1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 19 #define DEBUG 0 20 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/mm.h> 25 #include <linux/mman.h> 26 #include <linux/slab.h> 27 #include <linux/timer.h> 28 #include <linux/aio.h> 29 #include <linux/highmem.h> 30 #include <linux/workqueue.h> 31 #include <linux/security.h> 32 33 #include <asm/kmap_types.h> 34 #include <asm/uaccess.h> 35 #include <asm/mmu_context.h> 36 37 #if DEBUG > 1 38 #define dprintk printk 39 #else 40 #define dprintk(x...) do { ; } while (0) 41 #endif 42 43 /*------ sysctl variables----*/ 44 static DEFINE_SPINLOCK(aio_nr_lock); 45 unsigned long aio_nr; /* current system wide number of aio requests */ 46 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 47 /*----end sysctl variables---*/ 48 49 static kmem_cache_t *kiocb_cachep; 50 static kmem_cache_t *kioctx_cachep; 51 52 static struct workqueue_struct *aio_wq; 53 54 /* Used for rare fput completion. */ 55 static void aio_fput_routine(void *); 56 static DECLARE_WORK(fput_work, aio_fput_routine, NULL); 57 58 static DEFINE_SPINLOCK(fput_lock); 59 static LIST_HEAD(fput_head); 60 61 static void aio_kick_handler(void *); 62 static void aio_queue_work(struct kioctx *); 63 64 /* aio_setup 65 * Creates the slab caches used by the aio routines, panic on 66 * failure as this is done early during the boot sequence. 67 */ 68 static int __init aio_setup(void) 69 { 70 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb), 71 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 72 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx), 73 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages); 129 } 130 131 info->mmap_size = nr_pages * PAGE_SIZE; 132 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 133 down_write(&ctx->mm->mmap_sem); 134 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 135 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 136 0); 137 if (IS_ERR((void *)info->mmap_base)) { 138 up_write(&ctx->mm->mmap_sem); 139 printk("mmap err: %ld\n", -info->mmap_base); 140 info->mmap_size = 0; 141 aio_free_ring(ctx); 142 return -EAGAIN; 143 } 144 145 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 146 info->nr_pages = get_user_pages(current, ctx->mm, 147 info->mmap_base, nr_pages, 148 1, 0, info->ring_pages, NULL); 149 up_write(&ctx->mm->mmap_sem); 150 151 if (unlikely(info->nr_pages != nr_pages)) { 152 aio_free_ring(ctx); 153 return -EAGAIN; 154 } 155 156 ctx->user_id = info->mmap_base; 157 158 info->nr = nr_events; /* trusted copy */ 159 160 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 161 ring->nr = nr_events; /* user copy */ 162 ring->id = ctx->user_id; 163 ring->head = ring->tail = 0; 164 ring->magic = AIO_RING_MAGIC; 165 ring->compat_features = AIO_RING_COMPAT_FEATURES; 166 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 167 ring->header_length = sizeof(struct aio_ring); 168 kunmap_atomic(ring, KM_USER0); 169 170 return 0; 171 } 172 173 174 /* aio_ring_event: returns a pointer to the event at the given index from 175 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 176 */ 177 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 178 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 179 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 180 181 #define aio_ring_event(info, nr, km) ({ \ 182 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 183 struct io_event *__event; \ 184 __event = kmap_atomic( \ 185 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 186 __event += pos % AIO_EVENTS_PER_PAGE; \ 187 __event; \ 188 }) 189 190 #define put_aio_ring_event(event, km) do { \ 191 struct io_event *__event = (event); \ 192 (void)__event; \ 193 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 194 } while(0) 195 196 /* ioctx_alloc 197 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 198 */ 199 static struct kioctx *ioctx_alloc(unsigned nr_events) 200 { 201 struct mm_struct *mm; 202 struct kioctx *ctx; 203 204 /* Prevent overflows */ 205 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 206 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 207 pr_debug("ENOMEM: nr_events too high\n"); 208 return ERR_PTR(-EINVAL); 209 } 210 211 if ((unsigned long)nr_events > aio_max_nr) 212 return ERR_PTR(-EAGAIN); 213 214 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL); 215 if (!ctx) 216 return ERR_PTR(-ENOMEM); 217 218 memset(ctx, 0, sizeof(*ctx)); 219 ctx->max_reqs = nr_events; 220 mm = ctx->mm = current->mm; 221 atomic_inc(&mm->mm_count); 222 223 atomic_set(&ctx->users, 1); 224 spin_lock_init(&ctx->ctx_lock); 225 spin_lock_init(&ctx->ring_info.ring_lock); 226 init_waitqueue_head(&ctx->wait); 227 228 INIT_LIST_HEAD(&ctx->active_reqs); 229 INIT_LIST_HEAD(&ctx->run_list); 230 INIT_WORK(&ctx->wq, aio_kick_handler, ctx); 231 232 if (aio_setup_ring(ctx) < 0) 233 goto out_freectx; 234 235 /* limit the number of system wide aios */ 236 spin_lock(&aio_nr_lock); 237 if (aio_nr + ctx->max_reqs > aio_max_nr || 238 aio_nr + ctx->max_reqs < aio_nr) 239 ctx->max_reqs = 0; 240 else 241 aio_nr += ctx->max_reqs; 242 spin_unlock(&aio_nr_lock); 243 if (ctx->max_reqs == 0) 244 goto out_cleanup; 245 246 /* now link into global list. kludge. FIXME */ 247 write_lock(&mm->ioctx_list_lock); 248 ctx->next = mm->ioctx_list; 249 mm->ioctx_list = ctx; 250 write_unlock(&mm->ioctx_list_lock); 251 252 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 253 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 254 return ctx; 255 256 out_cleanup: 257 __put_ioctx(ctx); 258 return ERR_PTR(-EAGAIN); 259 260 out_freectx: 261 mmdrop(mm); 262 kmem_cache_free(kioctx_cachep, ctx); 263 ctx = ERR_PTR(-ENOMEM); 264 265 dprintk("aio: error allocating ioctx %p\n", ctx); 266 return ctx; 267 } 268 269 /* aio_cancel_all 270 * Cancels all outstanding aio requests on an aio context. Used 271 * when the processes owning a context have all exited to encourage 272 * the rapid destruction of the kioctx. 273 */ 274 static void aio_cancel_all(struct kioctx *ctx) 275 { 276 int (*cancel)(struct kiocb *, struct io_event *); 277 struct io_event res; 278 spin_lock_irq(&ctx->ctx_lock); 279 ctx->dead = 1; 280 while (!list_empty(&ctx->active_reqs)) { 281 struct list_head *pos = ctx->active_reqs.next; 282 struct kiocb *iocb = list_kiocb(pos); 283 list_del_init(&iocb->ki_list); 284 cancel = iocb->ki_cancel; 285 kiocbSetCancelled(iocb); 286 if (cancel) { 287 iocb->ki_users++; 288 spin_unlock_irq(&ctx->ctx_lock); 289 cancel(iocb, &res); 290 spin_lock_irq(&ctx->ctx_lock); 291 } 292 } 293 spin_unlock_irq(&ctx->ctx_lock); 294 } 295 296 static void wait_for_all_aios(struct kioctx *ctx) 297 { 298 struct task_struct *tsk = current; 299 DECLARE_WAITQUEUE(wait, tsk); 300 301 if (!ctx->reqs_active) 302 return; 303 304 add_wait_queue(&ctx->wait, &wait); 305 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 306 while (ctx->reqs_active) { 307 schedule(); 308 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 309 } 310 __set_task_state(tsk, TASK_RUNNING); 311 remove_wait_queue(&ctx->wait, &wait); 312 } 313 314 /* wait_on_sync_kiocb: 315 * Waits on the given sync kiocb to complete. 316 */ 317 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) 318 { 319 while (iocb->ki_users) { 320 set_current_state(TASK_UNINTERRUPTIBLE); 321 if (!iocb->ki_users) 322 break; 323 schedule(); 324 } 325 __set_current_state(TASK_RUNNING); 326 return iocb->ki_user_data; 327 } 328 329 /* exit_aio: called when the last user of mm goes away. At this point, 330 * there is no way for any new requests to be submited or any of the 331 * io_* syscalls to be called on the context. However, there may be 332 * outstanding requests which hold references to the context; as they 333 * go away, they will call put_ioctx and release any pinned memory 334 * associated with the request (held via struct page * references). 335 */ 336 void fastcall exit_aio(struct mm_struct *mm) 337 { 338 struct kioctx *ctx = mm->ioctx_list; 339 mm->ioctx_list = NULL; 340 while (ctx) { 341 struct kioctx *next = ctx->next; 342 ctx->next = NULL; 343 aio_cancel_all(ctx); 344 345 wait_for_all_aios(ctx); 346 /* 347 * this is an overkill, but ensures we don't leave 348 * the ctx on the aio_wq 349 */ 350 flush_workqueue(aio_wq); 351 352 if (1 != atomic_read(&ctx->users)) 353 printk(KERN_DEBUG 354 "exit_aio:ioctx still alive: %d %d %d\n", 355 atomic_read(&ctx->users), ctx->dead, 356 ctx->reqs_active); 357 put_ioctx(ctx); 358 ctx = next; 359 } 360 } 361 362 /* __put_ioctx 363 * Called when the last user of an aio context has gone away, 364 * and the struct needs to be freed. 365 */ 366 void fastcall __put_ioctx(struct kioctx *ctx) 367 { 368 unsigned nr_events = ctx->max_reqs; 369 370 if (unlikely(ctx->reqs_active)) 371 BUG(); 372 373 cancel_delayed_work(&ctx->wq); 374 flush_workqueue(aio_wq); 375 aio_free_ring(ctx); 376 mmdrop(ctx->mm); 377 ctx->mm = NULL; 378 pr_debug("__put_ioctx: freeing %p\n", ctx); 379 kmem_cache_free(kioctx_cachep, ctx); 380 381 if (nr_events) { 382 spin_lock(&aio_nr_lock); 383 BUG_ON(aio_nr - nr_events > aio_nr); 384 aio_nr -= nr_events; 385 spin_unlock(&aio_nr_lock); 386 } 387 } 388 389 /* aio_get_req 390 * Allocate a slot for an aio request. Increments the users count 391 * of the kioctx so that the kioctx stays around until all requests are 392 * complete. Returns NULL if no requests are free. 393 * 394 * Returns with kiocb->users set to 2. The io submit code path holds 395 * an extra reference while submitting the i/o. 396 * This prevents races between the aio code path referencing the 397 * req (after submitting it) and aio_complete() freeing the req. 398 */ 399 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); 400 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) 401 { 402 struct kiocb *req = NULL; 403 struct aio_ring *ring; 404 int okay = 0; 405 406 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 407 if (unlikely(!req)) 408 return NULL; 409 410 req->ki_flags = 0; 411 req->ki_users = 2; 412 req->ki_key = 0; 413 req->ki_ctx = ctx; 414 req->ki_cancel = NULL; 415 req->ki_retry = NULL; 416 req->ki_dtor = NULL; 417 req->private = NULL; 418 INIT_LIST_HEAD(&req->ki_run_list); 419 420 /* Check if the completion queue has enough free space to 421 * accept an event from this io. 422 */ 423 spin_lock_irq(&ctx->ctx_lock); 424 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 425 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 426 list_add(&req->ki_list, &ctx->active_reqs); 427 get_ioctx(ctx); 428 ctx->reqs_active++; 429 okay = 1; 430 } 431 kunmap_atomic(ring, KM_USER0); 432 spin_unlock_irq(&ctx->ctx_lock); 433 434 if (!okay) { 435 kmem_cache_free(kiocb_cachep, req); 436 req = NULL; 437 } 438 439 return req; 440 } 441 442 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 443 { 444 struct kiocb *req; 445 /* Handle a potential starvation case -- should be exceedingly rare as 446 * requests will be stuck on fput_head only if the aio_fput_routine is 447 * delayed and the requests were the last user of the struct file. 448 */ 449 req = __aio_get_req(ctx); 450 if (unlikely(NULL == req)) { 451 aio_fput_routine(NULL); 452 req = __aio_get_req(ctx); 453 } 454 return req; 455 } 456 457 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 458 { 459 assert_spin_locked(&ctx->ctx_lock); 460 461 if (req->ki_dtor) 462 req->ki_dtor(req); 463 kmem_cache_free(kiocb_cachep, req); 464 ctx->reqs_active--; 465 466 if (unlikely(!ctx->reqs_active && ctx->dead)) 467 wake_up(&ctx->wait); 468 } 469 470 static void aio_fput_routine(void *data) 471 { 472 spin_lock_irq(&fput_lock); 473 while (likely(!list_empty(&fput_head))) { 474 struct kiocb *req = list_kiocb(fput_head.next); 475 struct kioctx *ctx = req->ki_ctx; 476 477 list_del(&req->ki_list); 478 spin_unlock_irq(&fput_lock); 479 480 /* Complete the fput */ 481 __fput(req->ki_filp); 482 483 /* Link the iocb into the context's free list */ 484 spin_lock_irq(&ctx->ctx_lock); 485 really_put_req(ctx, req); 486 spin_unlock_irq(&ctx->ctx_lock); 487 488 put_ioctx(ctx); 489 spin_lock_irq(&fput_lock); 490 } 491 spin_unlock_irq(&fput_lock); 492 } 493 494 /* __aio_put_req 495 * Returns true if this put was the last user of the request. 496 */ 497 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 498 { 499 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 500 req, atomic_read(&req->ki_filp->f_count)); 501 502 assert_spin_locked(&ctx->ctx_lock); 503 504 req->ki_users --; 505 if (unlikely(req->ki_users < 0)) 506 BUG(); 507 if (likely(req->ki_users)) 508 return 0; 509 list_del(&req->ki_list); /* remove from active_reqs */ 510 req->ki_cancel = NULL; 511 req->ki_retry = NULL; 512 513 /* Must be done under the lock to serialise against cancellation. 514 * Call this aio_fput as it duplicates fput via the fput_work. 515 */ 516 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 517 get_ioctx(ctx); 518 spin_lock(&fput_lock); 519 list_add(&req->ki_list, &fput_head); 520 spin_unlock(&fput_lock); 521 queue_work(aio_wq, &fput_work); 522 } else 523 really_put_req(ctx, req); 524 return 1; 525 } 526 527 /* aio_put_req 528 * Returns true if this put was the last user of the kiocb, 529 * false if the request is still in use. 530 */ 531 int fastcall aio_put_req(struct kiocb *req) 532 { 533 struct kioctx *ctx = req->ki_ctx; 534 int ret; 535 spin_lock_irq(&ctx->ctx_lock); 536 ret = __aio_put_req(ctx, req); 537 spin_unlock_irq(&ctx->ctx_lock); 538 if (ret) 539 put_ioctx(ctx); 540 return ret; 541 } 542 543 /* Lookup an ioctx id. ioctx_list is lockless for reads. 544 * FIXME: this is O(n) and is only suitable for development. 545 */ 546 struct kioctx *lookup_ioctx(unsigned long ctx_id) 547 { 548 struct kioctx *ioctx; 549 struct mm_struct *mm; 550 551 mm = current->mm; 552 read_lock(&mm->ioctx_list_lock); 553 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 554 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 555 get_ioctx(ioctx); 556 break; 557 } 558 read_unlock(&mm->ioctx_list_lock); 559 560 return ioctx; 561 } 562 563 /* 564 * use_mm 565 * Makes the calling kernel thread take on the specified 566 * mm context. 567 * Called by the retry thread execute retries within the 568 * iocb issuer's mm context, so that copy_from/to_user 569 * operations work seamlessly for aio. 570 * (Note: this routine is intended to be called only 571 * from a kernel thread context) 572 */ 573 static void use_mm(struct mm_struct *mm) 574 { 575 struct mm_struct *active_mm; 576 struct task_struct *tsk = current; 577 578 task_lock(tsk); 579 tsk->flags |= PF_BORROWED_MM; 580 active_mm = tsk->active_mm; 581 atomic_inc(&mm->mm_count); 582 tsk->mm = mm; 583 tsk->active_mm = mm; 584 /* 585 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise 586 * it won't work. Update it accordingly if you change it here 587 */ 588 activate_mm(active_mm, mm); 589 task_unlock(tsk); 590 591 mmdrop(active_mm); 592 } 593 594 /* 595 * unuse_mm 596 * Reverses the effect of use_mm, i.e. releases the 597 * specified mm context which was earlier taken on 598 * by the calling kernel thread 599 * (Note: this routine is intended to be called only 600 * from a kernel thread context) 601 * 602 * Comments: Called with ctx->ctx_lock held. This nests 603 * task_lock instead ctx_lock. 604 */ 605 static void unuse_mm(struct mm_struct *mm) 606 { 607 struct task_struct *tsk = current; 608 609 task_lock(tsk); 610 tsk->flags &= ~PF_BORROWED_MM; 611 tsk->mm = NULL; 612 /* active_mm is still 'mm' */ 613 enter_lazy_tlb(mm, tsk); 614 task_unlock(tsk); 615 } 616 617 /* 618 * Queue up a kiocb to be retried. Assumes that the kiocb 619 * has already been marked as kicked, and places it on 620 * the retry run list for the corresponding ioctx, if it 621 * isn't already queued. Returns 1 if it actually queued 622 * the kiocb (to tell the caller to activate the work 623 * queue to process it), or 0, if it found that it was 624 * already queued. 625 */ 626 static inline int __queue_kicked_iocb(struct kiocb *iocb) 627 { 628 struct kioctx *ctx = iocb->ki_ctx; 629 630 assert_spin_locked(&ctx->ctx_lock); 631 632 if (list_empty(&iocb->ki_run_list)) { 633 list_add_tail(&iocb->ki_run_list, 634 &ctx->run_list); 635 return 1; 636 } 637 return 0; 638 } 639 640 /* aio_run_iocb 641 * This is the core aio execution routine. It is 642 * invoked both for initial i/o submission and 643 * subsequent retries via the aio_kick_handler. 644 * Expects to be invoked with iocb->ki_ctx->lock 645 * already held. The lock is released and reaquired 646 * as needed during processing. 647 * 648 * Calls the iocb retry method (already setup for the 649 * iocb on initial submission) for operation specific 650 * handling, but takes care of most of common retry 651 * execution details for a given iocb. The retry method 652 * needs to be non-blocking as far as possible, to avoid 653 * holding up other iocbs waiting to be serviced by the 654 * retry kernel thread. 655 * 656 * The trickier parts in this code have to do with 657 * ensuring that only one retry instance is in progress 658 * for a given iocb at any time. Providing that guarantee 659 * simplifies the coding of individual aio operations as 660 * it avoids various potential races. 661 */ 662 static ssize_t aio_run_iocb(struct kiocb *iocb) 663 { 664 struct kioctx *ctx = iocb->ki_ctx; 665 ssize_t (*retry)(struct kiocb *); 666 ssize_t ret; 667 668 if (iocb->ki_retried++ > 1024*1024) { 669 printk("Maximal retry count. Bytes done %Zd\n", 670 iocb->ki_nbytes - iocb->ki_left); 671 return -EAGAIN; 672 } 673 674 if (!(iocb->ki_retried & 0xff)) { 675 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried, 676 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 677 } 678 679 if (!(retry = iocb->ki_retry)) { 680 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 681 return 0; 682 } 683 684 /* 685 * We don't want the next retry iteration for this 686 * operation to start until this one has returned and 687 * updated the iocb state. However, wait_queue functions 688 * can trigger a kick_iocb from interrupt context in the 689 * meantime, indicating that data is available for the next 690 * iteration. We want to remember that and enable the 691 * next retry iteration _after_ we are through with 692 * this one. 693 * 694 * So, in order to be able to register a "kick", but 695 * prevent it from being queued now, we clear the kick 696 * flag, but make the kick code *think* that the iocb is 697 * still on the run list until we are actually done. 698 * When we are done with this iteration, we check if 699 * the iocb was kicked in the meantime and if so, queue 700 * it up afresh. 701 */ 702 703 kiocbClearKicked(iocb); 704 705 /* 706 * This is so that aio_complete knows it doesn't need to 707 * pull the iocb off the run list (We can't just call 708 * INIT_LIST_HEAD because we don't want a kick_iocb to 709 * queue this on the run list yet) 710 */ 711 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 712 spin_unlock_irq(&ctx->ctx_lock); 713 714 /* Quit retrying if the i/o has been cancelled */ 715 if (kiocbIsCancelled(iocb)) { 716 ret = -EINTR; 717 aio_complete(iocb, ret, 0); 718 /* must not access the iocb after this */ 719 goto out; 720 } 721 722 /* 723 * Now we are all set to call the retry method in async 724 * context. By setting this thread's io_wait context 725 * to point to the wait queue entry inside the currently 726 * running iocb for the duration of the retry, we ensure 727 * that async notification wakeups are queued by the 728 * operation instead of blocking waits, and when notified, 729 * cause the iocb to be kicked for continuation (through 730 * the aio_wake_function callback). 731 */ 732 BUG_ON(current->io_wait != NULL); 733 current->io_wait = &iocb->ki_wait; 734 ret = retry(iocb); 735 current->io_wait = NULL; 736 737 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 738 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 739 aio_complete(iocb, ret, 0); 740 } 741 out: 742 spin_lock_irq(&ctx->ctx_lock); 743 744 if (-EIOCBRETRY == ret) { 745 /* 746 * OK, now that we are done with this iteration 747 * and know that there is more left to go, 748 * this is where we let go so that a subsequent 749 * "kick" can start the next iteration 750 */ 751 752 /* will make __queue_kicked_iocb succeed from here on */ 753 INIT_LIST_HEAD(&iocb->ki_run_list); 754 /* we must queue the next iteration ourselves, if it 755 * has already been kicked */ 756 if (kiocbIsKicked(iocb)) { 757 __queue_kicked_iocb(iocb); 758 759 /* 760 * __queue_kicked_iocb will always return 1 here, because 761 * iocb->ki_run_list is empty at this point so it should 762 * be safe to unconditionally queue the context into the 763 * work queue. 764 */ 765 aio_queue_work(ctx); 766 } 767 } 768 return ret; 769 } 770 771 /* 772 * __aio_run_iocbs: 773 * Process all pending retries queued on the ioctx 774 * run list. 775 * Assumes it is operating within the aio issuer's mm 776 * context. 777 */ 778 static int __aio_run_iocbs(struct kioctx *ctx) 779 { 780 struct kiocb *iocb; 781 LIST_HEAD(run_list); 782 783 assert_spin_locked(&ctx->ctx_lock); 784 785 list_splice_init(&ctx->run_list, &run_list); 786 while (!list_empty(&run_list)) { 787 iocb = list_entry(run_list.next, struct kiocb, 788 ki_run_list); 789 list_del(&iocb->ki_run_list); 790 /* 791 * Hold an extra reference while retrying i/o. 792 */ 793 iocb->ki_users++; /* grab extra reference */ 794 aio_run_iocb(iocb); 795 if (__aio_put_req(ctx, iocb)) /* drop extra ref */ 796 put_ioctx(ctx); 797 } 798 if (!list_empty(&ctx->run_list)) 799 return 1; 800 return 0; 801 } 802 803 static void aio_queue_work(struct kioctx * ctx) 804 { 805 unsigned long timeout; 806 /* 807 * if someone is waiting, get the work started right 808 * away, otherwise, use a longer delay 809 */ 810 smp_mb(); 811 if (waitqueue_active(&ctx->wait)) 812 timeout = 1; 813 else 814 timeout = HZ/10; 815 queue_delayed_work(aio_wq, &ctx->wq, timeout); 816 } 817 818 819 /* 820 * aio_run_iocbs: 821 * Process all pending retries queued on the ioctx 822 * run list. 823 * Assumes it is operating within the aio issuer's mm 824 * context. 825 */ 826 static inline void aio_run_iocbs(struct kioctx *ctx) 827 { 828 int requeue; 829 830 spin_lock_irq(&ctx->ctx_lock); 831 832 requeue = __aio_run_iocbs(ctx); 833 spin_unlock_irq(&ctx->ctx_lock); 834 if (requeue) 835 aio_queue_work(ctx); 836 } 837 838 /* 839 * just like aio_run_iocbs, but keeps running them until 840 * the list stays empty 841 */ 842 static inline void aio_run_all_iocbs(struct kioctx *ctx) 843 { 844 spin_lock_irq(&ctx->ctx_lock); 845 while (__aio_run_iocbs(ctx)) 846 ; 847 spin_unlock_irq(&ctx->ctx_lock); 848 } 849 850 /* 851 * aio_kick_handler: 852 * Work queue handler triggered to process pending 853 * retries on an ioctx. Takes on the aio issuer's 854 * mm context before running the iocbs, so that 855 * copy_xxx_user operates on the issuer's address 856 * space. 857 * Run on aiod's context. 858 */ 859 static void aio_kick_handler(void *data) 860 { 861 struct kioctx *ctx = data; 862 mm_segment_t oldfs = get_fs(); 863 int requeue; 864 865 set_fs(USER_DS); 866 use_mm(ctx->mm); 867 spin_lock_irq(&ctx->ctx_lock); 868 requeue =__aio_run_iocbs(ctx); 869 unuse_mm(ctx->mm); 870 spin_unlock_irq(&ctx->ctx_lock); 871 set_fs(oldfs); 872 /* 873 * we're in a worker thread already, don't use queue_delayed_work, 874 */ 875 if (requeue) 876 queue_work(aio_wq, &ctx->wq); 877 } 878 879 880 /* 881 * Called by kick_iocb to queue the kiocb for retry 882 * and if required activate the aio work queue to process 883 * it 884 */ 885 static void try_queue_kicked_iocb(struct kiocb *iocb) 886 { 887 struct kioctx *ctx = iocb->ki_ctx; 888 unsigned long flags; 889 int run = 0; 890 891 /* We're supposed to be the only path putting the iocb back on the run 892 * list. If we find that the iocb is *back* on a wait queue already 893 * than retry has happened before we could queue the iocb. This also 894 * means that the retry could have completed and freed our iocb, no 895 * good. */ 896 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 897 898 spin_lock_irqsave(&ctx->ctx_lock, flags); 899 /* set this inside the lock so that we can't race with aio_run_iocb() 900 * testing it and putting the iocb on the run list under the lock */ 901 if (!kiocbTryKick(iocb)) 902 run = __queue_kicked_iocb(iocb); 903 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 904 if (run) 905 aio_queue_work(ctx); 906 } 907 908 /* 909 * kick_iocb: 910 * Called typically from a wait queue callback context 911 * (aio_wake_function) to trigger a retry of the iocb. 912 * The retry is usually executed by aio workqueue 913 * threads (See aio_kick_handler). 914 */ 915 void fastcall kick_iocb(struct kiocb *iocb) 916 { 917 /* sync iocbs are easy: they can only ever be executing from a 918 * single context. */ 919 if (is_sync_kiocb(iocb)) { 920 kiocbSetKicked(iocb); 921 wake_up_process(iocb->ki_obj.tsk); 922 return; 923 } 924 925 try_queue_kicked_iocb(iocb); 926 } 927 EXPORT_SYMBOL(kick_iocb); 928 929 /* aio_complete 930 * Called when the io request on the given iocb is complete. 931 * Returns true if this is the last user of the request. The 932 * only other user of the request can be the cancellation code. 933 */ 934 int fastcall aio_complete(struct kiocb *iocb, long res, long res2) 935 { 936 struct kioctx *ctx = iocb->ki_ctx; 937 struct aio_ring_info *info; 938 struct aio_ring *ring; 939 struct io_event *event; 940 unsigned long flags; 941 unsigned long tail; 942 int ret; 943 944 /* 945 * Special case handling for sync iocbs: 946 * - events go directly into the iocb for fast handling 947 * - the sync task with the iocb in its stack holds the single iocb 948 * ref, no other paths have a way to get another ref 949 * - the sync task helpfully left a reference to itself in the iocb 950 */ 951 if (is_sync_kiocb(iocb)) { 952 BUG_ON(iocb->ki_users != 1); 953 iocb->ki_user_data = res; 954 iocb->ki_users = 0; 955 wake_up_process(iocb->ki_obj.tsk); 956 return 1; 957 } 958 959 info = &ctx->ring_info; 960 961 /* add a completion event to the ring buffer. 962 * must be done holding ctx->ctx_lock to prevent 963 * other code from messing with the tail 964 * pointer since we might be called from irq 965 * context. 966 */ 967 spin_lock_irqsave(&ctx->ctx_lock, flags); 968 969 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 970 list_del_init(&iocb->ki_run_list); 971 972 /* 973 * cancelled requests don't get events, userland was given one 974 * when the event got cancelled. 975 */ 976 if (kiocbIsCancelled(iocb)) 977 goto put_rq; 978 979 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 980 981 tail = info->tail; 982 event = aio_ring_event(info, tail, KM_IRQ0); 983 if (++tail >= info->nr) 984 tail = 0; 985 986 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 987 event->data = iocb->ki_user_data; 988 event->res = res; 989 event->res2 = res2; 990 991 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 992 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 993 res, res2); 994 995 /* after flagging the request as done, we 996 * must never even look at it again 997 */ 998 smp_wmb(); /* make event visible before updating tail */ 999 1000 info->tail = tail; 1001 ring->tail = tail; 1002 1003 put_aio_ring_event(event, KM_IRQ0); 1004 kunmap_atomic(ring, KM_IRQ1); 1005 1006 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1007 1008 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried, 1009 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 1010 put_rq: 1011 /* everything turned out well, dispose of the aiocb. */ 1012 ret = __aio_put_req(ctx, iocb); 1013 1014 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1015 1016 if (waitqueue_active(&ctx->wait)) 1017 wake_up(&ctx->wait); 1018 1019 if (ret) 1020 put_ioctx(ctx); 1021 1022 return ret; 1023 } 1024 1025 /* aio_read_evt 1026 * Pull an event off of the ioctx's event ring. Returns the number of 1027 * events fetched (0 or 1 ;-) 1028 * FIXME: make this use cmpxchg. 1029 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1030 */ 1031 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1032 { 1033 struct aio_ring_info *info = &ioctx->ring_info; 1034 struct aio_ring *ring; 1035 unsigned long head; 1036 int ret = 0; 1037 1038 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1039 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1040 (unsigned long)ring->head, (unsigned long)ring->tail, 1041 (unsigned long)ring->nr); 1042 1043 if (ring->head == ring->tail) 1044 goto out; 1045 1046 spin_lock(&info->ring_lock); 1047 1048 head = ring->head % info->nr; 1049 if (head != ring->tail) { 1050 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1051 *ent = *evp; 1052 head = (head + 1) % info->nr; 1053 smp_mb(); /* finish reading the event before updatng the head */ 1054 ring->head = head; 1055 ret = 1; 1056 put_aio_ring_event(evp, KM_USER1); 1057 } 1058 spin_unlock(&info->ring_lock); 1059 1060 out: 1061 kunmap_atomic(ring, KM_USER0); 1062 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1063 (unsigned long)ring->head, (unsigned long)ring->tail); 1064 return ret; 1065 } 1066 1067 struct aio_timeout { 1068 struct timer_list timer; 1069 int timed_out; 1070 struct task_struct *p; 1071 }; 1072 1073 static void timeout_func(unsigned long data) 1074 { 1075 struct aio_timeout *to = (struct aio_timeout *)data; 1076 1077 to->timed_out = 1; 1078 wake_up_process(to->p); 1079 } 1080 1081 static inline void init_timeout(struct aio_timeout *to) 1082 { 1083 init_timer(&to->timer); 1084 to->timer.data = (unsigned long)to; 1085 to->timer.function = timeout_func; 1086 to->timed_out = 0; 1087 to->p = current; 1088 } 1089 1090 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1091 const struct timespec *ts) 1092 { 1093 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1094 if (time_after(to->timer.expires, jiffies)) 1095 add_timer(&to->timer); 1096 else 1097 to->timed_out = 1; 1098 } 1099 1100 static inline void clear_timeout(struct aio_timeout *to) 1101 { 1102 del_singleshot_timer_sync(&to->timer); 1103 } 1104 1105 static int read_events(struct kioctx *ctx, 1106 long min_nr, long nr, 1107 struct io_event __user *event, 1108 struct timespec __user *timeout) 1109 { 1110 long start_jiffies = jiffies; 1111 struct task_struct *tsk = current; 1112 DECLARE_WAITQUEUE(wait, tsk); 1113 int ret; 1114 int i = 0; 1115 struct io_event ent; 1116 struct aio_timeout to; 1117 int retry = 0; 1118 1119 /* needed to zero any padding within an entry (there shouldn't be 1120 * any, but C is fun! 1121 */ 1122 memset(&ent, 0, sizeof(ent)); 1123 retry: 1124 ret = 0; 1125 while (likely(i < nr)) { 1126 ret = aio_read_evt(ctx, &ent); 1127 if (unlikely(ret <= 0)) 1128 break; 1129 1130 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1131 ent.data, ent.obj, ent.res, ent.res2); 1132 1133 /* Could we split the check in two? */ 1134 ret = -EFAULT; 1135 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1136 dprintk("aio: lost an event due to EFAULT.\n"); 1137 break; 1138 } 1139 ret = 0; 1140 1141 /* Good, event copied to userland, update counts. */ 1142 event ++; 1143 i ++; 1144 } 1145 1146 if (min_nr <= i) 1147 return i; 1148 if (ret) 1149 return ret; 1150 1151 /* End fast path */ 1152 1153 /* racey check, but it gets redone */ 1154 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1155 retry = 1; 1156 aio_run_all_iocbs(ctx); 1157 goto retry; 1158 } 1159 1160 init_timeout(&to); 1161 if (timeout) { 1162 struct timespec ts; 1163 ret = -EFAULT; 1164 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1165 goto out; 1166 1167 set_timeout(start_jiffies, &to, &ts); 1168 } 1169 1170 while (likely(i < nr)) { 1171 add_wait_queue_exclusive(&ctx->wait, &wait); 1172 do { 1173 set_task_state(tsk, TASK_INTERRUPTIBLE); 1174 ret = aio_read_evt(ctx, &ent); 1175 if (ret) 1176 break; 1177 if (min_nr <= i) 1178 break; 1179 ret = 0; 1180 if (to.timed_out) /* Only check after read evt */ 1181 break; 1182 schedule(); 1183 if (signal_pending(tsk)) { 1184 ret = -EINTR; 1185 break; 1186 } 1187 /*ret = aio_read_evt(ctx, &ent);*/ 1188 } while (1) ; 1189 1190 set_task_state(tsk, TASK_RUNNING); 1191 remove_wait_queue(&ctx->wait, &wait); 1192 1193 if (unlikely(ret <= 0)) 1194 break; 1195 1196 ret = -EFAULT; 1197 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1198 dprintk("aio: lost an event due to EFAULT.\n"); 1199 break; 1200 } 1201 1202 /* Good, event copied to userland, update counts. */ 1203 event ++; 1204 i ++; 1205 } 1206 1207 if (timeout) 1208 clear_timeout(&to); 1209 out: 1210 return i ? i : ret; 1211 } 1212 1213 /* Take an ioctx and remove it from the list of ioctx's. Protects 1214 * against races with itself via ->dead. 1215 */ 1216 static void io_destroy(struct kioctx *ioctx) 1217 { 1218 struct mm_struct *mm = current->mm; 1219 struct kioctx **tmp; 1220 int was_dead; 1221 1222 /* delete the entry from the list is someone else hasn't already */ 1223 write_lock(&mm->ioctx_list_lock); 1224 was_dead = ioctx->dead; 1225 ioctx->dead = 1; 1226 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1227 tmp = &(*tmp)->next) 1228 ; 1229 if (*tmp) 1230 *tmp = ioctx->next; 1231 write_unlock(&mm->ioctx_list_lock); 1232 1233 dprintk("aio_release(%p)\n", ioctx); 1234 if (likely(!was_dead)) 1235 put_ioctx(ioctx); /* twice for the list */ 1236 1237 aio_cancel_all(ioctx); 1238 wait_for_all_aios(ioctx); 1239 put_ioctx(ioctx); /* once for the lookup */ 1240 } 1241 1242 /* sys_io_setup: 1243 * Create an aio_context capable of receiving at least nr_events. 1244 * ctxp must not point to an aio_context that already exists, and 1245 * must be initialized to 0 prior to the call. On successful 1246 * creation of the aio_context, *ctxp is filled in with the resulting 1247 * handle. May fail with -EINVAL if *ctxp is not initialized, 1248 * if the specified nr_events exceeds internal limits. May fail 1249 * with -EAGAIN if the specified nr_events exceeds the user's limit 1250 * of available events. May fail with -ENOMEM if insufficient kernel 1251 * resources are available. May fail with -EFAULT if an invalid 1252 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1253 * implemented. 1254 */ 1255 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1256 { 1257 struct kioctx *ioctx = NULL; 1258 unsigned long ctx; 1259 long ret; 1260 1261 ret = get_user(ctx, ctxp); 1262 if (unlikely(ret)) 1263 goto out; 1264 1265 ret = -EINVAL; 1266 if (unlikely(ctx || nr_events == 0)) { 1267 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1268 ctx, nr_events); 1269 goto out; 1270 } 1271 1272 ioctx = ioctx_alloc(nr_events); 1273 ret = PTR_ERR(ioctx); 1274 if (!IS_ERR(ioctx)) { 1275 ret = put_user(ioctx->user_id, ctxp); 1276 if (!ret) 1277 return 0; 1278 1279 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1280 io_destroy(ioctx); 1281 } 1282 1283 out: 1284 return ret; 1285 } 1286 1287 /* sys_io_destroy: 1288 * Destroy the aio_context specified. May cancel any outstanding 1289 * AIOs and block on completion. Will fail with -ENOSYS if not 1290 * implemented. May fail with -EFAULT if the context pointed to 1291 * is invalid. 1292 */ 1293 asmlinkage long sys_io_destroy(aio_context_t ctx) 1294 { 1295 struct kioctx *ioctx = lookup_ioctx(ctx); 1296 if (likely(NULL != ioctx)) { 1297 io_destroy(ioctx); 1298 return 0; 1299 } 1300 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1301 return -EINVAL; 1302 } 1303 1304 /* 1305 * aio_p{read,write} are the default ki_retry methods for 1306 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially 1307 * multiple calls to f_op->aio_read(). They loop around partial progress 1308 * instead of returning -EIOCBRETRY because they don't have the means to call 1309 * kick_iocb(). 1310 */ 1311 static ssize_t aio_pread(struct kiocb *iocb) 1312 { 1313 struct file *file = iocb->ki_filp; 1314 struct address_space *mapping = file->f_mapping; 1315 struct inode *inode = mapping->host; 1316 ssize_t ret = 0; 1317 1318 do { 1319 ret = file->f_op->aio_read(iocb, iocb->ki_buf, 1320 iocb->ki_left, iocb->ki_pos); 1321 /* 1322 * Can't just depend on iocb->ki_left to determine 1323 * whether we are done. This may have been a short read. 1324 */ 1325 if (ret > 0) { 1326 iocb->ki_buf += ret; 1327 iocb->ki_left -= ret; 1328 } 1329 1330 /* 1331 * For pipes and sockets we return once we have some data; for 1332 * regular files we retry till we complete the entire read or 1333 * find that we can't read any more data (e.g short reads). 1334 */ 1335 } while (ret > 0 && iocb->ki_left > 0 && 1336 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)); 1337 1338 /* This means we must have transferred all that we could */ 1339 /* No need to retry anymore */ 1340 if ((ret == 0) || (iocb->ki_left == 0)) 1341 ret = iocb->ki_nbytes - iocb->ki_left; 1342 1343 return ret; 1344 } 1345 1346 /* see aio_pread() */ 1347 static ssize_t aio_pwrite(struct kiocb *iocb) 1348 { 1349 struct file *file = iocb->ki_filp; 1350 ssize_t ret = 0; 1351 1352 do { 1353 ret = file->f_op->aio_write(iocb, iocb->ki_buf, 1354 iocb->ki_left, iocb->ki_pos); 1355 if (ret > 0) { 1356 iocb->ki_buf += ret; 1357 iocb->ki_left -= ret; 1358 } 1359 } while (ret > 0 && iocb->ki_left > 0); 1360 1361 if ((ret == 0) || (iocb->ki_left == 0)) 1362 ret = iocb->ki_nbytes - iocb->ki_left; 1363 1364 return ret; 1365 } 1366 1367 static ssize_t aio_fdsync(struct kiocb *iocb) 1368 { 1369 struct file *file = iocb->ki_filp; 1370 ssize_t ret = -EINVAL; 1371 1372 if (file->f_op->aio_fsync) 1373 ret = file->f_op->aio_fsync(iocb, 1); 1374 return ret; 1375 } 1376 1377 static ssize_t aio_fsync(struct kiocb *iocb) 1378 { 1379 struct file *file = iocb->ki_filp; 1380 ssize_t ret = -EINVAL; 1381 1382 if (file->f_op->aio_fsync) 1383 ret = file->f_op->aio_fsync(iocb, 0); 1384 return ret; 1385 } 1386 1387 /* 1388 * aio_setup_iocb: 1389 * Performs the initial checks and aio retry method 1390 * setup for the kiocb at the time of io submission. 1391 */ 1392 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1393 { 1394 struct file *file = kiocb->ki_filp; 1395 ssize_t ret = 0; 1396 1397 switch (kiocb->ki_opcode) { 1398 case IOCB_CMD_PREAD: 1399 ret = -EBADF; 1400 if (unlikely(!(file->f_mode & FMODE_READ))) 1401 break; 1402 ret = -EFAULT; 1403 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1404 kiocb->ki_left))) 1405 break; 1406 ret = security_file_permission(file, MAY_READ); 1407 if (unlikely(ret)) 1408 break; 1409 ret = -EINVAL; 1410 if (file->f_op->aio_read) 1411 kiocb->ki_retry = aio_pread; 1412 break; 1413 case IOCB_CMD_PWRITE: 1414 ret = -EBADF; 1415 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1416 break; 1417 ret = -EFAULT; 1418 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1419 kiocb->ki_left))) 1420 break; 1421 ret = security_file_permission(file, MAY_WRITE); 1422 if (unlikely(ret)) 1423 break; 1424 ret = -EINVAL; 1425 if (file->f_op->aio_write) 1426 kiocb->ki_retry = aio_pwrite; 1427 break; 1428 case IOCB_CMD_FDSYNC: 1429 ret = -EINVAL; 1430 if (file->f_op->aio_fsync) 1431 kiocb->ki_retry = aio_fdsync; 1432 break; 1433 case IOCB_CMD_FSYNC: 1434 ret = -EINVAL; 1435 if (file->f_op->aio_fsync) 1436 kiocb->ki_retry = aio_fsync; 1437 break; 1438 default: 1439 dprintk("EINVAL: io_submit: no operation provided\n"); 1440 ret = -EINVAL; 1441 } 1442 1443 if (!kiocb->ki_retry) 1444 return ret; 1445 1446 return 0; 1447 } 1448 1449 /* 1450 * aio_wake_function: 1451 * wait queue callback function for aio notification, 1452 * Simply triggers a retry of the operation via kick_iocb. 1453 * 1454 * This callback is specified in the wait queue entry in 1455 * a kiocb (current->io_wait points to this wait queue 1456 * entry when an aio operation executes; it is used 1457 * instead of a synchronous wait when an i/o blocking 1458 * condition is encountered during aio). 1459 * 1460 * Note: 1461 * This routine is executed with the wait queue lock held. 1462 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1463 * the ioctx lock inside the wait queue lock. This is safe 1464 * because this callback isn't used for wait queues which 1465 * are nested inside ioctx lock (i.e. ctx->wait) 1466 */ 1467 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1468 int sync, void *key) 1469 { 1470 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1471 1472 list_del_init(&wait->task_list); 1473 kick_iocb(iocb); 1474 return 1; 1475 } 1476 1477 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1478 struct iocb *iocb) 1479 { 1480 struct kiocb *req; 1481 struct file *file; 1482 ssize_t ret; 1483 1484 /* enforce forwards compatibility on users */ 1485 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || 1486 iocb->aio_reserved3)) { 1487 pr_debug("EINVAL: io_submit: reserve field set\n"); 1488 return -EINVAL; 1489 } 1490 1491 /* prevent overflows */ 1492 if (unlikely( 1493 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1494 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1495 ((ssize_t)iocb->aio_nbytes < 0) 1496 )) { 1497 pr_debug("EINVAL: io_submit: overflow check\n"); 1498 return -EINVAL; 1499 } 1500 1501 file = fget(iocb->aio_fildes); 1502 if (unlikely(!file)) 1503 return -EBADF; 1504 1505 req = aio_get_req(ctx); /* returns with 2 references to req */ 1506 if (unlikely(!req)) { 1507 fput(file); 1508 return -EAGAIN; 1509 } 1510 1511 req->ki_filp = file; 1512 ret = put_user(req->ki_key, &user_iocb->aio_key); 1513 if (unlikely(ret)) { 1514 dprintk("EFAULT: aio_key\n"); 1515 goto out_put_req; 1516 } 1517 1518 req->ki_obj.user = user_iocb; 1519 req->ki_user_data = iocb->aio_data; 1520 req->ki_pos = iocb->aio_offset; 1521 1522 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1523 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1524 req->ki_opcode = iocb->aio_lio_opcode; 1525 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1526 INIT_LIST_HEAD(&req->ki_wait.task_list); 1527 req->ki_retried = 0; 1528 1529 ret = aio_setup_iocb(req); 1530 1531 if (ret) 1532 goto out_put_req; 1533 1534 spin_lock_irq(&ctx->ctx_lock); 1535 aio_run_iocb(req); 1536 if (!list_empty(&ctx->run_list)) { 1537 /* drain the run list */ 1538 while (__aio_run_iocbs(ctx)) 1539 ; 1540 } 1541 spin_unlock_irq(&ctx->ctx_lock); 1542 aio_put_req(req); /* drop extra ref to req */ 1543 return 0; 1544 1545 out_put_req: 1546 aio_put_req(req); /* drop extra ref to req */ 1547 aio_put_req(req); /* drop i/o ref to req */ 1548 return ret; 1549 } 1550 1551 /* sys_io_submit: 1552 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1553 * the number of iocbs queued. May return -EINVAL if the aio_context 1554 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1555 * *iocbpp[0] is not properly initialized, if the operation specified 1556 * is invalid for the file descriptor in the iocb. May fail with 1557 * -EFAULT if any of the data structures point to invalid data. May 1558 * fail with -EBADF if the file descriptor specified in the first 1559 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1560 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1561 * fail with -ENOSYS if not implemented. 1562 */ 1563 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1564 struct iocb __user * __user *iocbpp) 1565 { 1566 struct kioctx *ctx; 1567 long ret = 0; 1568 int i; 1569 1570 if (unlikely(nr < 0)) 1571 return -EINVAL; 1572 1573 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1574 return -EFAULT; 1575 1576 ctx = lookup_ioctx(ctx_id); 1577 if (unlikely(!ctx)) { 1578 pr_debug("EINVAL: io_submit: invalid context id\n"); 1579 return -EINVAL; 1580 } 1581 1582 /* 1583 * AKPM: should this return a partial result if some of the IOs were 1584 * successfully submitted? 1585 */ 1586 for (i=0; i<nr; i++) { 1587 struct iocb __user *user_iocb; 1588 struct iocb tmp; 1589 1590 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1591 ret = -EFAULT; 1592 break; 1593 } 1594 1595 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1596 ret = -EFAULT; 1597 break; 1598 } 1599 1600 ret = io_submit_one(ctx, user_iocb, &tmp); 1601 if (ret) 1602 break; 1603 } 1604 1605 put_ioctx(ctx); 1606 return i ? i : ret; 1607 } 1608 1609 /* lookup_kiocb 1610 * Finds a given iocb for cancellation. 1611 */ 1612 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1613 u32 key) 1614 { 1615 struct list_head *pos; 1616 1617 assert_spin_locked(&ctx->ctx_lock); 1618 1619 /* TODO: use a hash or array, this sucks. */ 1620 list_for_each(pos, &ctx->active_reqs) { 1621 struct kiocb *kiocb = list_kiocb(pos); 1622 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1623 return kiocb; 1624 } 1625 return NULL; 1626 } 1627 1628 /* sys_io_cancel: 1629 * Attempts to cancel an iocb previously passed to io_submit. If 1630 * the operation is successfully cancelled, the resulting event is 1631 * copied into the memory pointed to by result without being placed 1632 * into the completion queue and 0 is returned. May fail with 1633 * -EFAULT if any of the data structures pointed to are invalid. 1634 * May fail with -EINVAL if aio_context specified by ctx_id is 1635 * invalid. May fail with -EAGAIN if the iocb specified was not 1636 * cancelled. Will fail with -ENOSYS if not implemented. 1637 */ 1638 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1639 struct io_event __user *result) 1640 { 1641 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1642 struct kioctx *ctx; 1643 struct kiocb *kiocb; 1644 u32 key; 1645 int ret; 1646 1647 ret = get_user(key, &iocb->aio_key); 1648 if (unlikely(ret)) 1649 return -EFAULT; 1650 1651 ctx = lookup_ioctx(ctx_id); 1652 if (unlikely(!ctx)) 1653 return -EINVAL; 1654 1655 spin_lock_irq(&ctx->ctx_lock); 1656 ret = -EAGAIN; 1657 kiocb = lookup_kiocb(ctx, iocb, key); 1658 if (kiocb && kiocb->ki_cancel) { 1659 cancel = kiocb->ki_cancel; 1660 kiocb->ki_users ++; 1661 kiocbSetCancelled(kiocb); 1662 } else 1663 cancel = NULL; 1664 spin_unlock_irq(&ctx->ctx_lock); 1665 1666 if (NULL != cancel) { 1667 struct io_event tmp; 1668 pr_debug("calling cancel\n"); 1669 memset(&tmp, 0, sizeof(tmp)); 1670 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1671 tmp.data = kiocb->ki_user_data; 1672 ret = cancel(kiocb, &tmp); 1673 if (!ret) { 1674 /* Cancellation succeeded -- copy the result 1675 * into the user's buffer. 1676 */ 1677 if (copy_to_user(result, &tmp, sizeof(tmp))) 1678 ret = -EFAULT; 1679 } 1680 } else 1681 ret = -EINVAL; 1682 1683 put_ioctx(ctx); 1684 1685 return ret; 1686 } 1687 1688 /* io_getevents: 1689 * Attempts to read at least min_nr events and up to nr events from 1690 * the completion queue for the aio_context specified by ctx_id. May 1691 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1692 * if nr is out of range, if when is out of range. May fail with 1693 * -EFAULT if any of the memory specified to is invalid. May return 1694 * 0 or < min_nr if no events are available and the timeout specified 1695 * by when has elapsed, where when == NULL specifies an infinite 1696 * timeout. Note that the timeout pointed to by when is relative and 1697 * will be updated if not NULL and the operation blocks. Will fail 1698 * with -ENOSYS if not implemented. 1699 */ 1700 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1701 long min_nr, 1702 long nr, 1703 struct io_event __user *events, 1704 struct timespec __user *timeout) 1705 { 1706 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1707 long ret = -EINVAL; 1708 1709 if (likely(ioctx)) { 1710 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1711 ret = read_events(ioctx, min_nr, nr, events, timeout); 1712 put_ioctx(ioctx); 1713 } 1714 1715 return ret; 1716 } 1717 1718 __initcall(aio_setup); 1719 1720 EXPORT_SYMBOL(aio_complete); 1721 EXPORT_SYMBOL(aio_put_req); 1722 EXPORT_SYMBOL(wait_on_sync_kiocb); 1723