xref: /openbmc/linux/fs/aio.c (revision 7dd65feb)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 
40 #include <asm/kmap_types.h>
41 #include <asm/uaccess.h>
42 
43 #if DEBUG > 1
44 #define dprintk		printk
45 #else
46 #define dprintk(x...)	do { ; } while (0)
47 #endif
48 
49 /*------ sysctl variables----*/
50 static DEFINE_SPINLOCK(aio_nr_lock);
51 unsigned long aio_nr;		/* current system wide number of aio requests */
52 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
53 /*----end sysctl variables---*/
54 
55 static struct kmem_cache	*kiocb_cachep;
56 static struct kmem_cache	*kioctx_cachep;
57 
58 static struct workqueue_struct *aio_wq;
59 
60 /* Used for rare fput completion. */
61 static void aio_fput_routine(struct work_struct *);
62 static DECLARE_WORK(fput_work, aio_fput_routine);
63 
64 static DEFINE_SPINLOCK(fput_lock);
65 static LIST_HEAD(fput_head);
66 
67 #define AIO_BATCH_HASH_BITS	3 /* allocated on-stack, so don't go crazy */
68 #define AIO_BATCH_HASH_SIZE	(1 << AIO_BATCH_HASH_BITS)
69 struct aio_batch_entry {
70 	struct hlist_node list;
71 	struct address_space *mapping;
72 };
73 mempool_t *abe_pool;
74 
75 static void aio_kick_handler(struct work_struct *);
76 static void aio_queue_work(struct kioctx *);
77 
78 /* aio_setup
79  *	Creates the slab caches used by the aio routines, panic on
80  *	failure as this is done early during the boot sequence.
81  */
82 static int __init aio_setup(void)
83 {
84 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
85 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 
87 	aio_wq = create_workqueue("aio");
88 	abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
89 	BUG_ON(!abe_pool);
90 
91 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
92 
93 	return 0;
94 }
95 __initcall(aio_setup);
96 
97 static void aio_free_ring(struct kioctx *ctx)
98 {
99 	struct aio_ring_info *info = &ctx->ring_info;
100 	long i;
101 
102 	for (i=0; i<info->nr_pages; i++)
103 		put_page(info->ring_pages[i]);
104 
105 	if (info->mmap_size) {
106 		down_write(&ctx->mm->mmap_sem);
107 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
108 		up_write(&ctx->mm->mmap_sem);
109 	}
110 
111 	if (info->ring_pages && info->ring_pages != info->internal_pages)
112 		kfree(info->ring_pages);
113 	info->ring_pages = NULL;
114 	info->nr = 0;
115 }
116 
117 static int aio_setup_ring(struct kioctx *ctx)
118 {
119 	struct aio_ring *ring;
120 	struct aio_ring_info *info = &ctx->ring_info;
121 	unsigned nr_events = ctx->max_reqs;
122 	unsigned long size;
123 	int nr_pages;
124 
125 	/* Compensate for the ring buffer's head/tail overlap entry */
126 	nr_events += 2;	/* 1 is required, 2 for good luck */
127 
128 	size = sizeof(struct aio_ring);
129 	size += sizeof(struct io_event) * nr_events;
130 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
131 
132 	if (nr_pages < 0)
133 		return -EINVAL;
134 
135 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
136 
137 	info->nr = 0;
138 	info->ring_pages = info->internal_pages;
139 	if (nr_pages > AIO_RING_PAGES) {
140 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
141 		if (!info->ring_pages)
142 			return -ENOMEM;
143 	}
144 
145 	info->mmap_size = nr_pages * PAGE_SIZE;
146 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
147 	down_write(&ctx->mm->mmap_sem);
148 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
149 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
150 				  0);
151 	if (IS_ERR((void *)info->mmap_base)) {
152 		up_write(&ctx->mm->mmap_sem);
153 		info->mmap_size = 0;
154 		aio_free_ring(ctx);
155 		return -EAGAIN;
156 	}
157 
158 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
159 	info->nr_pages = get_user_pages(current, ctx->mm,
160 					info->mmap_base, nr_pages,
161 					1, 0, info->ring_pages, NULL);
162 	up_write(&ctx->mm->mmap_sem);
163 
164 	if (unlikely(info->nr_pages != nr_pages)) {
165 		aio_free_ring(ctx);
166 		return -EAGAIN;
167 	}
168 
169 	ctx->user_id = info->mmap_base;
170 
171 	info->nr = nr_events;		/* trusted copy */
172 
173 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
174 	ring->nr = nr_events;	/* user copy */
175 	ring->id = ctx->user_id;
176 	ring->head = ring->tail = 0;
177 	ring->magic = AIO_RING_MAGIC;
178 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
179 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
180 	ring->header_length = sizeof(struct aio_ring);
181 	kunmap_atomic(ring, KM_USER0);
182 
183 	return 0;
184 }
185 
186 
187 /* aio_ring_event: returns a pointer to the event at the given index from
188  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
189  */
190 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
191 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
192 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
193 
194 #define aio_ring_event(info, nr, km) ({					\
195 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
196 	struct io_event *__event;					\
197 	__event = kmap_atomic(						\
198 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
199 	__event += pos % AIO_EVENTS_PER_PAGE;				\
200 	__event;							\
201 })
202 
203 #define put_aio_ring_event(event, km) do {	\
204 	struct io_event *__event = (event);	\
205 	(void)__event;				\
206 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
207 } while(0)
208 
209 static void ctx_rcu_free(struct rcu_head *head)
210 {
211 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
212 	unsigned nr_events = ctx->max_reqs;
213 
214 	kmem_cache_free(kioctx_cachep, ctx);
215 
216 	if (nr_events) {
217 		spin_lock(&aio_nr_lock);
218 		BUG_ON(aio_nr - nr_events > aio_nr);
219 		aio_nr -= nr_events;
220 		spin_unlock(&aio_nr_lock);
221 	}
222 }
223 
224 /* __put_ioctx
225  *	Called when the last user of an aio context has gone away,
226  *	and the struct needs to be freed.
227  */
228 static void __put_ioctx(struct kioctx *ctx)
229 {
230 	BUG_ON(ctx->reqs_active);
231 
232 	cancel_delayed_work(&ctx->wq);
233 	cancel_work_sync(&ctx->wq.work);
234 	aio_free_ring(ctx);
235 	mmdrop(ctx->mm);
236 	ctx->mm = NULL;
237 	pr_debug("__put_ioctx: freeing %p\n", ctx);
238 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
239 }
240 
241 #define get_ioctx(kioctx) do {						\
242 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
243 	atomic_inc(&(kioctx)->users);					\
244 } while (0)
245 #define put_ioctx(kioctx) do {						\
246 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
247 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
248 		__put_ioctx(kioctx);					\
249 } while (0)
250 
251 /* ioctx_alloc
252  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
253  */
254 static struct kioctx *ioctx_alloc(unsigned nr_events)
255 {
256 	struct mm_struct *mm;
257 	struct kioctx *ctx;
258 	int did_sync = 0;
259 
260 	/* Prevent overflows */
261 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
262 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
263 		pr_debug("ENOMEM: nr_events too high\n");
264 		return ERR_PTR(-EINVAL);
265 	}
266 
267 	if ((unsigned long)nr_events > aio_max_nr)
268 		return ERR_PTR(-EAGAIN);
269 
270 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
271 	if (!ctx)
272 		return ERR_PTR(-ENOMEM);
273 
274 	ctx->max_reqs = nr_events;
275 	mm = ctx->mm = current->mm;
276 	atomic_inc(&mm->mm_count);
277 
278 	atomic_set(&ctx->users, 1);
279 	spin_lock_init(&ctx->ctx_lock);
280 	spin_lock_init(&ctx->ring_info.ring_lock);
281 	init_waitqueue_head(&ctx->wait);
282 
283 	INIT_LIST_HEAD(&ctx->active_reqs);
284 	INIT_LIST_HEAD(&ctx->run_list);
285 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
286 
287 	if (aio_setup_ring(ctx) < 0)
288 		goto out_freectx;
289 
290 	/* limit the number of system wide aios */
291 	do {
292 		spin_lock_bh(&aio_nr_lock);
293 		if (aio_nr + nr_events > aio_max_nr ||
294 		    aio_nr + nr_events < aio_nr)
295 			ctx->max_reqs = 0;
296 		else
297 			aio_nr += ctx->max_reqs;
298 		spin_unlock_bh(&aio_nr_lock);
299 		if (ctx->max_reqs || did_sync)
300 			break;
301 
302 		/* wait for rcu callbacks to have completed before giving up */
303 		synchronize_rcu();
304 		did_sync = 1;
305 		ctx->max_reqs = nr_events;
306 	} while (1);
307 
308 	if (ctx->max_reqs == 0)
309 		goto out_cleanup;
310 
311 	/* now link into global list. */
312 	spin_lock(&mm->ioctx_lock);
313 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
314 	spin_unlock(&mm->ioctx_lock);
315 
316 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
317 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
318 	return ctx;
319 
320 out_cleanup:
321 	__put_ioctx(ctx);
322 	return ERR_PTR(-EAGAIN);
323 
324 out_freectx:
325 	mmdrop(mm);
326 	kmem_cache_free(kioctx_cachep, ctx);
327 	ctx = ERR_PTR(-ENOMEM);
328 
329 	dprintk("aio: error allocating ioctx %p\n", ctx);
330 	return ctx;
331 }
332 
333 /* aio_cancel_all
334  *	Cancels all outstanding aio requests on an aio context.  Used
335  *	when the processes owning a context have all exited to encourage
336  *	the rapid destruction of the kioctx.
337  */
338 static void aio_cancel_all(struct kioctx *ctx)
339 {
340 	int (*cancel)(struct kiocb *, struct io_event *);
341 	struct io_event res;
342 	spin_lock_irq(&ctx->ctx_lock);
343 	ctx->dead = 1;
344 	while (!list_empty(&ctx->active_reqs)) {
345 		struct list_head *pos = ctx->active_reqs.next;
346 		struct kiocb *iocb = list_kiocb(pos);
347 		list_del_init(&iocb->ki_list);
348 		cancel = iocb->ki_cancel;
349 		kiocbSetCancelled(iocb);
350 		if (cancel) {
351 			iocb->ki_users++;
352 			spin_unlock_irq(&ctx->ctx_lock);
353 			cancel(iocb, &res);
354 			spin_lock_irq(&ctx->ctx_lock);
355 		}
356 	}
357 	spin_unlock_irq(&ctx->ctx_lock);
358 }
359 
360 static void wait_for_all_aios(struct kioctx *ctx)
361 {
362 	struct task_struct *tsk = current;
363 	DECLARE_WAITQUEUE(wait, tsk);
364 
365 	spin_lock_irq(&ctx->ctx_lock);
366 	if (!ctx->reqs_active)
367 		goto out;
368 
369 	add_wait_queue(&ctx->wait, &wait);
370 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
371 	while (ctx->reqs_active) {
372 		spin_unlock_irq(&ctx->ctx_lock);
373 		io_schedule();
374 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
375 		spin_lock_irq(&ctx->ctx_lock);
376 	}
377 	__set_task_state(tsk, TASK_RUNNING);
378 	remove_wait_queue(&ctx->wait, &wait);
379 
380 out:
381 	spin_unlock_irq(&ctx->ctx_lock);
382 }
383 
384 /* wait_on_sync_kiocb:
385  *	Waits on the given sync kiocb to complete.
386  */
387 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
388 {
389 	while (iocb->ki_users) {
390 		set_current_state(TASK_UNINTERRUPTIBLE);
391 		if (!iocb->ki_users)
392 			break;
393 		io_schedule();
394 	}
395 	__set_current_state(TASK_RUNNING);
396 	return iocb->ki_user_data;
397 }
398 EXPORT_SYMBOL(wait_on_sync_kiocb);
399 
400 /* exit_aio: called when the last user of mm goes away.  At this point,
401  * there is no way for any new requests to be submited or any of the
402  * io_* syscalls to be called on the context.  However, there may be
403  * outstanding requests which hold references to the context; as they
404  * go away, they will call put_ioctx and release any pinned memory
405  * associated with the request (held via struct page * references).
406  */
407 void exit_aio(struct mm_struct *mm)
408 {
409 	struct kioctx *ctx;
410 
411 	while (!hlist_empty(&mm->ioctx_list)) {
412 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
413 		hlist_del_rcu(&ctx->list);
414 
415 		aio_cancel_all(ctx);
416 
417 		wait_for_all_aios(ctx);
418 		/*
419 		 * Ensure we don't leave the ctx on the aio_wq
420 		 */
421 		cancel_work_sync(&ctx->wq.work);
422 
423 		if (1 != atomic_read(&ctx->users))
424 			printk(KERN_DEBUG
425 				"exit_aio:ioctx still alive: %d %d %d\n",
426 				atomic_read(&ctx->users), ctx->dead,
427 				ctx->reqs_active);
428 		put_ioctx(ctx);
429 	}
430 }
431 
432 /* aio_get_req
433  *	Allocate a slot for an aio request.  Increments the users count
434  * of the kioctx so that the kioctx stays around until all requests are
435  * complete.  Returns NULL if no requests are free.
436  *
437  * Returns with kiocb->users set to 2.  The io submit code path holds
438  * an extra reference while submitting the i/o.
439  * This prevents races between the aio code path referencing the
440  * req (after submitting it) and aio_complete() freeing the req.
441  */
442 static struct kiocb *__aio_get_req(struct kioctx *ctx)
443 {
444 	struct kiocb *req = NULL;
445 	struct aio_ring *ring;
446 	int okay = 0;
447 
448 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
449 	if (unlikely(!req))
450 		return NULL;
451 
452 	req->ki_flags = 0;
453 	req->ki_users = 2;
454 	req->ki_key = 0;
455 	req->ki_ctx = ctx;
456 	req->ki_cancel = NULL;
457 	req->ki_retry = NULL;
458 	req->ki_dtor = NULL;
459 	req->private = NULL;
460 	req->ki_iovec = NULL;
461 	INIT_LIST_HEAD(&req->ki_run_list);
462 	req->ki_eventfd = NULL;
463 
464 	/* Check if the completion queue has enough free space to
465 	 * accept an event from this io.
466 	 */
467 	spin_lock_irq(&ctx->ctx_lock);
468 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
469 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
470 		list_add(&req->ki_list, &ctx->active_reqs);
471 		ctx->reqs_active++;
472 		okay = 1;
473 	}
474 	kunmap_atomic(ring, KM_USER0);
475 	spin_unlock_irq(&ctx->ctx_lock);
476 
477 	if (!okay) {
478 		kmem_cache_free(kiocb_cachep, req);
479 		req = NULL;
480 	}
481 
482 	return req;
483 }
484 
485 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
486 {
487 	struct kiocb *req;
488 	/* Handle a potential starvation case -- should be exceedingly rare as
489 	 * requests will be stuck on fput_head only if the aio_fput_routine is
490 	 * delayed and the requests were the last user of the struct file.
491 	 */
492 	req = __aio_get_req(ctx);
493 	if (unlikely(NULL == req)) {
494 		aio_fput_routine(NULL);
495 		req = __aio_get_req(ctx);
496 	}
497 	return req;
498 }
499 
500 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
501 {
502 	assert_spin_locked(&ctx->ctx_lock);
503 
504 	if (req->ki_eventfd != NULL)
505 		eventfd_ctx_put(req->ki_eventfd);
506 	if (req->ki_dtor)
507 		req->ki_dtor(req);
508 	if (req->ki_iovec != &req->ki_inline_vec)
509 		kfree(req->ki_iovec);
510 	kmem_cache_free(kiocb_cachep, req);
511 	ctx->reqs_active--;
512 
513 	if (unlikely(!ctx->reqs_active && ctx->dead))
514 		wake_up(&ctx->wait);
515 }
516 
517 static void aio_fput_routine(struct work_struct *data)
518 {
519 	spin_lock_irq(&fput_lock);
520 	while (likely(!list_empty(&fput_head))) {
521 		struct kiocb *req = list_kiocb(fput_head.next);
522 		struct kioctx *ctx = req->ki_ctx;
523 
524 		list_del(&req->ki_list);
525 		spin_unlock_irq(&fput_lock);
526 
527 		/* Complete the fput(s) */
528 		if (req->ki_filp != NULL)
529 			__fput(req->ki_filp);
530 
531 		/* Link the iocb into the context's free list */
532 		spin_lock_irq(&ctx->ctx_lock);
533 		really_put_req(ctx, req);
534 		spin_unlock_irq(&ctx->ctx_lock);
535 
536 		put_ioctx(ctx);
537 		spin_lock_irq(&fput_lock);
538 	}
539 	spin_unlock_irq(&fput_lock);
540 }
541 
542 /* __aio_put_req
543  *	Returns true if this put was the last user of the request.
544  */
545 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
546 {
547 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
548 		req, atomic_long_read(&req->ki_filp->f_count));
549 
550 	assert_spin_locked(&ctx->ctx_lock);
551 
552 	req->ki_users--;
553 	BUG_ON(req->ki_users < 0);
554 	if (likely(req->ki_users))
555 		return 0;
556 	list_del(&req->ki_list);		/* remove from active_reqs */
557 	req->ki_cancel = NULL;
558 	req->ki_retry = NULL;
559 
560 	/*
561 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
562 	 * schedule work in case it is not __fput() time. In normal cases,
563 	 * we would not be holding the last reference to the file*, so
564 	 * this function will be executed w/out any aio kthread wakeup.
565 	 */
566 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
567 		get_ioctx(ctx);
568 		spin_lock(&fput_lock);
569 		list_add(&req->ki_list, &fput_head);
570 		spin_unlock(&fput_lock);
571 		queue_work(aio_wq, &fput_work);
572 	} else {
573 		req->ki_filp = NULL;
574 		really_put_req(ctx, req);
575 	}
576 	return 1;
577 }
578 
579 /* aio_put_req
580  *	Returns true if this put was the last user of the kiocb,
581  *	false if the request is still in use.
582  */
583 int aio_put_req(struct kiocb *req)
584 {
585 	struct kioctx *ctx = req->ki_ctx;
586 	int ret;
587 	spin_lock_irq(&ctx->ctx_lock);
588 	ret = __aio_put_req(ctx, req);
589 	spin_unlock_irq(&ctx->ctx_lock);
590 	return ret;
591 }
592 EXPORT_SYMBOL(aio_put_req);
593 
594 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
595 {
596 	struct mm_struct *mm = current->mm;
597 	struct kioctx *ctx, *ret = NULL;
598 	struct hlist_node *n;
599 
600 	rcu_read_lock();
601 
602 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
603 		if (ctx->user_id == ctx_id && !ctx->dead) {
604 			get_ioctx(ctx);
605 			ret = ctx;
606 			break;
607 		}
608 	}
609 
610 	rcu_read_unlock();
611 	return ret;
612 }
613 
614 /*
615  * Queue up a kiocb to be retried. Assumes that the kiocb
616  * has already been marked as kicked, and places it on
617  * the retry run list for the corresponding ioctx, if it
618  * isn't already queued. Returns 1 if it actually queued
619  * the kiocb (to tell the caller to activate the work
620  * queue to process it), or 0, if it found that it was
621  * already queued.
622  */
623 static inline int __queue_kicked_iocb(struct kiocb *iocb)
624 {
625 	struct kioctx *ctx = iocb->ki_ctx;
626 
627 	assert_spin_locked(&ctx->ctx_lock);
628 
629 	if (list_empty(&iocb->ki_run_list)) {
630 		list_add_tail(&iocb->ki_run_list,
631 			&ctx->run_list);
632 		return 1;
633 	}
634 	return 0;
635 }
636 
637 /* aio_run_iocb
638  *	This is the core aio execution routine. It is
639  *	invoked both for initial i/o submission and
640  *	subsequent retries via the aio_kick_handler.
641  *	Expects to be invoked with iocb->ki_ctx->lock
642  *	already held. The lock is released and reacquired
643  *	as needed during processing.
644  *
645  * Calls the iocb retry method (already setup for the
646  * iocb on initial submission) for operation specific
647  * handling, but takes care of most of common retry
648  * execution details for a given iocb. The retry method
649  * needs to be non-blocking as far as possible, to avoid
650  * holding up other iocbs waiting to be serviced by the
651  * retry kernel thread.
652  *
653  * The trickier parts in this code have to do with
654  * ensuring that only one retry instance is in progress
655  * for a given iocb at any time. Providing that guarantee
656  * simplifies the coding of individual aio operations as
657  * it avoids various potential races.
658  */
659 static ssize_t aio_run_iocb(struct kiocb *iocb)
660 {
661 	struct kioctx	*ctx = iocb->ki_ctx;
662 	ssize_t (*retry)(struct kiocb *);
663 	ssize_t ret;
664 
665 	if (!(retry = iocb->ki_retry)) {
666 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
667 		return 0;
668 	}
669 
670 	/*
671 	 * We don't want the next retry iteration for this
672 	 * operation to start until this one has returned and
673 	 * updated the iocb state. However, wait_queue functions
674 	 * can trigger a kick_iocb from interrupt context in the
675 	 * meantime, indicating that data is available for the next
676 	 * iteration. We want to remember that and enable the
677 	 * next retry iteration _after_ we are through with
678 	 * this one.
679 	 *
680 	 * So, in order to be able to register a "kick", but
681 	 * prevent it from being queued now, we clear the kick
682 	 * flag, but make the kick code *think* that the iocb is
683 	 * still on the run list until we are actually done.
684 	 * When we are done with this iteration, we check if
685 	 * the iocb was kicked in the meantime and if so, queue
686 	 * it up afresh.
687 	 */
688 
689 	kiocbClearKicked(iocb);
690 
691 	/*
692 	 * This is so that aio_complete knows it doesn't need to
693 	 * pull the iocb off the run list (We can't just call
694 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
695 	 * queue this on the run list yet)
696 	 */
697 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
698 	spin_unlock_irq(&ctx->ctx_lock);
699 
700 	/* Quit retrying if the i/o has been cancelled */
701 	if (kiocbIsCancelled(iocb)) {
702 		ret = -EINTR;
703 		aio_complete(iocb, ret, 0);
704 		/* must not access the iocb after this */
705 		goto out;
706 	}
707 
708 	/*
709 	 * Now we are all set to call the retry method in async
710 	 * context.
711 	 */
712 	ret = retry(iocb);
713 
714 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED)
715 		aio_complete(iocb, ret, 0);
716 out:
717 	spin_lock_irq(&ctx->ctx_lock);
718 
719 	if (-EIOCBRETRY == ret) {
720 		/*
721 		 * OK, now that we are done with this iteration
722 		 * and know that there is more left to go,
723 		 * this is where we let go so that a subsequent
724 		 * "kick" can start the next iteration
725 		 */
726 
727 		/* will make __queue_kicked_iocb succeed from here on */
728 		INIT_LIST_HEAD(&iocb->ki_run_list);
729 		/* we must queue the next iteration ourselves, if it
730 		 * has already been kicked */
731 		if (kiocbIsKicked(iocb)) {
732 			__queue_kicked_iocb(iocb);
733 
734 			/*
735 			 * __queue_kicked_iocb will always return 1 here, because
736 			 * iocb->ki_run_list is empty at this point so it should
737 			 * be safe to unconditionally queue the context into the
738 			 * work queue.
739 			 */
740 			aio_queue_work(ctx);
741 		}
742 	}
743 	return ret;
744 }
745 
746 /*
747  * __aio_run_iocbs:
748  * 	Process all pending retries queued on the ioctx
749  * 	run list.
750  * Assumes it is operating within the aio issuer's mm
751  * context.
752  */
753 static int __aio_run_iocbs(struct kioctx *ctx)
754 {
755 	struct kiocb *iocb;
756 	struct list_head run_list;
757 
758 	assert_spin_locked(&ctx->ctx_lock);
759 
760 	list_replace_init(&ctx->run_list, &run_list);
761 	while (!list_empty(&run_list)) {
762 		iocb = list_entry(run_list.next, struct kiocb,
763 			ki_run_list);
764 		list_del(&iocb->ki_run_list);
765 		/*
766 		 * Hold an extra reference while retrying i/o.
767 		 */
768 		iocb->ki_users++;       /* grab extra reference */
769 		aio_run_iocb(iocb);
770 		__aio_put_req(ctx, iocb);
771  	}
772 	if (!list_empty(&ctx->run_list))
773 		return 1;
774 	return 0;
775 }
776 
777 static void aio_queue_work(struct kioctx * ctx)
778 {
779 	unsigned long timeout;
780 	/*
781 	 * if someone is waiting, get the work started right
782 	 * away, otherwise, use a longer delay
783 	 */
784 	smp_mb();
785 	if (waitqueue_active(&ctx->wait))
786 		timeout = 1;
787 	else
788 		timeout = HZ/10;
789 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
790 }
791 
792 
793 /*
794  * aio_run_iocbs:
795  * 	Process all pending retries queued on the ioctx
796  * 	run list.
797  * Assumes it is operating within the aio issuer's mm
798  * context.
799  */
800 static inline void aio_run_iocbs(struct kioctx *ctx)
801 {
802 	int requeue;
803 
804 	spin_lock_irq(&ctx->ctx_lock);
805 
806 	requeue = __aio_run_iocbs(ctx);
807 	spin_unlock_irq(&ctx->ctx_lock);
808 	if (requeue)
809 		aio_queue_work(ctx);
810 }
811 
812 /*
813  * just like aio_run_iocbs, but keeps running them until
814  * the list stays empty
815  */
816 static inline void aio_run_all_iocbs(struct kioctx *ctx)
817 {
818 	spin_lock_irq(&ctx->ctx_lock);
819 	while (__aio_run_iocbs(ctx))
820 		;
821 	spin_unlock_irq(&ctx->ctx_lock);
822 }
823 
824 /*
825  * aio_kick_handler:
826  * 	Work queue handler triggered to process pending
827  * 	retries on an ioctx. Takes on the aio issuer's
828  *	mm context before running the iocbs, so that
829  *	copy_xxx_user operates on the issuer's address
830  *      space.
831  * Run on aiod's context.
832  */
833 static void aio_kick_handler(struct work_struct *work)
834 {
835 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
836 	mm_segment_t oldfs = get_fs();
837 	struct mm_struct *mm;
838 	int requeue;
839 
840 	set_fs(USER_DS);
841 	use_mm(ctx->mm);
842 	spin_lock_irq(&ctx->ctx_lock);
843 	requeue =__aio_run_iocbs(ctx);
844 	mm = ctx->mm;
845 	spin_unlock_irq(&ctx->ctx_lock);
846  	unuse_mm(mm);
847 	set_fs(oldfs);
848 	/*
849 	 * we're in a worker thread already, don't use queue_delayed_work,
850 	 */
851 	if (requeue)
852 		queue_delayed_work(aio_wq, &ctx->wq, 0);
853 }
854 
855 
856 /*
857  * Called by kick_iocb to queue the kiocb for retry
858  * and if required activate the aio work queue to process
859  * it
860  */
861 static void try_queue_kicked_iocb(struct kiocb *iocb)
862 {
863  	struct kioctx	*ctx = iocb->ki_ctx;
864 	unsigned long flags;
865 	int run = 0;
866 
867 	spin_lock_irqsave(&ctx->ctx_lock, flags);
868 	/* set this inside the lock so that we can't race with aio_run_iocb()
869 	 * testing it and putting the iocb on the run list under the lock */
870 	if (!kiocbTryKick(iocb))
871 		run = __queue_kicked_iocb(iocb);
872 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
873 	if (run)
874 		aio_queue_work(ctx);
875 }
876 
877 /*
878  * kick_iocb:
879  *      Called typically from a wait queue callback context
880  *      to trigger a retry of the iocb.
881  *      The retry is usually executed by aio workqueue
882  *      threads (See aio_kick_handler).
883  */
884 void kick_iocb(struct kiocb *iocb)
885 {
886 	/* sync iocbs are easy: they can only ever be executing from a
887 	 * single context. */
888 	if (is_sync_kiocb(iocb)) {
889 		kiocbSetKicked(iocb);
890 	        wake_up_process(iocb->ki_obj.tsk);
891 		return;
892 	}
893 
894 	try_queue_kicked_iocb(iocb);
895 }
896 EXPORT_SYMBOL(kick_iocb);
897 
898 /* aio_complete
899  *	Called when the io request on the given iocb is complete.
900  *	Returns true if this is the last user of the request.  The
901  *	only other user of the request can be the cancellation code.
902  */
903 int aio_complete(struct kiocb *iocb, long res, long res2)
904 {
905 	struct kioctx	*ctx = iocb->ki_ctx;
906 	struct aio_ring_info	*info;
907 	struct aio_ring	*ring;
908 	struct io_event	*event;
909 	unsigned long	flags;
910 	unsigned long	tail;
911 	int		ret;
912 
913 	/*
914 	 * Special case handling for sync iocbs:
915 	 *  - events go directly into the iocb for fast handling
916 	 *  - the sync task with the iocb in its stack holds the single iocb
917 	 *    ref, no other paths have a way to get another ref
918 	 *  - the sync task helpfully left a reference to itself in the iocb
919 	 */
920 	if (is_sync_kiocb(iocb)) {
921 		BUG_ON(iocb->ki_users != 1);
922 		iocb->ki_user_data = res;
923 		iocb->ki_users = 0;
924 		wake_up_process(iocb->ki_obj.tsk);
925 		return 1;
926 	}
927 
928 	info = &ctx->ring_info;
929 
930 	/* add a completion event to the ring buffer.
931 	 * must be done holding ctx->ctx_lock to prevent
932 	 * other code from messing with the tail
933 	 * pointer since we might be called from irq
934 	 * context.
935 	 */
936 	spin_lock_irqsave(&ctx->ctx_lock, flags);
937 
938 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
939 		list_del_init(&iocb->ki_run_list);
940 
941 	/*
942 	 * cancelled requests don't get events, userland was given one
943 	 * when the event got cancelled.
944 	 */
945 	if (kiocbIsCancelled(iocb))
946 		goto put_rq;
947 
948 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
949 
950 	tail = info->tail;
951 	event = aio_ring_event(info, tail, KM_IRQ0);
952 	if (++tail >= info->nr)
953 		tail = 0;
954 
955 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
956 	event->data = iocb->ki_user_data;
957 	event->res = res;
958 	event->res2 = res2;
959 
960 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
961 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
962 		res, res2);
963 
964 	/* after flagging the request as done, we
965 	 * must never even look at it again
966 	 */
967 	smp_wmb();	/* make event visible before updating tail */
968 
969 	info->tail = tail;
970 	ring->tail = tail;
971 
972 	put_aio_ring_event(event, KM_IRQ0);
973 	kunmap_atomic(ring, KM_IRQ1);
974 
975 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
976 
977 	/*
978 	 * Check if the user asked us to deliver the result through an
979 	 * eventfd. The eventfd_signal() function is safe to be called
980 	 * from IRQ context.
981 	 */
982 	if (iocb->ki_eventfd != NULL)
983 		eventfd_signal(iocb->ki_eventfd, 1);
984 
985 put_rq:
986 	/* everything turned out well, dispose of the aiocb. */
987 	ret = __aio_put_req(ctx, iocb);
988 
989 	/*
990 	 * We have to order our ring_info tail store above and test
991 	 * of the wait list below outside the wait lock.  This is
992 	 * like in wake_up_bit() where clearing a bit has to be
993 	 * ordered with the unlocked test.
994 	 */
995 	smp_mb();
996 
997 	if (waitqueue_active(&ctx->wait))
998 		wake_up(&ctx->wait);
999 
1000 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL(aio_complete);
1004 
1005 /* aio_read_evt
1006  *	Pull an event off of the ioctx's event ring.  Returns the number of
1007  *	events fetched (0 or 1 ;-)
1008  *	FIXME: make this use cmpxchg.
1009  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1010  */
1011 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1012 {
1013 	struct aio_ring_info *info = &ioctx->ring_info;
1014 	struct aio_ring *ring;
1015 	unsigned long head;
1016 	int ret = 0;
1017 
1018 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1019 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1020 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1021 		 (unsigned long)ring->nr);
1022 
1023 	if (ring->head == ring->tail)
1024 		goto out;
1025 
1026 	spin_lock(&info->ring_lock);
1027 
1028 	head = ring->head % info->nr;
1029 	if (head != ring->tail) {
1030 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1031 		*ent = *evp;
1032 		head = (head + 1) % info->nr;
1033 		smp_mb(); /* finish reading the event before updatng the head */
1034 		ring->head = head;
1035 		ret = 1;
1036 		put_aio_ring_event(evp, KM_USER1);
1037 	}
1038 	spin_unlock(&info->ring_lock);
1039 
1040 out:
1041 	kunmap_atomic(ring, KM_USER0);
1042 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1043 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1044 	return ret;
1045 }
1046 
1047 struct aio_timeout {
1048 	struct timer_list	timer;
1049 	int			timed_out;
1050 	struct task_struct	*p;
1051 };
1052 
1053 static void timeout_func(unsigned long data)
1054 {
1055 	struct aio_timeout *to = (struct aio_timeout *)data;
1056 
1057 	to->timed_out = 1;
1058 	wake_up_process(to->p);
1059 }
1060 
1061 static inline void init_timeout(struct aio_timeout *to)
1062 {
1063 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1064 	to->timed_out = 0;
1065 	to->p = current;
1066 }
1067 
1068 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1069 			       const struct timespec *ts)
1070 {
1071 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1072 	if (time_after(to->timer.expires, jiffies))
1073 		add_timer(&to->timer);
1074 	else
1075 		to->timed_out = 1;
1076 }
1077 
1078 static inline void clear_timeout(struct aio_timeout *to)
1079 {
1080 	del_singleshot_timer_sync(&to->timer);
1081 }
1082 
1083 static int read_events(struct kioctx *ctx,
1084 			long min_nr, long nr,
1085 			struct io_event __user *event,
1086 			struct timespec __user *timeout)
1087 {
1088 	long			start_jiffies = jiffies;
1089 	struct task_struct	*tsk = current;
1090 	DECLARE_WAITQUEUE(wait, tsk);
1091 	int			ret;
1092 	int			i = 0;
1093 	struct io_event		ent;
1094 	struct aio_timeout	to;
1095 	int			retry = 0;
1096 
1097 	/* needed to zero any padding within an entry (there shouldn't be
1098 	 * any, but C is fun!
1099 	 */
1100 	memset(&ent, 0, sizeof(ent));
1101 retry:
1102 	ret = 0;
1103 	while (likely(i < nr)) {
1104 		ret = aio_read_evt(ctx, &ent);
1105 		if (unlikely(ret <= 0))
1106 			break;
1107 
1108 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1109 			ent.data, ent.obj, ent.res, ent.res2);
1110 
1111 		/* Could we split the check in two? */
1112 		ret = -EFAULT;
1113 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1114 			dprintk("aio: lost an event due to EFAULT.\n");
1115 			break;
1116 		}
1117 		ret = 0;
1118 
1119 		/* Good, event copied to userland, update counts. */
1120 		event ++;
1121 		i ++;
1122 	}
1123 
1124 	if (min_nr <= i)
1125 		return i;
1126 	if (ret)
1127 		return ret;
1128 
1129 	/* End fast path */
1130 
1131 	/* racey check, but it gets redone */
1132 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1133 		retry = 1;
1134 		aio_run_all_iocbs(ctx);
1135 		goto retry;
1136 	}
1137 
1138 	init_timeout(&to);
1139 	if (timeout) {
1140 		struct timespec	ts;
1141 		ret = -EFAULT;
1142 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1143 			goto out;
1144 
1145 		set_timeout(start_jiffies, &to, &ts);
1146 	}
1147 
1148 	while (likely(i < nr)) {
1149 		add_wait_queue_exclusive(&ctx->wait, &wait);
1150 		do {
1151 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1152 			ret = aio_read_evt(ctx, &ent);
1153 			if (ret)
1154 				break;
1155 			if (min_nr <= i)
1156 				break;
1157 			if (unlikely(ctx->dead)) {
1158 				ret = -EINVAL;
1159 				break;
1160 			}
1161 			if (to.timed_out)	/* Only check after read evt */
1162 				break;
1163 			/* Try to only show up in io wait if there are ops
1164 			 *  in flight */
1165 			if (ctx->reqs_active)
1166 				io_schedule();
1167 			else
1168 				schedule();
1169 			if (signal_pending(tsk)) {
1170 				ret = -EINTR;
1171 				break;
1172 			}
1173 			/*ret = aio_read_evt(ctx, &ent);*/
1174 		} while (1) ;
1175 
1176 		set_task_state(tsk, TASK_RUNNING);
1177 		remove_wait_queue(&ctx->wait, &wait);
1178 
1179 		if (unlikely(ret <= 0))
1180 			break;
1181 
1182 		ret = -EFAULT;
1183 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1184 			dprintk("aio: lost an event due to EFAULT.\n");
1185 			break;
1186 		}
1187 
1188 		/* Good, event copied to userland, update counts. */
1189 		event ++;
1190 		i ++;
1191 	}
1192 
1193 	if (timeout)
1194 		clear_timeout(&to);
1195 out:
1196 	destroy_timer_on_stack(&to.timer);
1197 	return i ? i : ret;
1198 }
1199 
1200 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1201  * against races with itself via ->dead.
1202  */
1203 static void io_destroy(struct kioctx *ioctx)
1204 {
1205 	struct mm_struct *mm = current->mm;
1206 	int was_dead;
1207 
1208 	/* delete the entry from the list is someone else hasn't already */
1209 	spin_lock(&mm->ioctx_lock);
1210 	was_dead = ioctx->dead;
1211 	ioctx->dead = 1;
1212 	hlist_del_rcu(&ioctx->list);
1213 	spin_unlock(&mm->ioctx_lock);
1214 
1215 	dprintk("aio_release(%p)\n", ioctx);
1216 	if (likely(!was_dead))
1217 		put_ioctx(ioctx);	/* twice for the list */
1218 
1219 	aio_cancel_all(ioctx);
1220 	wait_for_all_aios(ioctx);
1221 
1222 	/*
1223 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1224 	 * by other CPUs at this point.  Right now, we rely on the
1225 	 * locking done by the above calls to ensure this consistency.
1226 	 */
1227 	wake_up(&ioctx->wait);
1228 	put_ioctx(ioctx);	/* once for the lookup */
1229 }
1230 
1231 /* sys_io_setup:
1232  *	Create an aio_context capable of receiving at least nr_events.
1233  *	ctxp must not point to an aio_context that already exists, and
1234  *	must be initialized to 0 prior to the call.  On successful
1235  *	creation of the aio_context, *ctxp is filled in with the resulting
1236  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1237  *	if the specified nr_events exceeds internal limits.  May fail
1238  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1239  *	of available events.  May fail with -ENOMEM if insufficient kernel
1240  *	resources are available.  May fail with -EFAULT if an invalid
1241  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1242  *	implemented.
1243  */
1244 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1245 {
1246 	struct kioctx *ioctx = NULL;
1247 	unsigned long ctx;
1248 	long ret;
1249 
1250 	ret = get_user(ctx, ctxp);
1251 	if (unlikely(ret))
1252 		goto out;
1253 
1254 	ret = -EINVAL;
1255 	if (unlikely(ctx || nr_events == 0)) {
1256 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1257 		         ctx, nr_events);
1258 		goto out;
1259 	}
1260 
1261 	ioctx = ioctx_alloc(nr_events);
1262 	ret = PTR_ERR(ioctx);
1263 	if (!IS_ERR(ioctx)) {
1264 		ret = put_user(ioctx->user_id, ctxp);
1265 		if (!ret)
1266 			return 0;
1267 
1268 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1269 		io_destroy(ioctx);
1270 	}
1271 
1272 out:
1273 	return ret;
1274 }
1275 
1276 /* sys_io_destroy:
1277  *	Destroy the aio_context specified.  May cancel any outstanding
1278  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1279  *	implemented.  May fail with -EFAULT if the context pointed to
1280  *	is invalid.
1281  */
1282 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1283 {
1284 	struct kioctx *ioctx = lookup_ioctx(ctx);
1285 	if (likely(NULL != ioctx)) {
1286 		io_destroy(ioctx);
1287 		return 0;
1288 	}
1289 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1290 	return -EINVAL;
1291 }
1292 
1293 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1294 {
1295 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1296 
1297 	BUG_ON(ret <= 0);
1298 
1299 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1300 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1301 		iov->iov_base += this;
1302 		iov->iov_len -= this;
1303 		iocb->ki_left -= this;
1304 		ret -= this;
1305 		if (iov->iov_len == 0) {
1306 			iocb->ki_cur_seg++;
1307 			iov++;
1308 		}
1309 	}
1310 
1311 	/* the caller should not have done more io than what fit in
1312 	 * the remaining iovecs */
1313 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1314 }
1315 
1316 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1317 {
1318 	struct file *file = iocb->ki_filp;
1319 	struct address_space *mapping = file->f_mapping;
1320 	struct inode *inode = mapping->host;
1321 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1322 			 unsigned long, loff_t);
1323 	ssize_t ret = 0;
1324 	unsigned short opcode;
1325 
1326 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1327 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1328 		rw_op = file->f_op->aio_read;
1329 		opcode = IOCB_CMD_PREADV;
1330 	} else {
1331 		rw_op = file->f_op->aio_write;
1332 		opcode = IOCB_CMD_PWRITEV;
1333 	}
1334 
1335 	/* This matches the pread()/pwrite() logic */
1336 	if (iocb->ki_pos < 0)
1337 		return -EINVAL;
1338 
1339 	do {
1340 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1341 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1342 			    iocb->ki_pos);
1343 		if (ret > 0)
1344 			aio_advance_iovec(iocb, ret);
1345 
1346 	/* retry all partial writes.  retry partial reads as long as its a
1347 	 * regular file. */
1348 	} while (ret > 0 && iocb->ki_left > 0 &&
1349 		 (opcode == IOCB_CMD_PWRITEV ||
1350 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1351 
1352 	/* This means we must have transferred all that we could */
1353 	/* No need to retry anymore */
1354 	if ((ret == 0) || (iocb->ki_left == 0))
1355 		ret = iocb->ki_nbytes - iocb->ki_left;
1356 
1357 	/* If we managed to write some out we return that, rather than
1358 	 * the eventual error. */
1359 	if (opcode == IOCB_CMD_PWRITEV
1360 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1361 	    && iocb->ki_nbytes - iocb->ki_left)
1362 		ret = iocb->ki_nbytes - iocb->ki_left;
1363 
1364 	return ret;
1365 }
1366 
1367 static ssize_t aio_fdsync(struct kiocb *iocb)
1368 {
1369 	struct file *file = iocb->ki_filp;
1370 	ssize_t ret = -EINVAL;
1371 
1372 	if (file->f_op->aio_fsync)
1373 		ret = file->f_op->aio_fsync(iocb, 1);
1374 	return ret;
1375 }
1376 
1377 static ssize_t aio_fsync(struct kiocb *iocb)
1378 {
1379 	struct file *file = iocb->ki_filp;
1380 	ssize_t ret = -EINVAL;
1381 
1382 	if (file->f_op->aio_fsync)
1383 		ret = file->f_op->aio_fsync(iocb, 0);
1384 	return ret;
1385 }
1386 
1387 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1388 {
1389 	ssize_t ret;
1390 
1391 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1392 				    kiocb->ki_nbytes, 1,
1393 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1394 	if (ret < 0)
1395 		goto out;
1396 
1397 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1398 	kiocb->ki_cur_seg = 0;
1399 	/* ki_nbytes/left now reflect bytes instead of segs */
1400 	kiocb->ki_nbytes = ret;
1401 	kiocb->ki_left = ret;
1402 
1403 	ret = 0;
1404 out:
1405 	return ret;
1406 }
1407 
1408 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1409 {
1410 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1411 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1412 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1413 	kiocb->ki_nr_segs = 1;
1414 	kiocb->ki_cur_seg = 0;
1415 	return 0;
1416 }
1417 
1418 /*
1419  * aio_setup_iocb:
1420  *	Performs the initial checks and aio retry method
1421  *	setup for the kiocb at the time of io submission.
1422  */
1423 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1424 {
1425 	struct file *file = kiocb->ki_filp;
1426 	ssize_t ret = 0;
1427 
1428 	switch (kiocb->ki_opcode) {
1429 	case IOCB_CMD_PREAD:
1430 		ret = -EBADF;
1431 		if (unlikely(!(file->f_mode & FMODE_READ)))
1432 			break;
1433 		ret = -EFAULT;
1434 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1435 			kiocb->ki_left)))
1436 			break;
1437 		ret = security_file_permission(file, MAY_READ);
1438 		if (unlikely(ret))
1439 			break;
1440 		ret = aio_setup_single_vector(kiocb);
1441 		if (ret)
1442 			break;
1443 		ret = -EINVAL;
1444 		if (file->f_op->aio_read)
1445 			kiocb->ki_retry = aio_rw_vect_retry;
1446 		break;
1447 	case IOCB_CMD_PWRITE:
1448 		ret = -EBADF;
1449 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1450 			break;
1451 		ret = -EFAULT;
1452 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1453 			kiocb->ki_left)))
1454 			break;
1455 		ret = security_file_permission(file, MAY_WRITE);
1456 		if (unlikely(ret))
1457 			break;
1458 		ret = aio_setup_single_vector(kiocb);
1459 		if (ret)
1460 			break;
1461 		ret = -EINVAL;
1462 		if (file->f_op->aio_write)
1463 			kiocb->ki_retry = aio_rw_vect_retry;
1464 		break;
1465 	case IOCB_CMD_PREADV:
1466 		ret = -EBADF;
1467 		if (unlikely(!(file->f_mode & FMODE_READ)))
1468 			break;
1469 		ret = security_file_permission(file, MAY_READ);
1470 		if (unlikely(ret))
1471 			break;
1472 		ret = aio_setup_vectored_rw(READ, kiocb);
1473 		if (ret)
1474 			break;
1475 		ret = -EINVAL;
1476 		if (file->f_op->aio_read)
1477 			kiocb->ki_retry = aio_rw_vect_retry;
1478 		break;
1479 	case IOCB_CMD_PWRITEV:
1480 		ret = -EBADF;
1481 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1482 			break;
1483 		ret = security_file_permission(file, MAY_WRITE);
1484 		if (unlikely(ret))
1485 			break;
1486 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1487 		if (ret)
1488 			break;
1489 		ret = -EINVAL;
1490 		if (file->f_op->aio_write)
1491 			kiocb->ki_retry = aio_rw_vect_retry;
1492 		break;
1493 	case IOCB_CMD_FDSYNC:
1494 		ret = -EINVAL;
1495 		if (file->f_op->aio_fsync)
1496 			kiocb->ki_retry = aio_fdsync;
1497 		break;
1498 	case IOCB_CMD_FSYNC:
1499 		ret = -EINVAL;
1500 		if (file->f_op->aio_fsync)
1501 			kiocb->ki_retry = aio_fsync;
1502 		break;
1503 	default:
1504 		dprintk("EINVAL: io_submit: no operation provided\n");
1505 		ret = -EINVAL;
1506 	}
1507 
1508 	if (!kiocb->ki_retry)
1509 		return ret;
1510 
1511 	return 0;
1512 }
1513 
1514 static void aio_batch_add(struct address_space *mapping,
1515 			  struct hlist_head *batch_hash)
1516 {
1517 	struct aio_batch_entry *abe;
1518 	struct hlist_node *pos;
1519 	unsigned bucket;
1520 
1521 	bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1522 	hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1523 		if (abe->mapping == mapping)
1524 			return;
1525 	}
1526 
1527 	abe = mempool_alloc(abe_pool, GFP_KERNEL);
1528 	BUG_ON(!igrab(mapping->host));
1529 	abe->mapping = mapping;
1530 	hlist_add_head(&abe->list, &batch_hash[bucket]);
1531 	return;
1532 }
1533 
1534 static void aio_batch_free(struct hlist_head *batch_hash)
1535 {
1536 	struct aio_batch_entry *abe;
1537 	struct hlist_node *pos, *n;
1538 	int i;
1539 
1540 	for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1541 		hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1542 			blk_run_address_space(abe->mapping);
1543 			iput(abe->mapping->host);
1544 			hlist_del(&abe->list);
1545 			mempool_free(abe, abe_pool);
1546 		}
1547 	}
1548 }
1549 
1550 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1551 			 struct iocb *iocb, struct hlist_head *batch_hash)
1552 {
1553 	struct kiocb *req;
1554 	struct file *file;
1555 	ssize_t ret;
1556 
1557 	/* enforce forwards compatibility on users */
1558 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1559 		pr_debug("EINVAL: io_submit: reserve field set\n");
1560 		return -EINVAL;
1561 	}
1562 
1563 	/* prevent overflows */
1564 	if (unlikely(
1565 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1566 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1567 	    ((ssize_t)iocb->aio_nbytes < 0)
1568 	   )) {
1569 		pr_debug("EINVAL: io_submit: overflow check\n");
1570 		return -EINVAL;
1571 	}
1572 
1573 	file = fget(iocb->aio_fildes);
1574 	if (unlikely(!file))
1575 		return -EBADF;
1576 
1577 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1578 	if (unlikely(!req)) {
1579 		fput(file);
1580 		return -EAGAIN;
1581 	}
1582 	req->ki_filp = file;
1583 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1584 		/*
1585 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1586 		 * instance of the file* now. The file descriptor must be
1587 		 * an eventfd() fd, and will be signaled for each completed
1588 		 * event using the eventfd_signal() function.
1589 		 */
1590 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1591 		if (IS_ERR(req->ki_eventfd)) {
1592 			ret = PTR_ERR(req->ki_eventfd);
1593 			req->ki_eventfd = NULL;
1594 			goto out_put_req;
1595 		}
1596 	}
1597 
1598 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1599 	if (unlikely(ret)) {
1600 		dprintk("EFAULT: aio_key\n");
1601 		goto out_put_req;
1602 	}
1603 
1604 	req->ki_obj.user = user_iocb;
1605 	req->ki_user_data = iocb->aio_data;
1606 	req->ki_pos = iocb->aio_offset;
1607 
1608 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1609 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1610 	req->ki_opcode = iocb->aio_lio_opcode;
1611 
1612 	ret = aio_setup_iocb(req);
1613 
1614 	if (ret)
1615 		goto out_put_req;
1616 
1617 	spin_lock_irq(&ctx->ctx_lock);
1618 	aio_run_iocb(req);
1619 	if (!list_empty(&ctx->run_list)) {
1620 		/* drain the run list */
1621 		while (__aio_run_iocbs(ctx))
1622 			;
1623 	}
1624 	spin_unlock_irq(&ctx->ctx_lock);
1625 	if (req->ki_opcode == IOCB_CMD_PREAD ||
1626 	    req->ki_opcode == IOCB_CMD_PREADV ||
1627 	    req->ki_opcode == IOCB_CMD_PWRITE ||
1628 	    req->ki_opcode == IOCB_CMD_PWRITEV)
1629 		aio_batch_add(file->f_mapping, batch_hash);
1630 
1631 	aio_put_req(req);	/* drop extra ref to req */
1632 	return 0;
1633 
1634 out_put_req:
1635 	aio_put_req(req);	/* drop extra ref to req */
1636 	aio_put_req(req);	/* drop i/o ref to req */
1637 	return ret;
1638 }
1639 
1640 /* sys_io_submit:
1641  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1642  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1643  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1644  *	*iocbpp[0] is not properly initialized, if the operation specified
1645  *	is invalid for the file descriptor in the iocb.  May fail with
1646  *	-EFAULT if any of the data structures point to invalid data.  May
1647  *	fail with -EBADF if the file descriptor specified in the first
1648  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1649  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1650  *	fail with -ENOSYS if not implemented.
1651  */
1652 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1653 		struct iocb __user * __user *, iocbpp)
1654 {
1655 	struct kioctx *ctx;
1656 	long ret = 0;
1657 	int i;
1658 	struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1659 
1660 	if (unlikely(nr < 0))
1661 		return -EINVAL;
1662 
1663 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1664 		return -EFAULT;
1665 
1666 	ctx = lookup_ioctx(ctx_id);
1667 	if (unlikely(!ctx)) {
1668 		pr_debug("EINVAL: io_submit: invalid context id\n");
1669 		return -EINVAL;
1670 	}
1671 
1672 	/*
1673 	 * AKPM: should this return a partial result if some of the IOs were
1674 	 * successfully submitted?
1675 	 */
1676 	for (i=0; i<nr; i++) {
1677 		struct iocb __user *user_iocb;
1678 		struct iocb tmp;
1679 
1680 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1681 			ret = -EFAULT;
1682 			break;
1683 		}
1684 
1685 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1686 			ret = -EFAULT;
1687 			break;
1688 		}
1689 
1690 		ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash);
1691 		if (ret)
1692 			break;
1693 	}
1694 	aio_batch_free(batch_hash);
1695 
1696 	put_ioctx(ctx);
1697 	return i ? i : ret;
1698 }
1699 
1700 /* lookup_kiocb
1701  *	Finds a given iocb for cancellation.
1702  */
1703 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1704 				  u32 key)
1705 {
1706 	struct list_head *pos;
1707 
1708 	assert_spin_locked(&ctx->ctx_lock);
1709 
1710 	/* TODO: use a hash or array, this sucks. */
1711 	list_for_each(pos, &ctx->active_reqs) {
1712 		struct kiocb *kiocb = list_kiocb(pos);
1713 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1714 			return kiocb;
1715 	}
1716 	return NULL;
1717 }
1718 
1719 /* sys_io_cancel:
1720  *	Attempts to cancel an iocb previously passed to io_submit.  If
1721  *	the operation is successfully cancelled, the resulting event is
1722  *	copied into the memory pointed to by result without being placed
1723  *	into the completion queue and 0 is returned.  May fail with
1724  *	-EFAULT if any of the data structures pointed to are invalid.
1725  *	May fail with -EINVAL if aio_context specified by ctx_id is
1726  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1727  *	cancelled.  Will fail with -ENOSYS if not implemented.
1728  */
1729 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1730 		struct io_event __user *, result)
1731 {
1732 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1733 	struct kioctx *ctx;
1734 	struct kiocb *kiocb;
1735 	u32 key;
1736 	int ret;
1737 
1738 	ret = get_user(key, &iocb->aio_key);
1739 	if (unlikely(ret))
1740 		return -EFAULT;
1741 
1742 	ctx = lookup_ioctx(ctx_id);
1743 	if (unlikely(!ctx))
1744 		return -EINVAL;
1745 
1746 	spin_lock_irq(&ctx->ctx_lock);
1747 	ret = -EAGAIN;
1748 	kiocb = lookup_kiocb(ctx, iocb, key);
1749 	if (kiocb && kiocb->ki_cancel) {
1750 		cancel = kiocb->ki_cancel;
1751 		kiocb->ki_users ++;
1752 		kiocbSetCancelled(kiocb);
1753 	} else
1754 		cancel = NULL;
1755 	spin_unlock_irq(&ctx->ctx_lock);
1756 
1757 	if (NULL != cancel) {
1758 		struct io_event tmp;
1759 		pr_debug("calling cancel\n");
1760 		memset(&tmp, 0, sizeof(tmp));
1761 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1762 		tmp.data = kiocb->ki_user_data;
1763 		ret = cancel(kiocb, &tmp);
1764 		if (!ret) {
1765 			/* Cancellation succeeded -- copy the result
1766 			 * into the user's buffer.
1767 			 */
1768 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1769 				ret = -EFAULT;
1770 		}
1771 	} else
1772 		ret = -EINVAL;
1773 
1774 	put_ioctx(ctx);
1775 
1776 	return ret;
1777 }
1778 
1779 /* io_getevents:
1780  *	Attempts to read at least min_nr events and up to nr events from
1781  *	the completion queue for the aio_context specified by ctx_id.  May
1782  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1783  *	if nr is out of range, if when is out of range.  May fail with
1784  *	-EFAULT if any of the memory specified to is invalid.  May return
1785  *	0 or < min_nr if no events are available and the timeout specified
1786  *	by when	has elapsed, where when == NULL specifies an infinite
1787  *	timeout.  Note that the timeout pointed to by when is relative and
1788  *	will be updated if not NULL and the operation blocks.  Will fail
1789  *	with -ENOSYS if not implemented.
1790  */
1791 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1792 		long, min_nr,
1793 		long, nr,
1794 		struct io_event __user *, events,
1795 		struct timespec __user *, timeout)
1796 {
1797 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1798 	long ret = -EINVAL;
1799 
1800 	if (likely(ioctx)) {
1801 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1802 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1803 		put_ioctx(ioctx);
1804 	}
1805 
1806 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1807 	return ret;
1808 }
1809