220 	if (IS_ERR(aio_mnt))
221 		panic("Failed to create aio fs mount.");
222 
223 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225 
226 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227 
228 	return 0;
229 }
230 __initcall(aio_setup);
231 
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 	struct file *aio_ring_file = ctx->aio_ring_file;
235 	if (aio_ring_file) {
236 		truncate_setsize(aio_ring_file->f_inode, 0);
237 
238 		/* Prevent further access to the kioctx from migratepages */
239 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 		ctx->aio_ring_file = NULL;
242 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243 
244 		fput(aio_ring_file);
245 	}
246 }
247 
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 	int i;
251 
252 	/* Disconnect the kiotx from the ring file.  This prevents future
253 	 * accesses to the kioctx from page migration.
254 	 */
255 	put_aio_ring_file(ctx);
256 
257 	for (i = 0; i < ctx->nr_pages; i++) {
258 		struct page *page;
259 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 				page_count(ctx->ring_pages[i]));
261 		page = ctx->ring_pages[i];
262 		if (!page)
263 			continue;
264 		ctx->ring_pages[i] = NULL;
265 		put_page(page);
266 	}
267 
268 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 		kfree(ctx->ring_pages);
270 		ctx->ring_pages = NULL;
271 	}
272 }
273 
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 	vma->vm_flags |= VM_DONTEXPAND;
277 	vma->vm_ops = &generic_file_vm_ops;
278 	return 0;
279 }
280 
281 static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
282 {
283 	struct mm_struct *mm = vma->vm_mm;
284 	struct kioctx_table *table;
285 	int i;
286 
287 	spin_lock(&mm->ioctx_lock);
288 	rcu_read_lock();
289 	table = rcu_dereference(mm->ioctx_table);
290 	for (i = 0; i < table->nr; i++) {
291 		struct kioctx *ctx;
292 
293 		ctx = table->table[i];
294 		if (ctx && ctx->aio_ring_file == file) {
295 			ctx->user_id = ctx->mmap_base = vma->vm_start;
296 			break;
297 		}
298 	}
299 
300 	rcu_read_unlock();
301 	spin_unlock(&mm->ioctx_lock);
302 }
303 
304 static const struct file_operations aio_ring_fops = {
305 	.mmap = aio_ring_mmap,
306 	.mremap = aio_ring_remap,
307 };
308 
309 #if IS_ENABLED(CONFIG_MIGRATION)
310 static int aio_migratepage(struct address_space *mapping, struct page *new,
311 			struct page *old, enum migrate_mode mode)
312 {
313 	struct kioctx *ctx;
314 	unsigned long flags;
315 	pgoff_t idx;
316 	int rc;
317 
318 	rc = 0;
319 
320 	/* mapping->private_lock here protects against the kioctx teardown.  */
321 	spin_lock(&mapping->private_lock);
322 	ctx = mapping->private_data;
323 	if (!ctx) {
324 		rc = -EINVAL;
325 		goto out;
326 	}
327 
328 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
329 	 * to the ring's head, and prevents page migration from mucking in
330 	 * a partially initialized kiotx.
331 	 */
332 	if (!mutex_trylock(&ctx->ring_lock)) {
333 		rc = -EAGAIN;
334 		goto out;
335 	}
336 
337 	idx = old->index;
338 	if (idx < (pgoff_t)ctx->nr_pages) {
339 		/* Make sure the old page hasn't already been changed */
340 		if (ctx->ring_pages[idx] != old)
341 			rc = -EAGAIN;
342 	} else
343 		rc = -EINVAL;
344 
345 	if (rc != 0)
346 		goto out_unlock;
347 
348 	/* Writeback must be complete */
349 	BUG_ON(PageWriteback(old));
350 	get_page(new);
351 
352 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
353 	if (rc != MIGRATEPAGE_SUCCESS) {
354 		put_page(new);
355 		goto out_unlock;
356 	}
357 
358 	/* Take completion_lock to prevent other writes to the ring buffer
359 	 * while the old page is copied to the new.  This prevents new
360 	 * events from being lost.
361 	 */
362 	spin_lock_irqsave(&ctx->completion_lock, flags);
363 	migrate_page_copy(new, old);
364 	BUG_ON(ctx->ring_pages[idx] != old);
365 	ctx->ring_pages[idx] = new;
366 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
367 
368 	/* The old page is no longer accessible. */
369 	put_page(old);
370 
371 out_unlock:
372 	mutex_unlock(&ctx->ring_lock);
373 out:
374 	spin_unlock(&mapping->private_lock);
375 	return rc;
376 }
377 #endif
378 
379 static const struct address_space_operations aio_ctx_aops = {
380 	.set_page_dirty = __set_page_dirty_no_writeback,
381 #if IS_ENABLED(CONFIG_MIGRATION)
382 	.migratepage	= aio_migratepage,
383 #endif
384 };
385 
386 static int aio_setup_ring(struct kioctx *ctx)
387 {
388 	struct aio_ring *ring;
389 	unsigned nr_events = ctx->max_reqs;
390 	struct mm_struct *mm = current->mm;
391 	unsigned long size, unused;
392 	int nr_pages;
393 	int i;
394 	struct file *file;
395 
396 	/* Compensate for the ring buffer's head/tail overlap entry */
397 	nr_events += 2;	/* 1 is required, 2 for good luck */
398 
399 	size = sizeof(struct aio_ring);
400 	size += sizeof(struct io_event) * nr_events;
401 
402 	nr_pages = PFN_UP(size);
403 	if (nr_pages < 0)
404 		return -EINVAL;
405 
406 	file = aio_private_file(ctx, nr_pages);
407 	if (IS_ERR(file)) {
408 		ctx->aio_ring_file = NULL;
409 		return -ENOMEM;
410 	}
411 
412 	ctx->aio_ring_file = file;
413 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
414 			/ sizeof(struct io_event);
415 
416 	ctx->ring_pages = ctx->internal_pages;
417 	if (nr_pages > AIO_RING_PAGES) {
418 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
419 					  GFP_KERNEL);
420 		if (!ctx->ring_pages) {
421 			put_aio_ring_file(ctx);
422 			return -ENOMEM;
423 		}
424 	}
425 
426 	for (i = 0; i < nr_pages; i++) {
427 		struct page *page;
428 		page = find_or_create_page(file->f_inode->i_mapping,
429 					   i, GFP_HIGHUSER | __GFP_ZERO);
430 		if (!page)
431 			break;
432 		pr_debug("pid(%d) page[%d]->count=%d\n",
433 			 current->pid, i, page_count(page));
434 		SetPageUptodate(page);
435 		unlock_page(page);
436 
437 		ctx->ring_pages[i] = page;
438 	}
439 	ctx->nr_pages = i;
440 
441 	if (unlikely(i != nr_pages)) {
442 		aio_free_ring(ctx);
443 		return -ENOMEM;
444 	}
445 
446 	ctx->mmap_size = nr_pages * PAGE_SIZE;
447 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
448 
449 	down_write(&mm->mmap_sem);
450 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
451 				       PROT_READ | PROT_WRITE,
452 				       MAP_SHARED, 0, &unused);
453 	up_write(&mm->mmap_sem);
454 	if (IS_ERR((void *)ctx->mmap_base)) {
455 		ctx->mmap_size = 0;
456 		aio_free_ring(ctx);
457 		return -ENOMEM;
458 	}
459 
460 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
461 
462 	ctx->user_id = ctx->mmap_base;
463 	ctx->nr_events = nr_events; /* trusted copy */
464 
465 	ring = kmap_atomic(ctx->ring_pages[0]);
466 	ring->nr = nr_events;	/* user copy */
467 	ring->id = ~0U;
468 	ring->head = ring->tail = 0;
469 	ring->magic = AIO_RING_MAGIC;
470 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
471 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
472 	ring->header_length = sizeof(struct aio_ring);
473 	kunmap_atomic(ring);
474 	flush_dcache_page(ctx->ring_pages[0]);
475 
476 	return 0;
477 }
478 
479 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
480 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
481 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
482 
483 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
484 {
485 	struct kioctx *ctx = req->ki_ctx;
486 	unsigned long flags;
487 
488 	spin_lock_irqsave(&ctx->ctx_lock, flags);
489 
490 	if (!req->ki_list.next)
491 		list_add(&req->ki_list, &ctx->active_reqs);
492 
493 	req->ki_cancel = cancel;
494 
495 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
496 }
497 EXPORT_SYMBOL(kiocb_set_cancel_fn);
498 
499 static int kiocb_cancel(struct kiocb *kiocb)
500 {
501 	kiocb_cancel_fn *old, *cancel;
502 
503 	/*
504 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
505 	 * actually has a cancel function, hence the cmpxchg()
506 	 */
507 
508 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
509 	do {
510 		if (!cancel || cancel == KIOCB_CANCELLED)
511 			return -EINVAL;
512 
513 		old = cancel;
514 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
515 	} while (cancel != old);
516 
517 	return cancel(kiocb);
518 }
519 
520 static void free_ioctx(struct work_struct *work)
521 {
522 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
523 
524 	pr_debug("freeing %p\n", ctx);
525 
526 	aio_free_ring(ctx);
527 	free_percpu(ctx->cpu);
528 	percpu_ref_exit(&ctx->reqs);
529 	percpu_ref_exit(&ctx->users);
530 	kmem_cache_free(kioctx_cachep, ctx);
531 }
532 
533 static void free_ioctx_reqs(struct percpu_ref *ref)
534 {
535 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
536 
537 	/* At this point we know that there are no any in-flight requests */
538 	if (ctx->requests_done)
539 		complete(ctx->requests_done);
540 
541 	INIT_WORK(&ctx->free_work, free_ioctx);
542 	schedule_work(&ctx->free_work);
543 }
544 
545 /*
546  * When this function runs, the kioctx has been removed from the "hash table"
547  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
548  * now it's safe to cancel any that need to be.
549  */
550 static void free_ioctx_users(struct percpu_ref *ref)
551 {
552 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
553 	struct kiocb *req;
554 
555 	spin_lock_irq(&ctx->ctx_lock);
556 
557 	while (!list_empty(&ctx->active_reqs)) {
558 		req = list_first_entry(&ctx->active_reqs,
559 				       struct kiocb, ki_list);
560 
561 		list_del_init(&req->ki_list);
562 		kiocb_cancel(req);
563 	}
564 
565 	spin_unlock_irq(&ctx->ctx_lock);
566 
567 	percpu_ref_kill(&ctx->reqs);
568 	percpu_ref_put(&ctx->reqs);
569 }
570 
571 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
572 {
573 	unsigned i, new_nr;
574 	struct kioctx_table *table, *old;
575 	struct aio_ring *ring;
576 
577 	spin_lock(&mm->ioctx_lock);
578 	table = rcu_dereference_raw(mm->ioctx_table);
579 
580 	while (1) {
581 		if (table)
582 			for (i = 0; i < table->nr; i++)
583 				if (!table->table[i]) {
584 					ctx->id = i;
585 					table->table[i] = ctx;
586 					spin_unlock(&mm->ioctx_lock);
587 
588 					/* While kioctx setup is in progress,
589 					 * we are protected from page migration
590 					 * changes ring_pages by ->ring_lock.
591 					 */
592 					ring = kmap_atomic(ctx->ring_pages[0]);
593 					ring->id = ctx->id;
594 					kunmap_atomic(ring);
595 					return 0;
596 				}
597 
598 		new_nr = (table ? table->nr : 1) * 4;
599 		spin_unlock(&mm->ioctx_lock);
600 
601 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
602 				new_nr, GFP_KERNEL);
603 		if (!table)
604 			return -ENOMEM;
605 
606 		table->nr = new_nr;
607 
608 		spin_lock(&mm->ioctx_lock);
609 		old = rcu_dereference_raw(mm->ioctx_table);
610 
611 		if (!old) {
612 			rcu_assign_pointer(mm->ioctx_table, table);
613 		} else if (table->nr > old->nr) {
614 			memcpy(table->table, old->table,
615 			       old->nr * sizeof(struct kioctx *));
616 
617 			rcu_assign_pointer(mm->ioctx_table, table);
618 			kfree_rcu(old, rcu);
619 		} else {
620 			kfree(table);
621 			table = old;
622 		}
623 	}
624 }
625 
626 static void aio_nr_sub(unsigned nr)
627 {
628 	spin_lock(&aio_nr_lock);
629 	if (WARN_ON(aio_nr - nr > aio_nr))
630 		aio_nr = 0;
631 	else
632 		aio_nr -= nr;
633 	spin_unlock(&aio_nr_lock);
634 }
635 
636 /* ioctx_alloc
637  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
638  */
639 static struct kioctx *ioctx_alloc(unsigned nr_events)
640 {
641 	struct mm_struct *mm = current->mm;
642 	struct kioctx *ctx;
643 	int err = -ENOMEM;
644 
645 	/*
646 	 * We keep track of the number of available ringbuffer slots, to prevent
647 	 * overflow (reqs_available), and we also use percpu counters for this.
648 	 *
649 	 * So since up to half the slots might be on other cpu's percpu counters
650 	 * and unavailable, double nr_events so userspace sees what they
651 	 * expected: additionally, we move req_batch slots to/from percpu
652 	 * counters at a time, so make sure that isn't 0:
653 	 */
654 	nr_events = max(nr_events, num_possible_cpus() * 4);
655 	nr_events *= 2;
656 
657 	/* Prevent overflows */
658 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
659 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
660 		pr_debug("ENOMEM: nr_events too high\n");
661 		return ERR_PTR(-EINVAL);
662 	}
663 
664 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
665 		return ERR_PTR(-EAGAIN);
666 
667 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
668 	if (!ctx)
669 		return ERR_PTR(-ENOMEM);
670 
671 	ctx->max_reqs = nr_events;
672 
673 	spin_lock_init(&ctx->ctx_lock);
674 	spin_lock_init(&ctx->completion_lock);
675 	mutex_init(&ctx->ring_lock);
676 	/* Protect against page migration throughout kiotx setup by keeping
677 	 * the ring_lock mutex held until setup is complete. */
678 	mutex_lock(&ctx->ring_lock);
679 	init_waitqueue_head(&ctx->wait);
680 
681 	INIT_LIST_HEAD(&ctx->active_reqs);
682 
683 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
684 		goto err;
685 
686 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
687 		goto err;
688 
689 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
690 	if (!ctx->cpu)
691 		goto err;
692 
693 	err = aio_setup_ring(ctx);
694 	if (err < 0)
695 		goto err;
696 
697 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
698 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
699 	if (ctx->req_batch < 1)
700 		ctx->req_batch = 1;
701 
702 	/* limit the number of system wide aios */
703 	spin_lock(&aio_nr_lock);
704 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
705 	    aio_nr + nr_events < aio_nr) {
706 		spin_unlock(&aio_nr_lock);
707 		err = -EAGAIN;
708 		goto err_ctx;
709 	}
710 	aio_nr += ctx->max_reqs;
711 	spin_unlock(&aio_nr_lock);
712 
713 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
714 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
715 
716 	err = ioctx_add_table(ctx, mm);
717 	if (err)
718 		goto err_cleanup;
719 
720 	/* Release the ring_lock mutex now that all setup is complete. */
721 	mutex_unlock(&ctx->ring_lock);
722 
723 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
724 		 ctx, ctx->user_id, mm, ctx->nr_events);
725 	return ctx;
726 
727 err_cleanup:
728 	aio_nr_sub(ctx->max_reqs);
729 err_ctx:
730 	aio_free_ring(ctx);
731 err:
732 	mutex_unlock(&ctx->ring_lock);
733 	free_percpu(ctx->cpu);
734 	percpu_ref_exit(&ctx->reqs);
735 	percpu_ref_exit(&ctx->users);
736 	kmem_cache_free(kioctx_cachep, ctx);
737 	pr_debug("error allocating ioctx %d\n", err);
738 	return ERR_PTR(err);
739 }
740 
741 /* kill_ioctx
742  *	Cancels all outstanding aio requests on an aio context.  Used
743  *	when the processes owning a context have all exited to encourage
744  *	the rapid destruction of the kioctx.
745  */
746 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
747 		struct completion *requests_done)
748 {
749 	struct kioctx_table *table;
750 
751 	if (atomic_xchg(&ctx->dead, 1))
752 		return -EINVAL;
753 
754 
755 	spin_lock(&mm->ioctx_lock);
756 	table = rcu_dereference_raw(mm->ioctx_table);
757 	WARN_ON(ctx != table->table[ctx->id]);
758 	table->table[ctx->id] = NULL;
759 	spin_unlock(&mm->ioctx_lock);
760 
761 	/* percpu_ref_kill() will do the necessary call_rcu() */
762 	wake_up_all(&ctx->wait);
763 
764 	/*
765 	 * It'd be more correct to do this in free_ioctx(), after all
766 	 * the outstanding kiocbs have finished - but by then io_destroy
767 	 * has already returned, so io_setup() could potentially return
768 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
769 	 *  could tell).
770 	 */
771 	aio_nr_sub(ctx->max_reqs);
772 
773 	if (ctx->mmap_size)
774 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
775 
776 	ctx->requests_done = requests_done;
777 	percpu_ref_kill(&ctx->users);
778 	return 0;
779 }
780 
781 /* wait_on_sync_kiocb:
782  *	Waits on the given sync kiocb to complete.
783  */
784 ssize_t wait_on_sync_kiocb(struct kiocb *req)
785 {
786 	while (!req->ki_ctx) {
787 		set_current_state(TASK_UNINTERRUPTIBLE);
788 		if (req->ki_ctx)
789 			break;
790 		io_schedule();
791 	}
792 	__set_current_state(TASK_RUNNING);
793 	return req->ki_user_data;
794 }
795 EXPORT_SYMBOL(wait_on_sync_kiocb);
796 
797 /*
798  * exit_aio: called when the last user of mm goes away.  At this point, there is
799  * no way for any new requests to be submited or any of the io_* syscalls to be
800  * called on the context.
801  *
802  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
803  * them.
804  */
805 void exit_aio(struct mm_struct *mm)
806 {
807 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
808 	int i;
809 
810 	if (!table)
811 		return;
812 
813 	for (i = 0; i < table->nr; ++i) {
814 		struct kioctx *ctx = table->table[i];
815 		struct completion requests_done =
816 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
817 
818 		if (!ctx)
819 			continue;
820 		/*
821 		 * We don't need to bother with munmap() here - exit_mmap(mm)
822 		 * is coming and it'll unmap everything. And we simply can't,
823 		 * this is not necessarily our ->mm.
824 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
825 		 * that it needs to unmap the area, just set it to 0.
826 		 */
827 		ctx->mmap_size = 0;
828 		kill_ioctx(mm, ctx, &requests_done);
829 
830 		/* Wait until all IO for the context are done. */
831 		wait_for_completion(&requests_done);
832 	}
833 
834 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
835 	kfree(table);
836 }
837 
838 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
839 {
840 	struct kioctx_cpu *kcpu;
841 	unsigned long flags;
842 
843 	local_irq_save(flags);
844 	kcpu = this_cpu_ptr(ctx->cpu);
845 	kcpu->reqs_available += nr;
846 
847 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
848 		kcpu->reqs_available -= ctx->req_batch;
849 		atomic_add(ctx->req_batch, &ctx->reqs_available);
850 	}
851 
852 	local_irq_restore(flags);
853 }
854 
855 static bool get_reqs_available(struct kioctx *ctx)
856 {
857 	struct kioctx_cpu *kcpu;
858 	bool ret = false;
859 	unsigned long flags;
860 
861 	local_irq_save(flags);
862 	kcpu = this_cpu_ptr(ctx->cpu);
863 	if (!kcpu->reqs_available) {
864 		int old, avail = atomic_read(&ctx->reqs_available);
865 
866 		do {
867 			if (avail < ctx->req_batch)
868 				goto out;
869 
870 			old = avail;
871 			avail = atomic_cmpxchg(&ctx->reqs_available,
872 					       avail, avail - ctx->req_batch);
873 		} while (avail != old);
874 
875 		kcpu->reqs_available += ctx->req_batch;
876 	}
877 
878 	ret = true;
879 	kcpu->reqs_available--;
880 out:
881 	local_irq_restore(flags);
882 	return ret;
883 }
884 
885 /* refill_reqs_available
886  *	Updates the reqs_available reference counts used for tracking the
887  *	number of free slots in the completion ring.  This can be called
888  *	from aio_complete() (to optimistically update reqs_available) or
889  *	from aio_get_req() (the we're out of events case).  It must be
890  *	called holding ctx->completion_lock.
891  */
892 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
893                                   unsigned tail)
894 {
895 	unsigned events_in_ring, completed;
896 
897 	/* Clamp head since userland can write to it. */
898 	head %= ctx->nr_events;
899 	if (head <= tail)
900 		events_in_ring = tail - head;
901 	else
902 		events_in_ring = ctx->nr_events - (head - tail);
903 
904 	completed = ctx->completed_events;
905 	if (events_in_ring < completed)
906 		completed -= events_in_ring;
907 	else
908 		completed = 0;
909 
910 	if (!completed)
911 		return;
912 
913 	ctx->completed_events -= completed;
914 	put_reqs_available(ctx, completed);
915 }
916 
917 /* user_refill_reqs_available
918  *	Called to refill reqs_available when aio_get_req() encounters an
919  *	out of space in the completion ring.
920  */
921 static void user_refill_reqs_available(struct kioctx *ctx)
922 {
923 	spin_lock_irq(&ctx->completion_lock);
924 	if (ctx->completed_events) {
925 		struct aio_ring *ring;
926 		unsigned head;
927 
928 		/* Access of ring->head may race with aio_read_events_ring()
929 		 * here, but that's okay since whether we read the old version
930 		 * or the new version, and either will be valid.  The important
931 		 * part is that head cannot pass tail since we prevent
932 		 * aio_complete() from updating tail by holding
933 		 * ctx->completion_lock.  Even if head is invalid, the check
934 		 * against ctx->completed_events below will make sure we do the
935 		 * safe/right thing.
936 		 */
937 		ring = kmap_atomic(ctx->ring_pages[0]);
938 		head = ring->head;
939 		kunmap_atomic(ring);
940 
941 		refill_reqs_available(ctx, head, ctx->tail);
942 	}
943 
944 	spin_unlock_irq(&ctx->completion_lock);
945 }
946 
947 /* aio_get_req
948  *	Allocate a slot for an aio request.
949  * Returns NULL if no requests are free.
950  */
951 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
952 {
953 	struct kiocb *req;
954 
955 	if (!get_reqs_available(ctx)) {
956 		user_refill_reqs_available(ctx);
957 		if (!get_reqs_available(ctx))
958 			return NULL;
959 	}
960 
961 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
962 	if (unlikely(!req))
963 		goto out_put;
964 
965 	percpu_ref_get(&ctx->reqs);
966 
967 	req->ki_ctx = ctx;
968 	return req;
969 out_put:
970 	put_reqs_available(ctx, 1);
971 	return NULL;
972 }
973 
974 static void kiocb_free(struct kiocb *req)
975 {
976 	if (req->ki_filp)
977 		fput(req->ki_filp);
978 	if (req->ki_eventfd != NULL)
979 		eventfd_ctx_put(req->ki_eventfd);
980 	kmem_cache_free(kiocb_cachep, req);
981 }
982 
983 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
984 {
985 	struct aio_ring __user *ring  = (void __user *)ctx_id;
986 	struct mm_struct *mm = current->mm;
987 	struct kioctx *ctx, *ret = NULL;
988 	struct kioctx_table *table;
989 	unsigned id;
990 
991 	if (get_user(id, &ring->id))
992 		return NULL;
993 
994 	rcu_read_lock();
995 	table = rcu_dereference(mm->ioctx_table);
996 
997 	if (!table || id >= table->nr)
998 		goto out;
999 
1000 	ctx = table->table[id];
1001 	if (ctx && ctx->user_id == ctx_id) {
1002 		percpu_ref_get(&ctx->users);
1003 		ret = ctx;
1004 	}
1005 out:
1006 	rcu_read_unlock();
1007 	return ret;
1008 }
1009 
1010 /* aio_complete
1011  *	Called when the io request on the given iocb is complete.
1012  */
1013 void aio_complete(struct kiocb *iocb, long res, long res2)
1014 {
1015 	struct kioctx	*ctx = iocb->ki_ctx;
1016 	struct aio_ring	*ring;
1017 	struct io_event	*ev_page, *event;
1018 	unsigned tail, pos, head;
1019 	unsigned long	flags;
1020 
1021 	/*
1022 	 * Special case handling for sync iocbs:
1023 	 *  - events go directly into the iocb for fast handling
1024 	 *  - the sync task with the iocb in its stack holds the single iocb
1025 	 *    ref, no other paths have a way to get another ref
1026 	 *  - the sync task helpfully left a reference to itself in the iocb
1027 	 */
1028 	if (is_sync_kiocb(iocb)) {
1029 		iocb->ki_user_data = res;
1030 		smp_wmb();
1031 		iocb->ki_ctx = ERR_PTR(-EXDEV);
1032 		wake_up_process(iocb->ki_obj.tsk);
1033 		return;
1034 	}
1035 
1036 	if (iocb->ki_list.next) {
1037 		unsigned long flags;
1038 
1039 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1040 		list_del(&iocb->ki_list);
1041 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1042 	}
1043 
1044 	/*
1045 	 * Add a completion event to the ring buffer. Must be done holding
1046 	 * ctx->completion_lock to prevent other code from messing with the tail
1047 	 * pointer since we might be called from irq context.
1048 	 */
1049 	spin_lock_irqsave(&ctx->completion_lock, flags);
1050 
1051 	tail = ctx->tail;
1052 	pos = tail + AIO_EVENTS_OFFSET;
1053 
1054 	if (++tail >= ctx->nr_events)
1055 		tail = 0;
1056 
1057 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1058 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1059 
1060 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1061 	event->data = iocb->ki_user_data;
1062 	event->res = res;
1063 	event->res2 = res2;
1064 
1065 	kunmap_atomic(ev_page);
1066 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1067 
1068 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1069 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1070 		 res, res2);
1071 
1072 	/* after flagging the request as done, we
1073 	 * must never even look at it again
1074 	 */
1075 	smp_wmb();	/* make event visible before updating tail */
1076 
1077 	ctx->tail = tail;
1078 
1079 	ring = kmap_atomic(ctx->ring_pages[0]);
1080 	head = ring->head;
1081 	ring->tail = tail;
1082 	kunmap_atomic(ring);
1083 	flush_dcache_page(ctx->ring_pages[0]);
1084 
1085 	ctx->completed_events++;
1086 	if (ctx->completed_events > 1)
1087 		refill_reqs_available(ctx, head, tail);
1088 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1089 
1090 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1091 
1092 	/*
1093 	 * Check if the user asked us to deliver the result through an
1094 	 * eventfd. The eventfd_signal() function is safe to be called
1095 	 * from IRQ context.
1096 	 */
1097 	if (iocb->ki_eventfd != NULL)
1098 		eventfd_signal(iocb->ki_eventfd, 1);
1099 
1100 	/* everything turned out well, dispose of the aiocb. */
1101 	kiocb_free(iocb);
1102 
1103 	/*
1104 	 * We have to order our ring_info tail store above and test
1105 	 * of the wait list below outside the wait lock.  This is
1106 	 * like in wake_up_bit() where clearing a bit has to be
1107 	 * ordered with the unlocked test.
1108 	 */
1109 	smp_mb();
1110 
1111 	if (waitqueue_active(&ctx->wait))
1112 		wake_up(&ctx->wait);
1113 
1114 	percpu_ref_put(&ctx->reqs);
1115 }
1116 EXPORT_SYMBOL(aio_complete);
1117 
1118 /* aio_read_events_ring
1119  *	Pull an event off of the ioctx's event ring.  Returns the number of
1120  *	events fetched
1121  */
1122 static long aio_read_events_ring(struct kioctx *ctx,
1123 				 struct io_event __user *event, long nr)
1124 {
1125 	struct aio_ring *ring;
1126 	unsigned head, tail, pos;
1127 	long ret = 0;
1128 	int copy_ret;
1129 
1130 	/*
1131 	 * The mutex can block and wake us up and that will cause
1132 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1133 	 * and repeat. This should be rare enough that it doesn't cause
1134 	 * peformance issues. See the comment in read_events() for more detail.
1135 	 */
1136 	sched_annotate_sleep();
1137 	mutex_lock(&ctx->ring_lock);
1138 
1139 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1140 	ring = kmap_atomic(ctx->ring_pages[0]);
1141 	head = ring->head;
1142 	tail = ring->tail;
1143 	kunmap_atomic(ring);
1144 
1145 	/*
1146 	 * Ensure that once we've read the current tail pointer, that
1147 	 * we also see the events that were stored up to the tail.
1148 	 */
1149 	smp_rmb();
1150 
1151 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1152 
1153 	if (head == tail)
1154 		goto out;
1155 
1156 	head %= ctx->nr_events;
1157 	tail %= ctx->nr_events;
1158 
1159 	while (ret < nr) {
1160 		long avail;
1161 		struct io_event *ev;
1162 		struct page *page;
1163 
1164 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1165 		if (head == tail)
1166 			break;
1167 
1168 		avail = min(avail, nr - ret);
1169 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1170 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1171 
1172 		pos = head + AIO_EVENTS_OFFSET;
1173 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1174 		pos %= AIO_EVENTS_PER_PAGE;
1175 
1176 		ev = kmap(page);
1177 		copy_ret = copy_to_user(event + ret, ev + pos,
1178 					sizeof(*ev) * avail);
1179 		kunmap(page);
1180 
1181 		if (unlikely(copy_ret)) {
1182 			ret = -EFAULT;
1183 			goto out;
1184 		}
1185 
1186 		ret += avail;
1187 		head += avail;
1188 		head %= ctx->nr_events;
1189 	}
1190 
1191 	ring = kmap_atomic(ctx->ring_pages[0]);
1192 	ring->head = head;
1193 	kunmap_atomic(ring);
1194 	flush_dcache_page(ctx->ring_pages[0]);
1195 
1196 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1197 out:
1198 	mutex_unlock(&ctx->ring_lock);
1199 
1200 	return ret;
1201 }
1202 
1203 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1204 			    struct io_event __user *event, long *i)
1205 {
1206 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1207 
1208 	if (ret > 0)
1209 		*i += ret;
1210 
1211 	if (unlikely(atomic_read(&ctx->dead)))
1212 		ret = -EINVAL;
1213 
1214 	if (!*i)
1215 		*i = ret;
1216 
1217 	return ret < 0 || *i >= min_nr;
1218 }
1219 
1220 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1221 			struct io_event __user *event,
1222 			struct timespec __user *timeout)
1223 {
1224 	ktime_t until = { .tv64 = KTIME_MAX };
1225 	long ret = 0;
1226 
1227 	if (timeout) {
1228 		struct timespec	ts;
1229 
1230 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1231 			return -EFAULT;
1232 
1233 		until = timespec_to_ktime(ts);
1234 	}
1235 
1236 	/*
1237 	 * Note that aio_read_events() is being called as the conditional - i.e.
1238 	 * we're calling it after prepare_to_wait() has set task state to
1239 	 * TASK_INTERRUPTIBLE.
1240 	 *
1241 	 * But aio_read_events() can block, and if it blocks it's going to flip
1242 	 * the task state back to TASK_RUNNING.
1243 	 *
1244 	 * This should be ok, provided it doesn't flip the state back to
1245 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1246 	 * will only happen if the mutex_lock() call blocks, and we then find
1247 	 * the ringbuffer empty. So in practice we should be ok, but it's
1248 	 * something to be aware of when touching this code.
1249 	 */
1250 	if (until.tv64 == 0)
1251 		aio_read_events(ctx, min_nr, nr, event, &ret);
1252 	else
1253 		wait_event_interruptible_hrtimeout(ctx->wait,
1254 				aio_read_events(ctx, min_nr, nr, event, &ret),
1255 				until);
1256 
1257 	if (!ret && signal_pending(current))
1258 		ret = -EINTR;
1259 
1260 	return ret;
1261 }
1262 
1263 /* sys_io_setup:
1264  *	Create an aio_context capable of receiving at least nr_events.
1265  *	ctxp must not point to an aio_context that already exists, and
1266  *	must be initialized to 0 prior to the call.  On successful
1267  *	creation of the aio_context, *ctxp is filled in with the resulting
1268  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1269  *	if the specified nr_events exceeds internal limits.  May fail
1270  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1271  *	of available events.  May fail with -ENOMEM if insufficient kernel
1272  *	resources are available.  May fail with -EFAULT if an invalid
1273  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1274  *	implemented.
1275  */
1276 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1277 {
1278 	struct kioctx *ioctx = NULL;
1279 	unsigned long ctx;
1280 	long ret;
1281 
1282 	ret = get_user(ctx, ctxp);
1283 	if (unlikely(ret))
1284 		goto out;
1285 
1286 	ret = -EINVAL;
1287 	if (unlikely(ctx || nr_events == 0)) {
1288 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1289 		         ctx, nr_events);
1290 		goto out;
1291 	}
1292 
1293 	ioctx = ioctx_alloc(nr_events);
1294 	ret = PTR_ERR(ioctx);
1295 	if (!IS_ERR(ioctx)) {
1296 		ret = put_user(ioctx->user_id, ctxp);
1297 		if (ret)
1298 			kill_ioctx(current->mm, ioctx, NULL);
1299 		percpu_ref_put(&ioctx->users);
1300 	}
1301 
1302 out:
1303 	return ret;
1304 }
1305 
1306 /* sys_io_destroy:
1307  *	Destroy the aio_context specified.  May cancel any outstanding
1308  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1309  *	implemented.  May fail with -EINVAL if the context pointed to
1310  *	is invalid.
1311  */
1312 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1313 {
1314 	struct kioctx *ioctx = lookup_ioctx(ctx);
1315 	if (likely(NULL != ioctx)) {
1316 		struct completion requests_done =
1317 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1318 		int ret;
1319 
1320 		/* Pass requests_done to kill_ioctx() where it can be set
1321 		 * in a thread-safe way. If we try to set it here then we have
1322 		 * a race condition if two io_destroy() called simultaneously.
1323 		 */
1324 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1325 		percpu_ref_put(&ioctx->users);
1326 
1327 		/* Wait until all IO for the context are done. Otherwise kernel
1328 		 * keep using user-space buffers even if user thinks the context
1329 		 * is destroyed.
1330 		 */
1331 		if (!ret)
1332 			wait_for_completion(&requests_done);
1333 
1334 		return ret;
1335 	}
1336 	pr_debug("EINVAL: invalid context id\n");
1337 	return -EINVAL;
1338 }
1339 
1340 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1341 			    unsigned long, loff_t);
1342 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1343 
1344 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1345 				     int rw, char __user *buf,
1346 				     unsigned long *nr_segs,
1347 				     struct iovec **iovec,
1348 				     bool compat)
1349 {
1350 	ssize_t ret;
1351 
1352 	*nr_segs = kiocb->ki_nbytes;
1353 
1354 #ifdef CONFIG_COMPAT
1355 	if (compat)
1356 		ret = compat_rw_copy_check_uvector(rw,
1357 				(struct compat_iovec __user *)buf,
1358 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1359 	else
1360 #endif
1361 		ret = rw_copy_check_uvector(rw,
1362 				(struct iovec __user *)buf,
1363 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1364 	if (ret < 0)
1365 		return ret;
1366 
1367 	/* ki_nbytes now reflect bytes instead of segs */
1368 	kiocb->ki_nbytes = ret;
1369 	return 0;
1370 }
1371 
1372 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1373 				       int rw, char __user *buf,
1374 				       unsigned long *nr_segs,
1375 				       struct iovec *iovec)
1376 {
1377 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1378 		return -EFAULT;
1379 
1380 	iovec->iov_base = buf;
1381 	iovec->iov_len = kiocb->ki_nbytes;
1382 	*nr_segs = 1;
1383 	return 0;
1384 }
1385 
1386 /*
1387  * aio_run_iocb:
1388  *	Performs the initial checks and io submission.
1389  */
1390 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1391 			    char __user *buf, bool compat)
1392 {
1393 	struct file *file = req->ki_filp;
1394 	ssize_t ret;
1395 	unsigned long nr_segs;
1396 	int rw;
1397 	fmode_t mode;
1398 	aio_rw_op *rw_op;
1399 	rw_iter_op *iter_op;
1400 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1401 	struct iov_iter iter;
1402 
1403 	switch (opcode) {
1404 	case IOCB_CMD_PREAD:
1405 	case IOCB_CMD_PREADV:
1406 		mode	= FMODE_READ;
1407 		rw	= READ;
1408 		rw_op	= file->f_op->aio_read;
1409 		iter_op	= file->f_op->read_iter;
1410 		goto rw_common;
1411 
1412 	case IOCB_CMD_PWRITE:
1413 	case IOCB_CMD_PWRITEV:
1414 		mode	= FMODE_WRITE;
1415 		rw	= WRITE;
1416 		rw_op	= file->f_op->aio_write;
1417 		iter_op	= file->f_op->write_iter;
1418 		goto rw_common;
1419 rw_common:
1420 		if (unlikely(!(file->f_mode & mode)))
1421 			return -EBADF;
1422 
1423 		if (!rw_op && !iter_op)
1424 			return -EINVAL;
1425 
1426 		ret = (opcode == IOCB_CMD_PREADV ||
1427 		       opcode == IOCB_CMD_PWRITEV)
1428 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1429 						&iovec, compat)
1430 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1431 						  iovec);
1432 		if (!ret)
1433 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1434 		if (ret < 0) {
1435 			if (iovec != inline_vecs)
1436 				kfree(iovec);
1437 			return ret;
1438 		}
1439 
1440 		req->ki_nbytes = ret;
1441 
1442 		/* XXX: move/kill - rw_verify_area()? */
1443 		/* This matches the pread()/pwrite() logic */
1444 		if (req->ki_pos < 0) {
1445 			ret = -EINVAL;
1446 			break;
1447 		}
1448 
1449 		if (rw == WRITE)
1450 			file_start_write(file);
1451 
1452 		if (iter_op) {
1453 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1454 			ret = iter_op(req, &iter);
1455 		} else {
1456 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1457 		}
1458 
1459 		if (rw == WRITE)
1460 			file_end_write(file);
1461 		break;
1462 
1463 	case IOCB_CMD_FDSYNC:
1464 		if (!file->f_op->aio_fsync)
1465 			return -EINVAL;
1466 
1467 		ret = file->f_op->aio_fsync(req, 1);
1468 		break;
1469 
1470 	case IOCB_CMD_FSYNC:
1471 		if (!file->f_op->aio_fsync)
1472 			return -EINVAL;
1473 
1474 		ret = file->f_op->aio_fsync(req, 0);
1475 		break;
1476 
1477 	default:
1478 		pr_debug("EINVAL: no operation provided\n");
1479 		return -EINVAL;
1480 	}
1481 
1482 	if (iovec != inline_vecs)
1483 		kfree(iovec);
1484 
1485 	if (ret != -EIOCBQUEUED) {
1486 		/*
1487 		 * There's no easy way to restart the syscall since other AIO's
1488 		 * may be already running. Just fail this IO with EINTR.
1489 		 */
1490 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1491 			     ret == -ERESTARTNOHAND ||
1492 			     ret == -ERESTART_RESTARTBLOCK))
1493 			ret = -EINTR;
1494 		aio_complete(req, ret, 0);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1501 			 struct iocb *iocb, bool compat)
1502 {
1503 	struct kiocb *req;
1504 	ssize_t ret;
1505 
1506 	/* enforce forwards compatibility on users */
1507 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1508 		pr_debug("EINVAL: reserve field set\n");
1509 		return -EINVAL;
1510 	}
1511 
1512 	/* prevent overflows */
1513 	if (unlikely(
1514 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1515 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1516 	    ((ssize_t)iocb->aio_nbytes < 0)
1517 	   )) {
1518 		pr_debug("EINVAL: overflow check\n");
1519 		return -EINVAL;
1520 	}
1521 
1522 	req = aio_get_req(ctx);
1523 	if (unlikely(!req))
1524 		return -EAGAIN;
1525 
1526 	req->ki_filp = fget(iocb->aio_fildes);
1527 	if (unlikely(!req->ki_filp)) {
1528 		ret = -EBADF;
1529 		goto out_put_req;
1530 	}
1531 
1532 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1533 		/*
1534 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1535 		 * instance of the file* now. The file descriptor must be
1536 		 * an eventfd() fd, and will be signaled for each completed
1537 		 * event using the eventfd_signal() function.
1538 		 */
1539 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1540 		if (IS_ERR(req->ki_eventfd)) {
1541 			ret = PTR_ERR(req->ki_eventfd);
1542 			req->ki_eventfd = NULL;
1543 			goto out_put_req;
1544 		}
1545 	}
1546 
1547 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1548 	if (unlikely(ret)) {
1549 		pr_debug("EFAULT: aio_key\n");
1550 		goto out_put_req;
1551 	}
1552 
1553 	req->ki_obj.user = user_iocb;
1554 	req->ki_user_data = iocb->aio_data;
1555 	req->ki_pos = iocb->aio_offset;
1556 	req->ki_nbytes = iocb->aio_nbytes;
1557 
1558 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1559 			   (char __user *)(unsigned long)iocb->aio_buf,
1560 			   compat);
1561 	if (ret)
1562 		goto out_put_req;
1563 
1564 	return 0;
1565 out_put_req:
1566 	put_reqs_available(ctx, 1);
1567 	percpu_ref_put(&ctx->reqs);
1568 	kiocb_free(req);
1569 	return ret;
1570 }
1571 
1572 long do_io_submit(aio_context_t ctx_id, long nr,
1573 		  struct iocb __user *__user *iocbpp, bool compat)
1574 {
1575 	struct kioctx *ctx;
1576 	long ret = 0;
1577 	int i = 0;
1578 	struct blk_plug plug;
1579 
1580 	if (unlikely(nr < 0))
1581 		return -EINVAL;
1582 
1583 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1584 		nr = LONG_MAX/sizeof(*iocbpp);
1585 
1586 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1587 		return -EFAULT;
1588 
1589 	ctx = lookup_ioctx(ctx_id);
1590 	if (unlikely(!ctx)) {
1591 		pr_debug("EINVAL: invalid context id\n");
1592 		return -EINVAL;
1593 	}
1594 
1595 	blk_start_plug(&plug);
1596 
1597 	/*
1598 	 * AKPM: should this return a partial result if some of the IOs were
1599 	 * successfully submitted?
1600 	 */
1601 	for (i=0; i<nr; i++) {
1602 		struct iocb __user *user_iocb;
1603 		struct iocb tmp;
1604 
1605 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1606 			ret = -EFAULT;
1607 			break;
1608 		}
1609 
1610 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1611 			ret = -EFAULT;
1612 			break;
1613 		}
1614 
1615 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1616 		if (ret)
1617 			break;
1618 	}
1619 	blk_finish_plug(&plug);
1620 
1621 	percpu_ref_put(&ctx->users);
1622 	return i ? i : ret;
1623 }
1624 
1625 /* sys_io_submit:
1626  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1627  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1628  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1629  *	*iocbpp[0] is not properly initialized, if the operation specified
1630  *	is invalid for the file descriptor in the iocb.  May fail with
1631  *	-EFAULT if any of the data structures point to invalid data.  May
1632  *	fail with -EBADF if the file descriptor specified in the first
1633  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1634  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1635  *	fail with -ENOSYS if not implemented.
1636  */
1637 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1638 		struct iocb __user * __user *, iocbpp)
1639 {
1640 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1641 }
1642 
1643 /* lookup_kiocb
1644  *	Finds a given iocb for cancellation.
1645  */
1646 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1647 				  u32 key)
1648 {
1649 	struct list_head *pos;
1650 
1651 	assert_spin_locked(&ctx->ctx_lock);
1652 
1653 	if (key != KIOCB_KEY)
1654 		return NULL;
1655 
1656 	/* TODO: use a hash or array, this sucks. */
1657 	list_for_each(pos, &ctx->active_reqs) {
1658 		struct kiocb *kiocb = list_kiocb(pos);
1659 		if (kiocb->ki_obj.user == iocb)
1660 			return kiocb;
1661 	}
1662 	return NULL;
1663 }
1664 
1665 /* sys_io_cancel:
1666  *	Attempts to cancel an iocb previously passed to io_submit.  If
1667  *	the operation is successfully cancelled, the resulting event is
1668  *	copied into the memory pointed to by result without being placed
1669  *	into the completion queue and 0 is returned.  May fail with
1670  *	-EFAULT if any of the data structures pointed to are invalid.
1671  *	May fail with -EINVAL if aio_context specified by ctx_id is
1672  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1673  *	cancelled.  Will fail with -ENOSYS if not implemented.
1674  */
1675 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1676 		struct io_event __user *, result)
1677 {
1678 	struct kioctx *ctx;
1679 	struct kiocb *kiocb;
1680 	u32 key;
1681 	int ret;
1682 
1683 	ret = get_user(key, &iocb->aio_key);
1684 	if (unlikely(ret))
1685 		return -EFAULT;
1686 
1687 	ctx = lookup_ioctx(ctx_id);
1688 	if (unlikely(!ctx))
1689 		return -EINVAL;
1690 
1691 	spin_lock_irq(&ctx->ctx_lock);
1692 
1693 	kiocb = lookup_kiocb(ctx, iocb, key);
1694 	if (kiocb)
1695 		ret = kiocb_cancel(kiocb);
1696 	else
1697 		ret = -EINVAL;
1698 
1699 	spin_unlock_irq(&ctx->ctx_lock);
1700 
1701 	if (!ret) {
1702 		/*
1703 		 * The result argument is no longer used - the io_event is
1704 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1705 		 * cancellation is progress:
1706 		 */
1707 		ret = -EINPROGRESS;
1708 	}
1709 
1710 	percpu_ref_put(&ctx->users);
1711 
1712 	return ret;
1713 }
1714 
1715 /* io_getevents:
1716  *	Attempts to read at least min_nr events and up to nr events from
1717  *	the completion queue for the aio_context specified by ctx_id. If
1718  *	it succeeds, the number of read events is returned. May fail with
1719  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1720  *	out of range, if timeout is out of range.  May fail with -EFAULT
1721  *	if any of the memory specified is invalid.  May return 0 or
1722  *	< min_nr if the timeout specified by timeout has elapsed
1723  *	before sufficient events are available, where timeout == NULL
1724  *	specifies an infinite timeout. Note that the timeout pointed to by
1725  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1726  */
1727 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1728 		long, min_nr,
1729 		long, nr,
1730 		struct io_event __user *, events,
1731 		struct timespec __user *, timeout)
1732 {
1733 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1734 	long ret = -EINVAL;
1735 
1736 	if (likely(ioctx)) {
1737 		if (likely(min_nr <= nr && min_nr >= 0))
1738 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1739 		percpu_ref_put(&ioctx->users);
1740 	}
1741 	return ret;
1742 }
1743