xref: /openbmc/linux/fs/aio.c (revision 851f6657)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #define AIO_RING_MAGIC			0xa10a10a1
43 #define AIO_RING_COMPAT_FEATURES	1
44 #define AIO_RING_INCOMPAT_FEATURES	0
45 struct aio_ring {
46 	unsigned	id;	/* kernel internal index number */
47 	unsigned	nr;	/* number of io_events */
48 	unsigned	head;
49 	unsigned	tail;
50 
51 	unsigned	magic;
52 	unsigned	compat_features;
53 	unsigned	incompat_features;
54 	unsigned	header_length;	/* size of aio_ring */
55 
56 
57 	struct io_event		io_events[0];
58 }; /* 128 bytes + ring size */
59 
60 #define AIO_RING_PAGES	8
61 
62 struct kioctx {
63 	atomic_t		users;
64 	atomic_t		dead;
65 
66 	/* This needs improving */
67 	unsigned long		user_id;
68 	struct hlist_node	list;
69 
70 	/*
71 	 * This is what userspace passed to io_setup(), it's not used for
72 	 * anything but counting against the global max_reqs quota.
73 	 *
74 	 * The real limit is nr_events - 1, which will be larger (see
75 	 * aio_setup_ring())
76 	 */
77 	unsigned		max_reqs;
78 
79 	/* Size of ringbuffer, in units of struct io_event */
80 	unsigned		nr_events;
81 
82 	unsigned long		mmap_base;
83 	unsigned long		mmap_size;
84 
85 	struct page		**ring_pages;
86 	long			nr_pages;
87 
88 	struct rcu_head		rcu_head;
89 	struct work_struct	rcu_work;
90 
91 	struct {
92 		atomic_t	reqs_active;
93 	} ____cacheline_aligned_in_smp;
94 
95 	struct {
96 		spinlock_t	ctx_lock;
97 		struct list_head active_reqs;	/* used for cancellation */
98 	} ____cacheline_aligned_in_smp;
99 
100 	struct {
101 		struct mutex	ring_lock;
102 		wait_queue_head_t wait;
103 	} ____cacheline_aligned_in_smp;
104 
105 	struct {
106 		unsigned	tail;
107 		spinlock_t	completion_lock;
108 	} ____cacheline_aligned_in_smp;
109 
110 	struct page		*internal_pages[AIO_RING_PAGES];
111 };
112 
113 /*------ sysctl variables----*/
114 static DEFINE_SPINLOCK(aio_nr_lock);
115 unsigned long aio_nr;		/* current system wide number of aio requests */
116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
117 /*----end sysctl variables---*/
118 
119 static struct kmem_cache	*kiocb_cachep;
120 static struct kmem_cache	*kioctx_cachep;
121 
122 /* aio_setup
123  *	Creates the slab caches used by the aio routines, panic on
124  *	failure as this is done early during the boot sequence.
125  */
126 static int __init aio_setup(void)
127 {
128 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
129 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
130 
131 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
132 
133 	return 0;
134 }
135 __initcall(aio_setup);
136 
137 static void aio_free_ring(struct kioctx *ctx)
138 {
139 	long i;
140 
141 	for (i = 0; i < ctx->nr_pages; i++)
142 		put_page(ctx->ring_pages[i]);
143 
144 	if (ctx->mmap_size)
145 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
146 
147 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
148 		kfree(ctx->ring_pages);
149 }
150 
151 static int aio_setup_ring(struct kioctx *ctx)
152 {
153 	struct aio_ring *ring;
154 	unsigned nr_events = ctx->max_reqs;
155 	struct mm_struct *mm = current->mm;
156 	unsigned long size, populate;
157 	int nr_pages;
158 
159 	/* Compensate for the ring buffer's head/tail overlap entry */
160 	nr_events += 2;	/* 1 is required, 2 for good luck */
161 
162 	size = sizeof(struct aio_ring);
163 	size += sizeof(struct io_event) * nr_events;
164 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
165 
166 	if (nr_pages < 0)
167 		return -EINVAL;
168 
169 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
170 
171 	ctx->nr_events = 0;
172 	ctx->ring_pages = ctx->internal_pages;
173 	if (nr_pages > AIO_RING_PAGES) {
174 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
175 					  GFP_KERNEL);
176 		if (!ctx->ring_pages)
177 			return -ENOMEM;
178 	}
179 
180 	ctx->mmap_size = nr_pages * PAGE_SIZE;
181 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
182 	down_write(&mm->mmap_sem);
183 	ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size,
184 				       PROT_READ|PROT_WRITE,
185 				       MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate);
186 	if (IS_ERR((void *)ctx->mmap_base)) {
187 		up_write(&mm->mmap_sem);
188 		ctx->mmap_size = 0;
189 		aio_free_ring(ctx);
190 		return -EAGAIN;
191 	}
192 
193 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
194 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
195 				       1, 0, ctx->ring_pages, NULL);
196 	up_write(&mm->mmap_sem);
197 
198 	if (unlikely(ctx->nr_pages != nr_pages)) {
199 		aio_free_ring(ctx);
200 		return -EAGAIN;
201 	}
202 	if (populate)
203 		mm_populate(ctx->mmap_base, populate);
204 
205 	ctx->user_id = ctx->mmap_base;
206 	ctx->nr_events = nr_events; /* trusted copy */
207 
208 	ring = kmap_atomic(ctx->ring_pages[0]);
209 	ring->nr = nr_events;	/* user copy */
210 	ring->id = ctx->user_id;
211 	ring->head = ring->tail = 0;
212 	ring->magic = AIO_RING_MAGIC;
213 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
214 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
215 	ring->header_length = sizeof(struct aio_ring);
216 	kunmap_atomic(ring);
217 	flush_dcache_page(ctx->ring_pages[0]);
218 
219 	return 0;
220 }
221 
222 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
223 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
224 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
225 
226 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
227 {
228 	struct kioctx *ctx = req->ki_ctx;
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&ctx->ctx_lock, flags);
232 
233 	if (!req->ki_list.next)
234 		list_add(&req->ki_list, &ctx->active_reqs);
235 
236 	req->ki_cancel = cancel;
237 
238 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
239 }
240 EXPORT_SYMBOL(kiocb_set_cancel_fn);
241 
242 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
243 			struct io_event *res)
244 {
245 	kiocb_cancel_fn *old, *cancel;
246 	int ret = -EINVAL;
247 
248 	/*
249 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
250 	 * actually has a cancel function, hence the cmpxchg()
251 	 */
252 
253 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
254 	do {
255 		if (!cancel || cancel == KIOCB_CANCELLED)
256 			return ret;
257 
258 		old = cancel;
259 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
260 	} while (cancel != old);
261 
262 	atomic_inc(&kiocb->ki_users);
263 	spin_unlock_irq(&ctx->ctx_lock);
264 
265 	memset(res, 0, sizeof(*res));
266 	res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
267 	res->data = kiocb->ki_user_data;
268 	ret = cancel(kiocb, res);
269 
270 	spin_lock_irq(&ctx->ctx_lock);
271 
272 	return ret;
273 }
274 
275 static void free_ioctx_rcu(struct rcu_head *head)
276 {
277 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
278 	kmem_cache_free(kioctx_cachep, ctx);
279 }
280 
281 /*
282  * When this function runs, the kioctx has been removed from the "hash table"
283  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
284  * now it's safe to cancel any that need to be.
285  */
286 static void free_ioctx(struct kioctx *ctx)
287 {
288 	struct aio_ring *ring;
289 	struct io_event res;
290 	struct kiocb *req;
291 	unsigned head, avail;
292 
293 	spin_lock_irq(&ctx->ctx_lock);
294 
295 	while (!list_empty(&ctx->active_reqs)) {
296 		req = list_first_entry(&ctx->active_reqs,
297 				       struct kiocb, ki_list);
298 
299 		list_del_init(&req->ki_list);
300 		kiocb_cancel(ctx, req, &res);
301 	}
302 
303 	spin_unlock_irq(&ctx->ctx_lock);
304 
305 	ring = kmap_atomic(ctx->ring_pages[0]);
306 	head = ring->head;
307 	kunmap_atomic(ring);
308 
309 	while (atomic_read(&ctx->reqs_active) > 0) {
310 		wait_event(ctx->wait, head != ctx->tail);
311 
312 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
313 
314 		atomic_sub(avail, &ctx->reqs_active);
315 		head += avail;
316 		head %= ctx->nr_events;
317 	}
318 
319 	WARN_ON(atomic_read(&ctx->reqs_active) < 0);
320 
321 	aio_free_ring(ctx);
322 
323 	spin_lock(&aio_nr_lock);
324 	BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
325 	aio_nr -= ctx->max_reqs;
326 	spin_unlock(&aio_nr_lock);
327 
328 	pr_debug("freeing %p\n", ctx);
329 
330 	/*
331 	 * Here the call_rcu() is between the wait_event() for reqs_active to
332 	 * hit 0, and freeing the ioctx.
333 	 *
334 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
335 	 * after to issue a wakeup so we use rcu.
336 	 */
337 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
338 }
339 
340 static void put_ioctx(struct kioctx *ctx)
341 {
342 	if (unlikely(atomic_dec_and_test(&ctx->users)))
343 		free_ioctx(ctx);
344 }
345 
346 /* ioctx_alloc
347  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
348  */
349 static struct kioctx *ioctx_alloc(unsigned nr_events)
350 {
351 	struct mm_struct *mm = current->mm;
352 	struct kioctx *ctx;
353 	int err = -ENOMEM;
354 
355 	/* Prevent overflows */
356 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
357 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
358 		pr_debug("ENOMEM: nr_events too high\n");
359 		return ERR_PTR(-EINVAL);
360 	}
361 
362 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
363 		return ERR_PTR(-EAGAIN);
364 
365 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
366 	if (!ctx)
367 		return ERR_PTR(-ENOMEM);
368 
369 	ctx->max_reqs = nr_events;
370 
371 	atomic_set(&ctx->users, 2);
372 	atomic_set(&ctx->dead, 0);
373 	spin_lock_init(&ctx->ctx_lock);
374 	spin_lock_init(&ctx->completion_lock);
375 	mutex_init(&ctx->ring_lock);
376 	init_waitqueue_head(&ctx->wait);
377 
378 	INIT_LIST_HEAD(&ctx->active_reqs);
379 
380 	if (aio_setup_ring(ctx) < 0)
381 		goto out_freectx;
382 
383 	/* limit the number of system wide aios */
384 	spin_lock(&aio_nr_lock);
385 	if (aio_nr + nr_events > aio_max_nr ||
386 	    aio_nr + nr_events < aio_nr) {
387 		spin_unlock(&aio_nr_lock);
388 		goto out_cleanup;
389 	}
390 	aio_nr += ctx->max_reqs;
391 	spin_unlock(&aio_nr_lock);
392 
393 	/* now link into global list. */
394 	spin_lock(&mm->ioctx_lock);
395 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
396 	spin_unlock(&mm->ioctx_lock);
397 
398 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
399 		 ctx, ctx->user_id, mm, ctx->nr_events);
400 	return ctx;
401 
402 out_cleanup:
403 	err = -EAGAIN;
404 	aio_free_ring(ctx);
405 out_freectx:
406 	kmem_cache_free(kioctx_cachep, ctx);
407 	pr_debug("error allocating ioctx %d\n", err);
408 	return ERR_PTR(err);
409 }
410 
411 static void kill_ioctx_work(struct work_struct *work)
412 {
413 	struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
414 
415 	wake_up_all(&ctx->wait);
416 	put_ioctx(ctx);
417 }
418 
419 static void kill_ioctx_rcu(struct rcu_head *head)
420 {
421 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
422 
423 	INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
424 	schedule_work(&ctx->rcu_work);
425 }
426 
427 /* kill_ioctx
428  *	Cancels all outstanding aio requests on an aio context.  Used
429  *	when the processes owning a context have all exited to encourage
430  *	the rapid destruction of the kioctx.
431  */
432 static void kill_ioctx(struct kioctx *ctx)
433 {
434 	if (!atomic_xchg(&ctx->dead, 1)) {
435 		hlist_del_rcu(&ctx->list);
436 		/* Between hlist_del_rcu() and dropping the initial ref */
437 		synchronize_rcu();
438 
439 		/*
440 		 * We can't punt to workqueue here because put_ioctx() ->
441 		 * free_ioctx() will unmap the ringbuffer, and that has to be
442 		 * done in the original process's context. kill_ioctx_rcu/work()
443 		 * exist for exit_aio(), as in that path free_ioctx() won't do
444 		 * the unmap.
445 		 */
446 		kill_ioctx_work(&ctx->rcu_work);
447 	}
448 }
449 
450 /* wait_on_sync_kiocb:
451  *	Waits on the given sync kiocb to complete.
452  */
453 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
454 {
455 	while (atomic_read(&iocb->ki_users)) {
456 		set_current_state(TASK_UNINTERRUPTIBLE);
457 		if (!atomic_read(&iocb->ki_users))
458 			break;
459 		io_schedule();
460 	}
461 	__set_current_state(TASK_RUNNING);
462 	return iocb->ki_user_data;
463 }
464 EXPORT_SYMBOL(wait_on_sync_kiocb);
465 
466 /*
467  * exit_aio: called when the last user of mm goes away.  At this point, there is
468  * no way for any new requests to be submited or any of the io_* syscalls to be
469  * called on the context.
470  *
471  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
472  * them.
473  */
474 void exit_aio(struct mm_struct *mm)
475 {
476 	struct kioctx *ctx;
477 	struct hlist_node *n;
478 
479 	hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
480 		if (1 != atomic_read(&ctx->users))
481 			printk(KERN_DEBUG
482 				"exit_aio:ioctx still alive: %d %d %d\n",
483 				atomic_read(&ctx->users),
484 				atomic_read(&ctx->dead),
485 				atomic_read(&ctx->reqs_active));
486 		/*
487 		 * We don't need to bother with munmap() here -
488 		 * exit_mmap(mm) is coming and it'll unmap everything.
489 		 * Since aio_free_ring() uses non-zero ->mmap_size
490 		 * as indicator that it needs to unmap the area,
491 		 * just set it to 0; aio_free_ring() is the only
492 		 * place that uses ->mmap_size, so it's safe.
493 		 */
494 		ctx->mmap_size = 0;
495 
496 		if (!atomic_xchg(&ctx->dead, 1)) {
497 			hlist_del_rcu(&ctx->list);
498 			call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
499 		}
500 	}
501 }
502 
503 /* aio_get_req
504  *	Allocate a slot for an aio request.  Increments the ki_users count
505  * of the kioctx so that the kioctx stays around until all requests are
506  * complete.  Returns NULL if no requests are free.
507  *
508  * Returns with kiocb->ki_users set to 2.  The io submit code path holds
509  * an extra reference while submitting the i/o.
510  * This prevents races between the aio code path referencing the
511  * req (after submitting it) and aio_complete() freeing the req.
512  */
513 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
514 {
515 	struct kiocb *req;
516 
517 	if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
518 		return NULL;
519 
520 	if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
521 		goto out_put;
522 
523 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
524 	if (unlikely(!req))
525 		goto out_put;
526 
527 	atomic_set(&req->ki_users, 2);
528 	req->ki_ctx = ctx;
529 
530 	return req;
531 out_put:
532 	atomic_dec(&ctx->reqs_active);
533 	return NULL;
534 }
535 
536 static void kiocb_free(struct kiocb *req)
537 {
538 	if (req->ki_filp)
539 		fput(req->ki_filp);
540 	if (req->ki_eventfd != NULL)
541 		eventfd_ctx_put(req->ki_eventfd);
542 	if (req->ki_dtor)
543 		req->ki_dtor(req);
544 	if (req->ki_iovec != &req->ki_inline_vec)
545 		kfree(req->ki_iovec);
546 	kmem_cache_free(kiocb_cachep, req);
547 }
548 
549 void aio_put_req(struct kiocb *req)
550 {
551 	if (atomic_dec_and_test(&req->ki_users))
552 		kiocb_free(req);
553 }
554 EXPORT_SYMBOL(aio_put_req);
555 
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
557 {
558 	struct mm_struct *mm = current->mm;
559 	struct kioctx *ctx, *ret = NULL;
560 
561 	rcu_read_lock();
562 
563 	hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
564 		if (ctx->user_id == ctx_id) {
565 			atomic_inc(&ctx->users);
566 			ret = ctx;
567 			break;
568 		}
569 	}
570 
571 	rcu_read_unlock();
572 	return ret;
573 }
574 
575 /* aio_complete
576  *	Called when the io request on the given iocb is complete.
577  */
578 void aio_complete(struct kiocb *iocb, long res, long res2)
579 {
580 	struct kioctx	*ctx = iocb->ki_ctx;
581 	struct aio_ring	*ring;
582 	struct io_event	*ev_page, *event;
583 	unsigned long	flags;
584 	unsigned tail, pos;
585 
586 	/*
587 	 * Special case handling for sync iocbs:
588 	 *  - events go directly into the iocb for fast handling
589 	 *  - the sync task with the iocb in its stack holds the single iocb
590 	 *    ref, no other paths have a way to get another ref
591 	 *  - the sync task helpfully left a reference to itself in the iocb
592 	 */
593 	if (is_sync_kiocb(iocb)) {
594 		BUG_ON(atomic_read(&iocb->ki_users) != 1);
595 		iocb->ki_user_data = res;
596 		atomic_set(&iocb->ki_users, 0);
597 		wake_up_process(iocb->ki_obj.tsk);
598 		return;
599 	}
600 
601 	/*
602 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
603 	 * need to issue a wakeup after decrementing reqs_active.
604 	 */
605 	rcu_read_lock();
606 
607 	if (iocb->ki_list.next) {
608 		unsigned long flags;
609 
610 		spin_lock_irqsave(&ctx->ctx_lock, flags);
611 		list_del(&iocb->ki_list);
612 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
613 	}
614 
615 	/*
616 	 * cancelled requests don't get events, userland was given one
617 	 * when the event got cancelled.
618 	 */
619 	if (unlikely(xchg(&iocb->ki_cancel,
620 			  KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
621 		atomic_dec(&ctx->reqs_active);
622 		/* Still need the wake_up in case free_ioctx is waiting */
623 		goto put_rq;
624 	}
625 
626 	/*
627 	 * Add a completion event to the ring buffer. Must be done holding
628 	 * ctx->ctx_lock to prevent other code from messing with the tail
629 	 * pointer since we might be called from irq context.
630 	 */
631 	spin_lock_irqsave(&ctx->completion_lock, flags);
632 
633 	tail = ctx->tail;
634 	pos = tail + AIO_EVENTS_OFFSET;
635 
636 	if (++tail >= ctx->nr_events)
637 		tail = 0;
638 
639 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
640 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
641 
642 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
643 	event->data = iocb->ki_user_data;
644 	event->res = res;
645 	event->res2 = res2;
646 
647 	kunmap_atomic(ev_page);
648 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
649 
650 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
651 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
652 		 res, res2);
653 
654 	/* after flagging the request as done, we
655 	 * must never even look at it again
656 	 */
657 	smp_wmb();	/* make event visible before updating tail */
658 
659 	ctx->tail = tail;
660 
661 	ring = kmap_atomic(ctx->ring_pages[0]);
662 	ring->tail = tail;
663 	kunmap_atomic(ring);
664 	flush_dcache_page(ctx->ring_pages[0]);
665 
666 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
667 
668 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
669 
670 	/*
671 	 * Check if the user asked us to deliver the result through an
672 	 * eventfd. The eventfd_signal() function is safe to be called
673 	 * from IRQ context.
674 	 */
675 	if (iocb->ki_eventfd != NULL)
676 		eventfd_signal(iocb->ki_eventfd, 1);
677 
678 put_rq:
679 	/* everything turned out well, dispose of the aiocb. */
680 	aio_put_req(iocb);
681 
682 	/*
683 	 * We have to order our ring_info tail store above and test
684 	 * of the wait list below outside the wait lock.  This is
685 	 * like in wake_up_bit() where clearing a bit has to be
686 	 * ordered with the unlocked test.
687 	 */
688 	smp_mb();
689 
690 	if (waitqueue_active(&ctx->wait))
691 		wake_up(&ctx->wait);
692 
693 	rcu_read_unlock();
694 }
695 EXPORT_SYMBOL(aio_complete);
696 
697 /* aio_read_events
698  *	Pull an event off of the ioctx's event ring.  Returns the number of
699  *	events fetched
700  */
701 static long aio_read_events_ring(struct kioctx *ctx,
702 				 struct io_event __user *event, long nr)
703 {
704 	struct aio_ring *ring;
705 	unsigned head, pos;
706 	long ret = 0;
707 	int copy_ret;
708 
709 	mutex_lock(&ctx->ring_lock);
710 
711 	ring = kmap_atomic(ctx->ring_pages[0]);
712 	head = ring->head;
713 	kunmap_atomic(ring);
714 
715 	pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
716 
717 	if (head == ctx->tail)
718 		goto out;
719 
720 	while (ret < nr) {
721 		long avail;
722 		struct io_event *ev;
723 		struct page *page;
724 
725 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
726 		if (head == ctx->tail)
727 			break;
728 
729 		avail = min(avail, nr - ret);
730 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
731 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
732 
733 		pos = head + AIO_EVENTS_OFFSET;
734 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
735 		pos %= AIO_EVENTS_PER_PAGE;
736 
737 		ev = kmap(page);
738 		copy_ret = copy_to_user(event + ret, ev + pos,
739 					sizeof(*ev) * avail);
740 		kunmap(page);
741 
742 		if (unlikely(copy_ret)) {
743 			ret = -EFAULT;
744 			goto out;
745 		}
746 
747 		ret += avail;
748 		head += avail;
749 		head %= ctx->nr_events;
750 	}
751 
752 	ring = kmap_atomic(ctx->ring_pages[0]);
753 	ring->head = head;
754 	kunmap_atomic(ring);
755 	flush_dcache_page(ctx->ring_pages[0]);
756 
757 	pr_debug("%li  h%u t%u\n", ret, head, ctx->tail);
758 
759 	atomic_sub(ret, &ctx->reqs_active);
760 out:
761 	mutex_unlock(&ctx->ring_lock);
762 
763 	return ret;
764 }
765 
766 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
767 			    struct io_event __user *event, long *i)
768 {
769 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
770 
771 	if (ret > 0)
772 		*i += ret;
773 
774 	if (unlikely(atomic_read(&ctx->dead)))
775 		ret = -EINVAL;
776 
777 	if (!*i)
778 		*i = ret;
779 
780 	return ret < 0 || *i >= min_nr;
781 }
782 
783 static long read_events(struct kioctx *ctx, long min_nr, long nr,
784 			struct io_event __user *event,
785 			struct timespec __user *timeout)
786 {
787 	ktime_t until = { .tv64 = KTIME_MAX };
788 	long ret = 0;
789 
790 	if (timeout) {
791 		struct timespec	ts;
792 
793 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
794 			return -EFAULT;
795 
796 		until = timespec_to_ktime(ts);
797 	}
798 
799 	/*
800 	 * Note that aio_read_events() is being called as the conditional - i.e.
801 	 * we're calling it after prepare_to_wait() has set task state to
802 	 * TASK_INTERRUPTIBLE.
803 	 *
804 	 * But aio_read_events() can block, and if it blocks it's going to flip
805 	 * the task state back to TASK_RUNNING.
806 	 *
807 	 * This should be ok, provided it doesn't flip the state back to
808 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
809 	 * will only happen if the mutex_lock() call blocks, and we then find
810 	 * the ringbuffer empty. So in practice we should be ok, but it's
811 	 * something to be aware of when touching this code.
812 	 */
813 	wait_event_interruptible_hrtimeout(ctx->wait,
814 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
815 
816 	if (!ret && signal_pending(current))
817 		ret = -EINTR;
818 
819 	return ret;
820 }
821 
822 /* sys_io_setup:
823  *	Create an aio_context capable of receiving at least nr_events.
824  *	ctxp must not point to an aio_context that already exists, and
825  *	must be initialized to 0 prior to the call.  On successful
826  *	creation of the aio_context, *ctxp is filled in with the resulting
827  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
828  *	if the specified nr_events exceeds internal limits.  May fail
829  *	with -EAGAIN if the specified nr_events exceeds the user's limit
830  *	of available events.  May fail with -ENOMEM if insufficient kernel
831  *	resources are available.  May fail with -EFAULT if an invalid
832  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
833  *	implemented.
834  */
835 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
836 {
837 	struct kioctx *ioctx = NULL;
838 	unsigned long ctx;
839 	long ret;
840 
841 	ret = get_user(ctx, ctxp);
842 	if (unlikely(ret))
843 		goto out;
844 
845 	ret = -EINVAL;
846 	if (unlikely(ctx || nr_events == 0)) {
847 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
848 		         ctx, nr_events);
849 		goto out;
850 	}
851 
852 	ioctx = ioctx_alloc(nr_events);
853 	ret = PTR_ERR(ioctx);
854 	if (!IS_ERR(ioctx)) {
855 		ret = put_user(ioctx->user_id, ctxp);
856 		if (ret)
857 			kill_ioctx(ioctx);
858 		put_ioctx(ioctx);
859 	}
860 
861 out:
862 	return ret;
863 }
864 
865 /* sys_io_destroy:
866  *	Destroy the aio_context specified.  May cancel any outstanding
867  *	AIOs and block on completion.  Will fail with -ENOSYS if not
868  *	implemented.  May fail with -EINVAL if the context pointed to
869  *	is invalid.
870  */
871 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
872 {
873 	struct kioctx *ioctx = lookup_ioctx(ctx);
874 	if (likely(NULL != ioctx)) {
875 		kill_ioctx(ioctx);
876 		put_ioctx(ioctx);
877 		return 0;
878 	}
879 	pr_debug("EINVAL: io_destroy: invalid context id\n");
880 	return -EINVAL;
881 }
882 
883 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
884 {
885 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
886 
887 	BUG_ON(ret <= 0);
888 
889 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
890 		ssize_t this = min((ssize_t)iov->iov_len, ret);
891 		iov->iov_base += this;
892 		iov->iov_len -= this;
893 		iocb->ki_left -= this;
894 		ret -= this;
895 		if (iov->iov_len == 0) {
896 			iocb->ki_cur_seg++;
897 			iov++;
898 		}
899 	}
900 
901 	/* the caller should not have done more io than what fit in
902 	 * the remaining iovecs */
903 	BUG_ON(ret > 0 && iocb->ki_left == 0);
904 }
905 
906 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
907 			    unsigned long, loff_t);
908 
909 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
910 {
911 	struct file *file = iocb->ki_filp;
912 	struct address_space *mapping = file->f_mapping;
913 	struct inode *inode = mapping->host;
914 	ssize_t ret = 0;
915 
916 	/* This matches the pread()/pwrite() logic */
917 	if (iocb->ki_pos < 0)
918 		return -EINVAL;
919 
920 	if (rw == WRITE)
921 		file_start_write(file);
922 	do {
923 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
924 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
925 			    iocb->ki_pos);
926 		if (ret > 0)
927 			aio_advance_iovec(iocb, ret);
928 
929 	/* retry all partial writes.  retry partial reads as long as its a
930 	 * regular file. */
931 	} while (ret > 0 && iocb->ki_left > 0 &&
932 		 (rw == WRITE ||
933 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
934 	if (rw == WRITE)
935 		file_end_write(file);
936 
937 	/* This means we must have transferred all that we could */
938 	/* No need to retry anymore */
939 	if ((ret == 0) || (iocb->ki_left == 0))
940 		ret = iocb->ki_nbytes - iocb->ki_left;
941 
942 	/* If we managed to write some out we return that, rather than
943 	 * the eventual error. */
944 	if (rw == WRITE
945 	    && ret < 0 && ret != -EIOCBQUEUED
946 	    && iocb->ki_nbytes - iocb->ki_left)
947 		ret = iocb->ki_nbytes - iocb->ki_left;
948 
949 	return ret;
950 }
951 
952 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
953 {
954 	ssize_t ret;
955 
956 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
957 
958 #ifdef CONFIG_COMPAT
959 	if (compat)
960 		ret = compat_rw_copy_check_uvector(rw,
961 				(struct compat_iovec __user *)kiocb->ki_buf,
962 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
963 				&kiocb->ki_iovec);
964 	else
965 #endif
966 		ret = rw_copy_check_uvector(rw,
967 				(struct iovec __user *)kiocb->ki_buf,
968 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
969 				&kiocb->ki_iovec);
970 	if (ret < 0)
971 		return ret;
972 
973 	/* ki_nbytes now reflect bytes instead of segs */
974 	kiocb->ki_nbytes = ret;
975 	return 0;
976 }
977 
978 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
979 {
980 	if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
981 		return -EFAULT;
982 
983 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
984 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
985 	kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
986 	kiocb->ki_nr_segs = 1;
987 	return 0;
988 }
989 
990 /*
991  * aio_setup_iocb:
992  *	Performs the initial checks and aio retry method
993  *	setup for the kiocb at the time of io submission.
994  */
995 static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
996 {
997 	struct file *file = req->ki_filp;
998 	ssize_t ret;
999 	int rw;
1000 	fmode_t mode;
1001 	aio_rw_op *rw_op;
1002 
1003 	switch (req->ki_opcode) {
1004 	case IOCB_CMD_PREAD:
1005 	case IOCB_CMD_PREADV:
1006 		mode	= FMODE_READ;
1007 		rw	= READ;
1008 		rw_op	= file->f_op->aio_read;
1009 		goto rw_common;
1010 
1011 	case IOCB_CMD_PWRITE:
1012 	case IOCB_CMD_PWRITEV:
1013 		mode	= FMODE_WRITE;
1014 		rw	= WRITE;
1015 		rw_op	= file->f_op->aio_write;
1016 		goto rw_common;
1017 rw_common:
1018 		if (unlikely(!(file->f_mode & mode)))
1019 			return -EBADF;
1020 
1021 		if (!rw_op)
1022 			return -EINVAL;
1023 
1024 		ret = (req->ki_opcode == IOCB_CMD_PREADV ||
1025 		       req->ki_opcode == IOCB_CMD_PWRITEV)
1026 			? aio_setup_vectored_rw(rw, req, compat)
1027 			: aio_setup_single_vector(rw, req);
1028 		if (ret)
1029 			return ret;
1030 
1031 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1032 		if (ret < 0)
1033 			return ret;
1034 
1035 		req->ki_nbytes = ret;
1036 		req->ki_left = ret;
1037 
1038 		ret = aio_rw_vect_retry(req, rw, rw_op);
1039 		break;
1040 
1041 	case IOCB_CMD_FDSYNC:
1042 		if (!file->f_op->aio_fsync)
1043 			return -EINVAL;
1044 
1045 		ret = file->f_op->aio_fsync(req, 1);
1046 		break;
1047 
1048 	case IOCB_CMD_FSYNC:
1049 		if (!file->f_op->aio_fsync)
1050 			return -EINVAL;
1051 
1052 		ret = file->f_op->aio_fsync(req, 0);
1053 		break;
1054 
1055 	default:
1056 		pr_debug("EINVAL: no operation provided\n");
1057 		return -EINVAL;
1058 	}
1059 
1060 	if (ret != -EIOCBQUEUED) {
1061 		/*
1062 		 * There's no easy way to restart the syscall since other AIO's
1063 		 * may be already running. Just fail this IO with EINTR.
1064 		 */
1065 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1066 			     ret == -ERESTARTNOHAND ||
1067 			     ret == -ERESTART_RESTARTBLOCK))
1068 			ret = -EINTR;
1069 		aio_complete(req, ret, 0);
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1076 			 struct iocb *iocb, bool compat)
1077 {
1078 	struct kiocb *req;
1079 	ssize_t ret;
1080 
1081 	/* enforce forwards compatibility on users */
1082 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1083 		pr_debug("EINVAL: reserve field set\n");
1084 		return -EINVAL;
1085 	}
1086 
1087 	/* prevent overflows */
1088 	if (unlikely(
1089 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1090 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1091 	    ((ssize_t)iocb->aio_nbytes < 0)
1092 	   )) {
1093 		pr_debug("EINVAL: io_submit: overflow check\n");
1094 		return -EINVAL;
1095 	}
1096 
1097 	req = aio_get_req(ctx);
1098 	if (unlikely(!req))
1099 		return -EAGAIN;
1100 
1101 	req->ki_filp = fget(iocb->aio_fildes);
1102 	if (unlikely(!req->ki_filp)) {
1103 		ret = -EBADF;
1104 		goto out_put_req;
1105 	}
1106 
1107 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1108 		/*
1109 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1110 		 * instance of the file* now. The file descriptor must be
1111 		 * an eventfd() fd, and will be signaled for each completed
1112 		 * event using the eventfd_signal() function.
1113 		 */
1114 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1115 		if (IS_ERR(req->ki_eventfd)) {
1116 			ret = PTR_ERR(req->ki_eventfd);
1117 			req->ki_eventfd = NULL;
1118 			goto out_put_req;
1119 		}
1120 	}
1121 
1122 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1123 	if (unlikely(ret)) {
1124 		pr_debug("EFAULT: aio_key\n");
1125 		goto out_put_req;
1126 	}
1127 
1128 	req->ki_obj.user = user_iocb;
1129 	req->ki_user_data = iocb->aio_data;
1130 	req->ki_pos = iocb->aio_offset;
1131 
1132 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1133 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1134 	req->ki_opcode = iocb->aio_lio_opcode;
1135 
1136 	ret = aio_run_iocb(req, compat);
1137 	if (ret)
1138 		goto out_put_req;
1139 
1140 	aio_put_req(req);	/* drop extra ref to req */
1141 	return 0;
1142 out_put_req:
1143 	atomic_dec(&ctx->reqs_active);
1144 	aio_put_req(req);	/* drop extra ref to req */
1145 	aio_put_req(req);	/* drop i/o ref to req */
1146 	return ret;
1147 }
1148 
1149 long do_io_submit(aio_context_t ctx_id, long nr,
1150 		  struct iocb __user *__user *iocbpp, bool compat)
1151 {
1152 	struct kioctx *ctx;
1153 	long ret = 0;
1154 	int i = 0;
1155 	struct blk_plug plug;
1156 
1157 	if (unlikely(nr < 0))
1158 		return -EINVAL;
1159 
1160 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1161 		nr = LONG_MAX/sizeof(*iocbpp);
1162 
1163 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1164 		return -EFAULT;
1165 
1166 	ctx = lookup_ioctx(ctx_id);
1167 	if (unlikely(!ctx)) {
1168 		pr_debug("EINVAL: invalid context id\n");
1169 		return -EINVAL;
1170 	}
1171 
1172 	blk_start_plug(&plug);
1173 
1174 	/*
1175 	 * AKPM: should this return a partial result if some of the IOs were
1176 	 * successfully submitted?
1177 	 */
1178 	for (i=0; i<nr; i++) {
1179 		struct iocb __user *user_iocb;
1180 		struct iocb tmp;
1181 
1182 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1183 			ret = -EFAULT;
1184 			break;
1185 		}
1186 
1187 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1188 			ret = -EFAULT;
1189 			break;
1190 		}
1191 
1192 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1193 		if (ret)
1194 			break;
1195 	}
1196 	blk_finish_plug(&plug);
1197 
1198 	put_ioctx(ctx);
1199 	return i ? i : ret;
1200 }
1201 
1202 /* sys_io_submit:
1203  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1204  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1205  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1206  *	*iocbpp[0] is not properly initialized, if the operation specified
1207  *	is invalid for the file descriptor in the iocb.  May fail with
1208  *	-EFAULT if any of the data structures point to invalid data.  May
1209  *	fail with -EBADF if the file descriptor specified in the first
1210  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1211  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1212  *	fail with -ENOSYS if not implemented.
1213  */
1214 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1215 		struct iocb __user * __user *, iocbpp)
1216 {
1217 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1218 }
1219 
1220 /* lookup_kiocb
1221  *	Finds a given iocb for cancellation.
1222  */
1223 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1224 				  u32 key)
1225 {
1226 	struct list_head *pos;
1227 
1228 	assert_spin_locked(&ctx->ctx_lock);
1229 
1230 	if (key != KIOCB_KEY)
1231 		return NULL;
1232 
1233 	/* TODO: use a hash or array, this sucks. */
1234 	list_for_each(pos, &ctx->active_reqs) {
1235 		struct kiocb *kiocb = list_kiocb(pos);
1236 		if (kiocb->ki_obj.user == iocb)
1237 			return kiocb;
1238 	}
1239 	return NULL;
1240 }
1241 
1242 /* sys_io_cancel:
1243  *	Attempts to cancel an iocb previously passed to io_submit.  If
1244  *	the operation is successfully cancelled, the resulting event is
1245  *	copied into the memory pointed to by result without being placed
1246  *	into the completion queue and 0 is returned.  May fail with
1247  *	-EFAULT if any of the data structures pointed to are invalid.
1248  *	May fail with -EINVAL if aio_context specified by ctx_id is
1249  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1250  *	cancelled.  Will fail with -ENOSYS if not implemented.
1251  */
1252 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1253 		struct io_event __user *, result)
1254 {
1255 	struct io_event res;
1256 	struct kioctx *ctx;
1257 	struct kiocb *kiocb;
1258 	u32 key;
1259 	int ret;
1260 
1261 	ret = get_user(key, &iocb->aio_key);
1262 	if (unlikely(ret))
1263 		return -EFAULT;
1264 
1265 	ctx = lookup_ioctx(ctx_id);
1266 	if (unlikely(!ctx))
1267 		return -EINVAL;
1268 
1269 	spin_lock_irq(&ctx->ctx_lock);
1270 
1271 	kiocb = lookup_kiocb(ctx, iocb, key);
1272 	if (kiocb)
1273 		ret = kiocb_cancel(ctx, kiocb, &res);
1274 	else
1275 		ret = -EINVAL;
1276 
1277 	spin_unlock_irq(&ctx->ctx_lock);
1278 
1279 	if (!ret) {
1280 		/* Cancellation succeeded -- copy the result
1281 		 * into the user's buffer.
1282 		 */
1283 		if (copy_to_user(result, &res, sizeof(res)))
1284 			ret = -EFAULT;
1285 	}
1286 
1287 	put_ioctx(ctx);
1288 
1289 	return ret;
1290 }
1291 
1292 /* io_getevents:
1293  *	Attempts to read at least min_nr events and up to nr events from
1294  *	the completion queue for the aio_context specified by ctx_id. If
1295  *	it succeeds, the number of read events is returned. May fail with
1296  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1297  *	out of range, if timeout is out of range.  May fail with -EFAULT
1298  *	if any of the memory specified is invalid.  May return 0 or
1299  *	< min_nr if the timeout specified by timeout has elapsed
1300  *	before sufficient events are available, where timeout == NULL
1301  *	specifies an infinite timeout. Note that the timeout pointed to by
1302  *	timeout is relative and will be updated if not NULL and the
1303  *	operation blocks. Will fail with -ENOSYS if not implemented.
1304  */
1305 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1306 		long, min_nr,
1307 		long, nr,
1308 		struct io_event __user *, events,
1309 		struct timespec __user *, timeout)
1310 {
1311 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1312 	long ret = -EINVAL;
1313 
1314 	if (likely(ioctx)) {
1315 		if (likely(min_nr <= nr && min_nr >= 0))
1316 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1317 		put_ioctx(ioctx);
1318 	}
1319 	return ret;
1320 }
1321