1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #define AIO_RING_MAGIC 0xa10a10a1 43 #define AIO_RING_COMPAT_FEATURES 1 44 #define AIO_RING_INCOMPAT_FEATURES 0 45 struct aio_ring { 46 unsigned id; /* kernel internal index number */ 47 unsigned nr; /* number of io_events */ 48 unsigned head; 49 unsigned tail; 50 51 unsigned magic; 52 unsigned compat_features; 53 unsigned incompat_features; 54 unsigned header_length; /* size of aio_ring */ 55 56 57 struct io_event io_events[0]; 58 }; /* 128 bytes + ring size */ 59 60 #define AIO_RING_PAGES 8 61 62 struct kioctx { 63 atomic_t users; 64 atomic_t dead; 65 66 /* This needs improving */ 67 unsigned long user_id; 68 struct hlist_node list; 69 70 /* 71 * This is what userspace passed to io_setup(), it's not used for 72 * anything but counting against the global max_reqs quota. 73 * 74 * The real limit is nr_events - 1, which will be larger (see 75 * aio_setup_ring()) 76 */ 77 unsigned max_reqs; 78 79 /* Size of ringbuffer, in units of struct io_event */ 80 unsigned nr_events; 81 82 unsigned long mmap_base; 83 unsigned long mmap_size; 84 85 struct page **ring_pages; 86 long nr_pages; 87 88 struct rcu_head rcu_head; 89 struct work_struct rcu_work; 90 91 struct { 92 atomic_t reqs_active; 93 } ____cacheline_aligned_in_smp; 94 95 struct { 96 spinlock_t ctx_lock; 97 struct list_head active_reqs; /* used for cancellation */ 98 } ____cacheline_aligned_in_smp; 99 100 struct { 101 struct mutex ring_lock; 102 wait_queue_head_t wait; 103 } ____cacheline_aligned_in_smp; 104 105 struct { 106 unsigned tail; 107 spinlock_t completion_lock; 108 } ____cacheline_aligned_in_smp; 109 110 struct page *internal_pages[AIO_RING_PAGES]; 111 }; 112 113 /*------ sysctl variables----*/ 114 static DEFINE_SPINLOCK(aio_nr_lock); 115 unsigned long aio_nr; /* current system wide number of aio requests */ 116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 117 /*----end sysctl variables---*/ 118 119 static struct kmem_cache *kiocb_cachep; 120 static struct kmem_cache *kioctx_cachep; 121 122 /* aio_setup 123 * Creates the slab caches used by the aio routines, panic on 124 * failure as this is done early during the boot sequence. 125 */ 126 static int __init aio_setup(void) 127 { 128 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 129 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 130 131 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 132 133 return 0; 134 } 135 __initcall(aio_setup); 136 137 static void aio_free_ring(struct kioctx *ctx) 138 { 139 long i; 140 141 for (i = 0; i < ctx->nr_pages; i++) 142 put_page(ctx->ring_pages[i]); 143 144 if (ctx->mmap_size) 145 vm_munmap(ctx->mmap_base, ctx->mmap_size); 146 147 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 148 kfree(ctx->ring_pages); 149 } 150 151 static int aio_setup_ring(struct kioctx *ctx) 152 { 153 struct aio_ring *ring; 154 unsigned nr_events = ctx->max_reqs; 155 struct mm_struct *mm = current->mm; 156 unsigned long size, populate; 157 int nr_pages; 158 159 /* Compensate for the ring buffer's head/tail overlap entry */ 160 nr_events += 2; /* 1 is required, 2 for good luck */ 161 162 size = sizeof(struct aio_ring); 163 size += sizeof(struct io_event) * nr_events; 164 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 165 166 if (nr_pages < 0) 167 return -EINVAL; 168 169 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 170 171 ctx->nr_events = 0; 172 ctx->ring_pages = ctx->internal_pages; 173 if (nr_pages > AIO_RING_PAGES) { 174 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 175 GFP_KERNEL); 176 if (!ctx->ring_pages) 177 return -ENOMEM; 178 } 179 180 ctx->mmap_size = nr_pages * PAGE_SIZE; 181 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 182 down_write(&mm->mmap_sem); 183 ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size, 184 PROT_READ|PROT_WRITE, 185 MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate); 186 if (IS_ERR((void *)ctx->mmap_base)) { 187 up_write(&mm->mmap_sem); 188 ctx->mmap_size = 0; 189 aio_free_ring(ctx); 190 return -EAGAIN; 191 } 192 193 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 194 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 195 1, 0, ctx->ring_pages, NULL); 196 up_write(&mm->mmap_sem); 197 198 if (unlikely(ctx->nr_pages != nr_pages)) { 199 aio_free_ring(ctx); 200 return -EAGAIN; 201 } 202 if (populate) 203 mm_populate(ctx->mmap_base, populate); 204 205 ctx->user_id = ctx->mmap_base; 206 ctx->nr_events = nr_events; /* trusted copy */ 207 208 ring = kmap_atomic(ctx->ring_pages[0]); 209 ring->nr = nr_events; /* user copy */ 210 ring->id = ctx->user_id; 211 ring->head = ring->tail = 0; 212 ring->magic = AIO_RING_MAGIC; 213 ring->compat_features = AIO_RING_COMPAT_FEATURES; 214 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 215 ring->header_length = sizeof(struct aio_ring); 216 kunmap_atomic(ring); 217 flush_dcache_page(ctx->ring_pages[0]); 218 219 return 0; 220 } 221 222 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 223 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 224 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 225 226 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 227 { 228 struct kioctx *ctx = req->ki_ctx; 229 unsigned long flags; 230 231 spin_lock_irqsave(&ctx->ctx_lock, flags); 232 233 if (!req->ki_list.next) 234 list_add(&req->ki_list, &ctx->active_reqs); 235 236 req->ki_cancel = cancel; 237 238 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 239 } 240 EXPORT_SYMBOL(kiocb_set_cancel_fn); 241 242 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb, 243 struct io_event *res) 244 { 245 kiocb_cancel_fn *old, *cancel; 246 int ret = -EINVAL; 247 248 /* 249 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 250 * actually has a cancel function, hence the cmpxchg() 251 */ 252 253 cancel = ACCESS_ONCE(kiocb->ki_cancel); 254 do { 255 if (!cancel || cancel == KIOCB_CANCELLED) 256 return ret; 257 258 old = cancel; 259 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 260 } while (cancel != old); 261 262 atomic_inc(&kiocb->ki_users); 263 spin_unlock_irq(&ctx->ctx_lock); 264 265 memset(res, 0, sizeof(*res)); 266 res->obj = (u64)(unsigned long)kiocb->ki_obj.user; 267 res->data = kiocb->ki_user_data; 268 ret = cancel(kiocb, res); 269 270 spin_lock_irq(&ctx->ctx_lock); 271 272 return ret; 273 } 274 275 static void free_ioctx_rcu(struct rcu_head *head) 276 { 277 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 278 kmem_cache_free(kioctx_cachep, ctx); 279 } 280 281 /* 282 * When this function runs, the kioctx has been removed from the "hash table" 283 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 284 * now it's safe to cancel any that need to be. 285 */ 286 static void free_ioctx(struct kioctx *ctx) 287 { 288 struct aio_ring *ring; 289 struct io_event res; 290 struct kiocb *req; 291 unsigned head, avail; 292 293 spin_lock_irq(&ctx->ctx_lock); 294 295 while (!list_empty(&ctx->active_reqs)) { 296 req = list_first_entry(&ctx->active_reqs, 297 struct kiocb, ki_list); 298 299 list_del_init(&req->ki_list); 300 kiocb_cancel(ctx, req, &res); 301 } 302 303 spin_unlock_irq(&ctx->ctx_lock); 304 305 ring = kmap_atomic(ctx->ring_pages[0]); 306 head = ring->head; 307 kunmap_atomic(ring); 308 309 while (atomic_read(&ctx->reqs_active) > 0) { 310 wait_event(ctx->wait, head != ctx->tail); 311 312 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 313 314 atomic_sub(avail, &ctx->reqs_active); 315 head += avail; 316 head %= ctx->nr_events; 317 } 318 319 WARN_ON(atomic_read(&ctx->reqs_active) < 0); 320 321 aio_free_ring(ctx); 322 323 spin_lock(&aio_nr_lock); 324 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 325 aio_nr -= ctx->max_reqs; 326 spin_unlock(&aio_nr_lock); 327 328 pr_debug("freeing %p\n", ctx); 329 330 /* 331 * Here the call_rcu() is between the wait_event() for reqs_active to 332 * hit 0, and freeing the ioctx. 333 * 334 * aio_complete() decrements reqs_active, but it has to touch the ioctx 335 * after to issue a wakeup so we use rcu. 336 */ 337 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 338 } 339 340 static void put_ioctx(struct kioctx *ctx) 341 { 342 if (unlikely(atomic_dec_and_test(&ctx->users))) 343 free_ioctx(ctx); 344 } 345 346 /* ioctx_alloc 347 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 348 */ 349 static struct kioctx *ioctx_alloc(unsigned nr_events) 350 { 351 struct mm_struct *mm = current->mm; 352 struct kioctx *ctx; 353 int err = -ENOMEM; 354 355 /* Prevent overflows */ 356 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 357 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 358 pr_debug("ENOMEM: nr_events too high\n"); 359 return ERR_PTR(-EINVAL); 360 } 361 362 if (!nr_events || (unsigned long)nr_events > aio_max_nr) 363 return ERR_PTR(-EAGAIN); 364 365 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 366 if (!ctx) 367 return ERR_PTR(-ENOMEM); 368 369 ctx->max_reqs = nr_events; 370 371 atomic_set(&ctx->users, 2); 372 atomic_set(&ctx->dead, 0); 373 spin_lock_init(&ctx->ctx_lock); 374 spin_lock_init(&ctx->completion_lock); 375 mutex_init(&ctx->ring_lock); 376 init_waitqueue_head(&ctx->wait); 377 378 INIT_LIST_HEAD(&ctx->active_reqs); 379 380 if (aio_setup_ring(ctx) < 0) 381 goto out_freectx; 382 383 /* limit the number of system wide aios */ 384 spin_lock(&aio_nr_lock); 385 if (aio_nr + nr_events > aio_max_nr || 386 aio_nr + nr_events < aio_nr) { 387 spin_unlock(&aio_nr_lock); 388 goto out_cleanup; 389 } 390 aio_nr += ctx->max_reqs; 391 spin_unlock(&aio_nr_lock); 392 393 /* now link into global list. */ 394 spin_lock(&mm->ioctx_lock); 395 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 396 spin_unlock(&mm->ioctx_lock); 397 398 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 399 ctx, ctx->user_id, mm, ctx->nr_events); 400 return ctx; 401 402 out_cleanup: 403 err = -EAGAIN; 404 aio_free_ring(ctx); 405 out_freectx: 406 kmem_cache_free(kioctx_cachep, ctx); 407 pr_debug("error allocating ioctx %d\n", err); 408 return ERR_PTR(err); 409 } 410 411 static void kill_ioctx_work(struct work_struct *work) 412 { 413 struct kioctx *ctx = container_of(work, struct kioctx, rcu_work); 414 415 wake_up_all(&ctx->wait); 416 put_ioctx(ctx); 417 } 418 419 static void kill_ioctx_rcu(struct rcu_head *head) 420 { 421 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 422 423 INIT_WORK(&ctx->rcu_work, kill_ioctx_work); 424 schedule_work(&ctx->rcu_work); 425 } 426 427 /* kill_ioctx 428 * Cancels all outstanding aio requests on an aio context. Used 429 * when the processes owning a context have all exited to encourage 430 * the rapid destruction of the kioctx. 431 */ 432 static void kill_ioctx(struct kioctx *ctx) 433 { 434 if (!atomic_xchg(&ctx->dead, 1)) { 435 hlist_del_rcu(&ctx->list); 436 /* Between hlist_del_rcu() and dropping the initial ref */ 437 synchronize_rcu(); 438 439 /* 440 * We can't punt to workqueue here because put_ioctx() -> 441 * free_ioctx() will unmap the ringbuffer, and that has to be 442 * done in the original process's context. kill_ioctx_rcu/work() 443 * exist for exit_aio(), as in that path free_ioctx() won't do 444 * the unmap. 445 */ 446 kill_ioctx_work(&ctx->rcu_work); 447 } 448 } 449 450 /* wait_on_sync_kiocb: 451 * Waits on the given sync kiocb to complete. 452 */ 453 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 454 { 455 while (atomic_read(&iocb->ki_users)) { 456 set_current_state(TASK_UNINTERRUPTIBLE); 457 if (!atomic_read(&iocb->ki_users)) 458 break; 459 io_schedule(); 460 } 461 __set_current_state(TASK_RUNNING); 462 return iocb->ki_user_data; 463 } 464 EXPORT_SYMBOL(wait_on_sync_kiocb); 465 466 /* 467 * exit_aio: called when the last user of mm goes away. At this point, there is 468 * no way for any new requests to be submited or any of the io_* syscalls to be 469 * called on the context. 470 * 471 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 472 * them. 473 */ 474 void exit_aio(struct mm_struct *mm) 475 { 476 struct kioctx *ctx; 477 struct hlist_node *n; 478 479 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) { 480 if (1 != atomic_read(&ctx->users)) 481 printk(KERN_DEBUG 482 "exit_aio:ioctx still alive: %d %d %d\n", 483 atomic_read(&ctx->users), 484 atomic_read(&ctx->dead), 485 atomic_read(&ctx->reqs_active)); 486 /* 487 * We don't need to bother with munmap() here - 488 * exit_mmap(mm) is coming and it'll unmap everything. 489 * Since aio_free_ring() uses non-zero ->mmap_size 490 * as indicator that it needs to unmap the area, 491 * just set it to 0; aio_free_ring() is the only 492 * place that uses ->mmap_size, so it's safe. 493 */ 494 ctx->mmap_size = 0; 495 496 if (!atomic_xchg(&ctx->dead, 1)) { 497 hlist_del_rcu(&ctx->list); 498 call_rcu(&ctx->rcu_head, kill_ioctx_rcu); 499 } 500 } 501 } 502 503 /* aio_get_req 504 * Allocate a slot for an aio request. Increments the ki_users count 505 * of the kioctx so that the kioctx stays around until all requests are 506 * complete. Returns NULL if no requests are free. 507 * 508 * Returns with kiocb->ki_users set to 2. The io submit code path holds 509 * an extra reference while submitting the i/o. 510 * This prevents races between the aio code path referencing the 511 * req (after submitting it) and aio_complete() freeing the req. 512 */ 513 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 514 { 515 struct kiocb *req; 516 517 if (atomic_read(&ctx->reqs_active) >= ctx->nr_events) 518 return NULL; 519 520 if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1) 521 goto out_put; 522 523 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 524 if (unlikely(!req)) 525 goto out_put; 526 527 atomic_set(&req->ki_users, 2); 528 req->ki_ctx = ctx; 529 530 return req; 531 out_put: 532 atomic_dec(&ctx->reqs_active); 533 return NULL; 534 } 535 536 static void kiocb_free(struct kiocb *req) 537 { 538 if (req->ki_filp) 539 fput(req->ki_filp); 540 if (req->ki_eventfd != NULL) 541 eventfd_ctx_put(req->ki_eventfd); 542 if (req->ki_dtor) 543 req->ki_dtor(req); 544 if (req->ki_iovec != &req->ki_inline_vec) 545 kfree(req->ki_iovec); 546 kmem_cache_free(kiocb_cachep, req); 547 } 548 549 void aio_put_req(struct kiocb *req) 550 { 551 if (atomic_dec_and_test(&req->ki_users)) 552 kiocb_free(req); 553 } 554 EXPORT_SYMBOL(aio_put_req); 555 556 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 557 { 558 struct mm_struct *mm = current->mm; 559 struct kioctx *ctx, *ret = NULL; 560 561 rcu_read_lock(); 562 563 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { 564 if (ctx->user_id == ctx_id) { 565 atomic_inc(&ctx->users); 566 ret = ctx; 567 break; 568 } 569 } 570 571 rcu_read_unlock(); 572 return ret; 573 } 574 575 /* aio_complete 576 * Called when the io request on the given iocb is complete. 577 */ 578 void aio_complete(struct kiocb *iocb, long res, long res2) 579 { 580 struct kioctx *ctx = iocb->ki_ctx; 581 struct aio_ring *ring; 582 struct io_event *ev_page, *event; 583 unsigned long flags; 584 unsigned tail, pos; 585 586 /* 587 * Special case handling for sync iocbs: 588 * - events go directly into the iocb for fast handling 589 * - the sync task with the iocb in its stack holds the single iocb 590 * ref, no other paths have a way to get another ref 591 * - the sync task helpfully left a reference to itself in the iocb 592 */ 593 if (is_sync_kiocb(iocb)) { 594 BUG_ON(atomic_read(&iocb->ki_users) != 1); 595 iocb->ki_user_data = res; 596 atomic_set(&iocb->ki_users, 0); 597 wake_up_process(iocb->ki_obj.tsk); 598 return; 599 } 600 601 /* 602 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 603 * need to issue a wakeup after decrementing reqs_active. 604 */ 605 rcu_read_lock(); 606 607 if (iocb->ki_list.next) { 608 unsigned long flags; 609 610 spin_lock_irqsave(&ctx->ctx_lock, flags); 611 list_del(&iocb->ki_list); 612 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 613 } 614 615 /* 616 * cancelled requests don't get events, userland was given one 617 * when the event got cancelled. 618 */ 619 if (unlikely(xchg(&iocb->ki_cancel, 620 KIOCB_CANCELLED) == KIOCB_CANCELLED)) { 621 atomic_dec(&ctx->reqs_active); 622 /* Still need the wake_up in case free_ioctx is waiting */ 623 goto put_rq; 624 } 625 626 /* 627 * Add a completion event to the ring buffer. Must be done holding 628 * ctx->ctx_lock to prevent other code from messing with the tail 629 * pointer since we might be called from irq context. 630 */ 631 spin_lock_irqsave(&ctx->completion_lock, flags); 632 633 tail = ctx->tail; 634 pos = tail + AIO_EVENTS_OFFSET; 635 636 if (++tail >= ctx->nr_events) 637 tail = 0; 638 639 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 640 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 641 642 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 643 event->data = iocb->ki_user_data; 644 event->res = res; 645 event->res2 = res2; 646 647 kunmap_atomic(ev_page); 648 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 649 650 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 651 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 652 res, res2); 653 654 /* after flagging the request as done, we 655 * must never even look at it again 656 */ 657 smp_wmb(); /* make event visible before updating tail */ 658 659 ctx->tail = tail; 660 661 ring = kmap_atomic(ctx->ring_pages[0]); 662 ring->tail = tail; 663 kunmap_atomic(ring); 664 flush_dcache_page(ctx->ring_pages[0]); 665 666 spin_unlock_irqrestore(&ctx->completion_lock, flags); 667 668 pr_debug("added to ring %p at [%u]\n", iocb, tail); 669 670 /* 671 * Check if the user asked us to deliver the result through an 672 * eventfd. The eventfd_signal() function is safe to be called 673 * from IRQ context. 674 */ 675 if (iocb->ki_eventfd != NULL) 676 eventfd_signal(iocb->ki_eventfd, 1); 677 678 put_rq: 679 /* everything turned out well, dispose of the aiocb. */ 680 aio_put_req(iocb); 681 682 /* 683 * We have to order our ring_info tail store above and test 684 * of the wait list below outside the wait lock. This is 685 * like in wake_up_bit() where clearing a bit has to be 686 * ordered with the unlocked test. 687 */ 688 smp_mb(); 689 690 if (waitqueue_active(&ctx->wait)) 691 wake_up(&ctx->wait); 692 693 rcu_read_unlock(); 694 } 695 EXPORT_SYMBOL(aio_complete); 696 697 /* aio_read_events 698 * Pull an event off of the ioctx's event ring. Returns the number of 699 * events fetched 700 */ 701 static long aio_read_events_ring(struct kioctx *ctx, 702 struct io_event __user *event, long nr) 703 { 704 struct aio_ring *ring; 705 unsigned head, pos; 706 long ret = 0; 707 int copy_ret; 708 709 mutex_lock(&ctx->ring_lock); 710 711 ring = kmap_atomic(ctx->ring_pages[0]); 712 head = ring->head; 713 kunmap_atomic(ring); 714 715 pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events); 716 717 if (head == ctx->tail) 718 goto out; 719 720 while (ret < nr) { 721 long avail; 722 struct io_event *ev; 723 struct page *page; 724 725 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 726 if (head == ctx->tail) 727 break; 728 729 avail = min(avail, nr - ret); 730 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 731 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 732 733 pos = head + AIO_EVENTS_OFFSET; 734 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 735 pos %= AIO_EVENTS_PER_PAGE; 736 737 ev = kmap(page); 738 copy_ret = copy_to_user(event + ret, ev + pos, 739 sizeof(*ev) * avail); 740 kunmap(page); 741 742 if (unlikely(copy_ret)) { 743 ret = -EFAULT; 744 goto out; 745 } 746 747 ret += avail; 748 head += avail; 749 head %= ctx->nr_events; 750 } 751 752 ring = kmap_atomic(ctx->ring_pages[0]); 753 ring->head = head; 754 kunmap_atomic(ring); 755 flush_dcache_page(ctx->ring_pages[0]); 756 757 pr_debug("%li h%u t%u\n", ret, head, ctx->tail); 758 759 atomic_sub(ret, &ctx->reqs_active); 760 out: 761 mutex_unlock(&ctx->ring_lock); 762 763 return ret; 764 } 765 766 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 767 struct io_event __user *event, long *i) 768 { 769 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 770 771 if (ret > 0) 772 *i += ret; 773 774 if (unlikely(atomic_read(&ctx->dead))) 775 ret = -EINVAL; 776 777 if (!*i) 778 *i = ret; 779 780 return ret < 0 || *i >= min_nr; 781 } 782 783 static long read_events(struct kioctx *ctx, long min_nr, long nr, 784 struct io_event __user *event, 785 struct timespec __user *timeout) 786 { 787 ktime_t until = { .tv64 = KTIME_MAX }; 788 long ret = 0; 789 790 if (timeout) { 791 struct timespec ts; 792 793 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 794 return -EFAULT; 795 796 until = timespec_to_ktime(ts); 797 } 798 799 /* 800 * Note that aio_read_events() is being called as the conditional - i.e. 801 * we're calling it after prepare_to_wait() has set task state to 802 * TASK_INTERRUPTIBLE. 803 * 804 * But aio_read_events() can block, and if it blocks it's going to flip 805 * the task state back to TASK_RUNNING. 806 * 807 * This should be ok, provided it doesn't flip the state back to 808 * TASK_RUNNING and return 0 too much - that causes us to spin. That 809 * will only happen if the mutex_lock() call blocks, and we then find 810 * the ringbuffer empty. So in practice we should be ok, but it's 811 * something to be aware of when touching this code. 812 */ 813 wait_event_interruptible_hrtimeout(ctx->wait, 814 aio_read_events(ctx, min_nr, nr, event, &ret), until); 815 816 if (!ret && signal_pending(current)) 817 ret = -EINTR; 818 819 return ret; 820 } 821 822 /* sys_io_setup: 823 * Create an aio_context capable of receiving at least nr_events. 824 * ctxp must not point to an aio_context that already exists, and 825 * must be initialized to 0 prior to the call. On successful 826 * creation of the aio_context, *ctxp is filled in with the resulting 827 * handle. May fail with -EINVAL if *ctxp is not initialized, 828 * if the specified nr_events exceeds internal limits. May fail 829 * with -EAGAIN if the specified nr_events exceeds the user's limit 830 * of available events. May fail with -ENOMEM if insufficient kernel 831 * resources are available. May fail with -EFAULT if an invalid 832 * pointer is passed for ctxp. Will fail with -ENOSYS if not 833 * implemented. 834 */ 835 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 836 { 837 struct kioctx *ioctx = NULL; 838 unsigned long ctx; 839 long ret; 840 841 ret = get_user(ctx, ctxp); 842 if (unlikely(ret)) 843 goto out; 844 845 ret = -EINVAL; 846 if (unlikely(ctx || nr_events == 0)) { 847 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 848 ctx, nr_events); 849 goto out; 850 } 851 852 ioctx = ioctx_alloc(nr_events); 853 ret = PTR_ERR(ioctx); 854 if (!IS_ERR(ioctx)) { 855 ret = put_user(ioctx->user_id, ctxp); 856 if (ret) 857 kill_ioctx(ioctx); 858 put_ioctx(ioctx); 859 } 860 861 out: 862 return ret; 863 } 864 865 /* sys_io_destroy: 866 * Destroy the aio_context specified. May cancel any outstanding 867 * AIOs and block on completion. Will fail with -ENOSYS if not 868 * implemented. May fail with -EINVAL if the context pointed to 869 * is invalid. 870 */ 871 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 872 { 873 struct kioctx *ioctx = lookup_ioctx(ctx); 874 if (likely(NULL != ioctx)) { 875 kill_ioctx(ioctx); 876 put_ioctx(ioctx); 877 return 0; 878 } 879 pr_debug("EINVAL: io_destroy: invalid context id\n"); 880 return -EINVAL; 881 } 882 883 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 884 { 885 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 886 887 BUG_ON(ret <= 0); 888 889 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 890 ssize_t this = min((ssize_t)iov->iov_len, ret); 891 iov->iov_base += this; 892 iov->iov_len -= this; 893 iocb->ki_left -= this; 894 ret -= this; 895 if (iov->iov_len == 0) { 896 iocb->ki_cur_seg++; 897 iov++; 898 } 899 } 900 901 /* the caller should not have done more io than what fit in 902 * the remaining iovecs */ 903 BUG_ON(ret > 0 && iocb->ki_left == 0); 904 } 905 906 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 907 unsigned long, loff_t); 908 909 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op) 910 { 911 struct file *file = iocb->ki_filp; 912 struct address_space *mapping = file->f_mapping; 913 struct inode *inode = mapping->host; 914 ssize_t ret = 0; 915 916 /* This matches the pread()/pwrite() logic */ 917 if (iocb->ki_pos < 0) 918 return -EINVAL; 919 920 if (rw == WRITE) 921 file_start_write(file); 922 do { 923 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 924 iocb->ki_nr_segs - iocb->ki_cur_seg, 925 iocb->ki_pos); 926 if (ret > 0) 927 aio_advance_iovec(iocb, ret); 928 929 /* retry all partial writes. retry partial reads as long as its a 930 * regular file. */ 931 } while (ret > 0 && iocb->ki_left > 0 && 932 (rw == WRITE || 933 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 934 if (rw == WRITE) 935 file_end_write(file); 936 937 /* This means we must have transferred all that we could */ 938 /* No need to retry anymore */ 939 if ((ret == 0) || (iocb->ki_left == 0)) 940 ret = iocb->ki_nbytes - iocb->ki_left; 941 942 /* If we managed to write some out we return that, rather than 943 * the eventual error. */ 944 if (rw == WRITE 945 && ret < 0 && ret != -EIOCBQUEUED 946 && iocb->ki_nbytes - iocb->ki_left) 947 ret = iocb->ki_nbytes - iocb->ki_left; 948 949 return ret; 950 } 951 952 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat) 953 { 954 ssize_t ret; 955 956 kiocb->ki_nr_segs = kiocb->ki_nbytes; 957 958 #ifdef CONFIG_COMPAT 959 if (compat) 960 ret = compat_rw_copy_check_uvector(rw, 961 (struct compat_iovec __user *)kiocb->ki_buf, 962 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 963 &kiocb->ki_iovec); 964 else 965 #endif 966 ret = rw_copy_check_uvector(rw, 967 (struct iovec __user *)kiocb->ki_buf, 968 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 969 &kiocb->ki_iovec); 970 if (ret < 0) 971 return ret; 972 973 /* ki_nbytes now reflect bytes instead of segs */ 974 kiocb->ki_nbytes = ret; 975 return 0; 976 } 977 978 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb) 979 { 980 if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes))) 981 return -EFAULT; 982 983 kiocb->ki_iovec = &kiocb->ki_inline_vec; 984 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 985 kiocb->ki_iovec->iov_len = kiocb->ki_nbytes; 986 kiocb->ki_nr_segs = 1; 987 return 0; 988 } 989 990 /* 991 * aio_setup_iocb: 992 * Performs the initial checks and aio retry method 993 * setup for the kiocb at the time of io submission. 994 */ 995 static ssize_t aio_run_iocb(struct kiocb *req, bool compat) 996 { 997 struct file *file = req->ki_filp; 998 ssize_t ret; 999 int rw; 1000 fmode_t mode; 1001 aio_rw_op *rw_op; 1002 1003 switch (req->ki_opcode) { 1004 case IOCB_CMD_PREAD: 1005 case IOCB_CMD_PREADV: 1006 mode = FMODE_READ; 1007 rw = READ; 1008 rw_op = file->f_op->aio_read; 1009 goto rw_common; 1010 1011 case IOCB_CMD_PWRITE: 1012 case IOCB_CMD_PWRITEV: 1013 mode = FMODE_WRITE; 1014 rw = WRITE; 1015 rw_op = file->f_op->aio_write; 1016 goto rw_common; 1017 rw_common: 1018 if (unlikely(!(file->f_mode & mode))) 1019 return -EBADF; 1020 1021 if (!rw_op) 1022 return -EINVAL; 1023 1024 ret = (req->ki_opcode == IOCB_CMD_PREADV || 1025 req->ki_opcode == IOCB_CMD_PWRITEV) 1026 ? aio_setup_vectored_rw(rw, req, compat) 1027 : aio_setup_single_vector(rw, req); 1028 if (ret) 1029 return ret; 1030 1031 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1032 if (ret < 0) 1033 return ret; 1034 1035 req->ki_nbytes = ret; 1036 req->ki_left = ret; 1037 1038 ret = aio_rw_vect_retry(req, rw, rw_op); 1039 break; 1040 1041 case IOCB_CMD_FDSYNC: 1042 if (!file->f_op->aio_fsync) 1043 return -EINVAL; 1044 1045 ret = file->f_op->aio_fsync(req, 1); 1046 break; 1047 1048 case IOCB_CMD_FSYNC: 1049 if (!file->f_op->aio_fsync) 1050 return -EINVAL; 1051 1052 ret = file->f_op->aio_fsync(req, 0); 1053 break; 1054 1055 default: 1056 pr_debug("EINVAL: no operation provided\n"); 1057 return -EINVAL; 1058 } 1059 1060 if (ret != -EIOCBQUEUED) { 1061 /* 1062 * There's no easy way to restart the syscall since other AIO's 1063 * may be already running. Just fail this IO with EINTR. 1064 */ 1065 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1066 ret == -ERESTARTNOHAND || 1067 ret == -ERESTART_RESTARTBLOCK)) 1068 ret = -EINTR; 1069 aio_complete(req, ret, 0); 1070 } 1071 1072 return 0; 1073 } 1074 1075 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1076 struct iocb *iocb, bool compat) 1077 { 1078 struct kiocb *req; 1079 ssize_t ret; 1080 1081 /* enforce forwards compatibility on users */ 1082 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1083 pr_debug("EINVAL: reserve field set\n"); 1084 return -EINVAL; 1085 } 1086 1087 /* prevent overflows */ 1088 if (unlikely( 1089 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1090 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1091 ((ssize_t)iocb->aio_nbytes < 0) 1092 )) { 1093 pr_debug("EINVAL: io_submit: overflow check\n"); 1094 return -EINVAL; 1095 } 1096 1097 req = aio_get_req(ctx); 1098 if (unlikely(!req)) 1099 return -EAGAIN; 1100 1101 req->ki_filp = fget(iocb->aio_fildes); 1102 if (unlikely(!req->ki_filp)) { 1103 ret = -EBADF; 1104 goto out_put_req; 1105 } 1106 1107 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1108 /* 1109 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1110 * instance of the file* now. The file descriptor must be 1111 * an eventfd() fd, and will be signaled for each completed 1112 * event using the eventfd_signal() function. 1113 */ 1114 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1115 if (IS_ERR(req->ki_eventfd)) { 1116 ret = PTR_ERR(req->ki_eventfd); 1117 req->ki_eventfd = NULL; 1118 goto out_put_req; 1119 } 1120 } 1121 1122 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1123 if (unlikely(ret)) { 1124 pr_debug("EFAULT: aio_key\n"); 1125 goto out_put_req; 1126 } 1127 1128 req->ki_obj.user = user_iocb; 1129 req->ki_user_data = iocb->aio_data; 1130 req->ki_pos = iocb->aio_offset; 1131 1132 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1133 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1134 req->ki_opcode = iocb->aio_lio_opcode; 1135 1136 ret = aio_run_iocb(req, compat); 1137 if (ret) 1138 goto out_put_req; 1139 1140 aio_put_req(req); /* drop extra ref to req */ 1141 return 0; 1142 out_put_req: 1143 atomic_dec(&ctx->reqs_active); 1144 aio_put_req(req); /* drop extra ref to req */ 1145 aio_put_req(req); /* drop i/o ref to req */ 1146 return ret; 1147 } 1148 1149 long do_io_submit(aio_context_t ctx_id, long nr, 1150 struct iocb __user *__user *iocbpp, bool compat) 1151 { 1152 struct kioctx *ctx; 1153 long ret = 0; 1154 int i = 0; 1155 struct blk_plug plug; 1156 1157 if (unlikely(nr < 0)) 1158 return -EINVAL; 1159 1160 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1161 nr = LONG_MAX/sizeof(*iocbpp); 1162 1163 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1164 return -EFAULT; 1165 1166 ctx = lookup_ioctx(ctx_id); 1167 if (unlikely(!ctx)) { 1168 pr_debug("EINVAL: invalid context id\n"); 1169 return -EINVAL; 1170 } 1171 1172 blk_start_plug(&plug); 1173 1174 /* 1175 * AKPM: should this return a partial result if some of the IOs were 1176 * successfully submitted? 1177 */ 1178 for (i=0; i<nr; i++) { 1179 struct iocb __user *user_iocb; 1180 struct iocb tmp; 1181 1182 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1183 ret = -EFAULT; 1184 break; 1185 } 1186 1187 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1188 ret = -EFAULT; 1189 break; 1190 } 1191 1192 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1193 if (ret) 1194 break; 1195 } 1196 blk_finish_plug(&plug); 1197 1198 put_ioctx(ctx); 1199 return i ? i : ret; 1200 } 1201 1202 /* sys_io_submit: 1203 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1204 * the number of iocbs queued. May return -EINVAL if the aio_context 1205 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1206 * *iocbpp[0] is not properly initialized, if the operation specified 1207 * is invalid for the file descriptor in the iocb. May fail with 1208 * -EFAULT if any of the data structures point to invalid data. May 1209 * fail with -EBADF if the file descriptor specified in the first 1210 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1211 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1212 * fail with -ENOSYS if not implemented. 1213 */ 1214 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1215 struct iocb __user * __user *, iocbpp) 1216 { 1217 return do_io_submit(ctx_id, nr, iocbpp, 0); 1218 } 1219 1220 /* lookup_kiocb 1221 * Finds a given iocb for cancellation. 1222 */ 1223 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1224 u32 key) 1225 { 1226 struct list_head *pos; 1227 1228 assert_spin_locked(&ctx->ctx_lock); 1229 1230 if (key != KIOCB_KEY) 1231 return NULL; 1232 1233 /* TODO: use a hash or array, this sucks. */ 1234 list_for_each(pos, &ctx->active_reqs) { 1235 struct kiocb *kiocb = list_kiocb(pos); 1236 if (kiocb->ki_obj.user == iocb) 1237 return kiocb; 1238 } 1239 return NULL; 1240 } 1241 1242 /* sys_io_cancel: 1243 * Attempts to cancel an iocb previously passed to io_submit. If 1244 * the operation is successfully cancelled, the resulting event is 1245 * copied into the memory pointed to by result without being placed 1246 * into the completion queue and 0 is returned. May fail with 1247 * -EFAULT if any of the data structures pointed to are invalid. 1248 * May fail with -EINVAL if aio_context specified by ctx_id is 1249 * invalid. May fail with -EAGAIN if the iocb specified was not 1250 * cancelled. Will fail with -ENOSYS if not implemented. 1251 */ 1252 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1253 struct io_event __user *, result) 1254 { 1255 struct io_event res; 1256 struct kioctx *ctx; 1257 struct kiocb *kiocb; 1258 u32 key; 1259 int ret; 1260 1261 ret = get_user(key, &iocb->aio_key); 1262 if (unlikely(ret)) 1263 return -EFAULT; 1264 1265 ctx = lookup_ioctx(ctx_id); 1266 if (unlikely(!ctx)) 1267 return -EINVAL; 1268 1269 spin_lock_irq(&ctx->ctx_lock); 1270 1271 kiocb = lookup_kiocb(ctx, iocb, key); 1272 if (kiocb) 1273 ret = kiocb_cancel(ctx, kiocb, &res); 1274 else 1275 ret = -EINVAL; 1276 1277 spin_unlock_irq(&ctx->ctx_lock); 1278 1279 if (!ret) { 1280 /* Cancellation succeeded -- copy the result 1281 * into the user's buffer. 1282 */ 1283 if (copy_to_user(result, &res, sizeof(res))) 1284 ret = -EFAULT; 1285 } 1286 1287 put_ioctx(ctx); 1288 1289 return ret; 1290 } 1291 1292 /* io_getevents: 1293 * Attempts to read at least min_nr events and up to nr events from 1294 * the completion queue for the aio_context specified by ctx_id. If 1295 * it succeeds, the number of read events is returned. May fail with 1296 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1297 * out of range, if timeout is out of range. May fail with -EFAULT 1298 * if any of the memory specified is invalid. May return 0 or 1299 * < min_nr if the timeout specified by timeout has elapsed 1300 * before sufficient events are available, where timeout == NULL 1301 * specifies an infinite timeout. Note that the timeout pointed to by 1302 * timeout is relative and will be updated if not NULL and the 1303 * operation blocks. Will fail with -ENOSYS if not implemented. 1304 */ 1305 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1306 long, min_nr, 1307 long, nr, 1308 struct io_event __user *, events, 1309 struct timespec __user *, timeout) 1310 { 1311 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1312 long ret = -EINVAL; 1313 1314 if (likely(ioctx)) { 1315 if (likely(min_nr <= nr && min_nr >= 0)) 1316 ret = read_events(ioctx, min_nr, nr, events, timeout); 1317 put_ioctx(ioctx); 1318 } 1319 return ret; 1320 } 1321