xref: /openbmc/linux/fs/aio.c (revision 87c2ce3b)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 
19 #define DEBUG 0
20 
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 
37 #if DEBUG > 1
38 #define dprintk		printk
39 #else
40 #define dprintk(x...)	do { ; } while (0)
41 #endif
42 
43 /*------ sysctl variables----*/
44 static DEFINE_SPINLOCK(aio_nr_lock);
45 unsigned long aio_nr;		/* current system wide number of aio requests */
46 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
48 
49 static kmem_cache_t	*kiocb_cachep;
50 static kmem_cache_t	*kioctx_cachep;
51 
52 static struct workqueue_struct *aio_wq;
53 
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
57 
58 static DEFINE_SPINLOCK(fput_lock);
59 static LIST_HEAD(fput_head);
60 
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx *);
63 
64 /* aio_setup
65  *	Creates the slab caches used by the aio routines, panic on
66  *	failure as this is done early during the boot sequence.
67  */
68 static int __init aio_setup(void)
69 {
70 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
71 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
72 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
73 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 		memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
129 	}
130 
131 	info->mmap_size = nr_pages * PAGE_SIZE;
132 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 	down_write(&ctx->mm->mmap_sem);
134 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
136 				  0);
137 	if (IS_ERR((void *)info->mmap_base)) {
138 		up_write(&ctx->mm->mmap_sem);
139 		printk("mmap err: %ld\n", -info->mmap_base);
140 		info->mmap_size = 0;
141 		aio_free_ring(ctx);
142 		return -EAGAIN;
143 	}
144 
145 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 	info->nr_pages = get_user_pages(current, ctx->mm,
147 					info->mmap_base, nr_pages,
148 					1, 0, info->ring_pages, NULL);
149 	up_write(&ctx->mm->mmap_sem);
150 
151 	if (unlikely(info->nr_pages != nr_pages)) {
152 		aio_free_ring(ctx);
153 		return -EAGAIN;
154 	}
155 
156 	ctx->user_id = info->mmap_base;
157 
158 	info->nr = nr_events;		/* trusted copy */
159 
160 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 	ring->nr = nr_events;	/* user copy */
162 	ring->id = ctx->user_id;
163 	ring->head = ring->tail = 0;
164 	ring->magic = AIO_RING_MAGIC;
165 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 	ring->header_length = sizeof(struct aio_ring);
168 	kunmap_atomic(ring, KM_USER0);
169 
170 	return 0;
171 }
172 
173 
174 /* aio_ring_event: returns a pointer to the event at the given index from
175  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
176  */
177 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 
181 #define aio_ring_event(info, nr, km) ({					\
182 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
183 	struct io_event *__event;					\
184 	__event = kmap_atomic(						\
185 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 	__event += pos % AIO_EVENTS_PER_PAGE;				\
187 	__event;							\
188 })
189 
190 #define put_aio_ring_event(event, km) do {	\
191 	struct io_event *__event = (event);	\
192 	(void)__event;				\
193 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 } while(0)
195 
196 /* ioctx_alloc
197  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
198  */
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
200 {
201 	struct mm_struct *mm;
202 	struct kioctx *ctx;
203 
204 	/* Prevent overflows */
205 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 		pr_debug("ENOMEM: nr_events too high\n");
208 		return ERR_PTR(-EINVAL);
209 	}
210 
211 	if ((unsigned long)nr_events > aio_max_nr)
212 		return ERR_PTR(-EAGAIN);
213 
214 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
215 	if (!ctx)
216 		return ERR_PTR(-ENOMEM);
217 
218 	memset(ctx, 0, sizeof(*ctx));
219 	ctx->max_reqs = nr_events;
220 	mm = ctx->mm = current->mm;
221 	atomic_inc(&mm->mm_count);
222 
223 	atomic_set(&ctx->users, 1);
224 	spin_lock_init(&ctx->ctx_lock);
225 	spin_lock_init(&ctx->ring_info.ring_lock);
226 	init_waitqueue_head(&ctx->wait);
227 
228 	INIT_LIST_HEAD(&ctx->active_reqs);
229 	INIT_LIST_HEAD(&ctx->run_list);
230 	INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
231 
232 	if (aio_setup_ring(ctx) < 0)
233 		goto out_freectx;
234 
235 	/* limit the number of system wide aios */
236 	spin_lock(&aio_nr_lock);
237 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
238 	    aio_nr + ctx->max_reqs < aio_nr)
239 		ctx->max_reqs = 0;
240 	else
241 		aio_nr += ctx->max_reqs;
242 	spin_unlock(&aio_nr_lock);
243 	if (ctx->max_reqs == 0)
244 		goto out_cleanup;
245 
246 	/* now link into global list.  kludge.  FIXME */
247 	write_lock(&mm->ioctx_list_lock);
248 	ctx->next = mm->ioctx_list;
249 	mm->ioctx_list = ctx;
250 	write_unlock(&mm->ioctx_list_lock);
251 
252 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
253 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
254 	return ctx;
255 
256 out_cleanup:
257 	__put_ioctx(ctx);
258 	return ERR_PTR(-EAGAIN);
259 
260 out_freectx:
261 	mmdrop(mm);
262 	kmem_cache_free(kioctx_cachep, ctx);
263 	ctx = ERR_PTR(-ENOMEM);
264 
265 	dprintk("aio: error allocating ioctx %p\n", ctx);
266 	return ctx;
267 }
268 
269 /* aio_cancel_all
270  *	Cancels all outstanding aio requests on an aio context.  Used
271  *	when the processes owning a context have all exited to encourage
272  *	the rapid destruction of the kioctx.
273  */
274 static void aio_cancel_all(struct kioctx *ctx)
275 {
276 	int (*cancel)(struct kiocb *, struct io_event *);
277 	struct io_event res;
278 	spin_lock_irq(&ctx->ctx_lock);
279 	ctx->dead = 1;
280 	while (!list_empty(&ctx->active_reqs)) {
281 		struct list_head *pos = ctx->active_reqs.next;
282 		struct kiocb *iocb = list_kiocb(pos);
283 		list_del_init(&iocb->ki_list);
284 		cancel = iocb->ki_cancel;
285 		kiocbSetCancelled(iocb);
286 		if (cancel) {
287 			iocb->ki_users++;
288 			spin_unlock_irq(&ctx->ctx_lock);
289 			cancel(iocb, &res);
290 			spin_lock_irq(&ctx->ctx_lock);
291 		}
292 	}
293 	spin_unlock_irq(&ctx->ctx_lock);
294 }
295 
296 static void wait_for_all_aios(struct kioctx *ctx)
297 {
298 	struct task_struct *tsk = current;
299 	DECLARE_WAITQUEUE(wait, tsk);
300 
301 	if (!ctx->reqs_active)
302 		return;
303 
304 	add_wait_queue(&ctx->wait, &wait);
305 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 	while (ctx->reqs_active) {
307 		schedule();
308 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
309 	}
310 	__set_task_state(tsk, TASK_RUNNING);
311 	remove_wait_queue(&ctx->wait, &wait);
312 }
313 
314 /* wait_on_sync_kiocb:
315  *	Waits on the given sync kiocb to complete.
316  */
317 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
318 {
319 	while (iocb->ki_users) {
320 		set_current_state(TASK_UNINTERRUPTIBLE);
321 		if (!iocb->ki_users)
322 			break;
323 		schedule();
324 	}
325 	__set_current_state(TASK_RUNNING);
326 	return iocb->ki_user_data;
327 }
328 
329 /* exit_aio: called when the last user of mm goes away.  At this point,
330  * there is no way for any new requests to be submited or any of the
331  * io_* syscalls to be called on the context.  However, there may be
332  * outstanding requests which hold references to the context; as they
333  * go away, they will call put_ioctx and release any pinned memory
334  * associated with the request (held via struct page * references).
335  */
336 void fastcall exit_aio(struct mm_struct *mm)
337 {
338 	struct kioctx *ctx = mm->ioctx_list;
339 	mm->ioctx_list = NULL;
340 	while (ctx) {
341 		struct kioctx *next = ctx->next;
342 		ctx->next = NULL;
343 		aio_cancel_all(ctx);
344 
345 		wait_for_all_aios(ctx);
346 		/*
347 		 * this is an overkill, but ensures we don't leave
348 		 * the ctx on the aio_wq
349 		 */
350 		flush_workqueue(aio_wq);
351 
352 		if (1 != atomic_read(&ctx->users))
353 			printk(KERN_DEBUG
354 				"exit_aio:ioctx still alive: %d %d %d\n",
355 				atomic_read(&ctx->users), ctx->dead,
356 				ctx->reqs_active);
357 		put_ioctx(ctx);
358 		ctx = next;
359 	}
360 }
361 
362 /* __put_ioctx
363  *	Called when the last user of an aio context has gone away,
364  *	and the struct needs to be freed.
365  */
366 void fastcall __put_ioctx(struct kioctx *ctx)
367 {
368 	unsigned nr_events = ctx->max_reqs;
369 
370 	if (unlikely(ctx->reqs_active))
371 		BUG();
372 
373 	cancel_delayed_work(&ctx->wq);
374 	flush_workqueue(aio_wq);
375 	aio_free_ring(ctx);
376 	mmdrop(ctx->mm);
377 	ctx->mm = NULL;
378 	pr_debug("__put_ioctx: freeing %p\n", ctx);
379 	kmem_cache_free(kioctx_cachep, ctx);
380 
381 	if (nr_events) {
382 		spin_lock(&aio_nr_lock);
383 		BUG_ON(aio_nr - nr_events > aio_nr);
384 		aio_nr -= nr_events;
385 		spin_unlock(&aio_nr_lock);
386 	}
387 }
388 
389 /* aio_get_req
390  *	Allocate a slot for an aio request.  Increments the users count
391  * of the kioctx so that the kioctx stays around until all requests are
392  * complete.  Returns NULL if no requests are free.
393  *
394  * Returns with kiocb->users set to 2.  The io submit code path holds
395  * an extra reference while submitting the i/o.
396  * This prevents races between the aio code path referencing the
397  * req (after submitting it) and aio_complete() freeing the req.
398  */
399 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
400 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
401 {
402 	struct kiocb *req = NULL;
403 	struct aio_ring *ring;
404 	int okay = 0;
405 
406 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
407 	if (unlikely(!req))
408 		return NULL;
409 
410 	req->ki_flags = 0;
411 	req->ki_users = 2;
412 	req->ki_key = 0;
413 	req->ki_ctx = ctx;
414 	req->ki_cancel = NULL;
415 	req->ki_retry = NULL;
416 	req->ki_dtor = NULL;
417 	req->private = NULL;
418 	INIT_LIST_HEAD(&req->ki_run_list);
419 
420 	/* Check if the completion queue has enough free space to
421 	 * accept an event from this io.
422 	 */
423 	spin_lock_irq(&ctx->ctx_lock);
424 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
425 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
426 		list_add(&req->ki_list, &ctx->active_reqs);
427 		get_ioctx(ctx);
428 		ctx->reqs_active++;
429 		okay = 1;
430 	}
431 	kunmap_atomic(ring, KM_USER0);
432 	spin_unlock_irq(&ctx->ctx_lock);
433 
434 	if (!okay) {
435 		kmem_cache_free(kiocb_cachep, req);
436 		req = NULL;
437 	}
438 
439 	return req;
440 }
441 
442 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
443 {
444 	struct kiocb *req;
445 	/* Handle a potential starvation case -- should be exceedingly rare as
446 	 * requests will be stuck on fput_head only if the aio_fput_routine is
447 	 * delayed and the requests were the last user of the struct file.
448 	 */
449 	req = __aio_get_req(ctx);
450 	if (unlikely(NULL == req)) {
451 		aio_fput_routine(NULL);
452 		req = __aio_get_req(ctx);
453 	}
454 	return req;
455 }
456 
457 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
458 {
459 	assert_spin_locked(&ctx->ctx_lock);
460 
461 	if (req->ki_dtor)
462 		req->ki_dtor(req);
463 	kmem_cache_free(kiocb_cachep, req);
464 	ctx->reqs_active--;
465 
466 	if (unlikely(!ctx->reqs_active && ctx->dead))
467 		wake_up(&ctx->wait);
468 }
469 
470 static void aio_fput_routine(void *data)
471 {
472 	spin_lock_irq(&fput_lock);
473 	while (likely(!list_empty(&fput_head))) {
474 		struct kiocb *req = list_kiocb(fput_head.next);
475 		struct kioctx *ctx = req->ki_ctx;
476 
477 		list_del(&req->ki_list);
478 		spin_unlock_irq(&fput_lock);
479 
480 		/* Complete the fput */
481 		__fput(req->ki_filp);
482 
483 		/* Link the iocb into the context's free list */
484 		spin_lock_irq(&ctx->ctx_lock);
485 		really_put_req(ctx, req);
486 		spin_unlock_irq(&ctx->ctx_lock);
487 
488 		put_ioctx(ctx);
489 		spin_lock_irq(&fput_lock);
490 	}
491 	spin_unlock_irq(&fput_lock);
492 }
493 
494 /* __aio_put_req
495  *	Returns true if this put was the last user of the request.
496  */
497 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
498 {
499 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
500 		req, atomic_read(&req->ki_filp->f_count));
501 
502 	assert_spin_locked(&ctx->ctx_lock);
503 
504 	req->ki_users --;
505 	if (unlikely(req->ki_users < 0))
506 		BUG();
507 	if (likely(req->ki_users))
508 		return 0;
509 	list_del(&req->ki_list);		/* remove from active_reqs */
510 	req->ki_cancel = NULL;
511 	req->ki_retry = NULL;
512 
513 	/* Must be done under the lock to serialise against cancellation.
514 	 * Call this aio_fput as it duplicates fput via the fput_work.
515 	 */
516 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
517 		get_ioctx(ctx);
518 		spin_lock(&fput_lock);
519 		list_add(&req->ki_list, &fput_head);
520 		spin_unlock(&fput_lock);
521 		queue_work(aio_wq, &fput_work);
522 	} else
523 		really_put_req(ctx, req);
524 	return 1;
525 }
526 
527 /* aio_put_req
528  *	Returns true if this put was the last user of the kiocb,
529  *	false if the request is still in use.
530  */
531 int fastcall aio_put_req(struct kiocb *req)
532 {
533 	struct kioctx *ctx = req->ki_ctx;
534 	int ret;
535 	spin_lock_irq(&ctx->ctx_lock);
536 	ret = __aio_put_req(ctx, req);
537 	spin_unlock_irq(&ctx->ctx_lock);
538 	if (ret)
539 		put_ioctx(ctx);
540 	return ret;
541 }
542 
543 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
544  *	FIXME: this is O(n) and is only suitable for development.
545  */
546 struct kioctx *lookup_ioctx(unsigned long ctx_id)
547 {
548 	struct kioctx *ioctx;
549 	struct mm_struct *mm;
550 
551 	mm = current->mm;
552 	read_lock(&mm->ioctx_list_lock);
553 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
554 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
555 			get_ioctx(ioctx);
556 			break;
557 		}
558 	read_unlock(&mm->ioctx_list_lock);
559 
560 	return ioctx;
561 }
562 
563 /*
564  * use_mm
565  *	Makes the calling kernel thread take on the specified
566  *	mm context.
567  *	Called by the retry thread execute retries within the
568  *	iocb issuer's mm context, so that copy_from/to_user
569  *	operations work seamlessly for aio.
570  *	(Note: this routine is intended to be called only
571  *	from a kernel thread context)
572  */
573 static void use_mm(struct mm_struct *mm)
574 {
575 	struct mm_struct *active_mm;
576 	struct task_struct *tsk = current;
577 
578 	task_lock(tsk);
579 	tsk->flags |= PF_BORROWED_MM;
580 	active_mm = tsk->active_mm;
581 	atomic_inc(&mm->mm_count);
582 	tsk->mm = mm;
583 	tsk->active_mm = mm;
584 	/*
585 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
586 	 * it won't work. Update it accordingly if you change it here
587 	 */
588 	activate_mm(active_mm, mm);
589 	task_unlock(tsk);
590 
591 	mmdrop(active_mm);
592 }
593 
594 /*
595  * unuse_mm
596  *	Reverses the effect of use_mm, i.e. releases the
597  *	specified mm context which was earlier taken on
598  *	by the calling kernel thread
599  *	(Note: this routine is intended to be called only
600  *	from a kernel thread context)
601  *
602  * Comments: Called with ctx->ctx_lock held. This nests
603  * task_lock instead ctx_lock.
604  */
605 static void unuse_mm(struct mm_struct *mm)
606 {
607 	struct task_struct *tsk = current;
608 
609 	task_lock(tsk);
610 	tsk->flags &= ~PF_BORROWED_MM;
611 	tsk->mm = NULL;
612 	/* active_mm is still 'mm' */
613 	enter_lazy_tlb(mm, tsk);
614 	task_unlock(tsk);
615 }
616 
617 /*
618  * Queue up a kiocb to be retried. Assumes that the kiocb
619  * has already been marked as kicked, and places it on
620  * the retry run list for the corresponding ioctx, if it
621  * isn't already queued. Returns 1 if it actually queued
622  * the kiocb (to tell the caller to activate the work
623  * queue to process it), or 0, if it found that it was
624  * already queued.
625  */
626 static inline int __queue_kicked_iocb(struct kiocb *iocb)
627 {
628 	struct kioctx *ctx = iocb->ki_ctx;
629 
630 	assert_spin_locked(&ctx->ctx_lock);
631 
632 	if (list_empty(&iocb->ki_run_list)) {
633 		list_add_tail(&iocb->ki_run_list,
634 			&ctx->run_list);
635 		return 1;
636 	}
637 	return 0;
638 }
639 
640 /* aio_run_iocb
641  *	This is the core aio execution routine. It is
642  *	invoked both for initial i/o submission and
643  *	subsequent retries via the aio_kick_handler.
644  *	Expects to be invoked with iocb->ki_ctx->lock
645  *	already held. The lock is released and reaquired
646  *	as needed during processing.
647  *
648  * Calls the iocb retry method (already setup for the
649  * iocb on initial submission) for operation specific
650  * handling, but takes care of most of common retry
651  * execution details for a given iocb. The retry method
652  * needs to be non-blocking as far as possible, to avoid
653  * holding up other iocbs waiting to be serviced by the
654  * retry kernel thread.
655  *
656  * The trickier parts in this code have to do with
657  * ensuring that only one retry instance is in progress
658  * for a given iocb at any time. Providing that guarantee
659  * simplifies the coding of individual aio operations as
660  * it avoids various potential races.
661  */
662 static ssize_t aio_run_iocb(struct kiocb *iocb)
663 {
664 	struct kioctx	*ctx = iocb->ki_ctx;
665 	ssize_t (*retry)(struct kiocb *);
666 	ssize_t ret;
667 
668 	if (iocb->ki_retried++ > 1024*1024) {
669 		printk("Maximal retry count.  Bytes done %Zd\n",
670 			iocb->ki_nbytes - iocb->ki_left);
671 		return -EAGAIN;
672 	}
673 
674 	if (!(iocb->ki_retried & 0xff)) {
675 		pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
676 			iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
677 	}
678 
679 	if (!(retry = iocb->ki_retry)) {
680 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
681 		return 0;
682 	}
683 
684 	/*
685 	 * We don't want the next retry iteration for this
686 	 * operation to start until this one has returned and
687 	 * updated the iocb state. However, wait_queue functions
688 	 * can trigger a kick_iocb from interrupt context in the
689 	 * meantime, indicating that data is available for the next
690 	 * iteration. We want to remember that and enable the
691 	 * next retry iteration _after_ we are through with
692 	 * this one.
693 	 *
694 	 * So, in order to be able to register a "kick", but
695 	 * prevent it from being queued now, we clear the kick
696 	 * flag, but make the kick code *think* that the iocb is
697 	 * still on the run list until we are actually done.
698 	 * When we are done with this iteration, we check if
699 	 * the iocb was kicked in the meantime and if so, queue
700 	 * it up afresh.
701 	 */
702 
703 	kiocbClearKicked(iocb);
704 
705 	/*
706 	 * This is so that aio_complete knows it doesn't need to
707 	 * pull the iocb off the run list (We can't just call
708 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
709 	 * queue this on the run list yet)
710 	 */
711 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
712 	spin_unlock_irq(&ctx->ctx_lock);
713 
714 	/* Quit retrying if the i/o has been cancelled */
715 	if (kiocbIsCancelled(iocb)) {
716 		ret = -EINTR;
717 		aio_complete(iocb, ret, 0);
718 		/* must not access the iocb after this */
719 		goto out;
720 	}
721 
722 	/*
723 	 * Now we are all set to call the retry method in async
724 	 * context. By setting this thread's io_wait context
725 	 * to point to the wait queue entry inside the currently
726 	 * running iocb for the duration of the retry, we ensure
727 	 * that async notification wakeups are queued by the
728 	 * operation instead of blocking waits, and when notified,
729 	 * cause the iocb to be kicked for continuation (through
730 	 * the aio_wake_function callback).
731 	 */
732 	BUG_ON(current->io_wait != NULL);
733 	current->io_wait = &iocb->ki_wait;
734 	ret = retry(iocb);
735 	current->io_wait = NULL;
736 
737 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
738 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
739 		aio_complete(iocb, ret, 0);
740 	}
741 out:
742 	spin_lock_irq(&ctx->ctx_lock);
743 
744 	if (-EIOCBRETRY == ret) {
745 		/*
746 		 * OK, now that we are done with this iteration
747 		 * and know that there is more left to go,
748 		 * this is where we let go so that a subsequent
749 		 * "kick" can start the next iteration
750 		 */
751 
752 		/* will make __queue_kicked_iocb succeed from here on */
753 		INIT_LIST_HEAD(&iocb->ki_run_list);
754 		/* we must queue the next iteration ourselves, if it
755 		 * has already been kicked */
756 		if (kiocbIsKicked(iocb)) {
757 			__queue_kicked_iocb(iocb);
758 
759 			/*
760 			 * __queue_kicked_iocb will always return 1 here, because
761 			 * iocb->ki_run_list is empty at this point so it should
762 			 * be safe to unconditionally queue the context into the
763 			 * work queue.
764 			 */
765 			aio_queue_work(ctx);
766 		}
767 	}
768 	return ret;
769 }
770 
771 /*
772  * __aio_run_iocbs:
773  * 	Process all pending retries queued on the ioctx
774  * 	run list.
775  * Assumes it is operating within the aio issuer's mm
776  * context.
777  */
778 static int __aio_run_iocbs(struct kioctx *ctx)
779 {
780 	struct kiocb *iocb;
781 	LIST_HEAD(run_list);
782 
783 	assert_spin_locked(&ctx->ctx_lock);
784 
785 	list_splice_init(&ctx->run_list, &run_list);
786 	while (!list_empty(&run_list)) {
787 		iocb = list_entry(run_list.next, struct kiocb,
788 			ki_run_list);
789 		list_del(&iocb->ki_run_list);
790 		/*
791 		 * Hold an extra reference while retrying i/o.
792 		 */
793 		iocb->ki_users++;       /* grab extra reference */
794 		aio_run_iocb(iocb);
795 		if (__aio_put_req(ctx, iocb))  /* drop extra ref */
796 			put_ioctx(ctx);
797  	}
798 	if (!list_empty(&ctx->run_list))
799 		return 1;
800 	return 0;
801 }
802 
803 static void aio_queue_work(struct kioctx * ctx)
804 {
805 	unsigned long timeout;
806 	/*
807 	 * if someone is waiting, get the work started right
808 	 * away, otherwise, use a longer delay
809 	 */
810 	smp_mb();
811 	if (waitqueue_active(&ctx->wait))
812 		timeout = 1;
813 	else
814 		timeout = HZ/10;
815 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
816 }
817 
818 
819 /*
820  * aio_run_iocbs:
821  * 	Process all pending retries queued on the ioctx
822  * 	run list.
823  * Assumes it is operating within the aio issuer's mm
824  * context.
825  */
826 static inline void aio_run_iocbs(struct kioctx *ctx)
827 {
828 	int requeue;
829 
830 	spin_lock_irq(&ctx->ctx_lock);
831 
832 	requeue = __aio_run_iocbs(ctx);
833 	spin_unlock_irq(&ctx->ctx_lock);
834 	if (requeue)
835 		aio_queue_work(ctx);
836 }
837 
838 /*
839  * just like aio_run_iocbs, but keeps running them until
840  * the list stays empty
841  */
842 static inline void aio_run_all_iocbs(struct kioctx *ctx)
843 {
844 	spin_lock_irq(&ctx->ctx_lock);
845 	while (__aio_run_iocbs(ctx))
846 		;
847 	spin_unlock_irq(&ctx->ctx_lock);
848 }
849 
850 /*
851  * aio_kick_handler:
852  * 	Work queue handler triggered to process pending
853  * 	retries on an ioctx. Takes on the aio issuer's
854  *	mm context before running the iocbs, so that
855  *	copy_xxx_user operates on the issuer's address
856  *      space.
857  * Run on aiod's context.
858  */
859 static void aio_kick_handler(void *data)
860 {
861 	struct kioctx *ctx = data;
862 	mm_segment_t oldfs = get_fs();
863 	int requeue;
864 
865 	set_fs(USER_DS);
866 	use_mm(ctx->mm);
867 	spin_lock_irq(&ctx->ctx_lock);
868 	requeue =__aio_run_iocbs(ctx);
869  	unuse_mm(ctx->mm);
870 	spin_unlock_irq(&ctx->ctx_lock);
871 	set_fs(oldfs);
872 	/*
873 	 * we're in a worker thread already, don't use queue_delayed_work,
874 	 */
875 	if (requeue)
876 		queue_work(aio_wq, &ctx->wq);
877 }
878 
879 
880 /*
881  * Called by kick_iocb to queue the kiocb for retry
882  * and if required activate the aio work queue to process
883  * it
884  */
885 static void try_queue_kicked_iocb(struct kiocb *iocb)
886 {
887  	struct kioctx	*ctx = iocb->ki_ctx;
888 	unsigned long flags;
889 	int run = 0;
890 
891 	/* We're supposed to be the only path putting the iocb back on the run
892 	 * list.  If we find that the iocb is *back* on a wait queue already
893 	 * than retry has happened before we could queue the iocb.  This also
894 	 * means that the retry could have completed and freed our iocb, no
895 	 * good. */
896 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
897 
898 	spin_lock_irqsave(&ctx->ctx_lock, flags);
899 	/* set this inside the lock so that we can't race with aio_run_iocb()
900 	 * testing it and putting the iocb on the run list under the lock */
901 	if (!kiocbTryKick(iocb))
902 		run = __queue_kicked_iocb(iocb);
903 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
904 	if (run)
905 		aio_queue_work(ctx);
906 }
907 
908 /*
909  * kick_iocb:
910  *      Called typically from a wait queue callback context
911  *      (aio_wake_function) to trigger a retry of the iocb.
912  *      The retry is usually executed by aio workqueue
913  *      threads (See aio_kick_handler).
914  */
915 void fastcall kick_iocb(struct kiocb *iocb)
916 {
917 	/* sync iocbs are easy: they can only ever be executing from a
918 	 * single context. */
919 	if (is_sync_kiocb(iocb)) {
920 		kiocbSetKicked(iocb);
921 	        wake_up_process(iocb->ki_obj.tsk);
922 		return;
923 	}
924 
925 	try_queue_kicked_iocb(iocb);
926 }
927 EXPORT_SYMBOL(kick_iocb);
928 
929 /* aio_complete
930  *	Called when the io request on the given iocb is complete.
931  *	Returns true if this is the last user of the request.  The
932  *	only other user of the request can be the cancellation code.
933  */
934 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
935 {
936 	struct kioctx	*ctx = iocb->ki_ctx;
937 	struct aio_ring_info	*info;
938 	struct aio_ring	*ring;
939 	struct io_event	*event;
940 	unsigned long	flags;
941 	unsigned long	tail;
942 	int		ret;
943 
944 	/*
945 	 * Special case handling for sync iocbs:
946 	 *  - events go directly into the iocb for fast handling
947 	 *  - the sync task with the iocb in its stack holds the single iocb
948 	 *    ref, no other paths have a way to get another ref
949 	 *  - the sync task helpfully left a reference to itself in the iocb
950 	 */
951 	if (is_sync_kiocb(iocb)) {
952 		BUG_ON(iocb->ki_users != 1);
953 		iocb->ki_user_data = res;
954 		iocb->ki_users = 0;
955 		wake_up_process(iocb->ki_obj.tsk);
956 		return 1;
957 	}
958 
959 	info = &ctx->ring_info;
960 
961 	/* add a completion event to the ring buffer.
962 	 * must be done holding ctx->ctx_lock to prevent
963 	 * other code from messing with the tail
964 	 * pointer since we might be called from irq
965 	 * context.
966 	 */
967 	spin_lock_irqsave(&ctx->ctx_lock, flags);
968 
969 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
970 		list_del_init(&iocb->ki_run_list);
971 
972 	/*
973 	 * cancelled requests don't get events, userland was given one
974 	 * when the event got cancelled.
975 	 */
976 	if (kiocbIsCancelled(iocb))
977 		goto put_rq;
978 
979 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
980 
981 	tail = info->tail;
982 	event = aio_ring_event(info, tail, KM_IRQ0);
983 	if (++tail >= info->nr)
984 		tail = 0;
985 
986 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
987 	event->data = iocb->ki_user_data;
988 	event->res = res;
989 	event->res2 = res2;
990 
991 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
992 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
993 		res, res2);
994 
995 	/* after flagging the request as done, we
996 	 * must never even look at it again
997 	 */
998 	smp_wmb();	/* make event visible before updating tail */
999 
1000 	info->tail = tail;
1001 	ring->tail = tail;
1002 
1003 	put_aio_ring_event(event, KM_IRQ0);
1004 	kunmap_atomic(ring, KM_IRQ1);
1005 
1006 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1007 
1008 	pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1009 		iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1010 put_rq:
1011 	/* everything turned out well, dispose of the aiocb. */
1012 	ret = __aio_put_req(ctx, iocb);
1013 
1014 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1015 
1016 	if (waitqueue_active(&ctx->wait))
1017 		wake_up(&ctx->wait);
1018 
1019 	if (ret)
1020 		put_ioctx(ctx);
1021 
1022 	return ret;
1023 }
1024 
1025 /* aio_read_evt
1026  *	Pull an event off of the ioctx's event ring.  Returns the number of
1027  *	events fetched (0 or 1 ;-)
1028  *	FIXME: make this use cmpxchg.
1029  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1030  */
1031 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1032 {
1033 	struct aio_ring_info *info = &ioctx->ring_info;
1034 	struct aio_ring *ring;
1035 	unsigned long head;
1036 	int ret = 0;
1037 
1038 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1039 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1040 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1041 		 (unsigned long)ring->nr);
1042 
1043 	if (ring->head == ring->tail)
1044 		goto out;
1045 
1046 	spin_lock(&info->ring_lock);
1047 
1048 	head = ring->head % info->nr;
1049 	if (head != ring->tail) {
1050 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1051 		*ent = *evp;
1052 		head = (head + 1) % info->nr;
1053 		smp_mb(); /* finish reading the event before updatng the head */
1054 		ring->head = head;
1055 		ret = 1;
1056 		put_aio_ring_event(evp, KM_USER1);
1057 	}
1058 	spin_unlock(&info->ring_lock);
1059 
1060 out:
1061 	kunmap_atomic(ring, KM_USER0);
1062 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1063 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1064 	return ret;
1065 }
1066 
1067 struct aio_timeout {
1068 	struct timer_list	timer;
1069 	int			timed_out;
1070 	struct task_struct	*p;
1071 };
1072 
1073 static void timeout_func(unsigned long data)
1074 {
1075 	struct aio_timeout *to = (struct aio_timeout *)data;
1076 
1077 	to->timed_out = 1;
1078 	wake_up_process(to->p);
1079 }
1080 
1081 static inline void init_timeout(struct aio_timeout *to)
1082 {
1083 	init_timer(&to->timer);
1084 	to->timer.data = (unsigned long)to;
1085 	to->timer.function = timeout_func;
1086 	to->timed_out = 0;
1087 	to->p = current;
1088 }
1089 
1090 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1091 			       const struct timespec *ts)
1092 {
1093 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1094 	if (time_after(to->timer.expires, jiffies))
1095 		add_timer(&to->timer);
1096 	else
1097 		to->timed_out = 1;
1098 }
1099 
1100 static inline void clear_timeout(struct aio_timeout *to)
1101 {
1102 	del_singleshot_timer_sync(&to->timer);
1103 }
1104 
1105 static int read_events(struct kioctx *ctx,
1106 			long min_nr, long nr,
1107 			struct io_event __user *event,
1108 			struct timespec __user *timeout)
1109 {
1110 	long			start_jiffies = jiffies;
1111 	struct task_struct	*tsk = current;
1112 	DECLARE_WAITQUEUE(wait, tsk);
1113 	int			ret;
1114 	int			i = 0;
1115 	struct io_event		ent;
1116 	struct aio_timeout	to;
1117 	int			retry = 0;
1118 
1119 	/* needed to zero any padding within an entry (there shouldn't be
1120 	 * any, but C is fun!
1121 	 */
1122 	memset(&ent, 0, sizeof(ent));
1123 retry:
1124 	ret = 0;
1125 	while (likely(i < nr)) {
1126 		ret = aio_read_evt(ctx, &ent);
1127 		if (unlikely(ret <= 0))
1128 			break;
1129 
1130 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1131 			ent.data, ent.obj, ent.res, ent.res2);
1132 
1133 		/* Could we split the check in two? */
1134 		ret = -EFAULT;
1135 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1136 			dprintk("aio: lost an event due to EFAULT.\n");
1137 			break;
1138 		}
1139 		ret = 0;
1140 
1141 		/* Good, event copied to userland, update counts. */
1142 		event ++;
1143 		i ++;
1144 	}
1145 
1146 	if (min_nr <= i)
1147 		return i;
1148 	if (ret)
1149 		return ret;
1150 
1151 	/* End fast path */
1152 
1153 	/* racey check, but it gets redone */
1154 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1155 		retry = 1;
1156 		aio_run_all_iocbs(ctx);
1157 		goto retry;
1158 	}
1159 
1160 	init_timeout(&to);
1161 	if (timeout) {
1162 		struct timespec	ts;
1163 		ret = -EFAULT;
1164 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1165 			goto out;
1166 
1167 		set_timeout(start_jiffies, &to, &ts);
1168 	}
1169 
1170 	while (likely(i < nr)) {
1171 		add_wait_queue_exclusive(&ctx->wait, &wait);
1172 		do {
1173 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1174 			ret = aio_read_evt(ctx, &ent);
1175 			if (ret)
1176 				break;
1177 			if (min_nr <= i)
1178 				break;
1179 			ret = 0;
1180 			if (to.timed_out)	/* Only check after read evt */
1181 				break;
1182 			schedule();
1183 			if (signal_pending(tsk)) {
1184 				ret = -EINTR;
1185 				break;
1186 			}
1187 			/*ret = aio_read_evt(ctx, &ent);*/
1188 		} while (1) ;
1189 
1190 		set_task_state(tsk, TASK_RUNNING);
1191 		remove_wait_queue(&ctx->wait, &wait);
1192 
1193 		if (unlikely(ret <= 0))
1194 			break;
1195 
1196 		ret = -EFAULT;
1197 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1198 			dprintk("aio: lost an event due to EFAULT.\n");
1199 			break;
1200 		}
1201 
1202 		/* Good, event copied to userland, update counts. */
1203 		event ++;
1204 		i ++;
1205 	}
1206 
1207 	if (timeout)
1208 		clear_timeout(&to);
1209 out:
1210 	return i ? i : ret;
1211 }
1212 
1213 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1214  * against races with itself via ->dead.
1215  */
1216 static void io_destroy(struct kioctx *ioctx)
1217 {
1218 	struct mm_struct *mm = current->mm;
1219 	struct kioctx **tmp;
1220 	int was_dead;
1221 
1222 	/* delete the entry from the list is someone else hasn't already */
1223 	write_lock(&mm->ioctx_list_lock);
1224 	was_dead = ioctx->dead;
1225 	ioctx->dead = 1;
1226 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1227 	     tmp = &(*tmp)->next)
1228 		;
1229 	if (*tmp)
1230 		*tmp = ioctx->next;
1231 	write_unlock(&mm->ioctx_list_lock);
1232 
1233 	dprintk("aio_release(%p)\n", ioctx);
1234 	if (likely(!was_dead))
1235 		put_ioctx(ioctx);	/* twice for the list */
1236 
1237 	aio_cancel_all(ioctx);
1238 	wait_for_all_aios(ioctx);
1239 	put_ioctx(ioctx);	/* once for the lookup */
1240 }
1241 
1242 /* sys_io_setup:
1243  *	Create an aio_context capable of receiving at least nr_events.
1244  *	ctxp must not point to an aio_context that already exists, and
1245  *	must be initialized to 0 prior to the call.  On successful
1246  *	creation of the aio_context, *ctxp is filled in with the resulting
1247  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1248  *	if the specified nr_events exceeds internal limits.  May fail
1249  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1250  *	of available events.  May fail with -ENOMEM if insufficient kernel
1251  *	resources are available.  May fail with -EFAULT if an invalid
1252  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1253  *	implemented.
1254  */
1255 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1256 {
1257 	struct kioctx *ioctx = NULL;
1258 	unsigned long ctx;
1259 	long ret;
1260 
1261 	ret = get_user(ctx, ctxp);
1262 	if (unlikely(ret))
1263 		goto out;
1264 
1265 	ret = -EINVAL;
1266 	if (unlikely(ctx || nr_events == 0)) {
1267 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1268 		         ctx, nr_events);
1269 		goto out;
1270 	}
1271 
1272 	ioctx = ioctx_alloc(nr_events);
1273 	ret = PTR_ERR(ioctx);
1274 	if (!IS_ERR(ioctx)) {
1275 		ret = put_user(ioctx->user_id, ctxp);
1276 		if (!ret)
1277 			return 0;
1278 
1279 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1280 		io_destroy(ioctx);
1281 	}
1282 
1283 out:
1284 	return ret;
1285 }
1286 
1287 /* sys_io_destroy:
1288  *	Destroy the aio_context specified.  May cancel any outstanding
1289  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1290  *	implemented.  May fail with -EFAULT if the context pointed to
1291  *	is invalid.
1292  */
1293 asmlinkage long sys_io_destroy(aio_context_t ctx)
1294 {
1295 	struct kioctx *ioctx = lookup_ioctx(ctx);
1296 	if (likely(NULL != ioctx)) {
1297 		io_destroy(ioctx);
1298 		return 0;
1299 	}
1300 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1301 	return -EINVAL;
1302 }
1303 
1304 /*
1305  * aio_p{read,write} are the default  ki_retry methods for
1306  * IO_CMD_P{READ,WRITE}.  They maintains kiocb retry state around potentially
1307  * multiple calls to f_op->aio_read().  They loop around partial progress
1308  * instead of returning -EIOCBRETRY because they don't have the means to call
1309  * kick_iocb().
1310  */
1311 static ssize_t aio_pread(struct kiocb *iocb)
1312 {
1313 	struct file *file = iocb->ki_filp;
1314 	struct address_space *mapping = file->f_mapping;
1315 	struct inode *inode = mapping->host;
1316 	ssize_t ret = 0;
1317 
1318 	do {
1319 		ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1320 			iocb->ki_left, iocb->ki_pos);
1321 		/*
1322 		 * Can't just depend on iocb->ki_left to determine
1323 		 * whether we are done. This may have been a short read.
1324 		 */
1325 		if (ret > 0) {
1326 			iocb->ki_buf += ret;
1327 			iocb->ki_left -= ret;
1328 		}
1329 
1330 		/*
1331 		 * For pipes and sockets we return once we have some data; for
1332 		 * regular files we retry till we complete the entire read or
1333 		 * find that we can't read any more data (e.g short reads).
1334 		 */
1335 	} while (ret > 0 && iocb->ki_left > 0 &&
1336 		 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode));
1337 
1338 	/* This means we must have transferred all that we could */
1339 	/* No need to retry anymore */
1340 	if ((ret == 0) || (iocb->ki_left == 0))
1341 		ret = iocb->ki_nbytes - iocb->ki_left;
1342 
1343 	return ret;
1344 }
1345 
1346 /* see aio_pread() */
1347 static ssize_t aio_pwrite(struct kiocb *iocb)
1348 {
1349 	struct file *file = iocb->ki_filp;
1350 	ssize_t ret = 0;
1351 
1352 	do {
1353 		ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1354 			iocb->ki_left, iocb->ki_pos);
1355 		if (ret > 0) {
1356 			iocb->ki_buf += ret;
1357 			iocb->ki_left -= ret;
1358 		}
1359 	} while (ret > 0 && iocb->ki_left > 0);
1360 
1361 	if ((ret == 0) || (iocb->ki_left == 0))
1362 		ret = iocb->ki_nbytes - iocb->ki_left;
1363 
1364 	return ret;
1365 }
1366 
1367 static ssize_t aio_fdsync(struct kiocb *iocb)
1368 {
1369 	struct file *file = iocb->ki_filp;
1370 	ssize_t ret = -EINVAL;
1371 
1372 	if (file->f_op->aio_fsync)
1373 		ret = file->f_op->aio_fsync(iocb, 1);
1374 	return ret;
1375 }
1376 
1377 static ssize_t aio_fsync(struct kiocb *iocb)
1378 {
1379 	struct file *file = iocb->ki_filp;
1380 	ssize_t ret = -EINVAL;
1381 
1382 	if (file->f_op->aio_fsync)
1383 		ret = file->f_op->aio_fsync(iocb, 0);
1384 	return ret;
1385 }
1386 
1387 /*
1388  * aio_setup_iocb:
1389  *	Performs the initial checks and aio retry method
1390  *	setup for the kiocb at the time of io submission.
1391  */
1392 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1393 {
1394 	struct file *file = kiocb->ki_filp;
1395 	ssize_t ret = 0;
1396 
1397 	switch (kiocb->ki_opcode) {
1398 	case IOCB_CMD_PREAD:
1399 		ret = -EBADF;
1400 		if (unlikely(!(file->f_mode & FMODE_READ)))
1401 			break;
1402 		ret = -EFAULT;
1403 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1404 			kiocb->ki_left)))
1405 			break;
1406 		ret = security_file_permission(file, MAY_READ);
1407 		if (unlikely(ret))
1408 			break;
1409 		ret = -EINVAL;
1410 		if (file->f_op->aio_read)
1411 			kiocb->ki_retry = aio_pread;
1412 		break;
1413 	case IOCB_CMD_PWRITE:
1414 		ret = -EBADF;
1415 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1416 			break;
1417 		ret = -EFAULT;
1418 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1419 			kiocb->ki_left)))
1420 			break;
1421 		ret = security_file_permission(file, MAY_WRITE);
1422 		if (unlikely(ret))
1423 			break;
1424 		ret = -EINVAL;
1425 		if (file->f_op->aio_write)
1426 			kiocb->ki_retry = aio_pwrite;
1427 		break;
1428 	case IOCB_CMD_FDSYNC:
1429 		ret = -EINVAL;
1430 		if (file->f_op->aio_fsync)
1431 			kiocb->ki_retry = aio_fdsync;
1432 		break;
1433 	case IOCB_CMD_FSYNC:
1434 		ret = -EINVAL;
1435 		if (file->f_op->aio_fsync)
1436 			kiocb->ki_retry = aio_fsync;
1437 		break;
1438 	default:
1439 		dprintk("EINVAL: io_submit: no operation provided\n");
1440 		ret = -EINVAL;
1441 	}
1442 
1443 	if (!kiocb->ki_retry)
1444 		return ret;
1445 
1446 	return 0;
1447 }
1448 
1449 /*
1450  * aio_wake_function:
1451  * 	wait queue callback function for aio notification,
1452  * 	Simply triggers a retry of the operation via kick_iocb.
1453  *
1454  * 	This callback is specified in the wait queue entry in
1455  *	a kiocb	(current->io_wait points to this wait queue
1456  *	entry when an aio operation executes; it is used
1457  * 	instead of a synchronous wait when an i/o blocking
1458  *	condition is encountered during aio).
1459  *
1460  * Note:
1461  * This routine is executed with the wait queue lock held.
1462  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1463  * the ioctx lock inside the wait queue lock. This is safe
1464  * because this callback isn't used for wait queues which
1465  * are nested inside ioctx lock (i.e. ctx->wait)
1466  */
1467 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1468 			     int sync, void *key)
1469 {
1470 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1471 
1472 	list_del_init(&wait->task_list);
1473 	kick_iocb(iocb);
1474 	return 1;
1475 }
1476 
1477 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1478 			 struct iocb *iocb)
1479 {
1480 	struct kiocb *req;
1481 	struct file *file;
1482 	ssize_t ret;
1483 
1484 	/* enforce forwards compatibility on users */
1485 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1486 		     iocb->aio_reserved3)) {
1487 		pr_debug("EINVAL: io_submit: reserve field set\n");
1488 		return -EINVAL;
1489 	}
1490 
1491 	/* prevent overflows */
1492 	if (unlikely(
1493 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1494 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1495 	    ((ssize_t)iocb->aio_nbytes < 0)
1496 	   )) {
1497 		pr_debug("EINVAL: io_submit: overflow check\n");
1498 		return -EINVAL;
1499 	}
1500 
1501 	file = fget(iocb->aio_fildes);
1502 	if (unlikely(!file))
1503 		return -EBADF;
1504 
1505 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1506 	if (unlikely(!req)) {
1507 		fput(file);
1508 		return -EAGAIN;
1509 	}
1510 
1511 	req->ki_filp = file;
1512 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1513 	if (unlikely(ret)) {
1514 		dprintk("EFAULT: aio_key\n");
1515 		goto out_put_req;
1516 	}
1517 
1518 	req->ki_obj.user = user_iocb;
1519 	req->ki_user_data = iocb->aio_data;
1520 	req->ki_pos = iocb->aio_offset;
1521 
1522 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1523 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1524 	req->ki_opcode = iocb->aio_lio_opcode;
1525 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1526 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1527 	req->ki_retried = 0;
1528 
1529 	ret = aio_setup_iocb(req);
1530 
1531 	if (ret)
1532 		goto out_put_req;
1533 
1534 	spin_lock_irq(&ctx->ctx_lock);
1535 	aio_run_iocb(req);
1536 	if (!list_empty(&ctx->run_list)) {
1537 		/* drain the run list */
1538 		while (__aio_run_iocbs(ctx))
1539 			;
1540 	}
1541 	spin_unlock_irq(&ctx->ctx_lock);
1542 	aio_put_req(req);	/* drop extra ref to req */
1543 	return 0;
1544 
1545 out_put_req:
1546 	aio_put_req(req);	/* drop extra ref to req */
1547 	aio_put_req(req);	/* drop i/o ref to req */
1548 	return ret;
1549 }
1550 
1551 /* sys_io_submit:
1552  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1553  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1554  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1555  *	*iocbpp[0] is not properly initialized, if the operation specified
1556  *	is invalid for the file descriptor in the iocb.  May fail with
1557  *	-EFAULT if any of the data structures point to invalid data.  May
1558  *	fail with -EBADF if the file descriptor specified in the first
1559  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1560  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1561  *	fail with -ENOSYS if not implemented.
1562  */
1563 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1564 			      struct iocb __user * __user *iocbpp)
1565 {
1566 	struct kioctx *ctx;
1567 	long ret = 0;
1568 	int i;
1569 
1570 	if (unlikely(nr < 0))
1571 		return -EINVAL;
1572 
1573 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1574 		return -EFAULT;
1575 
1576 	ctx = lookup_ioctx(ctx_id);
1577 	if (unlikely(!ctx)) {
1578 		pr_debug("EINVAL: io_submit: invalid context id\n");
1579 		return -EINVAL;
1580 	}
1581 
1582 	/*
1583 	 * AKPM: should this return a partial result if some of the IOs were
1584 	 * successfully submitted?
1585 	 */
1586 	for (i=0; i<nr; i++) {
1587 		struct iocb __user *user_iocb;
1588 		struct iocb tmp;
1589 
1590 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1591 			ret = -EFAULT;
1592 			break;
1593 		}
1594 
1595 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1596 			ret = -EFAULT;
1597 			break;
1598 		}
1599 
1600 		ret = io_submit_one(ctx, user_iocb, &tmp);
1601 		if (ret)
1602 			break;
1603 	}
1604 
1605 	put_ioctx(ctx);
1606 	return i ? i : ret;
1607 }
1608 
1609 /* lookup_kiocb
1610  *	Finds a given iocb for cancellation.
1611  */
1612 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1613 				  u32 key)
1614 {
1615 	struct list_head *pos;
1616 
1617 	assert_spin_locked(&ctx->ctx_lock);
1618 
1619 	/* TODO: use a hash or array, this sucks. */
1620 	list_for_each(pos, &ctx->active_reqs) {
1621 		struct kiocb *kiocb = list_kiocb(pos);
1622 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1623 			return kiocb;
1624 	}
1625 	return NULL;
1626 }
1627 
1628 /* sys_io_cancel:
1629  *	Attempts to cancel an iocb previously passed to io_submit.  If
1630  *	the operation is successfully cancelled, the resulting event is
1631  *	copied into the memory pointed to by result without being placed
1632  *	into the completion queue and 0 is returned.  May fail with
1633  *	-EFAULT if any of the data structures pointed to are invalid.
1634  *	May fail with -EINVAL if aio_context specified by ctx_id is
1635  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1636  *	cancelled.  Will fail with -ENOSYS if not implemented.
1637  */
1638 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1639 			      struct io_event __user *result)
1640 {
1641 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1642 	struct kioctx *ctx;
1643 	struct kiocb *kiocb;
1644 	u32 key;
1645 	int ret;
1646 
1647 	ret = get_user(key, &iocb->aio_key);
1648 	if (unlikely(ret))
1649 		return -EFAULT;
1650 
1651 	ctx = lookup_ioctx(ctx_id);
1652 	if (unlikely(!ctx))
1653 		return -EINVAL;
1654 
1655 	spin_lock_irq(&ctx->ctx_lock);
1656 	ret = -EAGAIN;
1657 	kiocb = lookup_kiocb(ctx, iocb, key);
1658 	if (kiocb && kiocb->ki_cancel) {
1659 		cancel = kiocb->ki_cancel;
1660 		kiocb->ki_users ++;
1661 		kiocbSetCancelled(kiocb);
1662 	} else
1663 		cancel = NULL;
1664 	spin_unlock_irq(&ctx->ctx_lock);
1665 
1666 	if (NULL != cancel) {
1667 		struct io_event tmp;
1668 		pr_debug("calling cancel\n");
1669 		memset(&tmp, 0, sizeof(tmp));
1670 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1671 		tmp.data = kiocb->ki_user_data;
1672 		ret = cancel(kiocb, &tmp);
1673 		if (!ret) {
1674 			/* Cancellation succeeded -- copy the result
1675 			 * into the user's buffer.
1676 			 */
1677 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1678 				ret = -EFAULT;
1679 		}
1680 	} else
1681 		ret = -EINVAL;
1682 
1683 	put_ioctx(ctx);
1684 
1685 	return ret;
1686 }
1687 
1688 /* io_getevents:
1689  *	Attempts to read at least min_nr events and up to nr events from
1690  *	the completion queue for the aio_context specified by ctx_id.  May
1691  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1692  *	if nr is out of range, if when is out of range.  May fail with
1693  *	-EFAULT if any of the memory specified to is invalid.  May return
1694  *	0 or < min_nr if no events are available and the timeout specified
1695  *	by when	has elapsed, where when == NULL specifies an infinite
1696  *	timeout.  Note that the timeout pointed to by when is relative and
1697  *	will be updated if not NULL and the operation blocks.  Will fail
1698  *	with -ENOSYS if not implemented.
1699  */
1700 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1701 				 long min_nr,
1702 				 long nr,
1703 				 struct io_event __user *events,
1704 				 struct timespec __user *timeout)
1705 {
1706 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1707 	long ret = -EINVAL;
1708 
1709 	if (likely(ioctx)) {
1710 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1711 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1712 		put_ioctx(ioctx);
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 __initcall(aio_setup);
1719 
1720 EXPORT_SYMBOL(aio_complete);
1721 EXPORT_SYMBOL(aio_put_req);
1722 EXPORT_SYMBOL(wait_on_sync_kiocb);
1723