xref: /openbmc/linux/fs/aio.c (revision 79f08d9e)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_table {
70 	struct rcu_head	rcu;
71 	unsigned	nr;
72 	struct kioctx	*table[];
73 };
74 
75 struct kioctx_cpu {
76 	unsigned		reqs_available;
77 };
78 
79 struct kioctx {
80 	struct percpu_ref	users;
81 	atomic_t		dead;
82 
83 	struct percpu_ref	reqs;
84 
85 	unsigned long		user_id;
86 
87 	struct __percpu kioctx_cpu *cpu;
88 
89 	/*
90 	 * For percpu reqs_available, number of slots we move to/from global
91 	 * counter at a time:
92 	 */
93 	unsigned		req_batch;
94 	/*
95 	 * This is what userspace passed to io_setup(), it's not used for
96 	 * anything but counting against the global max_reqs quota.
97 	 *
98 	 * The real limit is nr_events - 1, which will be larger (see
99 	 * aio_setup_ring())
100 	 */
101 	unsigned		max_reqs;
102 
103 	/* Size of ringbuffer, in units of struct io_event */
104 	unsigned		nr_events;
105 
106 	unsigned long		mmap_base;
107 	unsigned long		mmap_size;
108 
109 	struct page		**ring_pages;
110 	long			nr_pages;
111 
112 	struct work_struct	free_work;
113 
114 	struct {
115 		/*
116 		 * This counts the number of available slots in the ringbuffer,
117 		 * so we avoid overflowing it: it's decremented (if positive)
118 		 * when allocating a kiocb and incremented when the resulting
119 		 * io_event is pulled off the ringbuffer.
120 		 *
121 		 * We batch accesses to it with a percpu version.
122 		 */
123 		atomic_t	reqs_available;
124 	} ____cacheline_aligned_in_smp;
125 
126 	struct {
127 		spinlock_t	ctx_lock;
128 		struct list_head active_reqs;	/* used for cancellation */
129 	} ____cacheline_aligned_in_smp;
130 
131 	struct {
132 		struct mutex	ring_lock;
133 		wait_queue_head_t wait;
134 	} ____cacheline_aligned_in_smp;
135 
136 	struct {
137 		unsigned	tail;
138 		spinlock_t	completion_lock;
139 	} ____cacheline_aligned_in_smp;
140 
141 	struct page		*internal_pages[AIO_RING_PAGES];
142 	struct file		*aio_ring_file;
143 
144 	unsigned		id;
145 };
146 
147 /*------ sysctl variables----*/
148 static DEFINE_SPINLOCK(aio_nr_lock);
149 unsigned long aio_nr;		/* current system wide number of aio requests */
150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
151 /*----end sysctl variables---*/
152 
153 static struct kmem_cache	*kiocb_cachep;
154 static struct kmem_cache	*kioctx_cachep;
155 
156 static struct vfsmount *aio_mnt;
157 
158 static const struct file_operations aio_ring_fops;
159 static const struct address_space_operations aio_ctx_aops;
160 
161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
162 {
163 	struct qstr this = QSTR_INIT("[aio]", 5);
164 	struct file *file;
165 	struct path path;
166 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
167 	if (IS_ERR(inode))
168 		return ERR_CAST(inode);
169 
170 	inode->i_mapping->a_ops = &aio_ctx_aops;
171 	inode->i_mapping->private_data = ctx;
172 	inode->i_size = PAGE_SIZE * nr_pages;
173 
174 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
175 	if (!path.dentry) {
176 		iput(inode);
177 		return ERR_PTR(-ENOMEM);
178 	}
179 	path.mnt = mntget(aio_mnt);
180 
181 	d_instantiate(path.dentry, inode);
182 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
183 	if (IS_ERR(file)) {
184 		path_put(&path);
185 		return file;
186 	}
187 
188 	file->f_flags = O_RDWR;
189 	file->private_data = ctx;
190 	return file;
191 }
192 
193 static struct dentry *aio_mount(struct file_system_type *fs_type,
194 				int flags, const char *dev_name, void *data)
195 {
196 	static const struct dentry_operations ops = {
197 		.d_dname	= simple_dname,
198 	};
199 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
200 }
201 
202 /* aio_setup
203  *	Creates the slab caches used by the aio routines, panic on
204  *	failure as this is done early during the boot sequence.
205  */
206 static int __init aio_setup(void)
207 {
208 	static struct file_system_type aio_fs = {
209 		.name		= "aio",
210 		.mount		= aio_mount,
211 		.kill_sb	= kill_anon_super,
212 	};
213 	aio_mnt = kern_mount(&aio_fs);
214 	if (IS_ERR(aio_mnt))
215 		panic("Failed to create aio fs mount.");
216 
217 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
219 
220 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
221 
222 	return 0;
223 }
224 __initcall(aio_setup);
225 
226 static void put_aio_ring_file(struct kioctx *ctx)
227 {
228 	struct file *aio_ring_file = ctx->aio_ring_file;
229 	if (aio_ring_file) {
230 		truncate_setsize(aio_ring_file->f_inode, 0);
231 
232 		/* Prevent further access to the kioctx from migratepages */
233 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
234 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
235 		ctx->aio_ring_file = NULL;
236 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
237 
238 		fput(aio_ring_file);
239 	}
240 }
241 
242 static void aio_free_ring(struct kioctx *ctx)
243 {
244 	int i;
245 
246 	for (i = 0; i < ctx->nr_pages; i++) {
247 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
248 				page_count(ctx->ring_pages[i]));
249 		put_page(ctx->ring_pages[i]);
250 	}
251 
252 	put_aio_ring_file(ctx);
253 
254 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
255 		kfree(ctx->ring_pages);
256 		ctx->ring_pages = NULL;
257 	}
258 }
259 
260 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
261 {
262 	vma->vm_ops = &generic_file_vm_ops;
263 	return 0;
264 }
265 
266 static const struct file_operations aio_ring_fops = {
267 	.mmap = aio_ring_mmap,
268 };
269 
270 static int aio_set_page_dirty(struct page *page)
271 {
272 	return 0;
273 }
274 
275 #if IS_ENABLED(CONFIG_MIGRATION)
276 static int aio_migratepage(struct address_space *mapping, struct page *new,
277 			struct page *old, enum migrate_mode mode)
278 {
279 	struct kioctx *ctx;
280 	unsigned long flags;
281 	int rc;
282 
283 	/* Writeback must be complete */
284 	BUG_ON(PageWriteback(old));
285 	put_page(old);
286 
287 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
288 	if (rc != MIGRATEPAGE_SUCCESS) {
289 		get_page(old);
290 		return rc;
291 	}
292 
293 	get_page(new);
294 
295 	/* We can potentially race against kioctx teardown here.  Use the
296 	 * address_space's private data lock to protect the mapping's
297 	 * private_data.
298 	 */
299 	spin_lock(&mapping->private_lock);
300 	ctx = mapping->private_data;
301 	if (ctx) {
302 		pgoff_t idx;
303 		spin_lock_irqsave(&ctx->completion_lock, flags);
304 		migrate_page_copy(new, old);
305 		idx = old->index;
306 		if (idx < (pgoff_t)ctx->nr_pages)
307 			ctx->ring_pages[idx] = new;
308 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
309 	} else
310 		rc = -EBUSY;
311 	spin_unlock(&mapping->private_lock);
312 
313 	return rc;
314 }
315 #endif
316 
317 static const struct address_space_operations aio_ctx_aops = {
318 	.set_page_dirty = aio_set_page_dirty,
319 #if IS_ENABLED(CONFIG_MIGRATION)
320 	.migratepage	= aio_migratepage,
321 #endif
322 };
323 
324 static int aio_setup_ring(struct kioctx *ctx)
325 {
326 	struct aio_ring *ring;
327 	unsigned nr_events = ctx->max_reqs;
328 	struct mm_struct *mm = current->mm;
329 	unsigned long size, populate;
330 	int nr_pages;
331 	int i;
332 	struct file *file;
333 
334 	/* Compensate for the ring buffer's head/tail overlap entry */
335 	nr_events += 2;	/* 1 is required, 2 for good luck */
336 
337 	size = sizeof(struct aio_ring);
338 	size += sizeof(struct io_event) * nr_events;
339 
340 	nr_pages = PFN_UP(size);
341 	if (nr_pages < 0)
342 		return -EINVAL;
343 
344 	file = aio_private_file(ctx, nr_pages);
345 	if (IS_ERR(file)) {
346 		ctx->aio_ring_file = NULL;
347 		return -EAGAIN;
348 	}
349 
350 	for (i = 0; i < nr_pages; i++) {
351 		struct page *page;
352 		page = find_or_create_page(file->f_inode->i_mapping,
353 					   i, GFP_HIGHUSER | __GFP_ZERO);
354 		if (!page)
355 			break;
356 		pr_debug("pid(%d) page[%d]->count=%d\n",
357 			 current->pid, i, page_count(page));
358 		SetPageUptodate(page);
359 		SetPageDirty(page);
360 		unlock_page(page);
361 	}
362 	ctx->aio_ring_file = file;
363 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
364 			/ sizeof(struct io_event);
365 
366 	ctx->ring_pages = ctx->internal_pages;
367 	if (nr_pages > AIO_RING_PAGES) {
368 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
369 					  GFP_KERNEL);
370 		if (!ctx->ring_pages)
371 			return -ENOMEM;
372 	}
373 
374 	ctx->mmap_size = nr_pages * PAGE_SIZE;
375 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
376 
377 	down_write(&mm->mmap_sem);
378 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
379 				       PROT_READ | PROT_WRITE,
380 				       MAP_SHARED | MAP_POPULATE, 0, &populate);
381 	if (IS_ERR((void *)ctx->mmap_base)) {
382 		up_write(&mm->mmap_sem);
383 		ctx->mmap_size = 0;
384 		aio_free_ring(ctx);
385 		return -EAGAIN;
386 	}
387 
388 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
389 
390 	/* We must do this while still holding mmap_sem for write, as we
391 	 * need to be protected against userspace attempting to mremap()
392 	 * or munmap() the ring buffer.
393 	 */
394 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
395 				       1, 0, ctx->ring_pages, NULL);
396 
397 	/* Dropping the reference here is safe as the page cache will hold
398 	 * onto the pages for us.  It is also required so that page migration
399 	 * can unmap the pages and get the right reference count.
400 	 */
401 	for (i = 0; i < ctx->nr_pages; i++)
402 		put_page(ctx->ring_pages[i]);
403 
404 	up_write(&mm->mmap_sem);
405 
406 	if (unlikely(ctx->nr_pages != nr_pages)) {
407 		aio_free_ring(ctx);
408 		return -EAGAIN;
409 	}
410 
411 	ctx->user_id = ctx->mmap_base;
412 	ctx->nr_events = nr_events; /* trusted copy */
413 
414 	ring = kmap_atomic(ctx->ring_pages[0]);
415 	ring->nr = nr_events;	/* user copy */
416 	ring->id = ~0U;
417 	ring->head = ring->tail = 0;
418 	ring->magic = AIO_RING_MAGIC;
419 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
420 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
421 	ring->header_length = sizeof(struct aio_ring);
422 	kunmap_atomic(ring);
423 	flush_dcache_page(ctx->ring_pages[0]);
424 
425 	return 0;
426 }
427 
428 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
429 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
430 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
431 
432 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
433 {
434 	struct kioctx *ctx = req->ki_ctx;
435 	unsigned long flags;
436 
437 	spin_lock_irqsave(&ctx->ctx_lock, flags);
438 
439 	if (!req->ki_list.next)
440 		list_add(&req->ki_list, &ctx->active_reqs);
441 
442 	req->ki_cancel = cancel;
443 
444 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
445 }
446 EXPORT_SYMBOL(kiocb_set_cancel_fn);
447 
448 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
449 {
450 	kiocb_cancel_fn *old, *cancel;
451 
452 	/*
453 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
454 	 * actually has a cancel function, hence the cmpxchg()
455 	 */
456 
457 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
458 	do {
459 		if (!cancel || cancel == KIOCB_CANCELLED)
460 			return -EINVAL;
461 
462 		old = cancel;
463 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
464 	} while (cancel != old);
465 
466 	return cancel(kiocb);
467 }
468 
469 static void free_ioctx(struct work_struct *work)
470 {
471 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
472 
473 	pr_debug("freeing %p\n", ctx);
474 
475 	aio_free_ring(ctx);
476 	free_percpu(ctx->cpu);
477 	kmem_cache_free(kioctx_cachep, ctx);
478 }
479 
480 static void free_ioctx_reqs(struct percpu_ref *ref)
481 {
482 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
483 
484 	INIT_WORK(&ctx->free_work, free_ioctx);
485 	schedule_work(&ctx->free_work);
486 }
487 
488 /*
489  * When this function runs, the kioctx has been removed from the "hash table"
490  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
491  * now it's safe to cancel any that need to be.
492  */
493 static void free_ioctx_users(struct percpu_ref *ref)
494 {
495 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
496 	struct kiocb *req;
497 
498 	spin_lock_irq(&ctx->ctx_lock);
499 
500 	while (!list_empty(&ctx->active_reqs)) {
501 		req = list_first_entry(&ctx->active_reqs,
502 				       struct kiocb, ki_list);
503 
504 		list_del_init(&req->ki_list);
505 		kiocb_cancel(ctx, req);
506 	}
507 
508 	spin_unlock_irq(&ctx->ctx_lock);
509 
510 	percpu_ref_kill(&ctx->reqs);
511 	percpu_ref_put(&ctx->reqs);
512 }
513 
514 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
515 {
516 	unsigned i, new_nr;
517 	struct kioctx_table *table, *old;
518 	struct aio_ring *ring;
519 
520 	spin_lock(&mm->ioctx_lock);
521 	rcu_read_lock();
522 	table = rcu_dereference(mm->ioctx_table);
523 
524 	while (1) {
525 		if (table)
526 			for (i = 0; i < table->nr; i++)
527 				if (!table->table[i]) {
528 					ctx->id = i;
529 					table->table[i] = ctx;
530 					rcu_read_unlock();
531 					spin_unlock(&mm->ioctx_lock);
532 
533 					ring = kmap_atomic(ctx->ring_pages[0]);
534 					ring->id = ctx->id;
535 					kunmap_atomic(ring);
536 					return 0;
537 				}
538 
539 		new_nr = (table ? table->nr : 1) * 4;
540 
541 		rcu_read_unlock();
542 		spin_unlock(&mm->ioctx_lock);
543 
544 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
545 				new_nr, GFP_KERNEL);
546 		if (!table)
547 			return -ENOMEM;
548 
549 		table->nr = new_nr;
550 
551 		spin_lock(&mm->ioctx_lock);
552 		rcu_read_lock();
553 		old = rcu_dereference(mm->ioctx_table);
554 
555 		if (!old) {
556 			rcu_assign_pointer(mm->ioctx_table, table);
557 		} else if (table->nr > old->nr) {
558 			memcpy(table->table, old->table,
559 			       old->nr * sizeof(struct kioctx *));
560 
561 			rcu_assign_pointer(mm->ioctx_table, table);
562 			kfree_rcu(old, rcu);
563 		} else {
564 			kfree(table);
565 			table = old;
566 		}
567 	}
568 }
569 
570 static void aio_nr_sub(unsigned nr)
571 {
572 	spin_lock(&aio_nr_lock);
573 	if (WARN_ON(aio_nr - nr > aio_nr))
574 		aio_nr = 0;
575 	else
576 		aio_nr -= nr;
577 	spin_unlock(&aio_nr_lock);
578 }
579 
580 /* ioctx_alloc
581  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
582  */
583 static struct kioctx *ioctx_alloc(unsigned nr_events)
584 {
585 	struct mm_struct *mm = current->mm;
586 	struct kioctx *ctx;
587 	int err = -ENOMEM;
588 
589 	/*
590 	 * We keep track of the number of available ringbuffer slots, to prevent
591 	 * overflow (reqs_available), and we also use percpu counters for this.
592 	 *
593 	 * So since up to half the slots might be on other cpu's percpu counters
594 	 * and unavailable, double nr_events so userspace sees what they
595 	 * expected: additionally, we move req_batch slots to/from percpu
596 	 * counters at a time, so make sure that isn't 0:
597 	 */
598 	nr_events = max(nr_events, num_possible_cpus() * 4);
599 	nr_events *= 2;
600 
601 	/* Prevent overflows */
602 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
603 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
604 		pr_debug("ENOMEM: nr_events too high\n");
605 		return ERR_PTR(-EINVAL);
606 	}
607 
608 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
609 		return ERR_PTR(-EAGAIN);
610 
611 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
612 	if (!ctx)
613 		return ERR_PTR(-ENOMEM);
614 
615 	ctx->max_reqs = nr_events;
616 
617 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
618 		goto err;
619 
620 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
621 		goto err;
622 
623 	spin_lock_init(&ctx->ctx_lock);
624 	spin_lock_init(&ctx->completion_lock);
625 	mutex_init(&ctx->ring_lock);
626 	init_waitqueue_head(&ctx->wait);
627 
628 	INIT_LIST_HEAD(&ctx->active_reqs);
629 
630 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
631 	if (!ctx->cpu)
632 		goto err;
633 
634 	if (aio_setup_ring(ctx) < 0)
635 		goto err;
636 
637 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
638 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
639 	if (ctx->req_batch < 1)
640 		ctx->req_batch = 1;
641 
642 	/* limit the number of system wide aios */
643 	spin_lock(&aio_nr_lock);
644 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
645 	    aio_nr + nr_events < aio_nr) {
646 		spin_unlock(&aio_nr_lock);
647 		err = -EAGAIN;
648 		goto err;
649 	}
650 	aio_nr += ctx->max_reqs;
651 	spin_unlock(&aio_nr_lock);
652 
653 	percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
654 
655 	err = ioctx_add_table(ctx, mm);
656 	if (err)
657 		goto err_cleanup;
658 
659 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
660 		 ctx, ctx->user_id, mm, ctx->nr_events);
661 	return ctx;
662 
663 err_cleanup:
664 	aio_nr_sub(ctx->max_reqs);
665 err:
666 	free_percpu(ctx->cpu);
667 	free_percpu(ctx->reqs.pcpu_count);
668 	free_percpu(ctx->users.pcpu_count);
669 	kmem_cache_free(kioctx_cachep, ctx);
670 	pr_debug("error allocating ioctx %d\n", err);
671 	return ERR_PTR(err);
672 }
673 
674 /* kill_ioctx
675  *	Cancels all outstanding aio requests on an aio context.  Used
676  *	when the processes owning a context have all exited to encourage
677  *	the rapid destruction of the kioctx.
678  */
679 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
680 {
681 	if (!atomic_xchg(&ctx->dead, 1)) {
682 		struct kioctx_table *table;
683 
684 		spin_lock(&mm->ioctx_lock);
685 		rcu_read_lock();
686 		table = rcu_dereference(mm->ioctx_table);
687 
688 		WARN_ON(ctx != table->table[ctx->id]);
689 		table->table[ctx->id] = NULL;
690 		rcu_read_unlock();
691 		spin_unlock(&mm->ioctx_lock);
692 
693 		/* percpu_ref_kill() will do the necessary call_rcu() */
694 		wake_up_all(&ctx->wait);
695 
696 		/*
697 		 * It'd be more correct to do this in free_ioctx(), after all
698 		 * the outstanding kiocbs have finished - but by then io_destroy
699 		 * has already returned, so io_setup() could potentially return
700 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
701 		 *  could tell).
702 		 */
703 		aio_nr_sub(ctx->max_reqs);
704 
705 		if (ctx->mmap_size)
706 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
707 
708 		percpu_ref_kill(&ctx->users);
709 	}
710 }
711 
712 /* wait_on_sync_kiocb:
713  *	Waits on the given sync kiocb to complete.
714  */
715 ssize_t wait_on_sync_kiocb(struct kiocb *req)
716 {
717 	while (!req->ki_ctx) {
718 		set_current_state(TASK_UNINTERRUPTIBLE);
719 		if (req->ki_ctx)
720 			break;
721 		io_schedule();
722 	}
723 	__set_current_state(TASK_RUNNING);
724 	return req->ki_user_data;
725 }
726 EXPORT_SYMBOL(wait_on_sync_kiocb);
727 
728 /*
729  * exit_aio: called when the last user of mm goes away.  At this point, there is
730  * no way for any new requests to be submited or any of the io_* syscalls to be
731  * called on the context.
732  *
733  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
734  * them.
735  */
736 void exit_aio(struct mm_struct *mm)
737 {
738 	struct kioctx_table *table;
739 	struct kioctx *ctx;
740 	unsigned i = 0;
741 
742 	while (1) {
743 		rcu_read_lock();
744 		table = rcu_dereference(mm->ioctx_table);
745 
746 		do {
747 			if (!table || i >= table->nr) {
748 				rcu_read_unlock();
749 				rcu_assign_pointer(mm->ioctx_table, NULL);
750 				if (table)
751 					kfree(table);
752 				return;
753 			}
754 
755 			ctx = table->table[i++];
756 		} while (!ctx);
757 
758 		rcu_read_unlock();
759 
760 		/*
761 		 * We don't need to bother with munmap() here -
762 		 * exit_mmap(mm) is coming and it'll unmap everything.
763 		 * Since aio_free_ring() uses non-zero ->mmap_size
764 		 * as indicator that it needs to unmap the area,
765 		 * just set it to 0; aio_free_ring() is the only
766 		 * place that uses ->mmap_size, so it's safe.
767 		 */
768 		ctx->mmap_size = 0;
769 
770 		kill_ioctx(mm, ctx);
771 	}
772 }
773 
774 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
775 {
776 	struct kioctx_cpu *kcpu;
777 
778 	preempt_disable();
779 	kcpu = this_cpu_ptr(ctx->cpu);
780 
781 	kcpu->reqs_available += nr;
782 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
783 		kcpu->reqs_available -= ctx->req_batch;
784 		atomic_add(ctx->req_batch, &ctx->reqs_available);
785 	}
786 
787 	preempt_enable();
788 }
789 
790 static bool get_reqs_available(struct kioctx *ctx)
791 {
792 	struct kioctx_cpu *kcpu;
793 	bool ret = false;
794 
795 	preempt_disable();
796 	kcpu = this_cpu_ptr(ctx->cpu);
797 
798 	if (!kcpu->reqs_available) {
799 		int old, avail = atomic_read(&ctx->reqs_available);
800 
801 		do {
802 			if (avail < ctx->req_batch)
803 				goto out;
804 
805 			old = avail;
806 			avail = atomic_cmpxchg(&ctx->reqs_available,
807 					       avail, avail - ctx->req_batch);
808 		} while (avail != old);
809 
810 		kcpu->reqs_available += ctx->req_batch;
811 	}
812 
813 	ret = true;
814 	kcpu->reqs_available--;
815 out:
816 	preempt_enable();
817 	return ret;
818 }
819 
820 /* aio_get_req
821  *	Allocate a slot for an aio request.
822  * Returns NULL if no requests are free.
823  */
824 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
825 {
826 	struct kiocb *req;
827 
828 	if (!get_reqs_available(ctx))
829 		return NULL;
830 
831 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
832 	if (unlikely(!req))
833 		goto out_put;
834 
835 	percpu_ref_get(&ctx->reqs);
836 
837 	req->ki_ctx = ctx;
838 	return req;
839 out_put:
840 	put_reqs_available(ctx, 1);
841 	return NULL;
842 }
843 
844 static void kiocb_free(struct kiocb *req)
845 {
846 	if (req->ki_filp)
847 		fput(req->ki_filp);
848 	if (req->ki_eventfd != NULL)
849 		eventfd_ctx_put(req->ki_eventfd);
850 	kmem_cache_free(kiocb_cachep, req);
851 }
852 
853 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
854 {
855 	struct aio_ring __user *ring  = (void __user *)ctx_id;
856 	struct mm_struct *mm = current->mm;
857 	struct kioctx *ctx, *ret = NULL;
858 	struct kioctx_table *table;
859 	unsigned id;
860 
861 	if (get_user(id, &ring->id))
862 		return NULL;
863 
864 	rcu_read_lock();
865 	table = rcu_dereference(mm->ioctx_table);
866 
867 	if (!table || id >= table->nr)
868 		goto out;
869 
870 	ctx = table->table[id];
871 	if (ctx && ctx->user_id == ctx_id) {
872 		percpu_ref_get(&ctx->users);
873 		ret = ctx;
874 	}
875 out:
876 	rcu_read_unlock();
877 	return ret;
878 }
879 
880 /* aio_complete
881  *	Called when the io request on the given iocb is complete.
882  */
883 void aio_complete(struct kiocb *iocb, long res, long res2)
884 {
885 	struct kioctx	*ctx = iocb->ki_ctx;
886 	struct aio_ring	*ring;
887 	struct io_event	*ev_page, *event;
888 	unsigned long	flags;
889 	unsigned tail, pos;
890 
891 	/*
892 	 * Special case handling for sync iocbs:
893 	 *  - events go directly into the iocb for fast handling
894 	 *  - the sync task with the iocb in its stack holds the single iocb
895 	 *    ref, no other paths have a way to get another ref
896 	 *  - the sync task helpfully left a reference to itself in the iocb
897 	 */
898 	if (is_sync_kiocb(iocb)) {
899 		iocb->ki_user_data = res;
900 		smp_wmb();
901 		iocb->ki_ctx = ERR_PTR(-EXDEV);
902 		wake_up_process(iocb->ki_obj.tsk);
903 		return;
904 	}
905 
906 	if (iocb->ki_list.next) {
907 		unsigned long flags;
908 
909 		spin_lock_irqsave(&ctx->ctx_lock, flags);
910 		list_del(&iocb->ki_list);
911 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
912 	}
913 
914 	/*
915 	 * Add a completion event to the ring buffer. Must be done holding
916 	 * ctx->completion_lock to prevent other code from messing with the tail
917 	 * pointer since we might be called from irq context.
918 	 */
919 	spin_lock_irqsave(&ctx->completion_lock, flags);
920 
921 	tail = ctx->tail;
922 	pos = tail + AIO_EVENTS_OFFSET;
923 
924 	if (++tail >= ctx->nr_events)
925 		tail = 0;
926 
927 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
928 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
929 
930 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
931 	event->data = iocb->ki_user_data;
932 	event->res = res;
933 	event->res2 = res2;
934 
935 	kunmap_atomic(ev_page);
936 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
937 
938 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
939 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
940 		 res, res2);
941 
942 	/* after flagging the request as done, we
943 	 * must never even look at it again
944 	 */
945 	smp_wmb();	/* make event visible before updating tail */
946 
947 	ctx->tail = tail;
948 
949 	ring = kmap_atomic(ctx->ring_pages[0]);
950 	ring->tail = tail;
951 	kunmap_atomic(ring);
952 	flush_dcache_page(ctx->ring_pages[0]);
953 
954 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
955 
956 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
957 
958 	/*
959 	 * Check if the user asked us to deliver the result through an
960 	 * eventfd. The eventfd_signal() function is safe to be called
961 	 * from IRQ context.
962 	 */
963 	if (iocb->ki_eventfd != NULL)
964 		eventfd_signal(iocb->ki_eventfd, 1);
965 
966 	/* everything turned out well, dispose of the aiocb. */
967 	kiocb_free(iocb);
968 
969 	/*
970 	 * We have to order our ring_info tail store above and test
971 	 * of the wait list below outside the wait lock.  This is
972 	 * like in wake_up_bit() where clearing a bit has to be
973 	 * ordered with the unlocked test.
974 	 */
975 	smp_mb();
976 
977 	if (waitqueue_active(&ctx->wait))
978 		wake_up(&ctx->wait);
979 
980 	percpu_ref_put(&ctx->reqs);
981 }
982 EXPORT_SYMBOL(aio_complete);
983 
984 /* aio_read_events
985  *	Pull an event off of the ioctx's event ring.  Returns the number of
986  *	events fetched
987  */
988 static long aio_read_events_ring(struct kioctx *ctx,
989 				 struct io_event __user *event, long nr)
990 {
991 	struct aio_ring *ring;
992 	unsigned head, tail, pos;
993 	long ret = 0;
994 	int copy_ret;
995 
996 	mutex_lock(&ctx->ring_lock);
997 
998 	ring = kmap_atomic(ctx->ring_pages[0]);
999 	head = ring->head;
1000 	tail = ring->tail;
1001 	kunmap_atomic(ring);
1002 
1003 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1004 
1005 	if (head == tail)
1006 		goto out;
1007 
1008 	while (ret < nr) {
1009 		long avail;
1010 		struct io_event *ev;
1011 		struct page *page;
1012 
1013 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1014 		if (head == tail)
1015 			break;
1016 
1017 		avail = min(avail, nr - ret);
1018 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1019 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1020 
1021 		pos = head + AIO_EVENTS_OFFSET;
1022 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1023 		pos %= AIO_EVENTS_PER_PAGE;
1024 
1025 		ev = kmap(page);
1026 		copy_ret = copy_to_user(event + ret, ev + pos,
1027 					sizeof(*ev) * avail);
1028 		kunmap(page);
1029 
1030 		if (unlikely(copy_ret)) {
1031 			ret = -EFAULT;
1032 			goto out;
1033 		}
1034 
1035 		ret += avail;
1036 		head += avail;
1037 		head %= ctx->nr_events;
1038 	}
1039 
1040 	ring = kmap_atomic(ctx->ring_pages[0]);
1041 	ring->head = head;
1042 	kunmap_atomic(ring);
1043 	flush_dcache_page(ctx->ring_pages[0]);
1044 
1045 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1046 
1047 	put_reqs_available(ctx, ret);
1048 out:
1049 	mutex_unlock(&ctx->ring_lock);
1050 
1051 	return ret;
1052 }
1053 
1054 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1055 			    struct io_event __user *event, long *i)
1056 {
1057 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1058 
1059 	if (ret > 0)
1060 		*i += ret;
1061 
1062 	if (unlikely(atomic_read(&ctx->dead)))
1063 		ret = -EINVAL;
1064 
1065 	if (!*i)
1066 		*i = ret;
1067 
1068 	return ret < 0 || *i >= min_nr;
1069 }
1070 
1071 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1072 			struct io_event __user *event,
1073 			struct timespec __user *timeout)
1074 {
1075 	ktime_t until = { .tv64 = KTIME_MAX };
1076 	long ret = 0;
1077 
1078 	if (timeout) {
1079 		struct timespec	ts;
1080 
1081 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1082 			return -EFAULT;
1083 
1084 		until = timespec_to_ktime(ts);
1085 	}
1086 
1087 	/*
1088 	 * Note that aio_read_events() is being called as the conditional - i.e.
1089 	 * we're calling it after prepare_to_wait() has set task state to
1090 	 * TASK_INTERRUPTIBLE.
1091 	 *
1092 	 * But aio_read_events() can block, and if it blocks it's going to flip
1093 	 * the task state back to TASK_RUNNING.
1094 	 *
1095 	 * This should be ok, provided it doesn't flip the state back to
1096 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1097 	 * will only happen if the mutex_lock() call blocks, and we then find
1098 	 * the ringbuffer empty. So in practice we should be ok, but it's
1099 	 * something to be aware of when touching this code.
1100 	 */
1101 	wait_event_interruptible_hrtimeout(ctx->wait,
1102 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1103 
1104 	if (!ret && signal_pending(current))
1105 		ret = -EINTR;
1106 
1107 	return ret;
1108 }
1109 
1110 /* sys_io_setup:
1111  *	Create an aio_context capable of receiving at least nr_events.
1112  *	ctxp must not point to an aio_context that already exists, and
1113  *	must be initialized to 0 prior to the call.  On successful
1114  *	creation of the aio_context, *ctxp is filled in with the resulting
1115  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1116  *	if the specified nr_events exceeds internal limits.  May fail
1117  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1118  *	of available events.  May fail with -ENOMEM if insufficient kernel
1119  *	resources are available.  May fail with -EFAULT if an invalid
1120  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1121  *	implemented.
1122  */
1123 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1124 {
1125 	struct kioctx *ioctx = NULL;
1126 	unsigned long ctx;
1127 	long ret;
1128 
1129 	ret = get_user(ctx, ctxp);
1130 	if (unlikely(ret))
1131 		goto out;
1132 
1133 	ret = -EINVAL;
1134 	if (unlikely(ctx || nr_events == 0)) {
1135 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1136 		         ctx, nr_events);
1137 		goto out;
1138 	}
1139 
1140 	ioctx = ioctx_alloc(nr_events);
1141 	ret = PTR_ERR(ioctx);
1142 	if (!IS_ERR(ioctx)) {
1143 		ret = put_user(ioctx->user_id, ctxp);
1144 		if (ret)
1145 			kill_ioctx(current->mm, ioctx);
1146 		percpu_ref_put(&ioctx->users);
1147 	}
1148 
1149 out:
1150 	return ret;
1151 }
1152 
1153 /* sys_io_destroy:
1154  *	Destroy the aio_context specified.  May cancel any outstanding
1155  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1156  *	implemented.  May fail with -EINVAL if the context pointed to
1157  *	is invalid.
1158  */
1159 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1160 {
1161 	struct kioctx *ioctx = lookup_ioctx(ctx);
1162 	if (likely(NULL != ioctx)) {
1163 		kill_ioctx(current->mm, ioctx);
1164 		percpu_ref_put(&ioctx->users);
1165 		return 0;
1166 	}
1167 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1168 	return -EINVAL;
1169 }
1170 
1171 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1172 			    unsigned long, loff_t);
1173 
1174 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1175 				     int rw, char __user *buf,
1176 				     unsigned long *nr_segs,
1177 				     struct iovec **iovec,
1178 				     bool compat)
1179 {
1180 	ssize_t ret;
1181 
1182 	*nr_segs = kiocb->ki_nbytes;
1183 
1184 #ifdef CONFIG_COMPAT
1185 	if (compat)
1186 		ret = compat_rw_copy_check_uvector(rw,
1187 				(struct compat_iovec __user *)buf,
1188 				*nr_segs, 1, *iovec, iovec);
1189 	else
1190 #endif
1191 		ret = rw_copy_check_uvector(rw,
1192 				(struct iovec __user *)buf,
1193 				*nr_segs, 1, *iovec, iovec);
1194 	if (ret < 0)
1195 		return ret;
1196 
1197 	/* ki_nbytes now reflect bytes instead of segs */
1198 	kiocb->ki_nbytes = ret;
1199 	return 0;
1200 }
1201 
1202 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1203 				       int rw, char __user *buf,
1204 				       unsigned long *nr_segs,
1205 				       struct iovec *iovec)
1206 {
1207 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1208 		return -EFAULT;
1209 
1210 	iovec->iov_base = buf;
1211 	iovec->iov_len = kiocb->ki_nbytes;
1212 	*nr_segs = 1;
1213 	return 0;
1214 }
1215 
1216 /*
1217  * aio_setup_iocb:
1218  *	Performs the initial checks and aio retry method
1219  *	setup for the kiocb at the time of io submission.
1220  */
1221 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1222 			    char __user *buf, bool compat)
1223 {
1224 	struct file *file = req->ki_filp;
1225 	ssize_t ret;
1226 	unsigned long nr_segs;
1227 	int rw;
1228 	fmode_t mode;
1229 	aio_rw_op *rw_op;
1230 	struct iovec inline_vec, *iovec = &inline_vec;
1231 
1232 	switch (opcode) {
1233 	case IOCB_CMD_PREAD:
1234 	case IOCB_CMD_PREADV:
1235 		mode	= FMODE_READ;
1236 		rw	= READ;
1237 		rw_op	= file->f_op->aio_read;
1238 		goto rw_common;
1239 
1240 	case IOCB_CMD_PWRITE:
1241 	case IOCB_CMD_PWRITEV:
1242 		mode	= FMODE_WRITE;
1243 		rw	= WRITE;
1244 		rw_op	= file->f_op->aio_write;
1245 		goto rw_common;
1246 rw_common:
1247 		if (unlikely(!(file->f_mode & mode)))
1248 			return -EBADF;
1249 
1250 		if (!rw_op)
1251 			return -EINVAL;
1252 
1253 		ret = (opcode == IOCB_CMD_PREADV ||
1254 		       opcode == IOCB_CMD_PWRITEV)
1255 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1256 						&iovec, compat)
1257 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1258 						  iovec);
1259 		if (ret)
1260 			return ret;
1261 
1262 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1263 		if (ret < 0) {
1264 			if (iovec != &inline_vec)
1265 				kfree(iovec);
1266 			return ret;
1267 		}
1268 
1269 		req->ki_nbytes = ret;
1270 
1271 		/* XXX: move/kill - rw_verify_area()? */
1272 		/* This matches the pread()/pwrite() logic */
1273 		if (req->ki_pos < 0) {
1274 			ret = -EINVAL;
1275 			break;
1276 		}
1277 
1278 		if (rw == WRITE)
1279 			file_start_write(file);
1280 
1281 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1282 
1283 		if (rw == WRITE)
1284 			file_end_write(file);
1285 		break;
1286 
1287 	case IOCB_CMD_FDSYNC:
1288 		if (!file->f_op->aio_fsync)
1289 			return -EINVAL;
1290 
1291 		ret = file->f_op->aio_fsync(req, 1);
1292 		break;
1293 
1294 	case IOCB_CMD_FSYNC:
1295 		if (!file->f_op->aio_fsync)
1296 			return -EINVAL;
1297 
1298 		ret = file->f_op->aio_fsync(req, 0);
1299 		break;
1300 
1301 	default:
1302 		pr_debug("EINVAL: no operation provided\n");
1303 		return -EINVAL;
1304 	}
1305 
1306 	if (iovec != &inline_vec)
1307 		kfree(iovec);
1308 
1309 	if (ret != -EIOCBQUEUED) {
1310 		/*
1311 		 * There's no easy way to restart the syscall since other AIO's
1312 		 * may be already running. Just fail this IO with EINTR.
1313 		 */
1314 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1315 			     ret == -ERESTARTNOHAND ||
1316 			     ret == -ERESTART_RESTARTBLOCK))
1317 			ret = -EINTR;
1318 		aio_complete(req, ret, 0);
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1325 			 struct iocb *iocb, bool compat)
1326 {
1327 	struct kiocb *req;
1328 	ssize_t ret;
1329 
1330 	/* enforce forwards compatibility on users */
1331 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1332 		pr_debug("EINVAL: reserve field set\n");
1333 		return -EINVAL;
1334 	}
1335 
1336 	/* prevent overflows */
1337 	if (unlikely(
1338 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1339 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1340 	    ((ssize_t)iocb->aio_nbytes < 0)
1341 	   )) {
1342 		pr_debug("EINVAL: io_submit: overflow check\n");
1343 		return -EINVAL;
1344 	}
1345 
1346 	req = aio_get_req(ctx);
1347 	if (unlikely(!req))
1348 		return -EAGAIN;
1349 
1350 	req->ki_filp = fget(iocb->aio_fildes);
1351 	if (unlikely(!req->ki_filp)) {
1352 		ret = -EBADF;
1353 		goto out_put_req;
1354 	}
1355 
1356 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1357 		/*
1358 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1359 		 * instance of the file* now. The file descriptor must be
1360 		 * an eventfd() fd, and will be signaled for each completed
1361 		 * event using the eventfd_signal() function.
1362 		 */
1363 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1364 		if (IS_ERR(req->ki_eventfd)) {
1365 			ret = PTR_ERR(req->ki_eventfd);
1366 			req->ki_eventfd = NULL;
1367 			goto out_put_req;
1368 		}
1369 	}
1370 
1371 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1372 	if (unlikely(ret)) {
1373 		pr_debug("EFAULT: aio_key\n");
1374 		goto out_put_req;
1375 	}
1376 
1377 	req->ki_obj.user = user_iocb;
1378 	req->ki_user_data = iocb->aio_data;
1379 	req->ki_pos = iocb->aio_offset;
1380 	req->ki_nbytes = iocb->aio_nbytes;
1381 
1382 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1383 			   (char __user *)(unsigned long)iocb->aio_buf,
1384 			   compat);
1385 	if (ret)
1386 		goto out_put_req;
1387 
1388 	return 0;
1389 out_put_req:
1390 	put_reqs_available(ctx, 1);
1391 	percpu_ref_put(&ctx->reqs);
1392 	kiocb_free(req);
1393 	return ret;
1394 }
1395 
1396 long do_io_submit(aio_context_t ctx_id, long nr,
1397 		  struct iocb __user *__user *iocbpp, bool compat)
1398 {
1399 	struct kioctx *ctx;
1400 	long ret = 0;
1401 	int i = 0;
1402 	struct blk_plug plug;
1403 
1404 	if (unlikely(nr < 0))
1405 		return -EINVAL;
1406 
1407 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1408 		nr = LONG_MAX/sizeof(*iocbpp);
1409 
1410 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1411 		return -EFAULT;
1412 
1413 	ctx = lookup_ioctx(ctx_id);
1414 	if (unlikely(!ctx)) {
1415 		pr_debug("EINVAL: invalid context id\n");
1416 		return -EINVAL;
1417 	}
1418 
1419 	blk_start_plug(&plug);
1420 
1421 	/*
1422 	 * AKPM: should this return a partial result if some of the IOs were
1423 	 * successfully submitted?
1424 	 */
1425 	for (i=0; i<nr; i++) {
1426 		struct iocb __user *user_iocb;
1427 		struct iocb tmp;
1428 
1429 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1430 			ret = -EFAULT;
1431 			break;
1432 		}
1433 
1434 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1435 			ret = -EFAULT;
1436 			break;
1437 		}
1438 
1439 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1440 		if (ret)
1441 			break;
1442 	}
1443 	blk_finish_plug(&plug);
1444 
1445 	percpu_ref_put(&ctx->users);
1446 	return i ? i : ret;
1447 }
1448 
1449 /* sys_io_submit:
1450  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1451  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1452  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1453  *	*iocbpp[0] is not properly initialized, if the operation specified
1454  *	is invalid for the file descriptor in the iocb.  May fail with
1455  *	-EFAULT if any of the data structures point to invalid data.  May
1456  *	fail with -EBADF if the file descriptor specified in the first
1457  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1458  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1459  *	fail with -ENOSYS if not implemented.
1460  */
1461 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1462 		struct iocb __user * __user *, iocbpp)
1463 {
1464 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1465 }
1466 
1467 /* lookup_kiocb
1468  *	Finds a given iocb for cancellation.
1469  */
1470 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1471 				  u32 key)
1472 {
1473 	struct list_head *pos;
1474 
1475 	assert_spin_locked(&ctx->ctx_lock);
1476 
1477 	if (key != KIOCB_KEY)
1478 		return NULL;
1479 
1480 	/* TODO: use a hash or array, this sucks. */
1481 	list_for_each(pos, &ctx->active_reqs) {
1482 		struct kiocb *kiocb = list_kiocb(pos);
1483 		if (kiocb->ki_obj.user == iocb)
1484 			return kiocb;
1485 	}
1486 	return NULL;
1487 }
1488 
1489 /* sys_io_cancel:
1490  *	Attempts to cancel an iocb previously passed to io_submit.  If
1491  *	the operation is successfully cancelled, the resulting event is
1492  *	copied into the memory pointed to by result without being placed
1493  *	into the completion queue and 0 is returned.  May fail with
1494  *	-EFAULT if any of the data structures pointed to are invalid.
1495  *	May fail with -EINVAL if aio_context specified by ctx_id is
1496  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1497  *	cancelled.  Will fail with -ENOSYS if not implemented.
1498  */
1499 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1500 		struct io_event __user *, result)
1501 {
1502 	struct kioctx *ctx;
1503 	struct kiocb *kiocb;
1504 	u32 key;
1505 	int ret;
1506 
1507 	ret = get_user(key, &iocb->aio_key);
1508 	if (unlikely(ret))
1509 		return -EFAULT;
1510 
1511 	ctx = lookup_ioctx(ctx_id);
1512 	if (unlikely(!ctx))
1513 		return -EINVAL;
1514 
1515 	spin_lock_irq(&ctx->ctx_lock);
1516 
1517 	kiocb = lookup_kiocb(ctx, iocb, key);
1518 	if (kiocb)
1519 		ret = kiocb_cancel(ctx, kiocb);
1520 	else
1521 		ret = -EINVAL;
1522 
1523 	spin_unlock_irq(&ctx->ctx_lock);
1524 
1525 	if (!ret) {
1526 		/*
1527 		 * The result argument is no longer used - the io_event is
1528 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1529 		 * cancellation is progress:
1530 		 */
1531 		ret = -EINPROGRESS;
1532 	}
1533 
1534 	percpu_ref_put(&ctx->users);
1535 
1536 	return ret;
1537 }
1538 
1539 /* io_getevents:
1540  *	Attempts to read at least min_nr events and up to nr events from
1541  *	the completion queue for the aio_context specified by ctx_id. If
1542  *	it succeeds, the number of read events is returned. May fail with
1543  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1544  *	out of range, if timeout is out of range.  May fail with -EFAULT
1545  *	if any of the memory specified is invalid.  May return 0 or
1546  *	< min_nr if the timeout specified by timeout has elapsed
1547  *	before sufficient events are available, where timeout == NULL
1548  *	specifies an infinite timeout. Note that the timeout pointed to by
1549  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1550  */
1551 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1552 		long, min_nr,
1553 		long, nr,
1554 		struct io_event __user *, events,
1555 		struct timespec __user *, timeout)
1556 {
1557 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1558 	long ret = -EINVAL;
1559 
1560 	if (likely(ioctx)) {
1561 		if (likely(min_nr <= nr && min_nr >= 0))
1562 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1563 		percpu_ref_put(&ioctx->users);
1564 	}
1565 	return ret;
1566 }
1567