1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/uio.h> 23 24 #include <linux/sched/signal.h> 25 #include <linux/fs.h> 26 #include <linux/file.h> 27 #include <linux/mm.h> 28 #include <linux/mman.h> 29 #include <linux/mmu_context.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 45 #include <asm/kmap_types.h> 46 #include <linux/uaccess.h> 47 48 #include "internal.h" 49 50 #define KIOCB_KEY 0 51 52 #define AIO_RING_MAGIC 0xa10a10a1 53 #define AIO_RING_COMPAT_FEATURES 1 54 #define AIO_RING_INCOMPAT_FEATURES 0 55 struct aio_ring { 56 unsigned id; /* kernel internal index number */ 57 unsigned nr; /* number of io_events */ 58 unsigned head; /* Written to by userland or under ring_lock 59 * mutex by aio_read_events_ring(). */ 60 unsigned tail; 61 62 unsigned magic; 63 unsigned compat_features; 64 unsigned incompat_features; 65 unsigned header_length; /* size of aio_ring */ 66 67 68 struct io_event io_events[0]; 69 }; /* 128 bytes + ring size */ 70 71 #define AIO_RING_PAGES 8 72 73 struct kioctx_table { 74 struct rcu_head rcu; 75 unsigned nr; 76 struct kioctx __rcu *table[]; 77 }; 78 79 struct kioctx_cpu { 80 unsigned reqs_available; 81 }; 82 83 struct ctx_rq_wait { 84 struct completion comp; 85 atomic_t count; 86 }; 87 88 struct kioctx { 89 struct percpu_ref users; 90 atomic_t dead; 91 92 struct percpu_ref reqs; 93 94 unsigned long user_id; 95 96 struct __percpu kioctx_cpu *cpu; 97 98 /* 99 * For percpu reqs_available, number of slots we move to/from global 100 * counter at a time: 101 */ 102 unsigned req_batch; 103 /* 104 * This is what userspace passed to io_setup(), it's not used for 105 * anything but counting against the global max_reqs quota. 106 * 107 * The real limit is nr_events - 1, which will be larger (see 108 * aio_setup_ring()) 109 */ 110 unsigned max_reqs; 111 112 /* Size of ringbuffer, in units of struct io_event */ 113 unsigned nr_events; 114 115 unsigned long mmap_base; 116 unsigned long mmap_size; 117 118 struct page **ring_pages; 119 long nr_pages; 120 121 struct rcu_work free_rwork; /* see free_ioctx() */ 122 123 /* 124 * signals when all in-flight requests are done 125 */ 126 struct ctx_rq_wait *rq_wait; 127 128 struct { 129 /* 130 * This counts the number of available slots in the ringbuffer, 131 * so we avoid overflowing it: it's decremented (if positive) 132 * when allocating a kiocb and incremented when the resulting 133 * io_event is pulled off the ringbuffer. 134 * 135 * We batch accesses to it with a percpu version. 136 */ 137 atomic_t reqs_available; 138 } ____cacheline_aligned_in_smp; 139 140 struct { 141 spinlock_t ctx_lock; 142 struct list_head active_reqs; /* used for cancellation */ 143 } ____cacheline_aligned_in_smp; 144 145 struct { 146 struct mutex ring_lock; 147 wait_queue_head_t wait; 148 } ____cacheline_aligned_in_smp; 149 150 struct { 151 unsigned tail; 152 unsigned completed_events; 153 spinlock_t completion_lock; 154 } ____cacheline_aligned_in_smp; 155 156 struct page *internal_pages[AIO_RING_PAGES]; 157 struct file *aio_ring_file; 158 159 unsigned id; 160 }; 161 162 struct fsync_iocb { 163 struct work_struct work; 164 struct file *file; 165 bool datasync; 166 }; 167 168 struct poll_iocb { 169 struct file *file; 170 __poll_t events; 171 struct wait_queue_head *head; 172 173 union { 174 struct wait_queue_entry wait; 175 struct work_struct work; 176 }; 177 }; 178 179 struct aio_kiocb { 180 union { 181 struct kiocb rw; 182 struct fsync_iocb fsync; 183 struct poll_iocb poll; 184 }; 185 186 struct kioctx *ki_ctx; 187 kiocb_cancel_fn *ki_cancel; 188 189 struct iocb __user *ki_user_iocb; /* user's aiocb */ 190 __u64 ki_user_data; /* user's data for completion */ 191 192 struct list_head ki_list; /* the aio core uses this 193 * for cancellation */ 194 195 /* 196 * If the aio_resfd field of the userspace iocb is not zero, 197 * this is the underlying eventfd context to deliver events to. 198 */ 199 struct eventfd_ctx *ki_eventfd; 200 }; 201 202 /*------ sysctl variables----*/ 203 static DEFINE_SPINLOCK(aio_nr_lock); 204 unsigned long aio_nr; /* current system wide number of aio requests */ 205 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 206 /*----end sysctl variables---*/ 207 208 static struct kmem_cache *kiocb_cachep; 209 static struct kmem_cache *kioctx_cachep; 210 211 static struct vfsmount *aio_mnt; 212 213 static const struct file_operations aio_ring_fops; 214 static const struct address_space_operations aio_ctx_aops; 215 216 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 217 { 218 struct qstr this = QSTR_INIT("[aio]", 5); 219 struct file *file; 220 struct path path; 221 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 222 if (IS_ERR(inode)) 223 return ERR_CAST(inode); 224 225 inode->i_mapping->a_ops = &aio_ctx_aops; 226 inode->i_mapping->private_data = ctx; 227 inode->i_size = PAGE_SIZE * nr_pages; 228 229 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 230 if (!path.dentry) { 231 iput(inode); 232 return ERR_PTR(-ENOMEM); 233 } 234 path.mnt = mntget(aio_mnt); 235 236 d_instantiate(path.dentry, inode); 237 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 238 if (IS_ERR(file)) { 239 path_put(&path); 240 return file; 241 } 242 243 file->f_flags = O_RDWR; 244 return file; 245 } 246 247 static struct dentry *aio_mount(struct file_system_type *fs_type, 248 int flags, const char *dev_name, void *data) 249 { 250 static const struct dentry_operations ops = { 251 .d_dname = simple_dname, 252 }; 253 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops, 254 AIO_RING_MAGIC); 255 256 if (!IS_ERR(root)) 257 root->d_sb->s_iflags |= SB_I_NOEXEC; 258 return root; 259 } 260 261 /* aio_setup 262 * Creates the slab caches used by the aio routines, panic on 263 * failure as this is done early during the boot sequence. 264 */ 265 static int __init aio_setup(void) 266 { 267 static struct file_system_type aio_fs = { 268 .name = "aio", 269 .mount = aio_mount, 270 .kill_sb = kill_anon_super, 271 }; 272 aio_mnt = kern_mount(&aio_fs); 273 if (IS_ERR(aio_mnt)) 274 panic("Failed to create aio fs mount."); 275 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 278 return 0; 279 } 280 __initcall(aio_setup); 281 282 static void put_aio_ring_file(struct kioctx *ctx) 283 { 284 struct file *aio_ring_file = ctx->aio_ring_file; 285 struct address_space *i_mapping; 286 287 if (aio_ring_file) { 288 truncate_setsize(file_inode(aio_ring_file), 0); 289 290 /* Prevent further access to the kioctx from migratepages */ 291 i_mapping = aio_ring_file->f_mapping; 292 spin_lock(&i_mapping->private_lock); 293 i_mapping->private_data = NULL; 294 ctx->aio_ring_file = NULL; 295 spin_unlock(&i_mapping->private_lock); 296 297 fput(aio_ring_file); 298 } 299 } 300 301 static void aio_free_ring(struct kioctx *ctx) 302 { 303 int i; 304 305 /* Disconnect the kiotx from the ring file. This prevents future 306 * accesses to the kioctx from page migration. 307 */ 308 put_aio_ring_file(ctx); 309 310 for (i = 0; i < ctx->nr_pages; i++) { 311 struct page *page; 312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 313 page_count(ctx->ring_pages[i])); 314 page = ctx->ring_pages[i]; 315 if (!page) 316 continue; 317 ctx->ring_pages[i] = NULL; 318 put_page(page); 319 } 320 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 322 kfree(ctx->ring_pages); 323 ctx->ring_pages = NULL; 324 } 325 } 326 327 static int aio_ring_mremap(struct vm_area_struct *vma) 328 { 329 struct file *file = vma->vm_file; 330 struct mm_struct *mm = vma->vm_mm; 331 struct kioctx_table *table; 332 int i, res = -EINVAL; 333 334 spin_lock(&mm->ioctx_lock); 335 rcu_read_lock(); 336 table = rcu_dereference(mm->ioctx_table); 337 for (i = 0; i < table->nr; i++) { 338 struct kioctx *ctx; 339 340 ctx = rcu_dereference(table->table[i]); 341 if (ctx && ctx->aio_ring_file == file) { 342 if (!atomic_read(&ctx->dead)) { 343 ctx->user_id = ctx->mmap_base = vma->vm_start; 344 res = 0; 345 } 346 break; 347 } 348 } 349 350 rcu_read_unlock(); 351 spin_unlock(&mm->ioctx_lock); 352 return res; 353 } 354 355 static const struct vm_operations_struct aio_ring_vm_ops = { 356 .mremap = aio_ring_mremap, 357 #if IS_ENABLED(CONFIG_MMU) 358 .fault = filemap_fault, 359 .map_pages = filemap_map_pages, 360 .page_mkwrite = filemap_page_mkwrite, 361 #endif 362 }; 363 364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 365 { 366 vma->vm_flags |= VM_DONTEXPAND; 367 vma->vm_ops = &aio_ring_vm_ops; 368 return 0; 369 } 370 371 static const struct file_operations aio_ring_fops = { 372 .mmap = aio_ring_mmap, 373 }; 374 375 #if IS_ENABLED(CONFIG_MIGRATION) 376 static int aio_migratepage(struct address_space *mapping, struct page *new, 377 struct page *old, enum migrate_mode mode) 378 { 379 struct kioctx *ctx; 380 unsigned long flags; 381 pgoff_t idx; 382 int rc; 383 384 /* 385 * We cannot support the _NO_COPY case here, because copy needs to 386 * happen under the ctx->completion_lock. That does not work with the 387 * migration workflow of MIGRATE_SYNC_NO_COPY. 388 */ 389 if (mode == MIGRATE_SYNC_NO_COPY) 390 return -EINVAL; 391 392 rc = 0; 393 394 /* mapping->private_lock here protects against the kioctx teardown. */ 395 spin_lock(&mapping->private_lock); 396 ctx = mapping->private_data; 397 if (!ctx) { 398 rc = -EINVAL; 399 goto out; 400 } 401 402 /* The ring_lock mutex. The prevents aio_read_events() from writing 403 * to the ring's head, and prevents page migration from mucking in 404 * a partially initialized kiotx. 405 */ 406 if (!mutex_trylock(&ctx->ring_lock)) { 407 rc = -EAGAIN; 408 goto out; 409 } 410 411 idx = old->index; 412 if (idx < (pgoff_t)ctx->nr_pages) { 413 /* Make sure the old page hasn't already been changed */ 414 if (ctx->ring_pages[idx] != old) 415 rc = -EAGAIN; 416 } else 417 rc = -EINVAL; 418 419 if (rc != 0) 420 goto out_unlock; 421 422 /* Writeback must be complete */ 423 BUG_ON(PageWriteback(old)); 424 get_page(new); 425 426 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 427 if (rc != MIGRATEPAGE_SUCCESS) { 428 put_page(new); 429 goto out_unlock; 430 } 431 432 /* Take completion_lock to prevent other writes to the ring buffer 433 * while the old page is copied to the new. This prevents new 434 * events from being lost. 435 */ 436 spin_lock_irqsave(&ctx->completion_lock, flags); 437 migrate_page_copy(new, old); 438 BUG_ON(ctx->ring_pages[idx] != old); 439 ctx->ring_pages[idx] = new; 440 spin_unlock_irqrestore(&ctx->completion_lock, flags); 441 442 /* The old page is no longer accessible. */ 443 put_page(old); 444 445 out_unlock: 446 mutex_unlock(&ctx->ring_lock); 447 out: 448 spin_unlock(&mapping->private_lock); 449 return rc; 450 } 451 #endif 452 453 static const struct address_space_operations aio_ctx_aops = { 454 .set_page_dirty = __set_page_dirty_no_writeback, 455 #if IS_ENABLED(CONFIG_MIGRATION) 456 .migratepage = aio_migratepage, 457 #endif 458 }; 459 460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 461 { 462 struct aio_ring *ring; 463 struct mm_struct *mm = current->mm; 464 unsigned long size, unused; 465 int nr_pages; 466 int i; 467 struct file *file; 468 469 /* Compensate for the ring buffer's head/tail overlap entry */ 470 nr_events += 2; /* 1 is required, 2 for good luck */ 471 472 size = sizeof(struct aio_ring); 473 size += sizeof(struct io_event) * nr_events; 474 475 nr_pages = PFN_UP(size); 476 if (nr_pages < 0) 477 return -EINVAL; 478 479 file = aio_private_file(ctx, nr_pages); 480 if (IS_ERR(file)) { 481 ctx->aio_ring_file = NULL; 482 return -ENOMEM; 483 } 484 485 ctx->aio_ring_file = file; 486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 487 / sizeof(struct io_event); 488 489 ctx->ring_pages = ctx->internal_pages; 490 if (nr_pages > AIO_RING_PAGES) { 491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 492 GFP_KERNEL); 493 if (!ctx->ring_pages) { 494 put_aio_ring_file(ctx); 495 return -ENOMEM; 496 } 497 } 498 499 for (i = 0; i < nr_pages; i++) { 500 struct page *page; 501 page = find_or_create_page(file->f_mapping, 502 i, GFP_HIGHUSER | __GFP_ZERO); 503 if (!page) 504 break; 505 pr_debug("pid(%d) page[%d]->count=%d\n", 506 current->pid, i, page_count(page)); 507 SetPageUptodate(page); 508 unlock_page(page); 509 510 ctx->ring_pages[i] = page; 511 } 512 ctx->nr_pages = i; 513 514 if (unlikely(i != nr_pages)) { 515 aio_free_ring(ctx); 516 return -ENOMEM; 517 } 518 519 ctx->mmap_size = nr_pages * PAGE_SIZE; 520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 521 522 if (down_write_killable(&mm->mmap_sem)) { 523 ctx->mmap_size = 0; 524 aio_free_ring(ctx); 525 return -EINTR; 526 } 527 528 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 529 PROT_READ | PROT_WRITE, 530 MAP_SHARED, 0, &unused, NULL); 531 up_write(&mm->mmap_sem); 532 if (IS_ERR((void *)ctx->mmap_base)) { 533 ctx->mmap_size = 0; 534 aio_free_ring(ctx); 535 return -ENOMEM; 536 } 537 538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 539 540 ctx->user_id = ctx->mmap_base; 541 ctx->nr_events = nr_events; /* trusted copy */ 542 543 ring = kmap_atomic(ctx->ring_pages[0]); 544 ring->nr = nr_events; /* user copy */ 545 ring->id = ~0U; 546 ring->head = ring->tail = 0; 547 ring->magic = AIO_RING_MAGIC; 548 ring->compat_features = AIO_RING_COMPAT_FEATURES; 549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 550 ring->header_length = sizeof(struct aio_ring); 551 kunmap_atomic(ring); 552 flush_dcache_page(ctx->ring_pages[0]); 553 554 return 0; 555 } 556 557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 560 561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 562 { 563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 564 struct kioctx *ctx = req->ki_ctx; 565 unsigned long flags; 566 567 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 568 return; 569 570 spin_lock_irqsave(&ctx->ctx_lock, flags); 571 list_add_tail(&req->ki_list, &ctx->active_reqs); 572 req->ki_cancel = cancel; 573 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 574 } 575 EXPORT_SYMBOL(kiocb_set_cancel_fn); 576 577 /* 578 * free_ioctx() should be RCU delayed to synchronize against the RCU 579 * protected lookup_ioctx() and also needs process context to call 580 * aio_free_ring(). Use rcu_work. 581 */ 582 static void free_ioctx(struct work_struct *work) 583 { 584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 585 free_rwork); 586 pr_debug("freeing %p\n", ctx); 587 588 aio_free_ring(ctx); 589 free_percpu(ctx->cpu); 590 percpu_ref_exit(&ctx->reqs); 591 percpu_ref_exit(&ctx->users); 592 kmem_cache_free(kioctx_cachep, ctx); 593 } 594 595 static void free_ioctx_reqs(struct percpu_ref *ref) 596 { 597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 598 599 /* At this point we know that there are no any in-flight requests */ 600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 601 complete(&ctx->rq_wait->comp); 602 603 /* Synchronize against RCU protected table->table[] dereferences */ 604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 605 queue_rcu_work(system_wq, &ctx->free_rwork); 606 } 607 608 /* 609 * When this function runs, the kioctx has been removed from the "hash table" 610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 611 * now it's safe to cancel any that need to be. 612 */ 613 static void free_ioctx_users(struct percpu_ref *ref) 614 { 615 struct kioctx *ctx = container_of(ref, struct kioctx, users); 616 struct aio_kiocb *req; 617 618 spin_lock_irq(&ctx->ctx_lock); 619 620 while (!list_empty(&ctx->active_reqs)) { 621 req = list_first_entry(&ctx->active_reqs, 622 struct aio_kiocb, ki_list); 623 req->ki_cancel(&req->rw); 624 list_del_init(&req->ki_list); 625 } 626 627 spin_unlock_irq(&ctx->ctx_lock); 628 629 percpu_ref_kill(&ctx->reqs); 630 percpu_ref_put(&ctx->reqs); 631 } 632 633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 634 { 635 unsigned i, new_nr; 636 struct kioctx_table *table, *old; 637 struct aio_ring *ring; 638 639 spin_lock(&mm->ioctx_lock); 640 table = rcu_dereference_raw(mm->ioctx_table); 641 642 while (1) { 643 if (table) 644 for (i = 0; i < table->nr; i++) 645 if (!rcu_access_pointer(table->table[i])) { 646 ctx->id = i; 647 rcu_assign_pointer(table->table[i], ctx); 648 spin_unlock(&mm->ioctx_lock); 649 650 /* While kioctx setup is in progress, 651 * we are protected from page migration 652 * changes ring_pages by ->ring_lock. 653 */ 654 ring = kmap_atomic(ctx->ring_pages[0]); 655 ring->id = ctx->id; 656 kunmap_atomic(ring); 657 return 0; 658 } 659 660 new_nr = (table ? table->nr : 1) * 4; 661 spin_unlock(&mm->ioctx_lock); 662 663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 664 new_nr, GFP_KERNEL); 665 if (!table) 666 return -ENOMEM; 667 668 table->nr = new_nr; 669 670 spin_lock(&mm->ioctx_lock); 671 old = rcu_dereference_raw(mm->ioctx_table); 672 673 if (!old) { 674 rcu_assign_pointer(mm->ioctx_table, table); 675 } else if (table->nr > old->nr) { 676 memcpy(table->table, old->table, 677 old->nr * sizeof(struct kioctx *)); 678 679 rcu_assign_pointer(mm->ioctx_table, table); 680 kfree_rcu(old, rcu); 681 } else { 682 kfree(table); 683 table = old; 684 } 685 } 686 } 687 688 static void aio_nr_sub(unsigned nr) 689 { 690 spin_lock(&aio_nr_lock); 691 if (WARN_ON(aio_nr - nr > aio_nr)) 692 aio_nr = 0; 693 else 694 aio_nr -= nr; 695 spin_unlock(&aio_nr_lock); 696 } 697 698 /* ioctx_alloc 699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 700 */ 701 static struct kioctx *ioctx_alloc(unsigned nr_events) 702 { 703 struct mm_struct *mm = current->mm; 704 struct kioctx *ctx; 705 int err = -ENOMEM; 706 707 /* 708 * Store the original nr_events -- what userspace passed to io_setup(), 709 * for counting against the global limit -- before it changes. 710 */ 711 unsigned int max_reqs = nr_events; 712 713 /* 714 * We keep track of the number of available ringbuffer slots, to prevent 715 * overflow (reqs_available), and we also use percpu counters for this. 716 * 717 * So since up to half the slots might be on other cpu's percpu counters 718 * and unavailable, double nr_events so userspace sees what they 719 * expected: additionally, we move req_batch slots to/from percpu 720 * counters at a time, so make sure that isn't 0: 721 */ 722 nr_events = max(nr_events, num_possible_cpus() * 4); 723 nr_events *= 2; 724 725 /* Prevent overflows */ 726 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 727 pr_debug("ENOMEM: nr_events too high\n"); 728 return ERR_PTR(-EINVAL); 729 } 730 731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 732 return ERR_PTR(-EAGAIN); 733 734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 735 if (!ctx) 736 return ERR_PTR(-ENOMEM); 737 738 ctx->max_reqs = max_reqs; 739 740 spin_lock_init(&ctx->ctx_lock); 741 spin_lock_init(&ctx->completion_lock); 742 mutex_init(&ctx->ring_lock); 743 /* Protect against page migration throughout kiotx setup by keeping 744 * the ring_lock mutex held until setup is complete. */ 745 mutex_lock(&ctx->ring_lock); 746 init_waitqueue_head(&ctx->wait); 747 748 INIT_LIST_HEAD(&ctx->active_reqs); 749 750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 751 goto err; 752 753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 754 goto err; 755 756 ctx->cpu = alloc_percpu(struct kioctx_cpu); 757 if (!ctx->cpu) 758 goto err; 759 760 err = aio_setup_ring(ctx, nr_events); 761 if (err < 0) 762 goto err; 763 764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 766 if (ctx->req_batch < 1) 767 ctx->req_batch = 1; 768 769 /* limit the number of system wide aios */ 770 spin_lock(&aio_nr_lock); 771 if (aio_nr + ctx->max_reqs > aio_max_nr || 772 aio_nr + ctx->max_reqs < aio_nr) { 773 spin_unlock(&aio_nr_lock); 774 err = -EAGAIN; 775 goto err_ctx; 776 } 777 aio_nr += ctx->max_reqs; 778 spin_unlock(&aio_nr_lock); 779 780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 782 783 err = ioctx_add_table(ctx, mm); 784 if (err) 785 goto err_cleanup; 786 787 /* Release the ring_lock mutex now that all setup is complete. */ 788 mutex_unlock(&ctx->ring_lock); 789 790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 791 ctx, ctx->user_id, mm, ctx->nr_events); 792 return ctx; 793 794 err_cleanup: 795 aio_nr_sub(ctx->max_reqs); 796 err_ctx: 797 atomic_set(&ctx->dead, 1); 798 if (ctx->mmap_size) 799 vm_munmap(ctx->mmap_base, ctx->mmap_size); 800 aio_free_ring(ctx); 801 err: 802 mutex_unlock(&ctx->ring_lock); 803 free_percpu(ctx->cpu); 804 percpu_ref_exit(&ctx->reqs); 805 percpu_ref_exit(&ctx->users); 806 kmem_cache_free(kioctx_cachep, ctx); 807 pr_debug("error allocating ioctx %d\n", err); 808 return ERR_PTR(err); 809 } 810 811 /* kill_ioctx 812 * Cancels all outstanding aio requests on an aio context. Used 813 * when the processes owning a context have all exited to encourage 814 * the rapid destruction of the kioctx. 815 */ 816 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 817 struct ctx_rq_wait *wait) 818 { 819 struct kioctx_table *table; 820 821 spin_lock(&mm->ioctx_lock); 822 if (atomic_xchg(&ctx->dead, 1)) { 823 spin_unlock(&mm->ioctx_lock); 824 return -EINVAL; 825 } 826 827 table = rcu_dereference_raw(mm->ioctx_table); 828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 829 RCU_INIT_POINTER(table->table[ctx->id], NULL); 830 spin_unlock(&mm->ioctx_lock); 831 832 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 833 wake_up_all(&ctx->wait); 834 835 /* 836 * It'd be more correct to do this in free_ioctx(), after all 837 * the outstanding kiocbs have finished - but by then io_destroy 838 * has already returned, so io_setup() could potentially return 839 * -EAGAIN with no ioctxs actually in use (as far as userspace 840 * could tell). 841 */ 842 aio_nr_sub(ctx->max_reqs); 843 844 if (ctx->mmap_size) 845 vm_munmap(ctx->mmap_base, ctx->mmap_size); 846 847 ctx->rq_wait = wait; 848 percpu_ref_kill(&ctx->users); 849 return 0; 850 } 851 852 /* 853 * exit_aio: called when the last user of mm goes away. At this point, there is 854 * no way for any new requests to be submited or any of the io_* syscalls to be 855 * called on the context. 856 * 857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 858 * them. 859 */ 860 void exit_aio(struct mm_struct *mm) 861 { 862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 863 struct ctx_rq_wait wait; 864 int i, skipped; 865 866 if (!table) 867 return; 868 869 atomic_set(&wait.count, table->nr); 870 init_completion(&wait.comp); 871 872 skipped = 0; 873 for (i = 0; i < table->nr; ++i) { 874 struct kioctx *ctx = 875 rcu_dereference_protected(table->table[i], true); 876 877 if (!ctx) { 878 skipped++; 879 continue; 880 } 881 882 /* 883 * We don't need to bother with munmap() here - exit_mmap(mm) 884 * is coming and it'll unmap everything. And we simply can't, 885 * this is not necessarily our ->mm. 886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 887 * that it needs to unmap the area, just set it to 0. 888 */ 889 ctx->mmap_size = 0; 890 kill_ioctx(mm, ctx, &wait); 891 } 892 893 if (!atomic_sub_and_test(skipped, &wait.count)) { 894 /* Wait until all IO for the context are done. */ 895 wait_for_completion(&wait.comp); 896 } 897 898 RCU_INIT_POINTER(mm->ioctx_table, NULL); 899 kfree(table); 900 } 901 902 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 903 { 904 struct kioctx_cpu *kcpu; 905 unsigned long flags; 906 907 local_irq_save(flags); 908 kcpu = this_cpu_ptr(ctx->cpu); 909 kcpu->reqs_available += nr; 910 911 while (kcpu->reqs_available >= ctx->req_batch * 2) { 912 kcpu->reqs_available -= ctx->req_batch; 913 atomic_add(ctx->req_batch, &ctx->reqs_available); 914 } 915 916 local_irq_restore(flags); 917 } 918 919 static bool get_reqs_available(struct kioctx *ctx) 920 { 921 struct kioctx_cpu *kcpu; 922 bool ret = false; 923 unsigned long flags; 924 925 local_irq_save(flags); 926 kcpu = this_cpu_ptr(ctx->cpu); 927 if (!kcpu->reqs_available) { 928 int old, avail = atomic_read(&ctx->reqs_available); 929 930 do { 931 if (avail < ctx->req_batch) 932 goto out; 933 934 old = avail; 935 avail = atomic_cmpxchg(&ctx->reqs_available, 936 avail, avail - ctx->req_batch); 937 } while (avail != old); 938 939 kcpu->reqs_available += ctx->req_batch; 940 } 941 942 ret = true; 943 kcpu->reqs_available--; 944 out: 945 local_irq_restore(flags); 946 return ret; 947 } 948 949 /* refill_reqs_available 950 * Updates the reqs_available reference counts used for tracking the 951 * number of free slots in the completion ring. This can be called 952 * from aio_complete() (to optimistically update reqs_available) or 953 * from aio_get_req() (the we're out of events case). It must be 954 * called holding ctx->completion_lock. 955 */ 956 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 957 unsigned tail) 958 { 959 unsigned events_in_ring, completed; 960 961 /* Clamp head since userland can write to it. */ 962 head %= ctx->nr_events; 963 if (head <= tail) 964 events_in_ring = tail - head; 965 else 966 events_in_ring = ctx->nr_events - (head - tail); 967 968 completed = ctx->completed_events; 969 if (events_in_ring < completed) 970 completed -= events_in_ring; 971 else 972 completed = 0; 973 974 if (!completed) 975 return; 976 977 ctx->completed_events -= completed; 978 put_reqs_available(ctx, completed); 979 } 980 981 /* user_refill_reqs_available 982 * Called to refill reqs_available when aio_get_req() encounters an 983 * out of space in the completion ring. 984 */ 985 static void user_refill_reqs_available(struct kioctx *ctx) 986 { 987 spin_lock_irq(&ctx->completion_lock); 988 if (ctx->completed_events) { 989 struct aio_ring *ring; 990 unsigned head; 991 992 /* Access of ring->head may race with aio_read_events_ring() 993 * here, but that's okay since whether we read the old version 994 * or the new version, and either will be valid. The important 995 * part is that head cannot pass tail since we prevent 996 * aio_complete() from updating tail by holding 997 * ctx->completion_lock. Even if head is invalid, the check 998 * against ctx->completed_events below will make sure we do the 999 * safe/right thing. 1000 */ 1001 ring = kmap_atomic(ctx->ring_pages[0]); 1002 head = ring->head; 1003 kunmap_atomic(ring); 1004 1005 refill_reqs_available(ctx, head, ctx->tail); 1006 } 1007 1008 spin_unlock_irq(&ctx->completion_lock); 1009 } 1010 1011 /* aio_get_req 1012 * Allocate a slot for an aio request. 1013 * Returns NULL if no requests are free. 1014 */ 1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1016 { 1017 struct aio_kiocb *req; 1018 1019 if (!get_reqs_available(ctx)) { 1020 user_refill_reqs_available(ctx); 1021 if (!get_reqs_available(ctx)) 1022 return NULL; 1023 } 1024 1025 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1026 if (unlikely(!req)) 1027 goto out_put; 1028 1029 percpu_ref_get(&ctx->reqs); 1030 INIT_LIST_HEAD(&req->ki_list); 1031 req->ki_ctx = ctx; 1032 return req; 1033 out_put: 1034 put_reqs_available(ctx, 1); 1035 return NULL; 1036 } 1037 1038 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1039 { 1040 struct aio_ring __user *ring = (void __user *)ctx_id; 1041 struct mm_struct *mm = current->mm; 1042 struct kioctx *ctx, *ret = NULL; 1043 struct kioctx_table *table; 1044 unsigned id; 1045 1046 if (get_user(id, &ring->id)) 1047 return NULL; 1048 1049 rcu_read_lock(); 1050 table = rcu_dereference(mm->ioctx_table); 1051 1052 if (!table || id >= table->nr) 1053 goto out; 1054 1055 ctx = rcu_dereference(table->table[id]); 1056 if (ctx && ctx->user_id == ctx_id) { 1057 if (percpu_ref_tryget_live(&ctx->users)) 1058 ret = ctx; 1059 } 1060 out: 1061 rcu_read_unlock(); 1062 return ret; 1063 } 1064 1065 /* aio_complete 1066 * Called when the io request on the given iocb is complete. 1067 */ 1068 static void aio_complete(struct aio_kiocb *iocb, long res, long res2) 1069 { 1070 struct kioctx *ctx = iocb->ki_ctx; 1071 struct aio_ring *ring; 1072 struct io_event *ev_page, *event; 1073 unsigned tail, pos, head; 1074 unsigned long flags; 1075 1076 /* 1077 * Add a completion event to the ring buffer. Must be done holding 1078 * ctx->completion_lock to prevent other code from messing with the tail 1079 * pointer since we might be called from irq context. 1080 */ 1081 spin_lock_irqsave(&ctx->completion_lock, flags); 1082 1083 tail = ctx->tail; 1084 pos = tail + AIO_EVENTS_OFFSET; 1085 1086 if (++tail >= ctx->nr_events) 1087 tail = 0; 1088 1089 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1090 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1091 1092 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1093 event->data = iocb->ki_user_data; 1094 event->res = res; 1095 event->res2 = res2; 1096 1097 kunmap_atomic(ev_page); 1098 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1099 1100 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1101 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1102 res, res2); 1103 1104 /* after flagging the request as done, we 1105 * must never even look at it again 1106 */ 1107 smp_wmb(); /* make event visible before updating tail */ 1108 1109 ctx->tail = tail; 1110 1111 ring = kmap_atomic(ctx->ring_pages[0]); 1112 head = ring->head; 1113 ring->tail = tail; 1114 kunmap_atomic(ring); 1115 flush_dcache_page(ctx->ring_pages[0]); 1116 1117 ctx->completed_events++; 1118 if (ctx->completed_events > 1) 1119 refill_reqs_available(ctx, head, tail); 1120 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1121 1122 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1123 1124 /* 1125 * Check if the user asked us to deliver the result through an 1126 * eventfd. The eventfd_signal() function is safe to be called 1127 * from IRQ context. 1128 */ 1129 if (iocb->ki_eventfd) { 1130 eventfd_signal(iocb->ki_eventfd, 1); 1131 eventfd_ctx_put(iocb->ki_eventfd); 1132 } 1133 1134 kmem_cache_free(kiocb_cachep, iocb); 1135 1136 /* 1137 * We have to order our ring_info tail store above and test 1138 * of the wait list below outside the wait lock. This is 1139 * like in wake_up_bit() where clearing a bit has to be 1140 * ordered with the unlocked test. 1141 */ 1142 smp_mb(); 1143 1144 if (waitqueue_active(&ctx->wait)) 1145 wake_up(&ctx->wait); 1146 1147 percpu_ref_put(&ctx->reqs); 1148 } 1149 1150 /* aio_read_events_ring 1151 * Pull an event off of the ioctx's event ring. Returns the number of 1152 * events fetched 1153 */ 1154 static long aio_read_events_ring(struct kioctx *ctx, 1155 struct io_event __user *event, long nr) 1156 { 1157 struct aio_ring *ring; 1158 unsigned head, tail, pos; 1159 long ret = 0; 1160 int copy_ret; 1161 1162 /* 1163 * The mutex can block and wake us up and that will cause 1164 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1165 * and repeat. This should be rare enough that it doesn't cause 1166 * peformance issues. See the comment in read_events() for more detail. 1167 */ 1168 sched_annotate_sleep(); 1169 mutex_lock(&ctx->ring_lock); 1170 1171 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1172 ring = kmap_atomic(ctx->ring_pages[0]); 1173 head = ring->head; 1174 tail = ring->tail; 1175 kunmap_atomic(ring); 1176 1177 /* 1178 * Ensure that once we've read the current tail pointer, that 1179 * we also see the events that were stored up to the tail. 1180 */ 1181 smp_rmb(); 1182 1183 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1184 1185 if (head == tail) 1186 goto out; 1187 1188 head %= ctx->nr_events; 1189 tail %= ctx->nr_events; 1190 1191 while (ret < nr) { 1192 long avail; 1193 struct io_event *ev; 1194 struct page *page; 1195 1196 avail = (head <= tail ? tail : ctx->nr_events) - head; 1197 if (head == tail) 1198 break; 1199 1200 pos = head + AIO_EVENTS_OFFSET; 1201 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1202 pos %= AIO_EVENTS_PER_PAGE; 1203 1204 avail = min(avail, nr - ret); 1205 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1206 1207 ev = kmap(page); 1208 copy_ret = copy_to_user(event + ret, ev + pos, 1209 sizeof(*ev) * avail); 1210 kunmap(page); 1211 1212 if (unlikely(copy_ret)) { 1213 ret = -EFAULT; 1214 goto out; 1215 } 1216 1217 ret += avail; 1218 head += avail; 1219 head %= ctx->nr_events; 1220 } 1221 1222 ring = kmap_atomic(ctx->ring_pages[0]); 1223 ring->head = head; 1224 kunmap_atomic(ring); 1225 flush_dcache_page(ctx->ring_pages[0]); 1226 1227 pr_debug("%li h%u t%u\n", ret, head, tail); 1228 out: 1229 mutex_unlock(&ctx->ring_lock); 1230 1231 return ret; 1232 } 1233 1234 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1235 struct io_event __user *event, long *i) 1236 { 1237 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1238 1239 if (ret > 0) 1240 *i += ret; 1241 1242 if (unlikely(atomic_read(&ctx->dead))) 1243 ret = -EINVAL; 1244 1245 if (!*i) 1246 *i = ret; 1247 1248 return ret < 0 || *i >= min_nr; 1249 } 1250 1251 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1252 struct io_event __user *event, 1253 ktime_t until) 1254 { 1255 long ret = 0; 1256 1257 /* 1258 * Note that aio_read_events() is being called as the conditional - i.e. 1259 * we're calling it after prepare_to_wait() has set task state to 1260 * TASK_INTERRUPTIBLE. 1261 * 1262 * But aio_read_events() can block, and if it blocks it's going to flip 1263 * the task state back to TASK_RUNNING. 1264 * 1265 * This should be ok, provided it doesn't flip the state back to 1266 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1267 * will only happen if the mutex_lock() call blocks, and we then find 1268 * the ringbuffer empty. So in practice we should be ok, but it's 1269 * something to be aware of when touching this code. 1270 */ 1271 if (until == 0) 1272 aio_read_events(ctx, min_nr, nr, event, &ret); 1273 else 1274 wait_event_interruptible_hrtimeout(ctx->wait, 1275 aio_read_events(ctx, min_nr, nr, event, &ret), 1276 until); 1277 return ret; 1278 } 1279 1280 /* sys_io_setup: 1281 * Create an aio_context capable of receiving at least nr_events. 1282 * ctxp must not point to an aio_context that already exists, and 1283 * must be initialized to 0 prior to the call. On successful 1284 * creation of the aio_context, *ctxp is filled in with the resulting 1285 * handle. May fail with -EINVAL if *ctxp is not initialized, 1286 * if the specified nr_events exceeds internal limits. May fail 1287 * with -EAGAIN if the specified nr_events exceeds the user's limit 1288 * of available events. May fail with -ENOMEM if insufficient kernel 1289 * resources are available. May fail with -EFAULT if an invalid 1290 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1291 * implemented. 1292 */ 1293 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1294 { 1295 struct kioctx *ioctx = NULL; 1296 unsigned long ctx; 1297 long ret; 1298 1299 ret = get_user(ctx, ctxp); 1300 if (unlikely(ret)) 1301 goto out; 1302 1303 ret = -EINVAL; 1304 if (unlikely(ctx || nr_events == 0)) { 1305 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1306 ctx, nr_events); 1307 goto out; 1308 } 1309 1310 ioctx = ioctx_alloc(nr_events); 1311 ret = PTR_ERR(ioctx); 1312 if (!IS_ERR(ioctx)) { 1313 ret = put_user(ioctx->user_id, ctxp); 1314 if (ret) 1315 kill_ioctx(current->mm, ioctx, NULL); 1316 percpu_ref_put(&ioctx->users); 1317 } 1318 1319 out: 1320 return ret; 1321 } 1322 1323 #ifdef CONFIG_COMPAT 1324 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1325 { 1326 struct kioctx *ioctx = NULL; 1327 unsigned long ctx; 1328 long ret; 1329 1330 ret = get_user(ctx, ctx32p); 1331 if (unlikely(ret)) 1332 goto out; 1333 1334 ret = -EINVAL; 1335 if (unlikely(ctx || nr_events == 0)) { 1336 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1337 ctx, nr_events); 1338 goto out; 1339 } 1340 1341 ioctx = ioctx_alloc(nr_events); 1342 ret = PTR_ERR(ioctx); 1343 if (!IS_ERR(ioctx)) { 1344 /* truncating is ok because it's a user address */ 1345 ret = put_user((u32)ioctx->user_id, ctx32p); 1346 if (ret) 1347 kill_ioctx(current->mm, ioctx, NULL); 1348 percpu_ref_put(&ioctx->users); 1349 } 1350 1351 out: 1352 return ret; 1353 } 1354 #endif 1355 1356 /* sys_io_destroy: 1357 * Destroy the aio_context specified. May cancel any outstanding 1358 * AIOs and block on completion. Will fail with -ENOSYS if not 1359 * implemented. May fail with -EINVAL if the context pointed to 1360 * is invalid. 1361 */ 1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1363 { 1364 struct kioctx *ioctx = lookup_ioctx(ctx); 1365 if (likely(NULL != ioctx)) { 1366 struct ctx_rq_wait wait; 1367 int ret; 1368 1369 init_completion(&wait.comp); 1370 atomic_set(&wait.count, 1); 1371 1372 /* Pass requests_done to kill_ioctx() where it can be set 1373 * in a thread-safe way. If we try to set it here then we have 1374 * a race condition if two io_destroy() called simultaneously. 1375 */ 1376 ret = kill_ioctx(current->mm, ioctx, &wait); 1377 percpu_ref_put(&ioctx->users); 1378 1379 /* Wait until all IO for the context are done. Otherwise kernel 1380 * keep using user-space buffers even if user thinks the context 1381 * is destroyed. 1382 */ 1383 if (!ret) 1384 wait_for_completion(&wait.comp); 1385 1386 return ret; 1387 } 1388 pr_debug("EINVAL: invalid context id\n"); 1389 return -EINVAL; 1390 } 1391 1392 static void aio_remove_iocb(struct aio_kiocb *iocb) 1393 { 1394 struct kioctx *ctx = iocb->ki_ctx; 1395 unsigned long flags; 1396 1397 spin_lock_irqsave(&ctx->ctx_lock, flags); 1398 list_del(&iocb->ki_list); 1399 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1400 } 1401 1402 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1403 { 1404 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1405 1406 if (!list_empty_careful(&iocb->ki_list)) 1407 aio_remove_iocb(iocb); 1408 1409 if (kiocb->ki_flags & IOCB_WRITE) { 1410 struct inode *inode = file_inode(kiocb->ki_filp); 1411 1412 /* 1413 * Tell lockdep we inherited freeze protection from submission 1414 * thread. 1415 */ 1416 if (S_ISREG(inode->i_mode)) 1417 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1418 file_end_write(kiocb->ki_filp); 1419 } 1420 1421 fput(kiocb->ki_filp); 1422 aio_complete(iocb, res, res2); 1423 } 1424 1425 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb) 1426 { 1427 int ret; 1428 1429 req->ki_filp = fget(iocb->aio_fildes); 1430 if (unlikely(!req->ki_filp)) 1431 return -EBADF; 1432 req->ki_complete = aio_complete_rw; 1433 req->ki_pos = iocb->aio_offset; 1434 req->ki_flags = iocb_flags(req->ki_filp); 1435 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1436 req->ki_flags |= IOCB_EVENTFD; 1437 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1438 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1439 /* 1440 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1441 * aio_reqprio is interpreted as an I/O scheduling 1442 * class and priority. 1443 */ 1444 ret = ioprio_check_cap(iocb->aio_reqprio); 1445 if (ret) { 1446 pr_debug("aio ioprio check cap error: %d\n", ret); 1447 return ret; 1448 } 1449 1450 req->ki_ioprio = iocb->aio_reqprio; 1451 } else 1452 req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1453 1454 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1455 if (unlikely(ret)) 1456 fput(req->ki_filp); 1457 return ret; 1458 } 1459 1460 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec, 1461 bool vectored, bool compat, struct iov_iter *iter) 1462 { 1463 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1464 size_t len = iocb->aio_nbytes; 1465 1466 if (!vectored) { 1467 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1468 *iovec = NULL; 1469 return ret; 1470 } 1471 #ifdef CONFIG_COMPAT 1472 if (compat) 1473 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec, 1474 iter); 1475 #endif 1476 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter); 1477 } 1478 1479 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1480 { 1481 switch (ret) { 1482 case -EIOCBQUEUED: 1483 break; 1484 case -ERESTARTSYS: 1485 case -ERESTARTNOINTR: 1486 case -ERESTARTNOHAND: 1487 case -ERESTART_RESTARTBLOCK: 1488 /* 1489 * There's no easy way to restart the syscall since other AIO's 1490 * may be already running. Just fail this IO with EINTR. 1491 */ 1492 ret = -EINTR; 1493 /*FALLTHRU*/ 1494 default: 1495 aio_complete_rw(req, ret, 0); 1496 } 1497 } 1498 1499 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored, 1500 bool compat) 1501 { 1502 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1503 struct iov_iter iter; 1504 struct file *file; 1505 ssize_t ret; 1506 1507 ret = aio_prep_rw(req, iocb); 1508 if (ret) 1509 return ret; 1510 file = req->ki_filp; 1511 1512 ret = -EBADF; 1513 if (unlikely(!(file->f_mode & FMODE_READ))) 1514 goto out_fput; 1515 ret = -EINVAL; 1516 if (unlikely(!file->f_op->read_iter)) 1517 goto out_fput; 1518 1519 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1520 if (ret) 1521 goto out_fput; 1522 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1523 if (!ret) 1524 aio_rw_done(req, call_read_iter(file, req, &iter)); 1525 kfree(iovec); 1526 out_fput: 1527 if (unlikely(ret)) 1528 fput(file); 1529 return ret; 1530 } 1531 1532 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored, 1533 bool compat) 1534 { 1535 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1536 struct iov_iter iter; 1537 struct file *file; 1538 ssize_t ret; 1539 1540 ret = aio_prep_rw(req, iocb); 1541 if (ret) 1542 return ret; 1543 file = req->ki_filp; 1544 1545 ret = -EBADF; 1546 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1547 goto out_fput; 1548 ret = -EINVAL; 1549 if (unlikely(!file->f_op->write_iter)) 1550 goto out_fput; 1551 1552 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1553 if (ret) 1554 goto out_fput; 1555 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1556 if (!ret) { 1557 /* 1558 * Open-code file_start_write here to grab freeze protection, 1559 * which will be released by another thread in 1560 * aio_complete_rw(). Fool lockdep by telling it the lock got 1561 * released so that it doesn't complain about the held lock when 1562 * we return to userspace. 1563 */ 1564 if (S_ISREG(file_inode(file)->i_mode)) { 1565 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); 1566 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1567 } 1568 req->ki_flags |= IOCB_WRITE; 1569 aio_rw_done(req, call_write_iter(file, req, &iter)); 1570 } 1571 kfree(iovec); 1572 out_fput: 1573 if (unlikely(ret)) 1574 fput(file); 1575 return ret; 1576 } 1577 1578 static void aio_fsync_work(struct work_struct *work) 1579 { 1580 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work); 1581 int ret; 1582 1583 ret = vfs_fsync(req->file, req->datasync); 1584 fput(req->file); 1585 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0); 1586 } 1587 1588 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync) 1589 { 1590 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1591 iocb->aio_rw_flags)) 1592 return -EINVAL; 1593 req->file = fget(iocb->aio_fildes); 1594 if (unlikely(!req->file)) 1595 return -EBADF; 1596 if (unlikely(!req->file->f_op->fsync)) { 1597 fput(req->file); 1598 return -EINVAL; 1599 } 1600 1601 req->datasync = datasync; 1602 INIT_WORK(&req->work, aio_fsync_work); 1603 schedule_work(&req->work); 1604 return 0; 1605 } 1606 1607 /* need to use list_del_init so we can check if item was present */ 1608 static inline bool __aio_poll_remove(struct poll_iocb *req) 1609 { 1610 if (list_empty(&req->wait.entry)) 1611 return false; 1612 list_del_init(&req->wait.entry); 1613 return true; 1614 } 1615 1616 static inline void __aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask) 1617 { 1618 fput(iocb->poll.file); 1619 aio_complete(iocb, mangle_poll(mask), 0); 1620 } 1621 1622 static void aio_poll_work(struct work_struct *work) 1623 { 1624 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, poll.work); 1625 1626 if (!list_empty_careful(&iocb->ki_list)) 1627 aio_remove_iocb(iocb); 1628 __aio_poll_complete(iocb, iocb->poll.events); 1629 } 1630 1631 static int aio_poll_cancel(struct kiocb *iocb) 1632 { 1633 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1634 struct poll_iocb *req = &aiocb->poll; 1635 struct wait_queue_head *head = req->head; 1636 bool found = false; 1637 1638 spin_lock(&head->lock); 1639 found = __aio_poll_remove(req); 1640 spin_unlock(&head->lock); 1641 1642 if (found) { 1643 req->events = 0; 1644 INIT_WORK(&req->work, aio_poll_work); 1645 schedule_work(&req->work); 1646 } 1647 return 0; 1648 } 1649 1650 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1651 void *key) 1652 { 1653 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1654 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1655 struct file *file = req->file; 1656 __poll_t mask = key_to_poll(key); 1657 1658 assert_spin_locked(&req->head->lock); 1659 1660 /* for instances that support it check for an event match first: */ 1661 if (mask && !(mask & req->events)) 1662 return 0; 1663 1664 mask = file->f_op->poll_mask(file, req->events) & req->events; 1665 if (!mask) 1666 return 0; 1667 1668 __aio_poll_remove(req); 1669 1670 /* 1671 * Try completing without a context switch if we can acquire ctx_lock 1672 * without spinning. Otherwise we need to defer to a workqueue to 1673 * avoid a deadlock due to the lock order. 1674 */ 1675 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) { 1676 list_del_init(&iocb->ki_list); 1677 spin_unlock(&iocb->ki_ctx->ctx_lock); 1678 1679 __aio_poll_complete(iocb, mask); 1680 } else { 1681 req->events = mask; 1682 INIT_WORK(&req->work, aio_poll_work); 1683 schedule_work(&req->work); 1684 } 1685 1686 return 1; 1687 } 1688 1689 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb) 1690 { 1691 struct kioctx *ctx = aiocb->ki_ctx; 1692 struct poll_iocb *req = &aiocb->poll; 1693 __poll_t mask; 1694 1695 /* reject any unknown events outside the normal event mask. */ 1696 if ((u16)iocb->aio_buf != iocb->aio_buf) 1697 return -EINVAL; 1698 /* reject fields that are not defined for poll */ 1699 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1700 return -EINVAL; 1701 1702 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1703 req->file = fget(iocb->aio_fildes); 1704 if (unlikely(!req->file)) 1705 return -EBADF; 1706 if (!file_has_poll_mask(req->file)) 1707 goto out_fail; 1708 1709 req->head = req->file->f_op->get_poll_head(req->file, req->events); 1710 if (!req->head) 1711 goto out_fail; 1712 if (IS_ERR(req->head)) { 1713 mask = EPOLLERR; 1714 goto done; 1715 } 1716 1717 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1718 aiocb->ki_cancel = aio_poll_cancel; 1719 1720 spin_lock_irq(&ctx->ctx_lock); 1721 spin_lock(&req->head->lock); 1722 mask = req->file->f_op->poll_mask(req->file, req->events) & req->events; 1723 if (!mask) { 1724 __add_wait_queue(req->head, &req->wait); 1725 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1726 } 1727 spin_unlock(&req->head->lock); 1728 spin_unlock_irq(&ctx->ctx_lock); 1729 done: 1730 if (mask) 1731 __aio_poll_complete(aiocb, mask); 1732 return 0; 1733 out_fail: 1734 fput(req->file); 1735 return -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1736 } 1737 1738 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1739 bool compat) 1740 { 1741 struct aio_kiocb *req; 1742 struct iocb iocb; 1743 ssize_t ret; 1744 1745 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1746 return -EFAULT; 1747 1748 /* enforce forwards compatibility on users */ 1749 if (unlikely(iocb.aio_reserved2)) { 1750 pr_debug("EINVAL: reserve field set\n"); 1751 return -EINVAL; 1752 } 1753 1754 /* prevent overflows */ 1755 if (unlikely( 1756 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1757 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1758 ((ssize_t)iocb.aio_nbytes < 0) 1759 )) { 1760 pr_debug("EINVAL: overflow check\n"); 1761 return -EINVAL; 1762 } 1763 1764 req = aio_get_req(ctx); 1765 if (unlikely(!req)) 1766 return -EAGAIN; 1767 1768 if (iocb.aio_flags & IOCB_FLAG_RESFD) { 1769 /* 1770 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1771 * instance of the file* now. The file descriptor must be 1772 * an eventfd() fd, and will be signaled for each completed 1773 * event using the eventfd_signal() function. 1774 */ 1775 req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd); 1776 if (IS_ERR(req->ki_eventfd)) { 1777 ret = PTR_ERR(req->ki_eventfd); 1778 req->ki_eventfd = NULL; 1779 goto out_put_req; 1780 } 1781 } 1782 1783 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1784 if (unlikely(ret)) { 1785 pr_debug("EFAULT: aio_key\n"); 1786 goto out_put_req; 1787 } 1788 1789 req->ki_user_iocb = user_iocb; 1790 req->ki_user_data = iocb.aio_data; 1791 1792 switch (iocb.aio_lio_opcode) { 1793 case IOCB_CMD_PREAD: 1794 ret = aio_read(&req->rw, &iocb, false, compat); 1795 break; 1796 case IOCB_CMD_PWRITE: 1797 ret = aio_write(&req->rw, &iocb, false, compat); 1798 break; 1799 case IOCB_CMD_PREADV: 1800 ret = aio_read(&req->rw, &iocb, true, compat); 1801 break; 1802 case IOCB_CMD_PWRITEV: 1803 ret = aio_write(&req->rw, &iocb, true, compat); 1804 break; 1805 case IOCB_CMD_FSYNC: 1806 ret = aio_fsync(&req->fsync, &iocb, false); 1807 break; 1808 case IOCB_CMD_FDSYNC: 1809 ret = aio_fsync(&req->fsync, &iocb, true); 1810 break; 1811 case IOCB_CMD_POLL: 1812 ret = aio_poll(req, &iocb); 1813 break; 1814 default: 1815 pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode); 1816 ret = -EINVAL; 1817 break; 1818 } 1819 1820 /* 1821 * If ret is 0, we'd either done aio_complete() ourselves or have 1822 * arranged for that to be done asynchronously. Anything non-zero 1823 * means that we need to destroy req ourselves. 1824 */ 1825 if (ret) 1826 goto out_put_req; 1827 return 0; 1828 out_put_req: 1829 put_reqs_available(ctx, 1); 1830 percpu_ref_put(&ctx->reqs); 1831 if (req->ki_eventfd) 1832 eventfd_ctx_put(req->ki_eventfd); 1833 kmem_cache_free(kiocb_cachep, req); 1834 return ret; 1835 } 1836 1837 /* sys_io_submit: 1838 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1839 * the number of iocbs queued. May return -EINVAL if the aio_context 1840 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1841 * *iocbpp[0] is not properly initialized, if the operation specified 1842 * is invalid for the file descriptor in the iocb. May fail with 1843 * -EFAULT if any of the data structures point to invalid data. May 1844 * fail with -EBADF if the file descriptor specified in the first 1845 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1846 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1847 * fail with -ENOSYS if not implemented. 1848 */ 1849 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1850 struct iocb __user * __user *, iocbpp) 1851 { 1852 struct kioctx *ctx; 1853 long ret = 0; 1854 int i = 0; 1855 struct blk_plug plug; 1856 1857 if (unlikely(nr < 0)) 1858 return -EINVAL; 1859 1860 ctx = lookup_ioctx(ctx_id); 1861 if (unlikely(!ctx)) { 1862 pr_debug("EINVAL: invalid context id\n"); 1863 return -EINVAL; 1864 } 1865 1866 if (nr > ctx->nr_events) 1867 nr = ctx->nr_events; 1868 1869 blk_start_plug(&plug); 1870 for (i = 0; i < nr; i++) { 1871 struct iocb __user *user_iocb; 1872 1873 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1874 ret = -EFAULT; 1875 break; 1876 } 1877 1878 ret = io_submit_one(ctx, user_iocb, false); 1879 if (ret) 1880 break; 1881 } 1882 blk_finish_plug(&plug); 1883 1884 percpu_ref_put(&ctx->users); 1885 return i ? i : ret; 1886 } 1887 1888 #ifdef CONFIG_COMPAT 1889 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1890 int, nr, compat_uptr_t __user *, iocbpp) 1891 { 1892 struct kioctx *ctx; 1893 long ret = 0; 1894 int i = 0; 1895 struct blk_plug plug; 1896 1897 if (unlikely(nr < 0)) 1898 return -EINVAL; 1899 1900 ctx = lookup_ioctx(ctx_id); 1901 if (unlikely(!ctx)) { 1902 pr_debug("EINVAL: invalid context id\n"); 1903 return -EINVAL; 1904 } 1905 1906 if (nr > ctx->nr_events) 1907 nr = ctx->nr_events; 1908 1909 blk_start_plug(&plug); 1910 for (i = 0; i < nr; i++) { 1911 compat_uptr_t user_iocb; 1912 1913 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1914 ret = -EFAULT; 1915 break; 1916 } 1917 1918 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1919 if (ret) 1920 break; 1921 } 1922 blk_finish_plug(&plug); 1923 1924 percpu_ref_put(&ctx->users); 1925 return i ? i : ret; 1926 } 1927 #endif 1928 1929 /* lookup_kiocb 1930 * Finds a given iocb for cancellation. 1931 */ 1932 static struct aio_kiocb * 1933 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb) 1934 { 1935 struct aio_kiocb *kiocb; 1936 1937 assert_spin_locked(&ctx->ctx_lock); 1938 1939 /* TODO: use a hash or array, this sucks. */ 1940 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1941 if (kiocb->ki_user_iocb == iocb) 1942 return kiocb; 1943 } 1944 return NULL; 1945 } 1946 1947 /* sys_io_cancel: 1948 * Attempts to cancel an iocb previously passed to io_submit. If 1949 * the operation is successfully cancelled, the resulting event is 1950 * copied into the memory pointed to by result without being placed 1951 * into the completion queue and 0 is returned. May fail with 1952 * -EFAULT if any of the data structures pointed to are invalid. 1953 * May fail with -EINVAL if aio_context specified by ctx_id is 1954 * invalid. May fail with -EAGAIN if the iocb specified was not 1955 * cancelled. Will fail with -ENOSYS if not implemented. 1956 */ 1957 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1958 struct io_event __user *, result) 1959 { 1960 struct kioctx *ctx; 1961 struct aio_kiocb *kiocb; 1962 int ret = -EINVAL; 1963 u32 key; 1964 1965 if (unlikely(get_user(key, &iocb->aio_key))) 1966 return -EFAULT; 1967 if (unlikely(key != KIOCB_KEY)) 1968 return -EINVAL; 1969 1970 ctx = lookup_ioctx(ctx_id); 1971 if (unlikely(!ctx)) 1972 return -EINVAL; 1973 1974 spin_lock_irq(&ctx->ctx_lock); 1975 kiocb = lookup_kiocb(ctx, iocb); 1976 if (kiocb) { 1977 ret = kiocb->ki_cancel(&kiocb->rw); 1978 list_del_init(&kiocb->ki_list); 1979 } 1980 spin_unlock_irq(&ctx->ctx_lock); 1981 1982 if (!ret) { 1983 /* 1984 * The result argument is no longer used - the io_event is 1985 * always delivered via the ring buffer. -EINPROGRESS indicates 1986 * cancellation is progress: 1987 */ 1988 ret = -EINPROGRESS; 1989 } 1990 1991 percpu_ref_put(&ctx->users); 1992 1993 return ret; 1994 } 1995 1996 static long do_io_getevents(aio_context_t ctx_id, 1997 long min_nr, 1998 long nr, 1999 struct io_event __user *events, 2000 struct timespec64 *ts) 2001 { 2002 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2003 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2004 long ret = -EINVAL; 2005 2006 if (likely(ioctx)) { 2007 if (likely(min_nr <= nr && min_nr >= 0)) 2008 ret = read_events(ioctx, min_nr, nr, events, until); 2009 percpu_ref_put(&ioctx->users); 2010 } 2011 2012 return ret; 2013 } 2014 2015 /* io_getevents: 2016 * Attempts to read at least min_nr events and up to nr events from 2017 * the completion queue for the aio_context specified by ctx_id. If 2018 * it succeeds, the number of read events is returned. May fail with 2019 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2020 * out of range, if timeout is out of range. May fail with -EFAULT 2021 * if any of the memory specified is invalid. May return 0 or 2022 * < min_nr if the timeout specified by timeout has elapsed 2023 * before sufficient events are available, where timeout == NULL 2024 * specifies an infinite timeout. Note that the timeout pointed to by 2025 * timeout is relative. Will fail with -ENOSYS if not implemented. 2026 */ 2027 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2028 long, min_nr, 2029 long, nr, 2030 struct io_event __user *, events, 2031 struct timespec __user *, timeout) 2032 { 2033 struct timespec64 ts; 2034 int ret; 2035 2036 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2037 return -EFAULT; 2038 2039 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2040 if (!ret && signal_pending(current)) 2041 ret = -EINTR; 2042 return ret; 2043 } 2044 2045 SYSCALL_DEFINE6(io_pgetevents, 2046 aio_context_t, ctx_id, 2047 long, min_nr, 2048 long, nr, 2049 struct io_event __user *, events, 2050 struct timespec __user *, timeout, 2051 const struct __aio_sigset __user *, usig) 2052 { 2053 struct __aio_sigset ksig = { NULL, }; 2054 sigset_t ksigmask, sigsaved; 2055 struct timespec64 ts; 2056 int ret; 2057 2058 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2059 return -EFAULT; 2060 2061 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2062 return -EFAULT; 2063 2064 if (ksig.sigmask) { 2065 if (ksig.sigsetsize != sizeof(sigset_t)) 2066 return -EINVAL; 2067 if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask))) 2068 return -EFAULT; 2069 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2070 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 2071 } 2072 2073 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2074 if (signal_pending(current)) { 2075 if (ksig.sigmask) { 2076 current->saved_sigmask = sigsaved; 2077 set_restore_sigmask(); 2078 } 2079 2080 if (!ret) 2081 ret = -ERESTARTNOHAND; 2082 } else { 2083 if (ksig.sigmask) 2084 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2085 } 2086 2087 return ret; 2088 } 2089 2090 #ifdef CONFIG_COMPAT 2091 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id, 2092 compat_long_t, min_nr, 2093 compat_long_t, nr, 2094 struct io_event __user *, events, 2095 struct compat_timespec __user *, timeout) 2096 { 2097 struct timespec64 t; 2098 int ret; 2099 2100 if (timeout && compat_get_timespec64(&t, timeout)) 2101 return -EFAULT; 2102 2103 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2104 if (!ret && signal_pending(current)) 2105 ret = -EINTR; 2106 return ret; 2107 } 2108 2109 2110 struct __compat_aio_sigset { 2111 compat_sigset_t __user *sigmask; 2112 compat_size_t sigsetsize; 2113 }; 2114 2115 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2116 compat_aio_context_t, ctx_id, 2117 compat_long_t, min_nr, 2118 compat_long_t, nr, 2119 struct io_event __user *, events, 2120 struct compat_timespec __user *, timeout, 2121 const struct __compat_aio_sigset __user *, usig) 2122 { 2123 struct __compat_aio_sigset ksig = { NULL, }; 2124 sigset_t ksigmask, sigsaved; 2125 struct timespec64 t; 2126 int ret; 2127 2128 if (timeout && compat_get_timespec64(&t, timeout)) 2129 return -EFAULT; 2130 2131 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2132 return -EFAULT; 2133 2134 if (ksig.sigmask) { 2135 if (ksig.sigsetsize != sizeof(compat_sigset_t)) 2136 return -EINVAL; 2137 if (get_compat_sigset(&ksigmask, ksig.sigmask)) 2138 return -EFAULT; 2139 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP)); 2140 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved); 2141 } 2142 2143 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2144 if (signal_pending(current)) { 2145 if (ksig.sigmask) { 2146 current->saved_sigmask = sigsaved; 2147 set_restore_sigmask(); 2148 } 2149 if (!ret) 2150 ret = -ERESTARTNOHAND; 2151 } else { 2152 if (ksig.sigmask) 2153 sigprocmask(SIG_SETMASK, &sigsaved, NULL); 2154 } 2155 2156 return ret; 2157 } 2158 #endif 2159