1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/aio.h> 30 #include <linux/highmem.h> 31 #include <linux/workqueue.h> 32 #include <linux/security.h> 33 #include <linux/eventfd.h> 34 35 #include <asm/kmap_types.h> 36 #include <asm/uaccess.h> 37 #include <asm/mmu_context.h> 38 39 #if DEBUG > 1 40 #define dprintk printk 41 #else 42 #define dprintk(x...) do { ; } while (0) 43 #endif 44 45 /*------ sysctl variables----*/ 46 static DEFINE_SPINLOCK(aio_nr_lock); 47 unsigned long aio_nr; /* current system wide number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static struct kmem_cache *kiocb_cachep; 52 static struct kmem_cache *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(struct work_struct *); 58 static DECLARE_WORK(fput_work, aio_fput_routine); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 static LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(struct work_struct *); 64 static void aio_queue_work(struct kioctx *); 65 66 /* aio_setup 67 * Creates the slab caches used by the aio routines, panic on 68 * failure as this is done early during the boot sequence. 69 */ 70 static int __init aio_setup(void) 71 { 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 } 129 130 info->mmap_size = nr_pages * PAGE_SIZE; 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 132 down_write(&ctx->mm->mmap_sem); 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 135 0); 136 if (IS_ERR((void *)info->mmap_base)) { 137 up_write(&ctx->mm->mmap_sem); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 195 /* __put_ioctx 196 * Called when the last user of an aio context has gone away, 197 * and the struct needs to be freed. 198 */ 199 static void __put_ioctx(struct kioctx *ctx) 200 { 201 unsigned nr_events = ctx->max_reqs; 202 203 BUG_ON(ctx->reqs_active); 204 205 cancel_delayed_work(&ctx->wq); 206 cancel_work_sync(&ctx->wq.work); 207 aio_free_ring(ctx); 208 mmdrop(ctx->mm); 209 ctx->mm = NULL; 210 pr_debug("__put_ioctx: freeing %p\n", ctx); 211 kmem_cache_free(kioctx_cachep, ctx); 212 213 if (nr_events) { 214 spin_lock(&aio_nr_lock); 215 BUG_ON(aio_nr - nr_events > aio_nr); 216 aio_nr -= nr_events; 217 spin_unlock(&aio_nr_lock); 218 } 219 } 220 221 #define get_ioctx(kioctx) do { \ 222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 223 atomic_inc(&(kioctx)->users); \ 224 } while (0) 225 #define put_ioctx(kioctx) do { \ 226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 228 __put_ioctx(kioctx); \ 229 } while (0) 230 231 /* ioctx_alloc 232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 233 */ 234 static struct kioctx *ioctx_alloc(unsigned nr_events) 235 { 236 struct mm_struct *mm; 237 struct kioctx *ctx; 238 239 /* Prevent overflows */ 240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 242 pr_debug("ENOMEM: nr_events too high\n"); 243 return ERR_PTR(-EINVAL); 244 } 245 246 if ((unsigned long)nr_events > aio_max_nr) 247 return ERR_PTR(-EAGAIN); 248 249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 250 if (!ctx) 251 return ERR_PTR(-ENOMEM); 252 253 ctx->max_reqs = nr_events; 254 mm = ctx->mm = current->mm; 255 atomic_inc(&mm->mm_count); 256 257 atomic_set(&ctx->users, 1); 258 spin_lock_init(&ctx->ctx_lock); 259 spin_lock_init(&ctx->ring_info.ring_lock); 260 init_waitqueue_head(&ctx->wait); 261 262 INIT_LIST_HEAD(&ctx->active_reqs); 263 INIT_LIST_HEAD(&ctx->run_list); 264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 265 266 if (aio_setup_ring(ctx) < 0) 267 goto out_freectx; 268 269 /* limit the number of system wide aios */ 270 spin_lock(&aio_nr_lock); 271 if (aio_nr + ctx->max_reqs > aio_max_nr || 272 aio_nr + ctx->max_reqs < aio_nr) 273 ctx->max_reqs = 0; 274 else 275 aio_nr += ctx->max_reqs; 276 spin_unlock(&aio_nr_lock); 277 if (ctx->max_reqs == 0) 278 goto out_cleanup; 279 280 /* now link into global list. */ 281 write_lock(&mm->ioctx_list_lock); 282 ctx->next = mm->ioctx_list; 283 mm->ioctx_list = ctx; 284 write_unlock(&mm->ioctx_list_lock); 285 286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 288 return ctx; 289 290 out_cleanup: 291 __put_ioctx(ctx); 292 return ERR_PTR(-EAGAIN); 293 294 out_freectx: 295 mmdrop(mm); 296 kmem_cache_free(kioctx_cachep, ctx); 297 ctx = ERR_PTR(-ENOMEM); 298 299 dprintk("aio: error allocating ioctx %p\n", ctx); 300 return ctx; 301 } 302 303 /* aio_cancel_all 304 * Cancels all outstanding aio requests on an aio context. Used 305 * when the processes owning a context have all exited to encourage 306 * the rapid destruction of the kioctx. 307 */ 308 static void aio_cancel_all(struct kioctx *ctx) 309 { 310 int (*cancel)(struct kiocb *, struct io_event *); 311 struct io_event res; 312 spin_lock_irq(&ctx->ctx_lock); 313 ctx->dead = 1; 314 while (!list_empty(&ctx->active_reqs)) { 315 struct list_head *pos = ctx->active_reqs.next; 316 struct kiocb *iocb = list_kiocb(pos); 317 list_del_init(&iocb->ki_list); 318 cancel = iocb->ki_cancel; 319 kiocbSetCancelled(iocb); 320 if (cancel) { 321 iocb->ki_users++; 322 spin_unlock_irq(&ctx->ctx_lock); 323 cancel(iocb, &res); 324 spin_lock_irq(&ctx->ctx_lock); 325 } 326 } 327 spin_unlock_irq(&ctx->ctx_lock); 328 } 329 330 static void wait_for_all_aios(struct kioctx *ctx) 331 { 332 struct task_struct *tsk = current; 333 DECLARE_WAITQUEUE(wait, tsk); 334 335 spin_lock_irq(&ctx->ctx_lock); 336 if (!ctx->reqs_active) 337 goto out; 338 339 add_wait_queue(&ctx->wait, &wait); 340 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 341 while (ctx->reqs_active) { 342 spin_unlock_irq(&ctx->ctx_lock); 343 io_schedule(); 344 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 345 spin_lock_irq(&ctx->ctx_lock); 346 } 347 __set_task_state(tsk, TASK_RUNNING); 348 remove_wait_queue(&ctx->wait, &wait); 349 350 out: 351 spin_unlock_irq(&ctx->ctx_lock); 352 } 353 354 /* wait_on_sync_kiocb: 355 * Waits on the given sync kiocb to complete. 356 */ 357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 358 { 359 while (iocb->ki_users) { 360 set_current_state(TASK_UNINTERRUPTIBLE); 361 if (!iocb->ki_users) 362 break; 363 io_schedule(); 364 } 365 __set_current_state(TASK_RUNNING); 366 return iocb->ki_user_data; 367 } 368 369 /* exit_aio: called when the last user of mm goes away. At this point, 370 * there is no way for any new requests to be submited or any of the 371 * io_* syscalls to be called on the context. However, there may be 372 * outstanding requests which hold references to the context; as they 373 * go away, they will call put_ioctx and release any pinned memory 374 * associated with the request (held via struct page * references). 375 */ 376 void exit_aio(struct mm_struct *mm) 377 { 378 struct kioctx *ctx = mm->ioctx_list; 379 mm->ioctx_list = NULL; 380 while (ctx) { 381 struct kioctx *next = ctx->next; 382 ctx->next = NULL; 383 aio_cancel_all(ctx); 384 385 wait_for_all_aios(ctx); 386 /* 387 * Ensure we don't leave the ctx on the aio_wq 388 */ 389 cancel_work_sync(&ctx->wq.work); 390 391 if (1 != atomic_read(&ctx->users)) 392 printk(KERN_DEBUG 393 "exit_aio:ioctx still alive: %d %d %d\n", 394 atomic_read(&ctx->users), ctx->dead, 395 ctx->reqs_active); 396 put_ioctx(ctx); 397 ctx = next; 398 } 399 } 400 401 /* aio_get_req 402 * Allocate a slot for an aio request. Increments the users count 403 * of the kioctx so that the kioctx stays around until all requests are 404 * complete. Returns NULL if no requests are free. 405 * 406 * Returns with kiocb->users set to 2. The io submit code path holds 407 * an extra reference while submitting the i/o. 408 * This prevents races between the aio code path referencing the 409 * req (after submitting it) and aio_complete() freeing the req. 410 */ 411 static struct kiocb *__aio_get_req(struct kioctx *ctx) 412 { 413 struct kiocb *req = NULL; 414 struct aio_ring *ring; 415 int okay = 0; 416 417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 418 if (unlikely(!req)) 419 return NULL; 420 421 req->ki_flags = 0; 422 req->ki_users = 2; 423 req->ki_key = 0; 424 req->ki_ctx = ctx; 425 req->ki_cancel = NULL; 426 req->ki_retry = NULL; 427 req->ki_dtor = NULL; 428 req->private = NULL; 429 req->ki_iovec = NULL; 430 INIT_LIST_HEAD(&req->ki_run_list); 431 req->ki_eventfd = ERR_PTR(-EINVAL); 432 433 /* Check if the completion queue has enough free space to 434 * accept an event from this io. 435 */ 436 spin_lock_irq(&ctx->ctx_lock); 437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 439 list_add(&req->ki_list, &ctx->active_reqs); 440 ctx->reqs_active++; 441 okay = 1; 442 } 443 kunmap_atomic(ring, KM_USER0); 444 spin_unlock_irq(&ctx->ctx_lock); 445 446 if (!okay) { 447 kmem_cache_free(kiocb_cachep, req); 448 req = NULL; 449 } 450 451 return req; 452 } 453 454 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 455 { 456 struct kiocb *req; 457 /* Handle a potential starvation case -- should be exceedingly rare as 458 * requests will be stuck on fput_head only if the aio_fput_routine is 459 * delayed and the requests were the last user of the struct file. 460 */ 461 req = __aio_get_req(ctx); 462 if (unlikely(NULL == req)) { 463 aio_fput_routine(NULL); 464 req = __aio_get_req(ctx); 465 } 466 return req; 467 } 468 469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 470 { 471 assert_spin_locked(&ctx->ctx_lock); 472 473 if (!IS_ERR(req->ki_eventfd)) 474 fput(req->ki_eventfd); 475 if (req->ki_dtor) 476 req->ki_dtor(req); 477 if (req->ki_iovec != &req->ki_inline_vec) 478 kfree(req->ki_iovec); 479 kmem_cache_free(kiocb_cachep, req); 480 ctx->reqs_active--; 481 482 if (unlikely(!ctx->reqs_active && ctx->dead)) 483 wake_up(&ctx->wait); 484 } 485 486 static void aio_fput_routine(struct work_struct *data) 487 { 488 spin_lock_irq(&fput_lock); 489 while (likely(!list_empty(&fput_head))) { 490 struct kiocb *req = list_kiocb(fput_head.next); 491 struct kioctx *ctx = req->ki_ctx; 492 493 list_del(&req->ki_list); 494 spin_unlock_irq(&fput_lock); 495 496 /* Complete the fput */ 497 __fput(req->ki_filp); 498 499 /* Link the iocb into the context's free list */ 500 spin_lock_irq(&ctx->ctx_lock); 501 really_put_req(ctx, req); 502 spin_unlock_irq(&ctx->ctx_lock); 503 504 put_ioctx(ctx); 505 spin_lock_irq(&fput_lock); 506 } 507 spin_unlock_irq(&fput_lock); 508 } 509 510 /* __aio_put_req 511 * Returns true if this put was the last user of the request. 512 */ 513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 514 { 515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 516 req, atomic_read(&req->ki_filp->f_count)); 517 518 assert_spin_locked(&ctx->ctx_lock); 519 520 req->ki_users --; 521 BUG_ON(req->ki_users < 0); 522 if (likely(req->ki_users)) 523 return 0; 524 list_del(&req->ki_list); /* remove from active_reqs */ 525 req->ki_cancel = NULL; 526 req->ki_retry = NULL; 527 528 /* Must be done under the lock to serialise against cancellation. 529 * Call this aio_fput as it duplicates fput via the fput_work. 530 */ 531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 532 get_ioctx(ctx); 533 spin_lock(&fput_lock); 534 list_add(&req->ki_list, &fput_head); 535 spin_unlock(&fput_lock); 536 queue_work(aio_wq, &fput_work); 537 } else 538 really_put_req(ctx, req); 539 return 1; 540 } 541 542 /* aio_put_req 543 * Returns true if this put was the last user of the kiocb, 544 * false if the request is still in use. 545 */ 546 int aio_put_req(struct kiocb *req) 547 { 548 struct kioctx *ctx = req->ki_ctx; 549 int ret; 550 spin_lock_irq(&ctx->ctx_lock); 551 ret = __aio_put_req(ctx, req); 552 spin_unlock_irq(&ctx->ctx_lock); 553 return ret; 554 } 555 556 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 557 { 558 struct kioctx *ioctx; 559 struct mm_struct *mm; 560 561 mm = current->mm; 562 read_lock(&mm->ioctx_list_lock); 563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 565 get_ioctx(ioctx); 566 break; 567 } 568 read_unlock(&mm->ioctx_list_lock); 569 570 return ioctx; 571 } 572 573 /* 574 * use_mm 575 * Makes the calling kernel thread take on the specified 576 * mm context. 577 * Called by the retry thread execute retries within the 578 * iocb issuer's mm context, so that copy_from/to_user 579 * operations work seamlessly for aio. 580 * (Note: this routine is intended to be called only 581 * from a kernel thread context) 582 */ 583 static void use_mm(struct mm_struct *mm) 584 { 585 struct mm_struct *active_mm; 586 struct task_struct *tsk = current; 587 588 task_lock(tsk); 589 tsk->flags |= PF_BORROWED_MM; 590 active_mm = tsk->active_mm; 591 atomic_inc(&mm->mm_count); 592 tsk->mm = mm; 593 tsk->active_mm = mm; 594 switch_mm(active_mm, mm, tsk); 595 task_unlock(tsk); 596 597 mmdrop(active_mm); 598 } 599 600 /* 601 * unuse_mm 602 * Reverses the effect of use_mm, i.e. releases the 603 * specified mm context which was earlier taken on 604 * by the calling kernel thread 605 * (Note: this routine is intended to be called only 606 * from a kernel thread context) 607 */ 608 static void unuse_mm(struct mm_struct *mm) 609 { 610 struct task_struct *tsk = current; 611 612 task_lock(tsk); 613 tsk->flags &= ~PF_BORROWED_MM; 614 tsk->mm = NULL; 615 /* active_mm is still 'mm' */ 616 enter_lazy_tlb(mm, tsk); 617 task_unlock(tsk); 618 } 619 620 /* 621 * Queue up a kiocb to be retried. Assumes that the kiocb 622 * has already been marked as kicked, and places it on 623 * the retry run list for the corresponding ioctx, if it 624 * isn't already queued. Returns 1 if it actually queued 625 * the kiocb (to tell the caller to activate the work 626 * queue to process it), or 0, if it found that it was 627 * already queued. 628 */ 629 static inline int __queue_kicked_iocb(struct kiocb *iocb) 630 { 631 struct kioctx *ctx = iocb->ki_ctx; 632 633 assert_spin_locked(&ctx->ctx_lock); 634 635 if (list_empty(&iocb->ki_run_list)) { 636 list_add_tail(&iocb->ki_run_list, 637 &ctx->run_list); 638 return 1; 639 } 640 return 0; 641 } 642 643 /* aio_run_iocb 644 * This is the core aio execution routine. It is 645 * invoked both for initial i/o submission and 646 * subsequent retries via the aio_kick_handler. 647 * Expects to be invoked with iocb->ki_ctx->lock 648 * already held. The lock is released and reacquired 649 * as needed during processing. 650 * 651 * Calls the iocb retry method (already setup for the 652 * iocb on initial submission) for operation specific 653 * handling, but takes care of most of common retry 654 * execution details for a given iocb. The retry method 655 * needs to be non-blocking as far as possible, to avoid 656 * holding up other iocbs waiting to be serviced by the 657 * retry kernel thread. 658 * 659 * The trickier parts in this code have to do with 660 * ensuring that only one retry instance is in progress 661 * for a given iocb at any time. Providing that guarantee 662 * simplifies the coding of individual aio operations as 663 * it avoids various potential races. 664 */ 665 static ssize_t aio_run_iocb(struct kiocb *iocb) 666 { 667 struct kioctx *ctx = iocb->ki_ctx; 668 ssize_t (*retry)(struct kiocb *); 669 ssize_t ret; 670 671 if (!(retry = iocb->ki_retry)) { 672 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 673 return 0; 674 } 675 676 /* 677 * We don't want the next retry iteration for this 678 * operation to start until this one has returned and 679 * updated the iocb state. However, wait_queue functions 680 * can trigger a kick_iocb from interrupt context in the 681 * meantime, indicating that data is available for the next 682 * iteration. We want to remember that and enable the 683 * next retry iteration _after_ we are through with 684 * this one. 685 * 686 * So, in order to be able to register a "kick", but 687 * prevent it from being queued now, we clear the kick 688 * flag, but make the kick code *think* that the iocb is 689 * still on the run list until we are actually done. 690 * When we are done with this iteration, we check if 691 * the iocb was kicked in the meantime and if so, queue 692 * it up afresh. 693 */ 694 695 kiocbClearKicked(iocb); 696 697 /* 698 * This is so that aio_complete knows it doesn't need to 699 * pull the iocb off the run list (We can't just call 700 * INIT_LIST_HEAD because we don't want a kick_iocb to 701 * queue this on the run list yet) 702 */ 703 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 704 spin_unlock_irq(&ctx->ctx_lock); 705 706 /* Quit retrying if the i/o has been cancelled */ 707 if (kiocbIsCancelled(iocb)) { 708 ret = -EINTR; 709 aio_complete(iocb, ret, 0); 710 /* must not access the iocb after this */ 711 goto out; 712 } 713 714 /* 715 * Now we are all set to call the retry method in async 716 * context. 717 */ 718 ret = retry(iocb); 719 720 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 721 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 722 aio_complete(iocb, ret, 0); 723 } 724 out: 725 spin_lock_irq(&ctx->ctx_lock); 726 727 if (-EIOCBRETRY == ret) { 728 /* 729 * OK, now that we are done with this iteration 730 * and know that there is more left to go, 731 * this is where we let go so that a subsequent 732 * "kick" can start the next iteration 733 */ 734 735 /* will make __queue_kicked_iocb succeed from here on */ 736 INIT_LIST_HEAD(&iocb->ki_run_list); 737 /* we must queue the next iteration ourselves, if it 738 * has already been kicked */ 739 if (kiocbIsKicked(iocb)) { 740 __queue_kicked_iocb(iocb); 741 742 /* 743 * __queue_kicked_iocb will always return 1 here, because 744 * iocb->ki_run_list is empty at this point so it should 745 * be safe to unconditionally queue the context into the 746 * work queue. 747 */ 748 aio_queue_work(ctx); 749 } 750 } 751 return ret; 752 } 753 754 /* 755 * __aio_run_iocbs: 756 * Process all pending retries queued on the ioctx 757 * run list. 758 * Assumes it is operating within the aio issuer's mm 759 * context. 760 */ 761 static int __aio_run_iocbs(struct kioctx *ctx) 762 { 763 struct kiocb *iocb; 764 struct list_head run_list; 765 766 assert_spin_locked(&ctx->ctx_lock); 767 768 list_replace_init(&ctx->run_list, &run_list); 769 while (!list_empty(&run_list)) { 770 iocb = list_entry(run_list.next, struct kiocb, 771 ki_run_list); 772 list_del(&iocb->ki_run_list); 773 /* 774 * Hold an extra reference while retrying i/o. 775 */ 776 iocb->ki_users++; /* grab extra reference */ 777 aio_run_iocb(iocb); 778 __aio_put_req(ctx, iocb); 779 } 780 if (!list_empty(&ctx->run_list)) 781 return 1; 782 return 0; 783 } 784 785 static void aio_queue_work(struct kioctx * ctx) 786 { 787 unsigned long timeout; 788 /* 789 * if someone is waiting, get the work started right 790 * away, otherwise, use a longer delay 791 */ 792 smp_mb(); 793 if (waitqueue_active(&ctx->wait)) 794 timeout = 1; 795 else 796 timeout = HZ/10; 797 queue_delayed_work(aio_wq, &ctx->wq, timeout); 798 } 799 800 801 /* 802 * aio_run_iocbs: 803 * Process all pending retries queued on the ioctx 804 * run list. 805 * Assumes it is operating within the aio issuer's mm 806 * context. 807 */ 808 static inline void aio_run_iocbs(struct kioctx *ctx) 809 { 810 int requeue; 811 812 spin_lock_irq(&ctx->ctx_lock); 813 814 requeue = __aio_run_iocbs(ctx); 815 spin_unlock_irq(&ctx->ctx_lock); 816 if (requeue) 817 aio_queue_work(ctx); 818 } 819 820 /* 821 * just like aio_run_iocbs, but keeps running them until 822 * the list stays empty 823 */ 824 static inline void aio_run_all_iocbs(struct kioctx *ctx) 825 { 826 spin_lock_irq(&ctx->ctx_lock); 827 while (__aio_run_iocbs(ctx)) 828 ; 829 spin_unlock_irq(&ctx->ctx_lock); 830 } 831 832 /* 833 * aio_kick_handler: 834 * Work queue handler triggered to process pending 835 * retries on an ioctx. Takes on the aio issuer's 836 * mm context before running the iocbs, so that 837 * copy_xxx_user operates on the issuer's address 838 * space. 839 * Run on aiod's context. 840 */ 841 static void aio_kick_handler(struct work_struct *work) 842 { 843 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 844 mm_segment_t oldfs = get_fs(); 845 struct mm_struct *mm; 846 int requeue; 847 848 set_fs(USER_DS); 849 use_mm(ctx->mm); 850 spin_lock_irq(&ctx->ctx_lock); 851 requeue =__aio_run_iocbs(ctx); 852 mm = ctx->mm; 853 spin_unlock_irq(&ctx->ctx_lock); 854 unuse_mm(mm); 855 set_fs(oldfs); 856 /* 857 * we're in a worker thread already, don't use queue_delayed_work, 858 */ 859 if (requeue) 860 queue_delayed_work(aio_wq, &ctx->wq, 0); 861 } 862 863 864 /* 865 * Called by kick_iocb to queue the kiocb for retry 866 * and if required activate the aio work queue to process 867 * it 868 */ 869 static void try_queue_kicked_iocb(struct kiocb *iocb) 870 { 871 struct kioctx *ctx = iocb->ki_ctx; 872 unsigned long flags; 873 int run = 0; 874 875 /* We're supposed to be the only path putting the iocb back on the run 876 * list. If we find that the iocb is *back* on a wait queue already 877 * than retry has happened before we could queue the iocb. This also 878 * means that the retry could have completed and freed our iocb, no 879 * good. */ 880 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 881 882 spin_lock_irqsave(&ctx->ctx_lock, flags); 883 /* set this inside the lock so that we can't race with aio_run_iocb() 884 * testing it and putting the iocb on the run list under the lock */ 885 if (!kiocbTryKick(iocb)) 886 run = __queue_kicked_iocb(iocb); 887 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 888 if (run) 889 aio_queue_work(ctx); 890 } 891 892 /* 893 * kick_iocb: 894 * Called typically from a wait queue callback context 895 * (aio_wake_function) to trigger a retry of the iocb. 896 * The retry is usually executed by aio workqueue 897 * threads (See aio_kick_handler). 898 */ 899 void kick_iocb(struct kiocb *iocb) 900 { 901 /* sync iocbs are easy: they can only ever be executing from a 902 * single context. */ 903 if (is_sync_kiocb(iocb)) { 904 kiocbSetKicked(iocb); 905 wake_up_process(iocb->ki_obj.tsk); 906 return; 907 } 908 909 try_queue_kicked_iocb(iocb); 910 } 911 EXPORT_SYMBOL(kick_iocb); 912 913 /* aio_complete 914 * Called when the io request on the given iocb is complete. 915 * Returns true if this is the last user of the request. The 916 * only other user of the request can be the cancellation code. 917 */ 918 int aio_complete(struct kiocb *iocb, long res, long res2) 919 { 920 struct kioctx *ctx = iocb->ki_ctx; 921 struct aio_ring_info *info; 922 struct aio_ring *ring; 923 struct io_event *event; 924 unsigned long flags; 925 unsigned long tail; 926 int ret; 927 928 /* 929 * Special case handling for sync iocbs: 930 * - events go directly into the iocb for fast handling 931 * - the sync task with the iocb in its stack holds the single iocb 932 * ref, no other paths have a way to get another ref 933 * - the sync task helpfully left a reference to itself in the iocb 934 */ 935 if (is_sync_kiocb(iocb)) { 936 BUG_ON(iocb->ki_users != 1); 937 iocb->ki_user_data = res; 938 iocb->ki_users = 0; 939 wake_up_process(iocb->ki_obj.tsk); 940 return 1; 941 } 942 943 info = &ctx->ring_info; 944 945 /* add a completion event to the ring buffer. 946 * must be done holding ctx->ctx_lock to prevent 947 * other code from messing with the tail 948 * pointer since we might be called from irq 949 * context. 950 */ 951 spin_lock_irqsave(&ctx->ctx_lock, flags); 952 953 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 954 list_del_init(&iocb->ki_run_list); 955 956 /* 957 * cancelled requests don't get events, userland was given one 958 * when the event got cancelled. 959 */ 960 if (kiocbIsCancelled(iocb)) 961 goto put_rq; 962 963 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 964 965 tail = info->tail; 966 event = aio_ring_event(info, tail, KM_IRQ0); 967 if (++tail >= info->nr) 968 tail = 0; 969 970 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 971 event->data = iocb->ki_user_data; 972 event->res = res; 973 event->res2 = res2; 974 975 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 976 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 977 res, res2); 978 979 /* after flagging the request as done, we 980 * must never even look at it again 981 */ 982 smp_wmb(); /* make event visible before updating tail */ 983 984 info->tail = tail; 985 ring->tail = tail; 986 987 put_aio_ring_event(event, KM_IRQ0); 988 kunmap_atomic(ring, KM_IRQ1); 989 990 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 991 992 /* 993 * Check if the user asked us to deliver the result through an 994 * eventfd. The eventfd_signal() function is safe to be called 995 * from IRQ context. 996 */ 997 if (!IS_ERR(iocb->ki_eventfd)) 998 eventfd_signal(iocb->ki_eventfd, 1); 999 1000 put_rq: 1001 /* everything turned out well, dispose of the aiocb. */ 1002 ret = __aio_put_req(ctx, iocb); 1003 1004 /* 1005 * We have to order our ring_info tail store above and test 1006 * of the wait list below outside the wait lock. This is 1007 * like in wake_up_bit() where clearing a bit has to be 1008 * ordered with the unlocked test. 1009 */ 1010 smp_mb(); 1011 1012 if (waitqueue_active(&ctx->wait)) 1013 wake_up(&ctx->wait); 1014 1015 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1016 return ret; 1017 } 1018 1019 /* aio_read_evt 1020 * Pull an event off of the ioctx's event ring. Returns the number of 1021 * events fetched (0 or 1 ;-) 1022 * FIXME: make this use cmpxchg. 1023 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1024 */ 1025 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1026 { 1027 struct aio_ring_info *info = &ioctx->ring_info; 1028 struct aio_ring *ring; 1029 unsigned long head; 1030 int ret = 0; 1031 1032 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1033 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1034 (unsigned long)ring->head, (unsigned long)ring->tail, 1035 (unsigned long)ring->nr); 1036 1037 if (ring->head == ring->tail) 1038 goto out; 1039 1040 spin_lock(&info->ring_lock); 1041 1042 head = ring->head % info->nr; 1043 if (head != ring->tail) { 1044 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1045 *ent = *evp; 1046 head = (head + 1) % info->nr; 1047 smp_mb(); /* finish reading the event before updatng the head */ 1048 ring->head = head; 1049 ret = 1; 1050 put_aio_ring_event(evp, KM_USER1); 1051 } 1052 spin_unlock(&info->ring_lock); 1053 1054 out: 1055 kunmap_atomic(ring, KM_USER0); 1056 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1057 (unsigned long)ring->head, (unsigned long)ring->tail); 1058 return ret; 1059 } 1060 1061 struct aio_timeout { 1062 struct timer_list timer; 1063 int timed_out; 1064 struct task_struct *p; 1065 }; 1066 1067 static void timeout_func(unsigned long data) 1068 { 1069 struct aio_timeout *to = (struct aio_timeout *)data; 1070 1071 to->timed_out = 1; 1072 wake_up_process(to->p); 1073 } 1074 1075 static inline void init_timeout(struct aio_timeout *to) 1076 { 1077 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1078 to->timed_out = 0; 1079 to->p = current; 1080 } 1081 1082 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1083 const struct timespec *ts) 1084 { 1085 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1086 if (time_after(to->timer.expires, jiffies)) 1087 add_timer(&to->timer); 1088 else 1089 to->timed_out = 1; 1090 } 1091 1092 static inline void clear_timeout(struct aio_timeout *to) 1093 { 1094 del_singleshot_timer_sync(&to->timer); 1095 } 1096 1097 static int read_events(struct kioctx *ctx, 1098 long min_nr, long nr, 1099 struct io_event __user *event, 1100 struct timespec __user *timeout) 1101 { 1102 long start_jiffies = jiffies; 1103 struct task_struct *tsk = current; 1104 DECLARE_WAITQUEUE(wait, tsk); 1105 int ret; 1106 int i = 0; 1107 struct io_event ent; 1108 struct aio_timeout to; 1109 int retry = 0; 1110 1111 /* needed to zero any padding within an entry (there shouldn't be 1112 * any, but C is fun! 1113 */ 1114 memset(&ent, 0, sizeof(ent)); 1115 retry: 1116 ret = 0; 1117 while (likely(i < nr)) { 1118 ret = aio_read_evt(ctx, &ent); 1119 if (unlikely(ret <= 0)) 1120 break; 1121 1122 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1123 ent.data, ent.obj, ent.res, ent.res2); 1124 1125 /* Could we split the check in two? */ 1126 ret = -EFAULT; 1127 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1128 dprintk("aio: lost an event due to EFAULT.\n"); 1129 break; 1130 } 1131 ret = 0; 1132 1133 /* Good, event copied to userland, update counts. */ 1134 event ++; 1135 i ++; 1136 } 1137 1138 if (min_nr <= i) 1139 return i; 1140 if (ret) 1141 return ret; 1142 1143 /* End fast path */ 1144 1145 /* racey check, but it gets redone */ 1146 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1147 retry = 1; 1148 aio_run_all_iocbs(ctx); 1149 goto retry; 1150 } 1151 1152 init_timeout(&to); 1153 if (timeout) { 1154 struct timespec ts; 1155 ret = -EFAULT; 1156 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1157 goto out; 1158 1159 set_timeout(start_jiffies, &to, &ts); 1160 } 1161 1162 while (likely(i < nr)) { 1163 add_wait_queue_exclusive(&ctx->wait, &wait); 1164 do { 1165 set_task_state(tsk, TASK_INTERRUPTIBLE); 1166 ret = aio_read_evt(ctx, &ent); 1167 if (ret) 1168 break; 1169 if (min_nr <= i) 1170 break; 1171 if (unlikely(ctx->dead)) { 1172 ret = -EINVAL; 1173 break; 1174 } 1175 if (to.timed_out) /* Only check after read evt */ 1176 break; 1177 /* Try to only show up in io wait if there are ops 1178 * in flight */ 1179 if (ctx->reqs_active) 1180 io_schedule(); 1181 else 1182 schedule(); 1183 if (signal_pending(tsk)) { 1184 ret = -EINTR; 1185 break; 1186 } 1187 /*ret = aio_read_evt(ctx, &ent);*/ 1188 } while (1) ; 1189 1190 set_task_state(tsk, TASK_RUNNING); 1191 remove_wait_queue(&ctx->wait, &wait); 1192 1193 if (unlikely(ret <= 0)) 1194 break; 1195 1196 ret = -EFAULT; 1197 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1198 dprintk("aio: lost an event due to EFAULT.\n"); 1199 break; 1200 } 1201 1202 /* Good, event copied to userland, update counts. */ 1203 event ++; 1204 i ++; 1205 } 1206 1207 if (timeout) 1208 clear_timeout(&to); 1209 out: 1210 destroy_timer_on_stack(&to.timer); 1211 return i ? i : ret; 1212 } 1213 1214 /* Take an ioctx and remove it from the list of ioctx's. Protects 1215 * against races with itself via ->dead. 1216 */ 1217 static void io_destroy(struct kioctx *ioctx) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct kioctx **tmp; 1221 int was_dead; 1222 1223 /* delete the entry from the list is someone else hasn't already */ 1224 write_lock(&mm->ioctx_list_lock); 1225 was_dead = ioctx->dead; 1226 ioctx->dead = 1; 1227 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1228 tmp = &(*tmp)->next) 1229 ; 1230 if (*tmp) 1231 *tmp = ioctx->next; 1232 write_unlock(&mm->ioctx_list_lock); 1233 1234 dprintk("aio_release(%p)\n", ioctx); 1235 if (likely(!was_dead)) 1236 put_ioctx(ioctx); /* twice for the list */ 1237 1238 aio_cancel_all(ioctx); 1239 wait_for_all_aios(ioctx); 1240 1241 /* 1242 * Wake up any waiters. The setting of ctx->dead must be seen 1243 * by other CPUs at this point. Right now, we rely on the 1244 * locking done by the above calls to ensure this consistency. 1245 */ 1246 wake_up(&ioctx->wait); 1247 put_ioctx(ioctx); /* once for the lookup */ 1248 } 1249 1250 /* sys_io_setup: 1251 * Create an aio_context capable of receiving at least nr_events. 1252 * ctxp must not point to an aio_context that already exists, and 1253 * must be initialized to 0 prior to the call. On successful 1254 * creation of the aio_context, *ctxp is filled in with the resulting 1255 * handle. May fail with -EINVAL if *ctxp is not initialized, 1256 * if the specified nr_events exceeds internal limits. May fail 1257 * with -EAGAIN if the specified nr_events exceeds the user's limit 1258 * of available events. May fail with -ENOMEM if insufficient kernel 1259 * resources are available. May fail with -EFAULT if an invalid 1260 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1261 * implemented. 1262 */ 1263 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1264 { 1265 struct kioctx *ioctx = NULL; 1266 unsigned long ctx; 1267 long ret; 1268 1269 ret = get_user(ctx, ctxp); 1270 if (unlikely(ret)) 1271 goto out; 1272 1273 ret = -EINVAL; 1274 if (unlikely(ctx || nr_events == 0)) { 1275 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1276 ctx, nr_events); 1277 goto out; 1278 } 1279 1280 ioctx = ioctx_alloc(nr_events); 1281 ret = PTR_ERR(ioctx); 1282 if (!IS_ERR(ioctx)) { 1283 ret = put_user(ioctx->user_id, ctxp); 1284 if (!ret) 1285 return 0; 1286 1287 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1288 io_destroy(ioctx); 1289 } 1290 1291 out: 1292 return ret; 1293 } 1294 1295 /* sys_io_destroy: 1296 * Destroy the aio_context specified. May cancel any outstanding 1297 * AIOs and block on completion. Will fail with -ENOSYS if not 1298 * implemented. May fail with -EFAULT if the context pointed to 1299 * is invalid. 1300 */ 1301 asmlinkage long sys_io_destroy(aio_context_t ctx) 1302 { 1303 struct kioctx *ioctx = lookup_ioctx(ctx); 1304 if (likely(NULL != ioctx)) { 1305 io_destroy(ioctx); 1306 return 0; 1307 } 1308 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1309 return -EINVAL; 1310 } 1311 1312 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1313 { 1314 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1315 1316 BUG_ON(ret <= 0); 1317 1318 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1319 ssize_t this = min((ssize_t)iov->iov_len, ret); 1320 iov->iov_base += this; 1321 iov->iov_len -= this; 1322 iocb->ki_left -= this; 1323 ret -= this; 1324 if (iov->iov_len == 0) { 1325 iocb->ki_cur_seg++; 1326 iov++; 1327 } 1328 } 1329 1330 /* the caller should not have done more io than what fit in 1331 * the remaining iovecs */ 1332 BUG_ON(ret > 0 && iocb->ki_left == 0); 1333 } 1334 1335 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1336 { 1337 struct file *file = iocb->ki_filp; 1338 struct address_space *mapping = file->f_mapping; 1339 struct inode *inode = mapping->host; 1340 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1341 unsigned long, loff_t); 1342 ssize_t ret = 0; 1343 unsigned short opcode; 1344 1345 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1346 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1347 rw_op = file->f_op->aio_read; 1348 opcode = IOCB_CMD_PREADV; 1349 } else { 1350 rw_op = file->f_op->aio_write; 1351 opcode = IOCB_CMD_PWRITEV; 1352 } 1353 1354 /* This matches the pread()/pwrite() logic */ 1355 if (iocb->ki_pos < 0) 1356 return -EINVAL; 1357 1358 do { 1359 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1360 iocb->ki_nr_segs - iocb->ki_cur_seg, 1361 iocb->ki_pos); 1362 if (ret > 0) 1363 aio_advance_iovec(iocb, ret); 1364 1365 /* retry all partial writes. retry partial reads as long as its a 1366 * regular file. */ 1367 } while (ret > 0 && iocb->ki_left > 0 && 1368 (opcode == IOCB_CMD_PWRITEV || 1369 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1370 1371 /* This means we must have transferred all that we could */ 1372 /* No need to retry anymore */ 1373 if ((ret == 0) || (iocb->ki_left == 0)) 1374 ret = iocb->ki_nbytes - iocb->ki_left; 1375 1376 /* If we managed to write some out we return that, rather than 1377 * the eventual error. */ 1378 if (opcode == IOCB_CMD_PWRITEV 1379 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1380 && iocb->ki_nbytes - iocb->ki_left) 1381 ret = iocb->ki_nbytes - iocb->ki_left; 1382 1383 return ret; 1384 } 1385 1386 static ssize_t aio_fdsync(struct kiocb *iocb) 1387 { 1388 struct file *file = iocb->ki_filp; 1389 ssize_t ret = -EINVAL; 1390 1391 if (file->f_op->aio_fsync) 1392 ret = file->f_op->aio_fsync(iocb, 1); 1393 return ret; 1394 } 1395 1396 static ssize_t aio_fsync(struct kiocb *iocb) 1397 { 1398 struct file *file = iocb->ki_filp; 1399 ssize_t ret = -EINVAL; 1400 1401 if (file->f_op->aio_fsync) 1402 ret = file->f_op->aio_fsync(iocb, 0); 1403 return ret; 1404 } 1405 1406 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1407 { 1408 ssize_t ret; 1409 1410 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1411 kiocb->ki_nbytes, 1, 1412 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1413 if (ret < 0) 1414 goto out; 1415 1416 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1417 kiocb->ki_cur_seg = 0; 1418 /* ki_nbytes/left now reflect bytes instead of segs */ 1419 kiocb->ki_nbytes = ret; 1420 kiocb->ki_left = ret; 1421 1422 ret = 0; 1423 out: 1424 return ret; 1425 } 1426 1427 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1428 { 1429 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1430 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1431 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1432 kiocb->ki_nr_segs = 1; 1433 kiocb->ki_cur_seg = 0; 1434 return 0; 1435 } 1436 1437 /* 1438 * aio_setup_iocb: 1439 * Performs the initial checks and aio retry method 1440 * setup for the kiocb at the time of io submission. 1441 */ 1442 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1443 { 1444 struct file *file = kiocb->ki_filp; 1445 ssize_t ret = 0; 1446 1447 switch (kiocb->ki_opcode) { 1448 case IOCB_CMD_PREAD: 1449 ret = -EBADF; 1450 if (unlikely(!(file->f_mode & FMODE_READ))) 1451 break; 1452 ret = -EFAULT; 1453 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1454 kiocb->ki_left))) 1455 break; 1456 ret = security_file_permission(file, MAY_READ); 1457 if (unlikely(ret)) 1458 break; 1459 ret = aio_setup_single_vector(kiocb); 1460 if (ret) 1461 break; 1462 ret = -EINVAL; 1463 if (file->f_op->aio_read) 1464 kiocb->ki_retry = aio_rw_vect_retry; 1465 break; 1466 case IOCB_CMD_PWRITE: 1467 ret = -EBADF; 1468 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1469 break; 1470 ret = -EFAULT; 1471 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1472 kiocb->ki_left))) 1473 break; 1474 ret = security_file_permission(file, MAY_WRITE); 1475 if (unlikely(ret)) 1476 break; 1477 ret = aio_setup_single_vector(kiocb); 1478 if (ret) 1479 break; 1480 ret = -EINVAL; 1481 if (file->f_op->aio_write) 1482 kiocb->ki_retry = aio_rw_vect_retry; 1483 break; 1484 case IOCB_CMD_PREADV: 1485 ret = -EBADF; 1486 if (unlikely(!(file->f_mode & FMODE_READ))) 1487 break; 1488 ret = security_file_permission(file, MAY_READ); 1489 if (unlikely(ret)) 1490 break; 1491 ret = aio_setup_vectored_rw(READ, kiocb); 1492 if (ret) 1493 break; 1494 ret = -EINVAL; 1495 if (file->f_op->aio_read) 1496 kiocb->ki_retry = aio_rw_vect_retry; 1497 break; 1498 case IOCB_CMD_PWRITEV: 1499 ret = -EBADF; 1500 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1501 break; 1502 ret = security_file_permission(file, MAY_WRITE); 1503 if (unlikely(ret)) 1504 break; 1505 ret = aio_setup_vectored_rw(WRITE, kiocb); 1506 if (ret) 1507 break; 1508 ret = -EINVAL; 1509 if (file->f_op->aio_write) 1510 kiocb->ki_retry = aio_rw_vect_retry; 1511 break; 1512 case IOCB_CMD_FDSYNC: 1513 ret = -EINVAL; 1514 if (file->f_op->aio_fsync) 1515 kiocb->ki_retry = aio_fdsync; 1516 break; 1517 case IOCB_CMD_FSYNC: 1518 ret = -EINVAL; 1519 if (file->f_op->aio_fsync) 1520 kiocb->ki_retry = aio_fsync; 1521 break; 1522 default: 1523 dprintk("EINVAL: io_submit: no operation provided\n"); 1524 ret = -EINVAL; 1525 } 1526 1527 if (!kiocb->ki_retry) 1528 return ret; 1529 1530 return 0; 1531 } 1532 1533 /* 1534 * aio_wake_function: 1535 * wait queue callback function for aio notification, 1536 * Simply triggers a retry of the operation via kick_iocb. 1537 * 1538 * This callback is specified in the wait queue entry in 1539 * a kiocb. 1540 * 1541 * Note: 1542 * This routine is executed with the wait queue lock held. 1543 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1544 * the ioctx lock inside the wait queue lock. This is safe 1545 * because this callback isn't used for wait queues which 1546 * are nested inside ioctx lock (i.e. ctx->wait) 1547 */ 1548 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1549 int sync, void *key) 1550 { 1551 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1552 1553 list_del_init(&wait->task_list); 1554 kick_iocb(iocb); 1555 return 1; 1556 } 1557 1558 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1559 struct iocb *iocb) 1560 { 1561 struct kiocb *req; 1562 struct file *file; 1563 ssize_t ret; 1564 1565 /* enforce forwards compatibility on users */ 1566 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1567 pr_debug("EINVAL: io_submit: reserve field set\n"); 1568 return -EINVAL; 1569 } 1570 1571 /* prevent overflows */ 1572 if (unlikely( 1573 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1574 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1575 ((ssize_t)iocb->aio_nbytes < 0) 1576 )) { 1577 pr_debug("EINVAL: io_submit: overflow check\n"); 1578 return -EINVAL; 1579 } 1580 1581 file = fget(iocb->aio_fildes); 1582 if (unlikely(!file)) 1583 return -EBADF; 1584 1585 req = aio_get_req(ctx); /* returns with 2 references to req */ 1586 if (unlikely(!req)) { 1587 fput(file); 1588 return -EAGAIN; 1589 } 1590 req->ki_filp = file; 1591 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1592 /* 1593 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1594 * instance of the file* now. The file descriptor must be 1595 * an eventfd() fd, and will be signaled for each completed 1596 * event using the eventfd_signal() function. 1597 */ 1598 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd); 1599 if (IS_ERR(req->ki_eventfd)) { 1600 ret = PTR_ERR(req->ki_eventfd); 1601 goto out_put_req; 1602 } 1603 } 1604 1605 ret = put_user(req->ki_key, &user_iocb->aio_key); 1606 if (unlikely(ret)) { 1607 dprintk("EFAULT: aio_key\n"); 1608 goto out_put_req; 1609 } 1610 1611 req->ki_obj.user = user_iocb; 1612 req->ki_user_data = iocb->aio_data; 1613 req->ki_pos = iocb->aio_offset; 1614 1615 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1616 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1617 req->ki_opcode = iocb->aio_lio_opcode; 1618 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1619 INIT_LIST_HEAD(&req->ki_wait.task_list); 1620 1621 ret = aio_setup_iocb(req); 1622 1623 if (ret) 1624 goto out_put_req; 1625 1626 spin_lock_irq(&ctx->ctx_lock); 1627 aio_run_iocb(req); 1628 if (!list_empty(&ctx->run_list)) { 1629 /* drain the run list */ 1630 while (__aio_run_iocbs(ctx)) 1631 ; 1632 } 1633 spin_unlock_irq(&ctx->ctx_lock); 1634 aio_put_req(req); /* drop extra ref to req */ 1635 return 0; 1636 1637 out_put_req: 1638 aio_put_req(req); /* drop extra ref to req */ 1639 aio_put_req(req); /* drop i/o ref to req */ 1640 return ret; 1641 } 1642 1643 /* sys_io_submit: 1644 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1645 * the number of iocbs queued. May return -EINVAL if the aio_context 1646 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1647 * *iocbpp[0] is not properly initialized, if the operation specified 1648 * is invalid for the file descriptor in the iocb. May fail with 1649 * -EFAULT if any of the data structures point to invalid data. May 1650 * fail with -EBADF if the file descriptor specified in the first 1651 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1652 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1653 * fail with -ENOSYS if not implemented. 1654 */ 1655 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1656 struct iocb __user * __user *iocbpp) 1657 { 1658 struct kioctx *ctx; 1659 long ret = 0; 1660 int i; 1661 1662 if (unlikely(nr < 0)) 1663 return -EINVAL; 1664 1665 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1666 return -EFAULT; 1667 1668 ctx = lookup_ioctx(ctx_id); 1669 if (unlikely(!ctx)) { 1670 pr_debug("EINVAL: io_submit: invalid context id\n"); 1671 return -EINVAL; 1672 } 1673 1674 /* 1675 * AKPM: should this return a partial result if some of the IOs were 1676 * successfully submitted? 1677 */ 1678 for (i=0; i<nr; i++) { 1679 struct iocb __user *user_iocb; 1680 struct iocb tmp; 1681 1682 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1683 ret = -EFAULT; 1684 break; 1685 } 1686 1687 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1688 ret = -EFAULT; 1689 break; 1690 } 1691 1692 ret = io_submit_one(ctx, user_iocb, &tmp); 1693 if (ret) 1694 break; 1695 } 1696 1697 put_ioctx(ctx); 1698 return i ? i : ret; 1699 } 1700 1701 /* lookup_kiocb 1702 * Finds a given iocb for cancellation. 1703 */ 1704 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1705 u32 key) 1706 { 1707 struct list_head *pos; 1708 1709 assert_spin_locked(&ctx->ctx_lock); 1710 1711 /* TODO: use a hash or array, this sucks. */ 1712 list_for_each(pos, &ctx->active_reqs) { 1713 struct kiocb *kiocb = list_kiocb(pos); 1714 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1715 return kiocb; 1716 } 1717 return NULL; 1718 } 1719 1720 /* sys_io_cancel: 1721 * Attempts to cancel an iocb previously passed to io_submit. If 1722 * the operation is successfully cancelled, the resulting event is 1723 * copied into the memory pointed to by result without being placed 1724 * into the completion queue and 0 is returned. May fail with 1725 * -EFAULT if any of the data structures pointed to are invalid. 1726 * May fail with -EINVAL if aio_context specified by ctx_id is 1727 * invalid. May fail with -EAGAIN if the iocb specified was not 1728 * cancelled. Will fail with -ENOSYS if not implemented. 1729 */ 1730 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1731 struct io_event __user *result) 1732 { 1733 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1734 struct kioctx *ctx; 1735 struct kiocb *kiocb; 1736 u32 key; 1737 int ret; 1738 1739 ret = get_user(key, &iocb->aio_key); 1740 if (unlikely(ret)) 1741 return -EFAULT; 1742 1743 ctx = lookup_ioctx(ctx_id); 1744 if (unlikely(!ctx)) 1745 return -EINVAL; 1746 1747 spin_lock_irq(&ctx->ctx_lock); 1748 ret = -EAGAIN; 1749 kiocb = lookup_kiocb(ctx, iocb, key); 1750 if (kiocb && kiocb->ki_cancel) { 1751 cancel = kiocb->ki_cancel; 1752 kiocb->ki_users ++; 1753 kiocbSetCancelled(kiocb); 1754 } else 1755 cancel = NULL; 1756 spin_unlock_irq(&ctx->ctx_lock); 1757 1758 if (NULL != cancel) { 1759 struct io_event tmp; 1760 pr_debug("calling cancel\n"); 1761 memset(&tmp, 0, sizeof(tmp)); 1762 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1763 tmp.data = kiocb->ki_user_data; 1764 ret = cancel(kiocb, &tmp); 1765 if (!ret) { 1766 /* Cancellation succeeded -- copy the result 1767 * into the user's buffer. 1768 */ 1769 if (copy_to_user(result, &tmp, sizeof(tmp))) 1770 ret = -EFAULT; 1771 } 1772 } else 1773 ret = -EINVAL; 1774 1775 put_ioctx(ctx); 1776 1777 return ret; 1778 } 1779 1780 /* io_getevents: 1781 * Attempts to read at least min_nr events and up to nr events from 1782 * the completion queue for the aio_context specified by ctx_id. May 1783 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1784 * if nr is out of range, if when is out of range. May fail with 1785 * -EFAULT if any of the memory specified to is invalid. May return 1786 * 0 or < min_nr if no events are available and the timeout specified 1787 * by when has elapsed, where when == NULL specifies an infinite 1788 * timeout. Note that the timeout pointed to by when is relative and 1789 * will be updated if not NULL and the operation blocks. Will fail 1790 * with -ENOSYS if not implemented. 1791 */ 1792 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1793 long min_nr, 1794 long nr, 1795 struct io_event __user *events, 1796 struct timespec __user *timeout) 1797 { 1798 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1799 long ret = -EINVAL; 1800 1801 if (likely(ioctx)) { 1802 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1803 ret = read_events(ioctx, min_nr, nr, events, timeout); 1804 put_ioctx(ioctx); 1805 } 1806 1807 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1808 return ret; 1809 } 1810 1811 __initcall(aio_setup); 1812 1813 EXPORT_SYMBOL(aio_complete); 1814 EXPORT_SYMBOL(aio_put_req); 1815 EXPORT_SYMBOL(wait_on_sync_kiocb); 1816