1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/mempool.h> 38 #include <linux/hash.h> 39 40 #include <asm/kmap_types.h> 41 #include <asm/uaccess.h> 42 43 #if DEBUG > 1 44 #define dprintk printk 45 #else 46 #define dprintk(x...) do { ; } while (0) 47 #endif 48 49 /*------ sysctl variables----*/ 50 static DEFINE_SPINLOCK(aio_nr_lock); 51 unsigned long aio_nr; /* current system wide number of aio requests */ 52 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 53 /*----end sysctl variables---*/ 54 55 static struct kmem_cache *kiocb_cachep; 56 static struct kmem_cache *kioctx_cachep; 57 58 static struct workqueue_struct *aio_wq; 59 60 /* Used for rare fput completion. */ 61 static void aio_fput_routine(struct work_struct *); 62 static DECLARE_WORK(fput_work, aio_fput_routine); 63 64 static DEFINE_SPINLOCK(fput_lock); 65 static LIST_HEAD(fput_head); 66 67 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */ 68 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS) 69 struct aio_batch_entry { 70 struct hlist_node list; 71 struct address_space *mapping; 72 }; 73 mempool_t *abe_pool; 74 75 static void aio_kick_handler(struct work_struct *); 76 static void aio_queue_work(struct kioctx *); 77 78 /* aio_setup 79 * Creates the slab caches used by the aio routines, panic on 80 * failure as this is done early during the boot sequence. 81 */ 82 static int __init aio_setup(void) 83 { 84 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 85 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 86 87 aio_wq = create_workqueue("aio"); 88 abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry)); 89 BUG_ON(!abe_pool); 90 91 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 92 93 return 0; 94 } 95 __initcall(aio_setup); 96 97 static void aio_free_ring(struct kioctx *ctx) 98 { 99 struct aio_ring_info *info = &ctx->ring_info; 100 long i; 101 102 for (i=0; i<info->nr_pages; i++) 103 put_page(info->ring_pages[i]); 104 105 if (info->mmap_size) { 106 down_write(&ctx->mm->mmap_sem); 107 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 108 up_write(&ctx->mm->mmap_sem); 109 } 110 111 if (info->ring_pages && info->ring_pages != info->internal_pages) 112 kfree(info->ring_pages); 113 info->ring_pages = NULL; 114 info->nr = 0; 115 } 116 117 static int aio_setup_ring(struct kioctx *ctx) 118 { 119 struct aio_ring *ring; 120 struct aio_ring_info *info = &ctx->ring_info; 121 unsigned nr_events = ctx->max_reqs; 122 unsigned long size; 123 int nr_pages; 124 125 /* Compensate for the ring buffer's head/tail overlap entry */ 126 nr_events += 2; /* 1 is required, 2 for good luck */ 127 128 size = sizeof(struct aio_ring); 129 size += sizeof(struct io_event) * nr_events; 130 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 131 132 if (nr_pages < 0) 133 return -EINVAL; 134 135 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 136 137 info->nr = 0; 138 info->ring_pages = info->internal_pages; 139 if (nr_pages > AIO_RING_PAGES) { 140 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 141 if (!info->ring_pages) 142 return -ENOMEM; 143 } 144 145 info->mmap_size = nr_pages * PAGE_SIZE; 146 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 147 down_write(&ctx->mm->mmap_sem); 148 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 149 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 150 0); 151 if (IS_ERR((void *)info->mmap_base)) { 152 up_write(&ctx->mm->mmap_sem); 153 info->mmap_size = 0; 154 aio_free_ring(ctx); 155 return -EAGAIN; 156 } 157 158 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 159 info->nr_pages = get_user_pages(current, ctx->mm, 160 info->mmap_base, nr_pages, 161 1, 0, info->ring_pages, NULL); 162 up_write(&ctx->mm->mmap_sem); 163 164 if (unlikely(info->nr_pages != nr_pages)) { 165 aio_free_ring(ctx); 166 return -EAGAIN; 167 } 168 169 ctx->user_id = info->mmap_base; 170 171 info->nr = nr_events; /* trusted copy */ 172 173 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 174 ring->nr = nr_events; /* user copy */ 175 ring->id = ctx->user_id; 176 ring->head = ring->tail = 0; 177 ring->magic = AIO_RING_MAGIC; 178 ring->compat_features = AIO_RING_COMPAT_FEATURES; 179 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 180 ring->header_length = sizeof(struct aio_ring); 181 kunmap_atomic(ring, KM_USER0); 182 183 return 0; 184 } 185 186 187 /* aio_ring_event: returns a pointer to the event at the given index from 188 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 189 */ 190 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 191 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 192 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 193 194 #define aio_ring_event(info, nr, km) ({ \ 195 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 196 struct io_event *__event; \ 197 __event = kmap_atomic( \ 198 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 199 __event += pos % AIO_EVENTS_PER_PAGE; \ 200 __event; \ 201 }) 202 203 #define put_aio_ring_event(event, km) do { \ 204 struct io_event *__event = (event); \ 205 (void)__event; \ 206 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 207 } while(0) 208 209 static void ctx_rcu_free(struct rcu_head *head) 210 { 211 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 212 unsigned nr_events = ctx->max_reqs; 213 214 kmem_cache_free(kioctx_cachep, ctx); 215 216 if (nr_events) { 217 spin_lock(&aio_nr_lock); 218 BUG_ON(aio_nr - nr_events > aio_nr); 219 aio_nr -= nr_events; 220 spin_unlock(&aio_nr_lock); 221 } 222 } 223 224 /* __put_ioctx 225 * Called when the last user of an aio context has gone away, 226 * and the struct needs to be freed. 227 */ 228 static void __put_ioctx(struct kioctx *ctx) 229 { 230 BUG_ON(ctx->reqs_active); 231 232 cancel_delayed_work(&ctx->wq); 233 cancel_work_sync(&ctx->wq.work); 234 aio_free_ring(ctx); 235 mmdrop(ctx->mm); 236 ctx->mm = NULL; 237 pr_debug("__put_ioctx: freeing %p\n", ctx); 238 call_rcu(&ctx->rcu_head, ctx_rcu_free); 239 } 240 241 #define get_ioctx(kioctx) do { \ 242 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 243 atomic_inc(&(kioctx)->users); \ 244 } while (0) 245 #define put_ioctx(kioctx) do { \ 246 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 247 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 248 __put_ioctx(kioctx); \ 249 } while (0) 250 251 /* ioctx_alloc 252 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 253 */ 254 static struct kioctx *ioctx_alloc(unsigned nr_events) 255 { 256 struct mm_struct *mm; 257 struct kioctx *ctx; 258 int did_sync = 0; 259 260 /* Prevent overflows */ 261 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 262 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 263 pr_debug("ENOMEM: nr_events too high\n"); 264 return ERR_PTR(-EINVAL); 265 } 266 267 if ((unsigned long)nr_events > aio_max_nr) 268 return ERR_PTR(-EAGAIN); 269 270 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 271 if (!ctx) 272 return ERR_PTR(-ENOMEM); 273 274 ctx->max_reqs = nr_events; 275 mm = ctx->mm = current->mm; 276 atomic_inc(&mm->mm_count); 277 278 atomic_set(&ctx->users, 1); 279 spin_lock_init(&ctx->ctx_lock); 280 spin_lock_init(&ctx->ring_info.ring_lock); 281 init_waitqueue_head(&ctx->wait); 282 283 INIT_LIST_HEAD(&ctx->active_reqs); 284 INIT_LIST_HEAD(&ctx->run_list); 285 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 286 287 if (aio_setup_ring(ctx) < 0) 288 goto out_freectx; 289 290 /* limit the number of system wide aios */ 291 do { 292 spin_lock_bh(&aio_nr_lock); 293 if (aio_nr + nr_events > aio_max_nr || 294 aio_nr + nr_events < aio_nr) 295 ctx->max_reqs = 0; 296 else 297 aio_nr += ctx->max_reqs; 298 spin_unlock_bh(&aio_nr_lock); 299 if (ctx->max_reqs || did_sync) 300 break; 301 302 /* wait for rcu callbacks to have completed before giving up */ 303 synchronize_rcu(); 304 did_sync = 1; 305 ctx->max_reqs = nr_events; 306 } while (1); 307 308 if (ctx->max_reqs == 0) 309 goto out_cleanup; 310 311 /* now link into global list. */ 312 spin_lock(&mm->ioctx_lock); 313 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 314 spin_unlock(&mm->ioctx_lock); 315 316 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 317 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 318 return ctx; 319 320 out_cleanup: 321 __put_ioctx(ctx); 322 return ERR_PTR(-EAGAIN); 323 324 out_freectx: 325 mmdrop(mm); 326 kmem_cache_free(kioctx_cachep, ctx); 327 ctx = ERR_PTR(-ENOMEM); 328 329 dprintk("aio: error allocating ioctx %p\n", ctx); 330 return ctx; 331 } 332 333 /* aio_cancel_all 334 * Cancels all outstanding aio requests on an aio context. Used 335 * when the processes owning a context have all exited to encourage 336 * the rapid destruction of the kioctx. 337 */ 338 static void aio_cancel_all(struct kioctx *ctx) 339 { 340 int (*cancel)(struct kiocb *, struct io_event *); 341 struct io_event res; 342 spin_lock_irq(&ctx->ctx_lock); 343 ctx->dead = 1; 344 while (!list_empty(&ctx->active_reqs)) { 345 struct list_head *pos = ctx->active_reqs.next; 346 struct kiocb *iocb = list_kiocb(pos); 347 list_del_init(&iocb->ki_list); 348 cancel = iocb->ki_cancel; 349 kiocbSetCancelled(iocb); 350 if (cancel) { 351 iocb->ki_users++; 352 spin_unlock_irq(&ctx->ctx_lock); 353 cancel(iocb, &res); 354 spin_lock_irq(&ctx->ctx_lock); 355 } 356 } 357 spin_unlock_irq(&ctx->ctx_lock); 358 } 359 360 static void wait_for_all_aios(struct kioctx *ctx) 361 { 362 struct task_struct *tsk = current; 363 DECLARE_WAITQUEUE(wait, tsk); 364 365 spin_lock_irq(&ctx->ctx_lock); 366 if (!ctx->reqs_active) 367 goto out; 368 369 add_wait_queue(&ctx->wait, &wait); 370 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 371 while (ctx->reqs_active) { 372 spin_unlock_irq(&ctx->ctx_lock); 373 io_schedule(); 374 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 375 spin_lock_irq(&ctx->ctx_lock); 376 } 377 __set_task_state(tsk, TASK_RUNNING); 378 remove_wait_queue(&ctx->wait, &wait); 379 380 out: 381 spin_unlock_irq(&ctx->ctx_lock); 382 } 383 384 /* wait_on_sync_kiocb: 385 * Waits on the given sync kiocb to complete. 386 */ 387 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 388 { 389 while (iocb->ki_users) { 390 set_current_state(TASK_UNINTERRUPTIBLE); 391 if (!iocb->ki_users) 392 break; 393 io_schedule(); 394 } 395 __set_current_state(TASK_RUNNING); 396 return iocb->ki_user_data; 397 } 398 EXPORT_SYMBOL(wait_on_sync_kiocb); 399 400 /* exit_aio: called when the last user of mm goes away. At this point, 401 * there is no way for any new requests to be submited or any of the 402 * io_* syscalls to be called on the context. However, there may be 403 * outstanding requests which hold references to the context; as they 404 * go away, they will call put_ioctx and release any pinned memory 405 * associated with the request (held via struct page * references). 406 */ 407 void exit_aio(struct mm_struct *mm) 408 { 409 struct kioctx *ctx; 410 411 while (!hlist_empty(&mm->ioctx_list)) { 412 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 413 hlist_del_rcu(&ctx->list); 414 415 aio_cancel_all(ctx); 416 417 wait_for_all_aios(ctx); 418 /* 419 * Ensure we don't leave the ctx on the aio_wq 420 */ 421 cancel_work_sync(&ctx->wq.work); 422 423 if (1 != atomic_read(&ctx->users)) 424 printk(KERN_DEBUG 425 "exit_aio:ioctx still alive: %d %d %d\n", 426 atomic_read(&ctx->users), ctx->dead, 427 ctx->reqs_active); 428 put_ioctx(ctx); 429 } 430 } 431 432 /* aio_get_req 433 * Allocate a slot for an aio request. Increments the users count 434 * of the kioctx so that the kioctx stays around until all requests are 435 * complete. Returns NULL if no requests are free. 436 * 437 * Returns with kiocb->users set to 2. The io submit code path holds 438 * an extra reference while submitting the i/o. 439 * This prevents races between the aio code path referencing the 440 * req (after submitting it) and aio_complete() freeing the req. 441 */ 442 static struct kiocb *__aio_get_req(struct kioctx *ctx) 443 { 444 struct kiocb *req = NULL; 445 struct aio_ring *ring; 446 int okay = 0; 447 448 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 449 if (unlikely(!req)) 450 return NULL; 451 452 req->ki_flags = 0; 453 req->ki_users = 2; 454 req->ki_key = 0; 455 req->ki_ctx = ctx; 456 req->ki_cancel = NULL; 457 req->ki_retry = NULL; 458 req->ki_dtor = NULL; 459 req->private = NULL; 460 req->ki_iovec = NULL; 461 INIT_LIST_HEAD(&req->ki_run_list); 462 req->ki_eventfd = NULL; 463 464 /* Check if the completion queue has enough free space to 465 * accept an event from this io. 466 */ 467 spin_lock_irq(&ctx->ctx_lock); 468 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 469 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 470 list_add(&req->ki_list, &ctx->active_reqs); 471 ctx->reqs_active++; 472 okay = 1; 473 } 474 kunmap_atomic(ring, KM_USER0); 475 spin_unlock_irq(&ctx->ctx_lock); 476 477 if (!okay) { 478 kmem_cache_free(kiocb_cachep, req); 479 req = NULL; 480 } 481 482 return req; 483 } 484 485 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 486 { 487 struct kiocb *req; 488 /* Handle a potential starvation case -- should be exceedingly rare as 489 * requests will be stuck on fput_head only if the aio_fput_routine is 490 * delayed and the requests were the last user of the struct file. 491 */ 492 req = __aio_get_req(ctx); 493 if (unlikely(NULL == req)) { 494 aio_fput_routine(NULL); 495 req = __aio_get_req(ctx); 496 } 497 return req; 498 } 499 500 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 501 { 502 assert_spin_locked(&ctx->ctx_lock); 503 504 if (req->ki_eventfd != NULL) 505 eventfd_ctx_put(req->ki_eventfd); 506 if (req->ki_dtor) 507 req->ki_dtor(req); 508 if (req->ki_iovec != &req->ki_inline_vec) 509 kfree(req->ki_iovec); 510 kmem_cache_free(kiocb_cachep, req); 511 ctx->reqs_active--; 512 513 if (unlikely(!ctx->reqs_active && ctx->dead)) 514 wake_up(&ctx->wait); 515 } 516 517 static void aio_fput_routine(struct work_struct *data) 518 { 519 spin_lock_irq(&fput_lock); 520 while (likely(!list_empty(&fput_head))) { 521 struct kiocb *req = list_kiocb(fput_head.next); 522 struct kioctx *ctx = req->ki_ctx; 523 524 list_del(&req->ki_list); 525 spin_unlock_irq(&fput_lock); 526 527 /* Complete the fput(s) */ 528 if (req->ki_filp != NULL) 529 __fput(req->ki_filp); 530 531 /* Link the iocb into the context's free list */ 532 spin_lock_irq(&ctx->ctx_lock); 533 really_put_req(ctx, req); 534 spin_unlock_irq(&ctx->ctx_lock); 535 536 put_ioctx(ctx); 537 spin_lock_irq(&fput_lock); 538 } 539 spin_unlock_irq(&fput_lock); 540 } 541 542 /* __aio_put_req 543 * Returns true if this put was the last user of the request. 544 */ 545 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 546 { 547 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 548 req, atomic_long_read(&req->ki_filp->f_count)); 549 550 assert_spin_locked(&ctx->ctx_lock); 551 552 req->ki_users--; 553 BUG_ON(req->ki_users < 0); 554 if (likely(req->ki_users)) 555 return 0; 556 list_del(&req->ki_list); /* remove from active_reqs */ 557 req->ki_cancel = NULL; 558 req->ki_retry = NULL; 559 560 /* 561 * Try to optimize the aio and eventfd file* puts, by avoiding to 562 * schedule work in case it is not __fput() time. In normal cases, 563 * we would not be holding the last reference to the file*, so 564 * this function will be executed w/out any aio kthread wakeup. 565 */ 566 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { 567 get_ioctx(ctx); 568 spin_lock(&fput_lock); 569 list_add(&req->ki_list, &fput_head); 570 spin_unlock(&fput_lock); 571 queue_work(aio_wq, &fput_work); 572 } else { 573 req->ki_filp = NULL; 574 really_put_req(ctx, req); 575 } 576 return 1; 577 } 578 579 /* aio_put_req 580 * Returns true if this put was the last user of the kiocb, 581 * false if the request is still in use. 582 */ 583 int aio_put_req(struct kiocb *req) 584 { 585 struct kioctx *ctx = req->ki_ctx; 586 int ret; 587 spin_lock_irq(&ctx->ctx_lock); 588 ret = __aio_put_req(ctx, req); 589 spin_unlock_irq(&ctx->ctx_lock); 590 return ret; 591 } 592 EXPORT_SYMBOL(aio_put_req); 593 594 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 595 { 596 struct mm_struct *mm = current->mm; 597 struct kioctx *ctx, *ret = NULL; 598 struct hlist_node *n; 599 600 rcu_read_lock(); 601 602 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 603 if (ctx->user_id == ctx_id && !ctx->dead) { 604 get_ioctx(ctx); 605 ret = ctx; 606 break; 607 } 608 } 609 610 rcu_read_unlock(); 611 return ret; 612 } 613 614 /* 615 * Queue up a kiocb to be retried. Assumes that the kiocb 616 * has already been marked as kicked, and places it on 617 * the retry run list for the corresponding ioctx, if it 618 * isn't already queued. Returns 1 if it actually queued 619 * the kiocb (to tell the caller to activate the work 620 * queue to process it), or 0, if it found that it was 621 * already queued. 622 */ 623 static inline int __queue_kicked_iocb(struct kiocb *iocb) 624 { 625 struct kioctx *ctx = iocb->ki_ctx; 626 627 assert_spin_locked(&ctx->ctx_lock); 628 629 if (list_empty(&iocb->ki_run_list)) { 630 list_add_tail(&iocb->ki_run_list, 631 &ctx->run_list); 632 return 1; 633 } 634 return 0; 635 } 636 637 /* aio_run_iocb 638 * This is the core aio execution routine. It is 639 * invoked both for initial i/o submission and 640 * subsequent retries via the aio_kick_handler. 641 * Expects to be invoked with iocb->ki_ctx->lock 642 * already held. The lock is released and reacquired 643 * as needed during processing. 644 * 645 * Calls the iocb retry method (already setup for the 646 * iocb on initial submission) for operation specific 647 * handling, but takes care of most of common retry 648 * execution details for a given iocb. The retry method 649 * needs to be non-blocking as far as possible, to avoid 650 * holding up other iocbs waiting to be serviced by the 651 * retry kernel thread. 652 * 653 * The trickier parts in this code have to do with 654 * ensuring that only one retry instance is in progress 655 * for a given iocb at any time. Providing that guarantee 656 * simplifies the coding of individual aio operations as 657 * it avoids various potential races. 658 */ 659 static ssize_t aio_run_iocb(struct kiocb *iocb) 660 { 661 struct kioctx *ctx = iocb->ki_ctx; 662 ssize_t (*retry)(struct kiocb *); 663 ssize_t ret; 664 665 if (!(retry = iocb->ki_retry)) { 666 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 667 return 0; 668 } 669 670 /* 671 * We don't want the next retry iteration for this 672 * operation to start until this one has returned and 673 * updated the iocb state. However, wait_queue functions 674 * can trigger a kick_iocb from interrupt context in the 675 * meantime, indicating that data is available for the next 676 * iteration. We want to remember that and enable the 677 * next retry iteration _after_ we are through with 678 * this one. 679 * 680 * So, in order to be able to register a "kick", but 681 * prevent it from being queued now, we clear the kick 682 * flag, but make the kick code *think* that the iocb is 683 * still on the run list until we are actually done. 684 * When we are done with this iteration, we check if 685 * the iocb was kicked in the meantime and if so, queue 686 * it up afresh. 687 */ 688 689 kiocbClearKicked(iocb); 690 691 /* 692 * This is so that aio_complete knows it doesn't need to 693 * pull the iocb off the run list (We can't just call 694 * INIT_LIST_HEAD because we don't want a kick_iocb to 695 * queue this on the run list yet) 696 */ 697 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 698 spin_unlock_irq(&ctx->ctx_lock); 699 700 /* Quit retrying if the i/o has been cancelled */ 701 if (kiocbIsCancelled(iocb)) { 702 ret = -EINTR; 703 aio_complete(iocb, ret, 0); 704 /* must not access the iocb after this */ 705 goto out; 706 } 707 708 /* 709 * Now we are all set to call the retry method in async 710 * context. 711 */ 712 ret = retry(iocb); 713 714 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) 715 aio_complete(iocb, ret, 0); 716 out: 717 spin_lock_irq(&ctx->ctx_lock); 718 719 if (-EIOCBRETRY == ret) { 720 /* 721 * OK, now that we are done with this iteration 722 * and know that there is more left to go, 723 * this is where we let go so that a subsequent 724 * "kick" can start the next iteration 725 */ 726 727 /* will make __queue_kicked_iocb succeed from here on */ 728 INIT_LIST_HEAD(&iocb->ki_run_list); 729 /* we must queue the next iteration ourselves, if it 730 * has already been kicked */ 731 if (kiocbIsKicked(iocb)) { 732 __queue_kicked_iocb(iocb); 733 734 /* 735 * __queue_kicked_iocb will always return 1 here, because 736 * iocb->ki_run_list is empty at this point so it should 737 * be safe to unconditionally queue the context into the 738 * work queue. 739 */ 740 aio_queue_work(ctx); 741 } 742 } 743 return ret; 744 } 745 746 /* 747 * __aio_run_iocbs: 748 * Process all pending retries queued on the ioctx 749 * run list. 750 * Assumes it is operating within the aio issuer's mm 751 * context. 752 */ 753 static int __aio_run_iocbs(struct kioctx *ctx) 754 { 755 struct kiocb *iocb; 756 struct list_head run_list; 757 758 assert_spin_locked(&ctx->ctx_lock); 759 760 list_replace_init(&ctx->run_list, &run_list); 761 while (!list_empty(&run_list)) { 762 iocb = list_entry(run_list.next, struct kiocb, 763 ki_run_list); 764 list_del(&iocb->ki_run_list); 765 /* 766 * Hold an extra reference while retrying i/o. 767 */ 768 iocb->ki_users++; /* grab extra reference */ 769 aio_run_iocb(iocb); 770 __aio_put_req(ctx, iocb); 771 } 772 if (!list_empty(&ctx->run_list)) 773 return 1; 774 return 0; 775 } 776 777 static void aio_queue_work(struct kioctx * ctx) 778 { 779 unsigned long timeout; 780 /* 781 * if someone is waiting, get the work started right 782 * away, otherwise, use a longer delay 783 */ 784 smp_mb(); 785 if (waitqueue_active(&ctx->wait)) 786 timeout = 1; 787 else 788 timeout = HZ/10; 789 queue_delayed_work(aio_wq, &ctx->wq, timeout); 790 } 791 792 793 /* 794 * aio_run_iocbs: 795 * Process all pending retries queued on the ioctx 796 * run list. 797 * Assumes it is operating within the aio issuer's mm 798 * context. 799 */ 800 static inline void aio_run_iocbs(struct kioctx *ctx) 801 { 802 int requeue; 803 804 spin_lock_irq(&ctx->ctx_lock); 805 806 requeue = __aio_run_iocbs(ctx); 807 spin_unlock_irq(&ctx->ctx_lock); 808 if (requeue) 809 aio_queue_work(ctx); 810 } 811 812 /* 813 * just like aio_run_iocbs, but keeps running them until 814 * the list stays empty 815 */ 816 static inline void aio_run_all_iocbs(struct kioctx *ctx) 817 { 818 spin_lock_irq(&ctx->ctx_lock); 819 while (__aio_run_iocbs(ctx)) 820 ; 821 spin_unlock_irq(&ctx->ctx_lock); 822 } 823 824 /* 825 * aio_kick_handler: 826 * Work queue handler triggered to process pending 827 * retries on an ioctx. Takes on the aio issuer's 828 * mm context before running the iocbs, so that 829 * copy_xxx_user operates on the issuer's address 830 * space. 831 * Run on aiod's context. 832 */ 833 static void aio_kick_handler(struct work_struct *work) 834 { 835 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 836 mm_segment_t oldfs = get_fs(); 837 struct mm_struct *mm; 838 int requeue; 839 840 set_fs(USER_DS); 841 use_mm(ctx->mm); 842 spin_lock_irq(&ctx->ctx_lock); 843 requeue =__aio_run_iocbs(ctx); 844 mm = ctx->mm; 845 spin_unlock_irq(&ctx->ctx_lock); 846 unuse_mm(mm); 847 set_fs(oldfs); 848 /* 849 * we're in a worker thread already, don't use queue_delayed_work, 850 */ 851 if (requeue) 852 queue_delayed_work(aio_wq, &ctx->wq, 0); 853 } 854 855 856 /* 857 * Called by kick_iocb to queue the kiocb for retry 858 * and if required activate the aio work queue to process 859 * it 860 */ 861 static void try_queue_kicked_iocb(struct kiocb *iocb) 862 { 863 struct kioctx *ctx = iocb->ki_ctx; 864 unsigned long flags; 865 int run = 0; 866 867 spin_lock_irqsave(&ctx->ctx_lock, flags); 868 /* set this inside the lock so that we can't race with aio_run_iocb() 869 * testing it and putting the iocb on the run list under the lock */ 870 if (!kiocbTryKick(iocb)) 871 run = __queue_kicked_iocb(iocb); 872 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 873 if (run) 874 aio_queue_work(ctx); 875 } 876 877 /* 878 * kick_iocb: 879 * Called typically from a wait queue callback context 880 * to trigger a retry of the iocb. 881 * The retry is usually executed by aio workqueue 882 * threads (See aio_kick_handler). 883 */ 884 void kick_iocb(struct kiocb *iocb) 885 { 886 /* sync iocbs are easy: they can only ever be executing from a 887 * single context. */ 888 if (is_sync_kiocb(iocb)) { 889 kiocbSetKicked(iocb); 890 wake_up_process(iocb->ki_obj.tsk); 891 return; 892 } 893 894 try_queue_kicked_iocb(iocb); 895 } 896 EXPORT_SYMBOL(kick_iocb); 897 898 /* aio_complete 899 * Called when the io request on the given iocb is complete. 900 * Returns true if this is the last user of the request. The 901 * only other user of the request can be the cancellation code. 902 */ 903 int aio_complete(struct kiocb *iocb, long res, long res2) 904 { 905 struct kioctx *ctx = iocb->ki_ctx; 906 struct aio_ring_info *info; 907 struct aio_ring *ring; 908 struct io_event *event; 909 unsigned long flags; 910 unsigned long tail; 911 int ret; 912 913 /* 914 * Special case handling for sync iocbs: 915 * - events go directly into the iocb for fast handling 916 * - the sync task with the iocb in its stack holds the single iocb 917 * ref, no other paths have a way to get another ref 918 * - the sync task helpfully left a reference to itself in the iocb 919 */ 920 if (is_sync_kiocb(iocb)) { 921 BUG_ON(iocb->ki_users != 1); 922 iocb->ki_user_data = res; 923 iocb->ki_users = 0; 924 wake_up_process(iocb->ki_obj.tsk); 925 return 1; 926 } 927 928 info = &ctx->ring_info; 929 930 /* add a completion event to the ring buffer. 931 * must be done holding ctx->ctx_lock to prevent 932 * other code from messing with the tail 933 * pointer since we might be called from irq 934 * context. 935 */ 936 spin_lock_irqsave(&ctx->ctx_lock, flags); 937 938 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 939 list_del_init(&iocb->ki_run_list); 940 941 /* 942 * cancelled requests don't get events, userland was given one 943 * when the event got cancelled. 944 */ 945 if (kiocbIsCancelled(iocb)) 946 goto put_rq; 947 948 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 949 950 tail = info->tail; 951 event = aio_ring_event(info, tail, KM_IRQ0); 952 if (++tail >= info->nr) 953 tail = 0; 954 955 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 956 event->data = iocb->ki_user_data; 957 event->res = res; 958 event->res2 = res2; 959 960 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 961 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 962 res, res2); 963 964 /* after flagging the request as done, we 965 * must never even look at it again 966 */ 967 smp_wmb(); /* make event visible before updating tail */ 968 969 info->tail = tail; 970 ring->tail = tail; 971 972 put_aio_ring_event(event, KM_IRQ0); 973 kunmap_atomic(ring, KM_IRQ1); 974 975 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 976 977 /* 978 * Check if the user asked us to deliver the result through an 979 * eventfd. The eventfd_signal() function is safe to be called 980 * from IRQ context. 981 */ 982 if (iocb->ki_eventfd != NULL) 983 eventfd_signal(iocb->ki_eventfd, 1); 984 985 put_rq: 986 /* everything turned out well, dispose of the aiocb. */ 987 ret = __aio_put_req(ctx, iocb); 988 989 /* 990 * We have to order our ring_info tail store above and test 991 * of the wait list below outside the wait lock. This is 992 * like in wake_up_bit() where clearing a bit has to be 993 * ordered with the unlocked test. 994 */ 995 smp_mb(); 996 997 if (waitqueue_active(&ctx->wait)) 998 wake_up(&ctx->wait); 999 1000 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1001 return ret; 1002 } 1003 EXPORT_SYMBOL(aio_complete); 1004 1005 /* aio_read_evt 1006 * Pull an event off of the ioctx's event ring. Returns the number of 1007 * events fetched (0 or 1 ;-) 1008 * FIXME: make this use cmpxchg. 1009 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1010 */ 1011 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1012 { 1013 struct aio_ring_info *info = &ioctx->ring_info; 1014 struct aio_ring *ring; 1015 unsigned long head; 1016 int ret = 0; 1017 1018 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1019 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1020 (unsigned long)ring->head, (unsigned long)ring->tail, 1021 (unsigned long)ring->nr); 1022 1023 if (ring->head == ring->tail) 1024 goto out; 1025 1026 spin_lock(&info->ring_lock); 1027 1028 head = ring->head % info->nr; 1029 if (head != ring->tail) { 1030 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1031 *ent = *evp; 1032 head = (head + 1) % info->nr; 1033 smp_mb(); /* finish reading the event before updatng the head */ 1034 ring->head = head; 1035 ret = 1; 1036 put_aio_ring_event(evp, KM_USER1); 1037 } 1038 spin_unlock(&info->ring_lock); 1039 1040 out: 1041 kunmap_atomic(ring, KM_USER0); 1042 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1043 (unsigned long)ring->head, (unsigned long)ring->tail); 1044 return ret; 1045 } 1046 1047 struct aio_timeout { 1048 struct timer_list timer; 1049 int timed_out; 1050 struct task_struct *p; 1051 }; 1052 1053 static void timeout_func(unsigned long data) 1054 { 1055 struct aio_timeout *to = (struct aio_timeout *)data; 1056 1057 to->timed_out = 1; 1058 wake_up_process(to->p); 1059 } 1060 1061 static inline void init_timeout(struct aio_timeout *to) 1062 { 1063 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1064 to->timed_out = 0; 1065 to->p = current; 1066 } 1067 1068 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1069 const struct timespec *ts) 1070 { 1071 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1072 if (time_after(to->timer.expires, jiffies)) 1073 add_timer(&to->timer); 1074 else 1075 to->timed_out = 1; 1076 } 1077 1078 static inline void clear_timeout(struct aio_timeout *to) 1079 { 1080 del_singleshot_timer_sync(&to->timer); 1081 } 1082 1083 static int read_events(struct kioctx *ctx, 1084 long min_nr, long nr, 1085 struct io_event __user *event, 1086 struct timespec __user *timeout) 1087 { 1088 long start_jiffies = jiffies; 1089 struct task_struct *tsk = current; 1090 DECLARE_WAITQUEUE(wait, tsk); 1091 int ret; 1092 int i = 0; 1093 struct io_event ent; 1094 struct aio_timeout to; 1095 int retry = 0; 1096 1097 /* needed to zero any padding within an entry (there shouldn't be 1098 * any, but C is fun! 1099 */ 1100 memset(&ent, 0, sizeof(ent)); 1101 retry: 1102 ret = 0; 1103 while (likely(i < nr)) { 1104 ret = aio_read_evt(ctx, &ent); 1105 if (unlikely(ret <= 0)) 1106 break; 1107 1108 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1109 ent.data, ent.obj, ent.res, ent.res2); 1110 1111 /* Could we split the check in two? */ 1112 ret = -EFAULT; 1113 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1114 dprintk("aio: lost an event due to EFAULT.\n"); 1115 break; 1116 } 1117 ret = 0; 1118 1119 /* Good, event copied to userland, update counts. */ 1120 event ++; 1121 i ++; 1122 } 1123 1124 if (min_nr <= i) 1125 return i; 1126 if (ret) 1127 return ret; 1128 1129 /* End fast path */ 1130 1131 /* racey check, but it gets redone */ 1132 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1133 retry = 1; 1134 aio_run_all_iocbs(ctx); 1135 goto retry; 1136 } 1137 1138 init_timeout(&to); 1139 if (timeout) { 1140 struct timespec ts; 1141 ret = -EFAULT; 1142 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1143 goto out; 1144 1145 set_timeout(start_jiffies, &to, &ts); 1146 } 1147 1148 while (likely(i < nr)) { 1149 add_wait_queue_exclusive(&ctx->wait, &wait); 1150 do { 1151 set_task_state(tsk, TASK_INTERRUPTIBLE); 1152 ret = aio_read_evt(ctx, &ent); 1153 if (ret) 1154 break; 1155 if (min_nr <= i) 1156 break; 1157 if (unlikely(ctx->dead)) { 1158 ret = -EINVAL; 1159 break; 1160 } 1161 if (to.timed_out) /* Only check after read evt */ 1162 break; 1163 /* Try to only show up in io wait if there are ops 1164 * in flight */ 1165 if (ctx->reqs_active) 1166 io_schedule(); 1167 else 1168 schedule(); 1169 if (signal_pending(tsk)) { 1170 ret = -EINTR; 1171 break; 1172 } 1173 /*ret = aio_read_evt(ctx, &ent);*/ 1174 } while (1) ; 1175 1176 set_task_state(tsk, TASK_RUNNING); 1177 remove_wait_queue(&ctx->wait, &wait); 1178 1179 if (unlikely(ret <= 0)) 1180 break; 1181 1182 ret = -EFAULT; 1183 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1184 dprintk("aio: lost an event due to EFAULT.\n"); 1185 break; 1186 } 1187 1188 /* Good, event copied to userland, update counts. */ 1189 event ++; 1190 i ++; 1191 } 1192 1193 if (timeout) 1194 clear_timeout(&to); 1195 out: 1196 destroy_timer_on_stack(&to.timer); 1197 return i ? i : ret; 1198 } 1199 1200 /* Take an ioctx and remove it from the list of ioctx's. Protects 1201 * against races with itself via ->dead. 1202 */ 1203 static void io_destroy(struct kioctx *ioctx) 1204 { 1205 struct mm_struct *mm = current->mm; 1206 int was_dead; 1207 1208 /* delete the entry from the list is someone else hasn't already */ 1209 spin_lock(&mm->ioctx_lock); 1210 was_dead = ioctx->dead; 1211 ioctx->dead = 1; 1212 hlist_del_rcu(&ioctx->list); 1213 spin_unlock(&mm->ioctx_lock); 1214 1215 dprintk("aio_release(%p)\n", ioctx); 1216 if (likely(!was_dead)) 1217 put_ioctx(ioctx); /* twice for the list */ 1218 1219 aio_cancel_all(ioctx); 1220 wait_for_all_aios(ioctx); 1221 1222 /* 1223 * Wake up any waiters. The setting of ctx->dead must be seen 1224 * by other CPUs at this point. Right now, we rely on the 1225 * locking done by the above calls to ensure this consistency. 1226 */ 1227 wake_up(&ioctx->wait); 1228 put_ioctx(ioctx); /* once for the lookup */ 1229 } 1230 1231 /* sys_io_setup: 1232 * Create an aio_context capable of receiving at least nr_events. 1233 * ctxp must not point to an aio_context that already exists, and 1234 * must be initialized to 0 prior to the call. On successful 1235 * creation of the aio_context, *ctxp is filled in with the resulting 1236 * handle. May fail with -EINVAL if *ctxp is not initialized, 1237 * if the specified nr_events exceeds internal limits. May fail 1238 * with -EAGAIN if the specified nr_events exceeds the user's limit 1239 * of available events. May fail with -ENOMEM if insufficient kernel 1240 * resources are available. May fail with -EFAULT if an invalid 1241 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1242 * implemented. 1243 */ 1244 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1245 { 1246 struct kioctx *ioctx = NULL; 1247 unsigned long ctx; 1248 long ret; 1249 1250 ret = get_user(ctx, ctxp); 1251 if (unlikely(ret)) 1252 goto out; 1253 1254 ret = -EINVAL; 1255 if (unlikely(ctx || nr_events == 0)) { 1256 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1257 ctx, nr_events); 1258 goto out; 1259 } 1260 1261 ioctx = ioctx_alloc(nr_events); 1262 ret = PTR_ERR(ioctx); 1263 if (!IS_ERR(ioctx)) { 1264 ret = put_user(ioctx->user_id, ctxp); 1265 if (!ret) 1266 return 0; 1267 1268 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1269 io_destroy(ioctx); 1270 } 1271 1272 out: 1273 return ret; 1274 } 1275 1276 /* sys_io_destroy: 1277 * Destroy the aio_context specified. May cancel any outstanding 1278 * AIOs and block on completion. Will fail with -ENOSYS if not 1279 * implemented. May fail with -EFAULT if the context pointed to 1280 * is invalid. 1281 */ 1282 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1283 { 1284 struct kioctx *ioctx = lookup_ioctx(ctx); 1285 if (likely(NULL != ioctx)) { 1286 io_destroy(ioctx); 1287 return 0; 1288 } 1289 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1290 return -EINVAL; 1291 } 1292 1293 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1294 { 1295 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1296 1297 BUG_ON(ret <= 0); 1298 1299 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1300 ssize_t this = min((ssize_t)iov->iov_len, ret); 1301 iov->iov_base += this; 1302 iov->iov_len -= this; 1303 iocb->ki_left -= this; 1304 ret -= this; 1305 if (iov->iov_len == 0) { 1306 iocb->ki_cur_seg++; 1307 iov++; 1308 } 1309 } 1310 1311 /* the caller should not have done more io than what fit in 1312 * the remaining iovecs */ 1313 BUG_ON(ret > 0 && iocb->ki_left == 0); 1314 } 1315 1316 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1317 { 1318 struct file *file = iocb->ki_filp; 1319 struct address_space *mapping = file->f_mapping; 1320 struct inode *inode = mapping->host; 1321 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1322 unsigned long, loff_t); 1323 ssize_t ret = 0; 1324 unsigned short opcode; 1325 1326 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1327 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1328 rw_op = file->f_op->aio_read; 1329 opcode = IOCB_CMD_PREADV; 1330 } else { 1331 rw_op = file->f_op->aio_write; 1332 opcode = IOCB_CMD_PWRITEV; 1333 } 1334 1335 /* This matches the pread()/pwrite() logic */ 1336 if (iocb->ki_pos < 0) 1337 return -EINVAL; 1338 1339 do { 1340 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1341 iocb->ki_nr_segs - iocb->ki_cur_seg, 1342 iocb->ki_pos); 1343 if (ret > 0) 1344 aio_advance_iovec(iocb, ret); 1345 1346 /* retry all partial writes. retry partial reads as long as its a 1347 * regular file. */ 1348 } while (ret > 0 && iocb->ki_left > 0 && 1349 (opcode == IOCB_CMD_PWRITEV || 1350 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1351 1352 /* This means we must have transferred all that we could */ 1353 /* No need to retry anymore */ 1354 if ((ret == 0) || (iocb->ki_left == 0)) 1355 ret = iocb->ki_nbytes - iocb->ki_left; 1356 1357 /* If we managed to write some out we return that, rather than 1358 * the eventual error. */ 1359 if (opcode == IOCB_CMD_PWRITEV 1360 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1361 && iocb->ki_nbytes - iocb->ki_left) 1362 ret = iocb->ki_nbytes - iocb->ki_left; 1363 1364 return ret; 1365 } 1366 1367 static ssize_t aio_fdsync(struct kiocb *iocb) 1368 { 1369 struct file *file = iocb->ki_filp; 1370 ssize_t ret = -EINVAL; 1371 1372 if (file->f_op->aio_fsync) 1373 ret = file->f_op->aio_fsync(iocb, 1); 1374 return ret; 1375 } 1376 1377 static ssize_t aio_fsync(struct kiocb *iocb) 1378 { 1379 struct file *file = iocb->ki_filp; 1380 ssize_t ret = -EINVAL; 1381 1382 if (file->f_op->aio_fsync) 1383 ret = file->f_op->aio_fsync(iocb, 0); 1384 return ret; 1385 } 1386 1387 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1388 { 1389 ssize_t ret; 1390 1391 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1392 kiocb->ki_nbytes, 1, 1393 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1394 if (ret < 0) 1395 goto out; 1396 1397 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1398 kiocb->ki_cur_seg = 0; 1399 /* ki_nbytes/left now reflect bytes instead of segs */ 1400 kiocb->ki_nbytes = ret; 1401 kiocb->ki_left = ret; 1402 1403 ret = 0; 1404 out: 1405 return ret; 1406 } 1407 1408 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1409 { 1410 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1411 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1412 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1413 kiocb->ki_nr_segs = 1; 1414 kiocb->ki_cur_seg = 0; 1415 return 0; 1416 } 1417 1418 /* 1419 * aio_setup_iocb: 1420 * Performs the initial checks and aio retry method 1421 * setup for the kiocb at the time of io submission. 1422 */ 1423 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1424 { 1425 struct file *file = kiocb->ki_filp; 1426 ssize_t ret = 0; 1427 1428 switch (kiocb->ki_opcode) { 1429 case IOCB_CMD_PREAD: 1430 ret = -EBADF; 1431 if (unlikely(!(file->f_mode & FMODE_READ))) 1432 break; 1433 ret = -EFAULT; 1434 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1435 kiocb->ki_left))) 1436 break; 1437 ret = security_file_permission(file, MAY_READ); 1438 if (unlikely(ret)) 1439 break; 1440 ret = aio_setup_single_vector(kiocb); 1441 if (ret) 1442 break; 1443 ret = -EINVAL; 1444 if (file->f_op->aio_read) 1445 kiocb->ki_retry = aio_rw_vect_retry; 1446 break; 1447 case IOCB_CMD_PWRITE: 1448 ret = -EBADF; 1449 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1450 break; 1451 ret = -EFAULT; 1452 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1453 kiocb->ki_left))) 1454 break; 1455 ret = security_file_permission(file, MAY_WRITE); 1456 if (unlikely(ret)) 1457 break; 1458 ret = aio_setup_single_vector(kiocb); 1459 if (ret) 1460 break; 1461 ret = -EINVAL; 1462 if (file->f_op->aio_write) 1463 kiocb->ki_retry = aio_rw_vect_retry; 1464 break; 1465 case IOCB_CMD_PREADV: 1466 ret = -EBADF; 1467 if (unlikely(!(file->f_mode & FMODE_READ))) 1468 break; 1469 ret = security_file_permission(file, MAY_READ); 1470 if (unlikely(ret)) 1471 break; 1472 ret = aio_setup_vectored_rw(READ, kiocb); 1473 if (ret) 1474 break; 1475 ret = -EINVAL; 1476 if (file->f_op->aio_read) 1477 kiocb->ki_retry = aio_rw_vect_retry; 1478 break; 1479 case IOCB_CMD_PWRITEV: 1480 ret = -EBADF; 1481 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1482 break; 1483 ret = security_file_permission(file, MAY_WRITE); 1484 if (unlikely(ret)) 1485 break; 1486 ret = aio_setup_vectored_rw(WRITE, kiocb); 1487 if (ret) 1488 break; 1489 ret = -EINVAL; 1490 if (file->f_op->aio_write) 1491 kiocb->ki_retry = aio_rw_vect_retry; 1492 break; 1493 case IOCB_CMD_FDSYNC: 1494 ret = -EINVAL; 1495 if (file->f_op->aio_fsync) 1496 kiocb->ki_retry = aio_fdsync; 1497 break; 1498 case IOCB_CMD_FSYNC: 1499 ret = -EINVAL; 1500 if (file->f_op->aio_fsync) 1501 kiocb->ki_retry = aio_fsync; 1502 break; 1503 default: 1504 dprintk("EINVAL: io_submit: no operation provided\n"); 1505 ret = -EINVAL; 1506 } 1507 1508 if (!kiocb->ki_retry) 1509 return ret; 1510 1511 return 0; 1512 } 1513 1514 static void aio_batch_add(struct address_space *mapping, 1515 struct hlist_head *batch_hash) 1516 { 1517 struct aio_batch_entry *abe; 1518 struct hlist_node *pos; 1519 unsigned bucket; 1520 1521 bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS); 1522 hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) { 1523 if (abe->mapping == mapping) 1524 return; 1525 } 1526 1527 abe = mempool_alloc(abe_pool, GFP_KERNEL); 1528 BUG_ON(!igrab(mapping->host)); 1529 abe->mapping = mapping; 1530 hlist_add_head(&abe->list, &batch_hash[bucket]); 1531 return; 1532 } 1533 1534 static void aio_batch_free(struct hlist_head *batch_hash) 1535 { 1536 struct aio_batch_entry *abe; 1537 struct hlist_node *pos, *n; 1538 int i; 1539 1540 for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) { 1541 hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) { 1542 blk_run_address_space(abe->mapping); 1543 iput(abe->mapping->host); 1544 hlist_del(&abe->list); 1545 mempool_free(abe, abe_pool); 1546 } 1547 } 1548 } 1549 1550 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1551 struct iocb *iocb, struct hlist_head *batch_hash) 1552 { 1553 struct kiocb *req; 1554 struct file *file; 1555 ssize_t ret; 1556 1557 /* enforce forwards compatibility on users */ 1558 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1559 pr_debug("EINVAL: io_submit: reserve field set\n"); 1560 return -EINVAL; 1561 } 1562 1563 /* prevent overflows */ 1564 if (unlikely( 1565 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1566 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1567 ((ssize_t)iocb->aio_nbytes < 0) 1568 )) { 1569 pr_debug("EINVAL: io_submit: overflow check\n"); 1570 return -EINVAL; 1571 } 1572 1573 file = fget(iocb->aio_fildes); 1574 if (unlikely(!file)) 1575 return -EBADF; 1576 1577 req = aio_get_req(ctx); /* returns with 2 references to req */ 1578 if (unlikely(!req)) { 1579 fput(file); 1580 return -EAGAIN; 1581 } 1582 req->ki_filp = file; 1583 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1584 /* 1585 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1586 * instance of the file* now. The file descriptor must be 1587 * an eventfd() fd, and will be signaled for each completed 1588 * event using the eventfd_signal() function. 1589 */ 1590 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1591 if (IS_ERR(req->ki_eventfd)) { 1592 ret = PTR_ERR(req->ki_eventfd); 1593 req->ki_eventfd = NULL; 1594 goto out_put_req; 1595 } 1596 } 1597 1598 ret = put_user(req->ki_key, &user_iocb->aio_key); 1599 if (unlikely(ret)) { 1600 dprintk("EFAULT: aio_key\n"); 1601 goto out_put_req; 1602 } 1603 1604 req->ki_obj.user = user_iocb; 1605 req->ki_user_data = iocb->aio_data; 1606 req->ki_pos = iocb->aio_offset; 1607 1608 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1609 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1610 req->ki_opcode = iocb->aio_lio_opcode; 1611 1612 ret = aio_setup_iocb(req); 1613 1614 if (ret) 1615 goto out_put_req; 1616 1617 spin_lock_irq(&ctx->ctx_lock); 1618 aio_run_iocb(req); 1619 if (!list_empty(&ctx->run_list)) { 1620 /* drain the run list */ 1621 while (__aio_run_iocbs(ctx)) 1622 ; 1623 } 1624 spin_unlock_irq(&ctx->ctx_lock); 1625 if (req->ki_opcode == IOCB_CMD_PREAD || 1626 req->ki_opcode == IOCB_CMD_PREADV || 1627 req->ki_opcode == IOCB_CMD_PWRITE || 1628 req->ki_opcode == IOCB_CMD_PWRITEV) 1629 aio_batch_add(file->f_mapping, batch_hash); 1630 1631 aio_put_req(req); /* drop extra ref to req */ 1632 return 0; 1633 1634 out_put_req: 1635 aio_put_req(req); /* drop extra ref to req */ 1636 aio_put_req(req); /* drop i/o ref to req */ 1637 return ret; 1638 } 1639 1640 /* sys_io_submit: 1641 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1642 * the number of iocbs queued. May return -EINVAL if the aio_context 1643 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1644 * *iocbpp[0] is not properly initialized, if the operation specified 1645 * is invalid for the file descriptor in the iocb. May fail with 1646 * -EFAULT if any of the data structures point to invalid data. May 1647 * fail with -EBADF if the file descriptor specified in the first 1648 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1649 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1650 * fail with -ENOSYS if not implemented. 1651 */ 1652 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1653 struct iocb __user * __user *, iocbpp) 1654 { 1655 struct kioctx *ctx; 1656 long ret = 0; 1657 int i; 1658 struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, }; 1659 1660 if (unlikely(nr < 0)) 1661 return -EINVAL; 1662 1663 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1664 return -EFAULT; 1665 1666 ctx = lookup_ioctx(ctx_id); 1667 if (unlikely(!ctx)) { 1668 pr_debug("EINVAL: io_submit: invalid context id\n"); 1669 return -EINVAL; 1670 } 1671 1672 /* 1673 * AKPM: should this return a partial result if some of the IOs were 1674 * successfully submitted? 1675 */ 1676 for (i=0; i<nr; i++) { 1677 struct iocb __user *user_iocb; 1678 struct iocb tmp; 1679 1680 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1681 ret = -EFAULT; 1682 break; 1683 } 1684 1685 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1686 ret = -EFAULT; 1687 break; 1688 } 1689 1690 ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash); 1691 if (ret) 1692 break; 1693 } 1694 aio_batch_free(batch_hash); 1695 1696 put_ioctx(ctx); 1697 return i ? i : ret; 1698 } 1699 1700 /* lookup_kiocb 1701 * Finds a given iocb for cancellation. 1702 */ 1703 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1704 u32 key) 1705 { 1706 struct list_head *pos; 1707 1708 assert_spin_locked(&ctx->ctx_lock); 1709 1710 /* TODO: use a hash or array, this sucks. */ 1711 list_for_each(pos, &ctx->active_reqs) { 1712 struct kiocb *kiocb = list_kiocb(pos); 1713 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1714 return kiocb; 1715 } 1716 return NULL; 1717 } 1718 1719 /* sys_io_cancel: 1720 * Attempts to cancel an iocb previously passed to io_submit. If 1721 * the operation is successfully cancelled, the resulting event is 1722 * copied into the memory pointed to by result without being placed 1723 * into the completion queue and 0 is returned. May fail with 1724 * -EFAULT if any of the data structures pointed to are invalid. 1725 * May fail with -EINVAL if aio_context specified by ctx_id is 1726 * invalid. May fail with -EAGAIN if the iocb specified was not 1727 * cancelled. Will fail with -ENOSYS if not implemented. 1728 */ 1729 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1730 struct io_event __user *, result) 1731 { 1732 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1733 struct kioctx *ctx; 1734 struct kiocb *kiocb; 1735 u32 key; 1736 int ret; 1737 1738 ret = get_user(key, &iocb->aio_key); 1739 if (unlikely(ret)) 1740 return -EFAULT; 1741 1742 ctx = lookup_ioctx(ctx_id); 1743 if (unlikely(!ctx)) 1744 return -EINVAL; 1745 1746 spin_lock_irq(&ctx->ctx_lock); 1747 ret = -EAGAIN; 1748 kiocb = lookup_kiocb(ctx, iocb, key); 1749 if (kiocb && kiocb->ki_cancel) { 1750 cancel = kiocb->ki_cancel; 1751 kiocb->ki_users ++; 1752 kiocbSetCancelled(kiocb); 1753 } else 1754 cancel = NULL; 1755 spin_unlock_irq(&ctx->ctx_lock); 1756 1757 if (NULL != cancel) { 1758 struct io_event tmp; 1759 pr_debug("calling cancel\n"); 1760 memset(&tmp, 0, sizeof(tmp)); 1761 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1762 tmp.data = kiocb->ki_user_data; 1763 ret = cancel(kiocb, &tmp); 1764 if (!ret) { 1765 /* Cancellation succeeded -- copy the result 1766 * into the user's buffer. 1767 */ 1768 if (copy_to_user(result, &tmp, sizeof(tmp))) 1769 ret = -EFAULT; 1770 } 1771 } else 1772 ret = -EINVAL; 1773 1774 put_ioctx(ctx); 1775 1776 return ret; 1777 } 1778 1779 /* io_getevents: 1780 * Attempts to read at least min_nr events and up to nr events from 1781 * the completion queue for the aio_context specified by ctx_id. May 1782 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1783 * if nr is out of range, if when is out of range. May fail with 1784 * -EFAULT if any of the memory specified to is invalid. May return 1785 * 0 or < min_nr if no events are available and the timeout specified 1786 * by when has elapsed, where when == NULL specifies an infinite 1787 * timeout. Note that the timeout pointed to by when is relative and 1788 * will be updated if not NULL and the operation blocks. Will fail 1789 * with -ENOSYS if not implemented. 1790 */ 1791 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1792 long, min_nr, 1793 long, nr, 1794 struct io_event __user *, events, 1795 struct timespec __user *, timeout) 1796 { 1797 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1798 long ret = -EINVAL; 1799 1800 if (likely(ioctx)) { 1801 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1802 ret = read_events(ioctx, min_nr, nr, events, timeout); 1803 put_ioctx(ioctx); 1804 } 1805 1806 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1807 return ret; 1808 } 1809