1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched/signal.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <linux/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx __rcu *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct ctx_rq_wait { 81 struct completion comp; 82 atomic_t count; 83 }; 84 85 struct kioctx { 86 struct percpu_ref users; 87 atomic_t dead; 88 89 struct percpu_ref reqs; 90 91 unsigned long user_id; 92 93 struct __percpu kioctx_cpu *cpu; 94 95 /* 96 * For percpu reqs_available, number of slots we move to/from global 97 * counter at a time: 98 */ 99 unsigned req_batch; 100 /* 101 * This is what userspace passed to io_setup(), it's not used for 102 * anything but counting against the global max_reqs quota. 103 * 104 * The real limit is nr_events - 1, which will be larger (see 105 * aio_setup_ring()) 106 */ 107 unsigned max_reqs; 108 109 /* Size of ringbuffer, in units of struct io_event */ 110 unsigned nr_events; 111 112 unsigned long mmap_base; 113 unsigned long mmap_size; 114 115 struct page **ring_pages; 116 long nr_pages; 117 118 struct rcu_work free_rwork; /* see free_ioctx() */ 119 120 /* 121 * signals when all in-flight requests are done 122 */ 123 struct ctx_rq_wait *rq_wait; 124 125 struct { 126 /* 127 * This counts the number of available slots in the ringbuffer, 128 * so we avoid overflowing it: it's decremented (if positive) 129 * when allocating a kiocb and incremented when the resulting 130 * io_event is pulled off the ringbuffer. 131 * 132 * We batch accesses to it with a percpu version. 133 */ 134 atomic_t reqs_available; 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 spinlock_t ctx_lock; 139 struct list_head active_reqs; /* used for cancellation */ 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 struct mutex ring_lock; 144 wait_queue_head_t wait; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 unsigned tail; 149 unsigned completed_events; 150 spinlock_t completion_lock; 151 } ____cacheline_aligned_in_smp; 152 153 struct page *internal_pages[AIO_RING_PAGES]; 154 struct file *aio_ring_file; 155 156 unsigned id; 157 }; 158 159 /* 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either 161 * cancelled or completed (this makes a certain amount of sense because 162 * successful cancellation - io_cancel() - does deliver the completion to 163 * userspace). 164 * 165 * And since most things don't implement kiocb cancellation and we'd really like 166 * kiocb completion to be lockless when possible, we use ki_cancel to 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel(). 169 */ 170 #define KIOCB_CANCELLED ((void *) (~0ULL)) 171 172 struct aio_kiocb { 173 struct kiocb common; 174 175 struct kioctx *ki_ctx; 176 kiocb_cancel_fn *ki_cancel; 177 178 struct iocb __user *ki_user_iocb; /* user's aiocb */ 179 __u64 ki_user_data; /* user's data for completion */ 180 181 struct list_head ki_list; /* the aio core uses this 182 * for cancellation */ 183 184 /* 185 * If the aio_resfd field of the userspace iocb is not zero, 186 * this is the underlying eventfd context to deliver events to. 187 */ 188 struct eventfd_ctx *ki_eventfd; 189 }; 190 191 /*------ sysctl variables----*/ 192 static DEFINE_SPINLOCK(aio_nr_lock); 193 unsigned long aio_nr; /* current system wide number of aio requests */ 194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 195 /*----end sysctl variables---*/ 196 197 static struct kmem_cache *kiocb_cachep; 198 static struct kmem_cache *kioctx_cachep; 199 200 static struct vfsmount *aio_mnt; 201 202 static const struct file_operations aio_ring_fops; 203 static const struct address_space_operations aio_ctx_aops; 204 205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 206 { 207 struct qstr this = QSTR_INIT("[aio]", 5); 208 struct file *file; 209 struct path path; 210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 211 if (IS_ERR(inode)) 212 return ERR_CAST(inode); 213 214 inode->i_mapping->a_ops = &aio_ctx_aops; 215 inode->i_mapping->private_data = ctx; 216 inode->i_size = PAGE_SIZE * nr_pages; 217 218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 219 if (!path.dentry) { 220 iput(inode); 221 return ERR_PTR(-ENOMEM); 222 } 223 path.mnt = mntget(aio_mnt); 224 225 d_instantiate(path.dentry, inode); 226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 227 if (IS_ERR(file)) { 228 path_put(&path); 229 return file; 230 } 231 232 file->f_flags = O_RDWR; 233 return file; 234 } 235 236 static struct dentry *aio_mount(struct file_system_type *fs_type, 237 int flags, const char *dev_name, void *data) 238 { 239 static const struct dentry_operations ops = { 240 .d_dname = simple_dname, 241 }; 242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops, 243 AIO_RING_MAGIC); 244 245 if (!IS_ERR(root)) 246 root->d_sb->s_iflags |= SB_I_NOEXEC; 247 return root; 248 } 249 250 /* aio_setup 251 * Creates the slab caches used by the aio routines, panic on 252 * failure as this is done early during the boot sequence. 253 */ 254 static int __init aio_setup(void) 255 { 256 static struct file_system_type aio_fs = { 257 .name = "aio", 258 .mount = aio_mount, 259 .kill_sb = kill_anon_super, 260 }; 261 aio_mnt = kern_mount(&aio_fs); 262 if (IS_ERR(aio_mnt)) 263 panic("Failed to create aio fs mount."); 264 265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 267 268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 269 270 return 0; 271 } 272 __initcall(aio_setup); 273 274 static void put_aio_ring_file(struct kioctx *ctx) 275 { 276 struct file *aio_ring_file = ctx->aio_ring_file; 277 struct address_space *i_mapping; 278 279 if (aio_ring_file) { 280 truncate_setsize(file_inode(aio_ring_file), 0); 281 282 /* Prevent further access to the kioctx from migratepages */ 283 i_mapping = aio_ring_file->f_mapping; 284 spin_lock(&i_mapping->private_lock); 285 i_mapping->private_data = NULL; 286 ctx->aio_ring_file = NULL; 287 spin_unlock(&i_mapping->private_lock); 288 289 fput(aio_ring_file); 290 } 291 } 292 293 static void aio_free_ring(struct kioctx *ctx) 294 { 295 int i; 296 297 /* Disconnect the kiotx from the ring file. This prevents future 298 * accesses to the kioctx from page migration. 299 */ 300 put_aio_ring_file(ctx); 301 302 for (i = 0; i < ctx->nr_pages; i++) { 303 struct page *page; 304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 305 page_count(ctx->ring_pages[i])); 306 page = ctx->ring_pages[i]; 307 if (!page) 308 continue; 309 ctx->ring_pages[i] = NULL; 310 put_page(page); 311 } 312 313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 314 kfree(ctx->ring_pages); 315 ctx->ring_pages = NULL; 316 } 317 } 318 319 static int aio_ring_mremap(struct vm_area_struct *vma) 320 { 321 struct file *file = vma->vm_file; 322 struct mm_struct *mm = vma->vm_mm; 323 struct kioctx_table *table; 324 int i, res = -EINVAL; 325 326 spin_lock(&mm->ioctx_lock); 327 rcu_read_lock(); 328 table = rcu_dereference(mm->ioctx_table); 329 for (i = 0; i < table->nr; i++) { 330 struct kioctx *ctx; 331 332 ctx = rcu_dereference(table->table[i]); 333 if (ctx && ctx->aio_ring_file == file) { 334 if (!atomic_read(&ctx->dead)) { 335 ctx->user_id = ctx->mmap_base = vma->vm_start; 336 res = 0; 337 } 338 break; 339 } 340 } 341 342 rcu_read_unlock(); 343 spin_unlock(&mm->ioctx_lock); 344 return res; 345 } 346 347 static const struct vm_operations_struct aio_ring_vm_ops = { 348 .mremap = aio_ring_mremap, 349 #if IS_ENABLED(CONFIG_MMU) 350 .fault = filemap_fault, 351 .map_pages = filemap_map_pages, 352 .page_mkwrite = filemap_page_mkwrite, 353 #endif 354 }; 355 356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 357 { 358 vma->vm_flags |= VM_DONTEXPAND; 359 vma->vm_ops = &aio_ring_vm_ops; 360 return 0; 361 } 362 363 static const struct file_operations aio_ring_fops = { 364 .mmap = aio_ring_mmap, 365 }; 366 367 #if IS_ENABLED(CONFIG_MIGRATION) 368 static int aio_migratepage(struct address_space *mapping, struct page *new, 369 struct page *old, enum migrate_mode mode) 370 { 371 struct kioctx *ctx; 372 unsigned long flags; 373 pgoff_t idx; 374 int rc; 375 376 /* 377 * We cannot support the _NO_COPY case here, because copy needs to 378 * happen under the ctx->completion_lock. That does not work with the 379 * migration workflow of MIGRATE_SYNC_NO_COPY. 380 */ 381 if (mode == MIGRATE_SYNC_NO_COPY) 382 return -EINVAL; 383 384 rc = 0; 385 386 /* mapping->private_lock here protects against the kioctx teardown. */ 387 spin_lock(&mapping->private_lock); 388 ctx = mapping->private_data; 389 if (!ctx) { 390 rc = -EINVAL; 391 goto out; 392 } 393 394 /* The ring_lock mutex. The prevents aio_read_events() from writing 395 * to the ring's head, and prevents page migration from mucking in 396 * a partially initialized kiotx. 397 */ 398 if (!mutex_trylock(&ctx->ring_lock)) { 399 rc = -EAGAIN; 400 goto out; 401 } 402 403 idx = old->index; 404 if (idx < (pgoff_t)ctx->nr_pages) { 405 /* Make sure the old page hasn't already been changed */ 406 if (ctx->ring_pages[idx] != old) 407 rc = -EAGAIN; 408 } else 409 rc = -EINVAL; 410 411 if (rc != 0) 412 goto out_unlock; 413 414 /* Writeback must be complete */ 415 BUG_ON(PageWriteback(old)); 416 get_page(new); 417 418 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 419 if (rc != MIGRATEPAGE_SUCCESS) { 420 put_page(new); 421 goto out_unlock; 422 } 423 424 /* Take completion_lock to prevent other writes to the ring buffer 425 * while the old page is copied to the new. This prevents new 426 * events from being lost. 427 */ 428 spin_lock_irqsave(&ctx->completion_lock, flags); 429 migrate_page_copy(new, old); 430 BUG_ON(ctx->ring_pages[idx] != old); 431 ctx->ring_pages[idx] = new; 432 spin_unlock_irqrestore(&ctx->completion_lock, flags); 433 434 /* The old page is no longer accessible. */ 435 put_page(old); 436 437 out_unlock: 438 mutex_unlock(&ctx->ring_lock); 439 out: 440 spin_unlock(&mapping->private_lock); 441 return rc; 442 } 443 #endif 444 445 static const struct address_space_operations aio_ctx_aops = { 446 .set_page_dirty = __set_page_dirty_no_writeback, 447 #if IS_ENABLED(CONFIG_MIGRATION) 448 .migratepage = aio_migratepage, 449 #endif 450 }; 451 452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 453 { 454 struct aio_ring *ring; 455 struct mm_struct *mm = current->mm; 456 unsigned long size, unused; 457 int nr_pages; 458 int i; 459 struct file *file; 460 461 /* Compensate for the ring buffer's head/tail overlap entry */ 462 nr_events += 2; /* 1 is required, 2 for good luck */ 463 464 size = sizeof(struct aio_ring); 465 size += sizeof(struct io_event) * nr_events; 466 467 nr_pages = PFN_UP(size); 468 if (nr_pages < 0) 469 return -EINVAL; 470 471 file = aio_private_file(ctx, nr_pages); 472 if (IS_ERR(file)) { 473 ctx->aio_ring_file = NULL; 474 return -ENOMEM; 475 } 476 477 ctx->aio_ring_file = file; 478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 479 / sizeof(struct io_event); 480 481 ctx->ring_pages = ctx->internal_pages; 482 if (nr_pages > AIO_RING_PAGES) { 483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 484 GFP_KERNEL); 485 if (!ctx->ring_pages) { 486 put_aio_ring_file(ctx); 487 return -ENOMEM; 488 } 489 } 490 491 for (i = 0; i < nr_pages; i++) { 492 struct page *page; 493 page = find_or_create_page(file->f_mapping, 494 i, GFP_HIGHUSER | __GFP_ZERO); 495 if (!page) 496 break; 497 pr_debug("pid(%d) page[%d]->count=%d\n", 498 current->pid, i, page_count(page)); 499 SetPageUptodate(page); 500 unlock_page(page); 501 502 ctx->ring_pages[i] = page; 503 } 504 ctx->nr_pages = i; 505 506 if (unlikely(i != nr_pages)) { 507 aio_free_ring(ctx); 508 return -ENOMEM; 509 } 510 511 ctx->mmap_size = nr_pages * PAGE_SIZE; 512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 513 514 if (down_write_killable(&mm->mmap_sem)) { 515 ctx->mmap_size = 0; 516 aio_free_ring(ctx); 517 return -EINTR; 518 } 519 520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 521 PROT_READ | PROT_WRITE, 522 MAP_SHARED, 0, &unused, NULL); 523 up_write(&mm->mmap_sem); 524 if (IS_ERR((void *)ctx->mmap_base)) { 525 ctx->mmap_size = 0; 526 aio_free_ring(ctx); 527 return -ENOMEM; 528 } 529 530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 531 532 ctx->user_id = ctx->mmap_base; 533 ctx->nr_events = nr_events; /* trusted copy */ 534 535 ring = kmap_atomic(ctx->ring_pages[0]); 536 ring->nr = nr_events; /* user copy */ 537 ring->id = ~0U; 538 ring->head = ring->tail = 0; 539 ring->magic = AIO_RING_MAGIC; 540 ring->compat_features = AIO_RING_COMPAT_FEATURES; 541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 542 ring->header_length = sizeof(struct aio_ring); 543 kunmap_atomic(ring); 544 flush_dcache_page(ctx->ring_pages[0]); 545 546 return 0; 547 } 548 549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 552 553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 554 { 555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common); 556 struct kioctx *ctx = req->ki_ctx; 557 unsigned long flags; 558 559 spin_lock_irqsave(&ctx->ctx_lock, flags); 560 561 if (!req->ki_list.next) 562 list_add(&req->ki_list, &ctx->active_reqs); 563 564 req->ki_cancel = cancel; 565 566 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 567 } 568 EXPORT_SYMBOL(kiocb_set_cancel_fn); 569 570 static int kiocb_cancel(struct aio_kiocb *kiocb) 571 { 572 kiocb_cancel_fn *old, *cancel; 573 574 /* 575 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 576 * actually has a cancel function, hence the cmpxchg() 577 */ 578 579 cancel = READ_ONCE(kiocb->ki_cancel); 580 do { 581 if (!cancel || cancel == KIOCB_CANCELLED) 582 return -EINVAL; 583 584 old = cancel; 585 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 586 } while (cancel != old); 587 588 return cancel(&kiocb->common); 589 } 590 591 /* 592 * free_ioctx() should be RCU delayed to synchronize against the RCU 593 * protected lookup_ioctx() and also needs process context to call 594 * aio_free_ring(). Use rcu_work. 595 */ 596 static void free_ioctx(struct work_struct *work) 597 { 598 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 599 free_rwork); 600 pr_debug("freeing %p\n", ctx); 601 602 aio_free_ring(ctx); 603 free_percpu(ctx->cpu); 604 percpu_ref_exit(&ctx->reqs); 605 percpu_ref_exit(&ctx->users); 606 kmem_cache_free(kioctx_cachep, ctx); 607 } 608 609 static void free_ioctx_reqs(struct percpu_ref *ref) 610 { 611 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 612 613 /* At this point we know that there are no any in-flight requests */ 614 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 615 complete(&ctx->rq_wait->comp); 616 617 /* Synchronize against RCU protected table->table[] dereferences */ 618 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 619 queue_rcu_work(system_wq, &ctx->free_rwork); 620 } 621 622 /* 623 * When this function runs, the kioctx has been removed from the "hash table" 624 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 625 * now it's safe to cancel any that need to be. 626 */ 627 static void free_ioctx_users(struct percpu_ref *ref) 628 { 629 struct kioctx *ctx = container_of(ref, struct kioctx, users); 630 struct aio_kiocb *req; 631 632 spin_lock_irq(&ctx->ctx_lock); 633 634 while (!list_empty(&ctx->active_reqs)) { 635 req = list_first_entry(&ctx->active_reqs, 636 struct aio_kiocb, ki_list); 637 638 list_del_init(&req->ki_list); 639 kiocb_cancel(req); 640 } 641 642 spin_unlock_irq(&ctx->ctx_lock); 643 644 percpu_ref_kill(&ctx->reqs); 645 percpu_ref_put(&ctx->reqs); 646 } 647 648 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 649 { 650 unsigned i, new_nr; 651 struct kioctx_table *table, *old; 652 struct aio_ring *ring; 653 654 spin_lock(&mm->ioctx_lock); 655 table = rcu_dereference_raw(mm->ioctx_table); 656 657 while (1) { 658 if (table) 659 for (i = 0; i < table->nr; i++) 660 if (!rcu_access_pointer(table->table[i])) { 661 ctx->id = i; 662 rcu_assign_pointer(table->table[i], ctx); 663 spin_unlock(&mm->ioctx_lock); 664 665 /* While kioctx setup is in progress, 666 * we are protected from page migration 667 * changes ring_pages by ->ring_lock. 668 */ 669 ring = kmap_atomic(ctx->ring_pages[0]); 670 ring->id = ctx->id; 671 kunmap_atomic(ring); 672 return 0; 673 } 674 675 new_nr = (table ? table->nr : 1) * 4; 676 spin_unlock(&mm->ioctx_lock); 677 678 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 679 new_nr, GFP_KERNEL); 680 if (!table) 681 return -ENOMEM; 682 683 table->nr = new_nr; 684 685 spin_lock(&mm->ioctx_lock); 686 old = rcu_dereference_raw(mm->ioctx_table); 687 688 if (!old) { 689 rcu_assign_pointer(mm->ioctx_table, table); 690 } else if (table->nr > old->nr) { 691 memcpy(table->table, old->table, 692 old->nr * sizeof(struct kioctx *)); 693 694 rcu_assign_pointer(mm->ioctx_table, table); 695 kfree_rcu(old, rcu); 696 } else { 697 kfree(table); 698 table = old; 699 } 700 } 701 } 702 703 static void aio_nr_sub(unsigned nr) 704 { 705 spin_lock(&aio_nr_lock); 706 if (WARN_ON(aio_nr - nr > aio_nr)) 707 aio_nr = 0; 708 else 709 aio_nr -= nr; 710 spin_unlock(&aio_nr_lock); 711 } 712 713 /* ioctx_alloc 714 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 715 */ 716 static struct kioctx *ioctx_alloc(unsigned nr_events) 717 { 718 struct mm_struct *mm = current->mm; 719 struct kioctx *ctx; 720 int err = -ENOMEM; 721 722 /* 723 * Store the original nr_events -- what userspace passed to io_setup(), 724 * for counting against the global limit -- before it changes. 725 */ 726 unsigned int max_reqs = nr_events; 727 728 /* 729 * We keep track of the number of available ringbuffer slots, to prevent 730 * overflow (reqs_available), and we also use percpu counters for this. 731 * 732 * So since up to half the slots might be on other cpu's percpu counters 733 * and unavailable, double nr_events so userspace sees what they 734 * expected: additionally, we move req_batch slots to/from percpu 735 * counters at a time, so make sure that isn't 0: 736 */ 737 nr_events = max(nr_events, num_possible_cpus() * 4); 738 nr_events *= 2; 739 740 /* Prevent overflows */ 741 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 742 pr_debug("ENOMEM: nr_events too high\n"); 743 return ERR_PTR(-EINVAL); 744 } 745 746 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 747 return ERR_PTR(-EAGAIN); 748 749 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 750 if (!ctx) 751 return ERR_PTR(-ENOMEM); 752 753 ctx->max_reqs = max_reqs; 754 755 spin_lock_init(&ctx->ctx_lock); 756 spin_lock_init(&ctx->completion_lock); 757 mutex_init(&ctx->ring_lock); 758 /* Protect against page migration throughout kiotx setup by keeping 759 * the ring_lock mutex held until setup is complete. */ 760 mutex_lock(&ctx->ring_lock); 761 init_waitqueue_head(&ctx->wait); 762 763 INIT_LIST_HEAD(&ctx->active_reqs); 764 765 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 766 goto err; 767 768 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 769 goto err; 770 771 ctx->cpu = alloc_percpu(struct kioctx_cpu); 772 if (!ctx->cpu) 773 goto err; 774 775 err = aio_setup_ring(ctx, nr_events); 776 if (err < 0) 777 goto err; 778 779 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 780 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 781 if (ctx->req_batch < 1) 782 ctx->req_batch = 1; 783 784 /* limit the number of system wide aios */ 785 spin_lock(&aio_nr_lock); 786 if (aio_nr + ctx->max_reqs > aio_max_nr || 787 aio_nr + ctx->max_reqs < aio_nr) { 788 spin_unlock(&aio_nr_lock); 789 err = -EAGAIN; 790 goto err_ctx; 791 } 792 aio_nr += ctx->max_reqs; 793 spin_unlock(&aio_nr_lock); 794 795 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 796 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 797 798 err = ioctx_add_table(ctx, mm); 799 if (err) 800 goto err_cleanup; 801 802 /* Release the ring_lock mutex now that all setup is complete. */ 803 mutex_unlock(&ctx->ring_lock); 804 805 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 806 ctx, ctx->user_id, mm, ctx->nr_events); 807 return ctx; 808 809 err_cleanup: 810 aio_nr_sub(ctx->max_reqs); 811 err_ctx: 812 atomic_set(&ctx->dead, 1); 813 if (ctx->mmap_size) 814 vm_munmap(ctx->mmap_base, ctx->mmap_size); 815 aio_free_ring(ctx); 816 err: 817 mutex_unlock(&ctx->ring_lock); 818 free_percpu(ctx->cpu); 819 percpu_ref_exit(&ctx->reqs); 820 percpu_ref_exit(&ctx->users); 821 kmem_cache_free(kioctx_cachep, ctx); 822 pr_debug("error allocating ioctx %d\n", err); 823 return ERR_PTR(err); 824 } 825 826 /* kill_ioctx 827 * Cancels all outstanding aio requests on an aio context. Used 828 * when the processes owning a context have all exited to encourage 829 * the rapid destruction of the kioctx. 830 */ 831 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 832 struct ctx_rq_wait *wait) 833 { 834 struct kioctx_table *table; 835 836 spin_lock(&mm->ioctx_lock); 837 if (atomic_xchg(&ctx->dead, 1)) { 838 spin_unlock(&mm->ioctx_lock); 839 return -EINVAL; 840 } 841 842 table = rcu_dereference_raw(mm->ioctx_table); 843 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 844 RCU_INIT_POINTER(table->table[ctx->id], NULL); 845 spin_unlock(&mm->ioctx_lock); 846 847 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 848 wake_up_all(&ctx->wait); 849 850 /* 851 * It'd be more correct to do this in free_ioctx(), after all 852 * the outstanding kiocbs have finished - but by then io_destroy 853 * has already returned, so io_setup() could potentially return 854 * -EAGAIN with no ioctxs actually in use (as far as userspace 855 * could tell). 856 */ 857 aio_nr_sub(ctx->max_reqs); 858 859 if (ctx->mmap_size) 860 vm_munmap(ctx->mmap_base, ctx->mmap_size); 861 862 ctx->rq_wait = wait; 863 percpu_ref_kill(&ctx->users); 864 return 0; 865 } 866 867 /* 868 * exit_aio: called when the last user of mm goes away. At this point, there is 869 * no way for any new requests to be submited or any of the io_* syscalls to be 870 * called on the context. 871 * 872 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 873 * them. 874 */ 875 void exit_aio(struct mm_struct *mm) 876 { 877 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 878 struct ctx_rq_wait wait; 879 int i, skipped; 880 881 if (!table) 882 return; 883 884 atomic_set(&wait.count, table->nr); 885 init_completion(&wait.comp); 886 887 skipped = 0; 888 for (i = 0; i < table->nr; ++i) { 889 struct kioctx *ctx = 890 rcu_dereference_protected(table->table[i], true); 891 892 if (!ctx) { 893 skipped++; 894 continue; 895 } 896 897 /* 898 * We don't need to bother with munmap() here - exit_mmap(mm) 899 * is coming and it'll unmap everything. And we simply can't, 900 * this is not necessarily our ->mm. 901 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 902 * that it needs to unmap the area, just set it to 0. 903 */ 904 ctx->mmap_size = 0; 905 kill_ioctx(mm, ctx, &wait); 906 } 907 908 if (!atomic_sub_and_test(skipped, &wait.count)) { 909 /* Wait until all IO for the context are done. */ 910 wait_for_completion(&wait.comp); 911 } 912 913 RCU_INIT_POINTER(mm->ioctx_table, NULL); 914 kfree(table); 915 } 916 917 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 918 { 919 struct kioctx_cpu *kcpu; 920 unsigned long flags; 921 922 local_irq_save(flags); 923 kcpu = this_cpu_ptr(ctx->cpu); 924 kcpu->reqs_available += nr; 925 926 while (kcpu->reqs_available >= ctx->req_batch * 2) { 927 kcpu->reqs_available -= ctx->req_batch; 928 atomic_add(ctx->req_batch, &ctx->reqs_available); 929 } 930 931 local_irq_restore(flags); 932 } 933 934 static bool get_reqs_available(struct kioctx *ctx) 935 { 936 struct kioctx_cpu *kcpu; 937 bool ret = false; 938 unsigned long flags; 939 940 local_irq_save(flags); 941 kcpu = this_cpu_ptr(ctx->cpu); 942 if (!kcpu->reqs_available) { 943 int old, avail = atomic_read(&ctx->reqs_available); 944 945 do { 946 if (avail < ctx->req_batch) 947 goto out; 948 949 old = avail; 950 avail = atomic_cmpxchg(&ctx->reqs_available, 951 avail, avail - ctx->req_batch); 952 } while (avail != old); 953 954 kcpu->reqs_available += ctx->req_batch; 955 } 956 957 ret = true; 958 kcpu->reqs_available--; 959 out: 960 local_irq_restore(flags); 961 return ret; 962 } 963 964 /* refill_reqs_available 965 * Updates the reqs_available reference counts used for tracking the 966 * number of free slots in the completion ring. This can be called 967 * from aio_complete() (to optimistically update reqs_available) or 968 * from aio_get_req() (the we're out of events case). It must be 969 * called holding ctx->completion_lock. 970 */ 971 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 972 unsigned tail) 973 { 974 unsigned events_in_ring, completed; 975 976 /* Clamp head since userland can write to it. */ 977 head %= ctx->nr_events; 978 if (head <= tail) 979 events_in_ring = tail - head; 980 else 981 events_in_ring = ctx->nr_events - (head - tail); 982 983 completed = ctx->completed_events; 984 if (events_in_ring < completed) 985 completed -= events_in_ring; 986 else 987 completed = 0; 988 989 if (!completed) 990 return; 991 992 ctx->completed_events -= completed; 993 put_reqs_available(ctx, completed); 994 } 995 996 /* user_refill_reqs_available 997 * Called to refill reqs_available when aio_get_req() encounters an 998 * out of space in the completion ring. 999 */ 1000 static void user_refill_reqs_available(struct kioctx *ctx) 1001 { 1002 spin_lock_irq(&ctx->completion_lock); 1003 if (ctx->completed_events) { 1004 struct aio_ring *ring; 1005 unsigned head; 1006 1007 /* Access of ring->head may race with aio_read_events_ring() 1008 * here, but that's okay since whether we read the old version 1009 * or the new version, and either will be valid. The important 1010 * part is that head cannot pass tail since we prevent 1011 * aio_complete() from updating tail by holding 1012 * ctx->completion_lock. Even if head is invalid, the check 1013 * against ctx->completed_events below will make sure we do the 1014 * safe/right thing. 1015 */ 1016 ring = kmap_atomic(ctx->ring_pages[0]); 1017 head = ring->head; 1018 kunmap_atomic(ring); 1019 1020 refill_reqs_available(ctx, head, ctx->tail); 1021 } 1022 1023 spin_unlock_irq(&ctx->completion_lock); 1024 } 1025 1026 /* aio_get_req 1027 * Allocate a slot for an aio request. 1028 * Returns NULL if no requests are free. 1029 */ 1030 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1031 { 1032 struct aio_kiocb *req; 1033 1034 if (!get_reqs_available(ctx)) { 1035 user_refill_reqs_available(ctx); 1036 if (!get_reqs_available(ctx)) 1037 return NULL; 1038 } 1039 1040 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1041 if (unlikely(!req)) 1042 goto out_put; 1043 1044 percpu_ref_get(&ctx->reqs); 1045 1046 req->ki_ctx = ctx; 1047 return req; 1048 out_put: 1049 put_reqs_available(ctx, 1); 1050 return NULL; 1051 } 1052 1053 static void kiocb_free(struct aio_kiocb *req) 1054 { 1055 if (req->common.ki_filp) 1056 fput(req->common.ki_filp); 1057 if (req->ki_eventfd != NULL) 1058 eventfd_ctx_put(req->ki_eventfd); 1059 kmem_cache_free(kiocb_cachep, req); 1060 } 1061 1062 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1063 { 1064 struct aio_ring __user *ring = (void __user *)ctx_id; 1065 struct mm_struct *mm = current->mm; 1066 struct kioctx *ctx, *ret = NULL; 1067 struct kioctx_table *table; 1068 unsigned id; 1069 1070 if (get_user(id, &ring->id)) 1071 return NULL; 1072 1073 rcu_read_lock(); 1074 table = rcu_dereference(mm->ioctx_table); 1075 1076 if (!table || id >= table->nr) 1077 goto out; 1078 1079 ctx = rcu_dereference(table->table[id]); 1080 if (ctx && ctx->user_id == ctx_id) { 1081 if (percpu_ref_tryget_live(&ctx->users)) 1082 ret = ctx; 1083 } 1084 out: 1085 rcu_read_unlock(); 1086 return ret; 1087 } 1088 1089 /* aio_complete 1090 * Called when the io request on the given iocb is complete. 1091 */ 1092 static void aio_complete(struct kiocb *kiocb, long res, long res2) 1093 { 1094 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common); 1095 struct kioctx *ctx = iocb->ki_ctx; 1096 struct aio_ring *ring; 1097 struct io_event *ev_page, *event; 1098 unsigned tail, pos, head; 1099 unsigned long flags; 1100 1101 if (kiocb->ki_flags & IOCB_WRITE) { 1102 struct file *file = kiocb->ki_filp; 1103 1104 /* 1105 * Tell lockdep we inherited freeze protection from submission 1106 * thread. 1107 */ 1108 if (S_ISREG(file_inode(file)->i_mode)) 1109 __sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1110 file_end_write(file); 1111 } 1112 1113 /* 1114 * Special case handling for sync iocbs: 1115 * - events go directly into the iocb for fast handling 1116 * - the sync task with the iocb in its stack holds the single iocb 1117 * ref, no other paths have a way to get another ref 1118 * - the sync task helpfully left a reference to itself in the iocb 1119 */ 1120 BUG_ON(is_sync_kiocb(kiocb)); 1121 1122 if (iocb->ki_list.next) { 1123 unsigned long flags; 1124 1125 spin_lock_irqsave(&ctx->ctx_lock, flags); 1126 list_del(&iocb->ki_list); 1127 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1128 } 1129 1130 /* 1131 * Add a completion event to the ring buffer. Must be done holding 1132 * ctx->completion_lock to prevent other code from messing with the tail 1133 * pointer since we might be called from irq context. 1134 */ 1135 spin_lock_irqsave(&ctx->completion_lock, flags); 1136 1137 tail = ctx->tail; 1138 pos = tail + AIO_EVENTS_OFFSET; 1139 1140 if (++tail >= ctx->nr_events) 1141 tail = 0; 1142 1143 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1144 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1145 1146 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1147 event->data = iocb->ki_user_data; 1148 event->res = res; 1149 event->res2 = res2; 1150 1151 kunmap_atomic(ev_page); 1152 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1153 1154 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1155 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1156 res, res2); 1157 1158 /* after flagging the request as done, we 1159 * must never even look at it again 1160 */ 1161 smp_wmb(); /* make event visible before updating tail */ 1162 1163 ctx->tail = tail; 1164 1165 ring = kmap_atomic(ctx->ring_pages[0]); 1166 head = ring->head; 1167 ring->tail = tail; 1168 kunmap_atomic(ring); 1169 flush_dcache_page(ctx->ring_pages[0]); 1170 1171 ctx->completed_events++; 1172 if (ctx->completed_events > 1) 1173 refill_reqs_available(ctx, head, tail); 1174 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1175 1176 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1177 1178 /* 1179 * Check if the user asked us to deliver the result through an 1180 * eventfd. The eventfd_signal() function is safe to be called 1181 * from IRQ context. 1182 */ 1183 if (iocb->ki_eventfd != NULL) 1184 eventfd_signal(iocb->ki_eventfd, 1); 1185 1186 /* everything turned out well, dispose of the aiocb. */ 1187 kiocb_free(iocb); 1188 1189 /* 1190 * We have to order our ring_info tail store above and test 1191 * of the wait list below outside the wait lock. This is 1192 * like in wake_up_bit() where clearing a bit has to be 1193 * ordered with the unlocked test. 1194 */ 1195 smp_mb(); 1196 1197 if (waitqueue_active(&ctx->wait)) 1198 wake_up(&ctx->wait); 1199 1200 percpu_ref_put(&ctx->reqs); 1201 } 1202 1203 /* aio_read_events_ring 1204 * Pull an event off of the ioctx's event ring. Returns the number of 1205 * events fetched 1206 */ 1207 static long aio_read_events_ring(struct kioctx *ctx, 1208 struct io_event __user *event, long nr) 1209 { 1210 struct aio_ring *ring; 1211 unsigned head, tail, pos; 1212 long ret = 0; 1213 int copy_ret; 1214 1215 /* 1216 * The mutex can block and wake us up and that will cause 1217 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1218 * and repeat. This should be rare enough that it doesn't cause 1219 * peformance issues. See the comment in read_events() for more detail. 1220 */ 1221 sched_annotate_sleep(); 1222 mutex_lock(&ctx->ring_lock); 1223 1224 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1225 ring = kmap_atomic(ctx->ring_pages[0]); 1226 head = ring->head; 1227 tail = ring->tail; 1228 kunmap_atomic(ring); 1229 1230 /* 1231 * Ensure that once we've read the current tail pointer, that 1232 * we also see the events that were stored up to the tail. 1233 */ 1234 smp_rmb(); 1235 1236 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1237 1238 if (head == tail) 1239 goto out; 1240 1241 head %= ctx->nr_events; 1242 tail %= ctx->nr_events; 1243 1244 while (ret < nr) { 1245 long avail; 1246 struct io_event *ev; 1247 struct page *page; 1248 1249 avail = (head <= tail ? tail : ctx->nr_events) - head; 1250 if (head == tail) 1251 break; 1252 1253 avail = min(avail, nr - ret); 1254 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1255 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1256 1257 pos = head + AIO_EVENTS_OFFSET; 1258 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1259 pos %= AIO_EVENTS_PER_PAGE; 1260 1261 ev = kmap(page); 1262 copy_ret = copy_to_user(event + ret, ev + pos, 1263 sizeof(*ev) * avail); 1264 kunmap(page); 1265 1266 if (unlikely(copy_ret)) { 1267 ret = -EFAULT; 1268 goto out; 1269 } 1270 1271 ret += avail; 1272 head += avail; 1273 head %= ctx->nr_events; 1274 } 1275 1276 ring = kmap_atomic(ctx->ring_pages[0]); 1277 ring->head = head; 1278 kunmap_atomic(ring); 1279 flush_dcache_page(ctx->ring_pages[0]); 1280 1281 pr_debug("%li h%u t%u\n", ret, head, tail); 1282 out: 1283 mutex_unlock(&ctx->ring_lock); 1284 1285 return ret; 1286 } 1287 1288 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1289 struct io_event __user *event, long *i) 1290 { 1291 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1292 1293 if (ret > 0) 1294 *i += ret; 1295 1296 if (unlikely(atomic_read(&ctx->dead))) 1297 ret = -EINVAL; 1298 1299 if (!*i) 1300 *i = ret; 1301 1302 return ret < 0 || *i >= min_nr; 1303 } 1304 1305 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1306 struct io_event __user *event, 1307 ktime_t until) 1308 { 1309 long ret = 0; 1310 1311 /* 1312 * Note that aio_read_events() is being called as the conditional - i.e. 1313 * we're calling it after prepare_to_wait() has set task state to 1314 * TASK_INTERRUPTIBLE. 1315 * 1316 * But aio_read_events() can block, and if it blocks it's going to flip 1317 * the task state back to TASK_RUNNING. 1318 * 1319 * This should be ok, provided it doesn't flip the state back to 1320 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1321 * will only happen if the mutex_lock() call blocks, and we then find 1322 * the ringbuffer empty. So in practice we should be ok, but it's 1323 * something to be aware of when touching this code. 1324 */ 1325 if (until == 0) 1326 aio_read_events(ctx, min_nr, nr, event, &ret); 1327 else 1328 wait_event_interruptible_hrtimeout(ctx->wait, 1329 aio_read_events(ctx, min_nr, nr, event, &ret), 1330 until); 1331 1332 if (!ret && signal_pending(current)) 1333 ret = -EINTR; 1334 1335 return ret; 1336 } 1337 1338 /* sys_io_setup: 1339 * Create an aio_context capable of receiving at least nr_events. 1340 * ctxp must not point to an aio_context that already exists, and 1341 * must be initialized to 0 prior to the call. On successful 1342 * creation of the aio_context, *ctxp is filled in with the resulting 1343 * handle. May fail with -EINVAL if *ctxp is not initialized, 1344 * if the specified nr_events exceeds internal limits. May fail 1345 * with -EAGAIN if the specified nr_events exceeds the user's limit 1346 * of available events. May fail with -ENOMEM if insufficient kernel 1347 * resources are available. May fail with -EFAULT if an invalid 1348 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1349 * implemented. 1350 */ 1351 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1352 { 1353 struct kioctx *ioctx = NULL; 1354 unsigned long ctx; 1355 long ret; 1356 1357 ret = get_user(ctx, ctxp); 1358 if (unlikely(ret)) 1359 goto out; 1360 1361 ret = -EINVAL; 1362 if (unlikely(ctx || nr_events == 0)) { 1363 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1364 ctx, nr_events); 1365 goto out; 1366 } 1367 1368 ioctx = ioctx_alloc(nr_events); 1369 ret = PTR_ERR(ioctx); 1370 if (!IS_ERR(ioctx)) { 1371 ret = put_user(ioctx->user_id, ctxp); 1372 if (ret) 1373 kill_ioctx(current->mm, ioctx, NULL); 1374 percpu_ref_put(&ioctx->users); 1375 } 1376 1377 out: 1378 return ret; 1379 } 1380 1381 #ifdef CONFIG_COMPAT 1382 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1383 { 1384 struct kioctx *ioctx = NULL; 1385 unsigned long ctx; 1386 long ret; 1387 1388 ret = get_user(ctx, ctx32p); 1389 if (unlikely(ret)) 1390 goto out; 1391 1392 ret = -EINVAL; 1393 if (unlikely(ctx || nr_events == 0)) { 1394 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1395 ctx, nr_events); 1396 goto out; 1397 } 1398 1399 ioctx = ioctx_alloc(nr_events); 1400 ret = PTR_ERR(ioctx); 1401 if (!IS_ERR(ioctx)) { 1402 /* truncating is ok because it's a user address */ 1403 ret = put_user((u32)ioctx->user_id, ctx32p); 1404 if (ret) 1405 kill_ioctx(current->mm, ioctx, NULL); 1406 percpu_ref_put(&ioctx->users); 1407 } 1408 1409 out: 1410 return ret; 1411 } 1412 #endif 1413 1414 /* sys_io_destroy: 1415 * Destroy the aio_context specified. May cancel any outstanding 1416 * AIOs and block on completion. Will fail with -ENOSYS if not 1417 * implemented. May fail with -EINVAL if the context pointed to 1418 * is invalid. 1419 */ 1420 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1421 { 1422 struct kioctx *ioctx = lookup_ioctx(ctx); 1423 if (likely(NULL != ioctx)) { 1424 struct ctx_rq_wait wait; 1425 int ret; 1426 1427 init_completion(&wait.comp); 1428 atomic_set(&wait.count, 1); 1429 1430 /* Pass requests_done to kill_ioctx() where it can be set 1431 * in a thread-safe way. If we try to set it here then we have 1432 * a race condition if two io_destroy() called simultaneously. 1433 */ 1434 ret = kill_ioctx(current->mm, ioctx, &wait); 1435 percpu_ref_put(&ioctx->users); 1436 1437 /* Wait until all IO for the context are done. Otherwise kernel 1438 * keep using user-space buffers even if user thinks the context 1439 * is destroyed. 1440 */ 1441 if (!ret) 1442 wait_for_completion(&wait.comp); 1443 1444 return ret; 1445 } 1446 pr_debug("EINVAL: invalid context id\n"); 1447 return -EINVAL; 1448 } 1449 1450 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec, 1451 bool vectored, bool compat, struct iov_iter *iter) 1452 { 1453 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1454 size_t len = iocb->aio_nbytes; 1455 1456 if (!vectored) { 1457 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1458 *iovec = NULL; 1459 return ret; 1460 } 1461 #ifdef CONFIG_COMPAT 1462 if (compat) 1463 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec, 1464 iter); 1465 #endif 1466 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter); 1467 } 1468 1469 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret) 1470 { 1471 switch (ret) { 1472 case -EIOCBQUEUED: 1473 return ret; 1474 case -ERESTARTSYS: 1475 case -ERESTARTNOINTR: 1476 case -ERESTARTNOHAND: 1477 case -ERESTART_RESTARTBLOCK: 1478 /* 1479 * There's no easy way to restart the syscall since other AIO's 1480 * may be already running. Just fail this IO with EINTR. 1481 */ 1482 ret = -EINTR; 1483 /*FALLTHRU*/ 1484 default: 1485 aio_complete(req, ret, 0); 1486 return 0; 1487 } 1488 } 1489 1490 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored, 1491 bool compat) 1492 { 1493 struct file *file = req->ki_filp; 1494 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1495 struct iov_iter iter; 1496 ssize_t ret; 1497 1498 if (unlikely(!(file->f_mode & FMODE_READ))) 1499 return -EBADF; 1500 if (unlikely(!file->f_op->read_iter)) 1501 return -EINVAL; 1502 1503 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1504 if (ret) 1505 return ret; 1506 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1507 if (!ret) 1508 ret = aio_ret(req, call_read_iter(file, req, &iter)); 1509 kfree(iovec); 1510 return ret; 1511 } 1512 1513 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored, 1514 bool compat) 1515 { 1516 struct file *file = req->ki_filp; 1517 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1518 struct iov_iter iter; 1519 ssize_t ret; 1520 1521 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1522 return -EBADF; 1523 if (unlikely(!file->f_op->write_iter)) 1524 return -EINVAL; 1525 1526 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1527 if (ret) 1528 return ret; 1529 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1530 if (!ret) { 1531 req->ki_flags |= IOCB_WRITE; 1532 file_start_write(file); 1533 ret = aio_ret(req, call_write_iter(file, req, &iter)); 1534 /* 1535 * We release freeze protection in aio_complete(). Fool lockdep 1536 * by telling it the lock got released so that it doesn't 1537 * complain about held lock when we return to userspace. 1538 */ 1539 if (S_ISREG(file_inode(file)->i_mode)) 1540 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1541 } 1542 kfree(iovec); 1543 return ret; 1544 } 1545 1546 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1547 struct iocb *iocb, bool compat) 1548 { 1549 struct aio_kiocb *req; 1550 struct file *file; 1551 ssize_t ret; 1552 1553 /* enforce forwards compatibility on users */ 1554 if (unlikely(iocb->aio_reserved2)) { 1555 pr_debug("EINVAL: reserve field set\n"); 1556 return -EINVAL; 1557 } 1558 1559 /* prevent overflows */ 1560 if (unlikely( 1561 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1562 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1563 ((ssize_t)iocb->aio_nbytes < 0) 1564 )) { 1565 pr_debug("EINVAL: overflow check\n"); 1566 return -EINVAL; 1567 } 1568 1569 req = aio_get_req(ctx); 1570 if (unlikely(!req)) 1571 return -EAGAIN; 1572 1573 req->common.ki_filp = file = fget(iocb->aio_fildes); 1574 if (unlikely(!req->common.ki_filp)) { 1575 ret = -EBADF; 1576 goto out_put_req; 1577 } 1578 req->common.ki_pos = iocb->aio_offset; 1579 req->common.ki_complete = aio_complete; 1580 req->common.ki_flags = iocb_flags(req->common.ki_filp); 1581 req->common.ki_hint = file_write_hint(file); 1582 1583 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1584 /* 1585 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1586 * instance of the file* now. The file descriptor must be 1587 * an eventfd() fd, and will be signaled for each completed 1588 * event using the eventfd_signal() function. 1589 */ 1590 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1591 if (IS_ERR(req->ki_eventfd)) { 1592 ret = PTR_ERR(req->ki_eventfd); 1593 req->ki_eventfd = NULL; 1594 goto out_put_req; 1595 } 1596 1597 req->common.ki_flags |= IOCB_EVENTFD; 1598 } 1599 1600 ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags); 1601 if (unlikely(ret)) { 1602 pr_debug("EINVAL: aio_rw_flags\n"); 1603 goto out_put_req; 1604 } 1605 1606 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1607 if (unlikely(ret)) { 1608 pr_debug("EFAULT: aio_key\n"); 1609 goto out_put_req; 1610 } 1611 1612 req->ki_user_iocb = user_iocb; 1613 req->ki_user_data = iocb->aio_data; 1614 1615 get_file(file); 1616 switch (iocb->aio_lio_opcode) { 1617 case IOCB_CMD_PREAD: 1618 ret = aio_read(&req->common, iocb, false, compat); 1619 break; 1620 case IOCB_CMD_PWRITE: 1621 ret = aio_write(&req->common, iocb, false, compat); 1622 break; 1623 case IOCB_CMD_PREADV: 1624 ret = aio_read(&req->common, iocb, true, compat); 1625 break; 1626 case IOCB_CMD_PWRITEV: 1627 ret = aio_write(&req->common, iocb, true, compat); 1628 break; 1629 default: 1630 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1631 ret = -EINVAL; 1632 break; 1633 } 1634 fput(file); 1635 1636 if (ret && ret != -EIOCBQUEUED) 1637 goto out_put_req; 1638 return 0; 1639 out_put_req: 1640 put_reqs_available(ctx, 1); 1641 percpu_ref_put(&ctx->reqs); 1642 kiocb_free(req); 1643 return ret; 1644 } 1645 1646 static long do_io_submit(aio_context_t ctx_id, long nr, 1647 struct iocb __user *__user *iocbpp, bool compat) 1648 { 1649 struct kioctx *ctx; 1650 long ret = 0; 1651 int i = 0; 1652 struct blk_plug plug; 1653 1654 if (unlikely(nr < 0)) 1655 return -EINVAL; 1656 1657 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1658 nr = LONG_MAX/sizeof(*iocbpp); 1659 1660 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1661 return -EFAULT; 1662 1663 ctx = lookup_ioctx(ctx_id); 1664 if (unlikely(!ctx)) { 1665 pr_debug("EINVAL: invalid context id\n"); 1666 return -EINVAL; 1667 } 1668 1669 blk_start_plug(&plug); 1670 1671 /* 1672 * AKPM: should this return a partial result if some of the IOs were 1673 * successfully submitted? 1674 */ 1675 for (i=0; i<nr; i++) { 1676 struct iocb __user *user_iocb; 1677 struct iocb tmp; 1678 1679 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1680 ret = -EFAULT; 1681 break; 1682 } 1683 1684 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1685 ret = -EFAULT; 1686 break; 1687 } 1688 1689 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1690 if (ret) 1691 break; 1692 } 1693 blk_finish_plug(&plug); 1694 1695 percpu_ref_put(&ctx->users); 1696 return i ? i : ret; 1697 } 1698 1699 /* sys_io_submit: 1700 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1701 * the number of iocbs queued. May return -EINVAL if the aio_context 1702 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1703 * *iocbpp[0] is not properly initialized, if the operation specified 1704 * is invalid for the file descriptor in the iocb. May fail with 1705 * -EFAULT if any of the data structures point to invalid data. May 1706 * fail with -EBADF if the file descriptor specified in the first 1707 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1708 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1709 * fail with -ENOSYS if not implemented. 1710 */ 1711 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1712 struct iocb __user * __user *, iocbpp) 1713 { 1714 return do_io_submit(ctx_id, nr, iocbpp, 0); 1715 } 1716 1717 #ifdef CONFIG_COMPAT 1718 static inline long 1719 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64) 1720 { 1721 compat_uptr_t uptr; 1722 int i; 1723 1724 for (i = 0; i < nr; ++i) { 1725 if (get_user(uptr, ptr32 + i)) 1726 return -EFAULT; 1727 if (put_user(compat_ptr(uptr), ptr64 + i)) 1728 return -EFAULT; 1729 } 1730 return 0; 1731 } 1732 1733 #define MAX_AIO_SUBMITS (PAGE_SIZE/sizeof(struct iocb *)) 1734 1735 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1736 int, nr, u32 __user *, iocb) 1737 { 1738 struct iocb __user * __user *iocb64; 1739 long ret; 1740 1741 if (unlikely(nr < 0)) 1742 return -EINVAL; 1743 1744 if (nr > MAX_AIO_SUBMITS) 1745 nr = MAX_AIO_SUBMITS; 1746 1747 iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64)); 1748 ret = copy_iocb(nr, iocb, iocb64); 1749 if (!ret) 1750 ret = do_io_submit(ctx_id, nr, iocb64, 1); 1751 return ret; 1752 } 1753 #endif 1754 1755 /* lookup_kiocb 1756 * Finds a given iocb for cancellation. 1757 */ 1758 static struct aio_kiocb * 1759 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) 1760 { 1761 struct aio_kiocb *kiocb; 1762 1763 assert_spin_locked(&ctx->ctx_lock); 1764 1765 if (key != KIOCB_KEY) 1766 return NULL; 1767 1768 /* TODO: use a hash or array, this sucks. */ 1769 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1770 if (kiocb->ki_user_iocb == iocb) 1771 return kiocb; 1772 } 1773 return NULL; 1774 } 1775 1776 /* sys_io_cancel: 1777 * Attempts to cancel an iocb previously passed to io_submit. If 1778 * the operation is successfully cancelled, the resulting event is 1779 * copied into the memory pointed to by result without being placed 1780 * into the completion queue and 0 is returned. May fail with 1781 * -EFAULT if any of the data structures pointed to are invalid. 1782 * May fail with -EINVAL if aio_context specified by ctx_id is 1783 * invalid. May fail with -EAGAIN if the iocb specified was not 1784 * cancelled. Will fail with -ENOSYS if not implemented. 1785 */ 1786 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1787 struct io_event __user *, result) 1788 { 1789 struct kioctx *ctx; 1790 struct aio_kiocb *kiocb; 1791 u32 key; 1792 int ret; 1793 1794 ret = get_user(key, &iocb->aio_key); 1795 if (unlikely(ret)) 1796 return -EFAULT; 1797 1798 ctx = lookup_ioctx(ctx_id); 1799 if (unlikely(!ctx)) 1800 return -EINVAL; 1801 1802 spin_lock_irq(&ctx->ctx_lock); 1803 1804 kiocb = lookup_kiocb(ctx, iocb, key); 1805 if (kiocb) 1806 ret = kiocb_cancel(kiocb); 1807 else 1808 ret = -EINVAL; 1809 1810 spin_unlock_irq(&ctx->ctx_lock); 1811 1812 if (!ret) { 1813 /* 1814 * The result argument is no longer used - the io_event is 1815 * always delivered via the ring buffer. -EINPROGRESS indicates 1816 * cancellation is progress: 1817 */ 1818 ret = -EINPROGRESS; 1819 } 1820 1821 percpu_ref_put(&ctx->users); 1822 1823 return ret; 1824 } 1825 1826 static long do_io_getevents(aio_context_t ctx_id, 1827 long min_nr, 1828 long nr, 1829 struct io_event __user *events, 1830 struct timespec64 *ts) 1831 { 1832 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 1833 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1834 long ret = -EINVAL; 1835 1836 if (likely(ioctx)) { 1837 if (likely(min_nr <= nr && min_nr >= 0)) 1838 ret = read_events(ioctx, min_nr, nr, events, until); 1839 percpu_ref_put(&ioctx->users); 1840 } 1841 1842 return ret; 1843 } 1844 1845 /* io_getevents: 1846 * Attempts to read at least min_nr events and up to nr events from 1847 * the completion queue for the aio_context specified by ctx_id. If 1848 * it succeeds, the number of read events is returned. May fail with 1849 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1850 * out of range, if timeout is out of range. May fail with -EFAULT 1851 * if any of the memory specified is invalid. May return 0 or 1852 * < min_nr if the timeout specified by timeout has elapsed 1853 * before sufficient events are available, where timeout == NULL 1854 * specifies an infinite timeout. Note that the timeout pointed to by 1855 * timeout is relative. Will fail with -ENOSYS if not implemented. 1856 */ 1857 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1858 long, min_nr, 1859 long, nr, 1860 struct io_event __user *, events, 1861 struct timespec __user *, timeout) 1862 { 1863 struct timespec64 ts; 1864 1865 if (timeout) { 1866 if (unlikely(get_timespec64(&ts, timeout))) 1867 return -EFAULT; 1868 } 1869 1870 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 1871 } 1872 1873 #ifdef CONFIG_COMPAT 1874 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id, 1875 compat_long_t, min_nr, 1876 compat_long_t, nr, 1877 struct io_event __user *, events, 1878 struct compat_timespec __user *, timeout) 1879 { 1880 struct timespec64 t; 1881 1882 if (timeout) { 1883 if (compat_get_timespec64(&t, timeout)) 1884 return -EFAULT; 1885 1886 } 1887 1888 return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 1889 } 1890 #endif 1891