xref: /openbmc/linux/fs/aio.c (revision 6ee73861)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/mmu_context.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/aio.h>
31 #include <linux/highmem.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/eventfd.h>
35 
36 #include <asm/kmap_types.h>
37 #include <asm/uaccess.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 __initcall(aio_setup);
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 	}
130 
131 	info->mmap_size = nr_pages * PAGE_SIZE;
132 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 	down_write(&ctx->mm->mmap_sem);
134 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 				  0);
137 	if (IS_ERR((void *)info->mmap_base)) {
138 		up_write(&ctx->mm->mmap_sem);
139 		info->mmap_size = 0;
140 		aio_free_ring(ctx);
141 		return -EAGAIN;
142 	}
143 
144 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
145 	info->nr_pages = get_user_pages(current, ctx->mm,
146 					info->mmap_base, nr_pages,
147 					1, 0, info->ring_pages, NULL);
148 	up_write(&ctx->mm->mmap_sem);
149 
150 	if (unlikely(info->nr_pages != nr_pages)) {
151 		aio_free_ring(ctx);
152 		return -EAGAIN;
153 	}
154 
155 	ctx->user_id = info->mmap_base;
156 
157 	info->nr = nr_events;		/* trusted copy */
158 
159 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
160 	ring->nr = nr_events;	/* user copy */
161 	ring->id = ctx->user_id;
162 	ring->head = ring->tail = 0;
163 	ring->magic = AIO_RING_MAGIC;
164 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
165 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
166 	ring->header_length = sizeof(struct aio_ring);
167 	kunmap_atomic(ring, KM_USER0);
168 
169 	return 0;
170 }
171 
172 
173 /* aio_ring_event: returns a pointer to the event at the given index from
174  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
175  */
176 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 
180 #define aio_ring_event(info, nr, km) ({					\
181 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
182 	struct io_event *__event;					\
183 	__event = kmap_atomic(						\
184 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 	__event += pos % AIO_EVENTS_PER_PAGE;				\
186 	__event;							\
187 })
188 
189 #define put_aio_ring_event(event, km) do {	\
190 	struct io_event *__event = (event);	\
191 	(void)__event;				\
192 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
193 } while(0)
194 
195 static void ctx_rcu_free(struct rcu_head *head)
196 {
197 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
198 	unsigned nr_events = ctx->max_reqs;
199 
200 	kmem_cache_free(kioctx_cachep, ctx);
201 
202 	if (nr_events) {
203 		spin_lock(&aio_nr_lock);
204 		BUG_ON(aio_nr - nr_events > aio_nr);
205 		aio_nr -= nr_events;
206 		spin_unlock(&aio_nr_lock);
207 	}
208 }
209 
210 /* __put_ioctx
211  *	Called when the last user of an aio context has gone away,
212  *	and the struct needs to be freed.
213  */
214 static void __put_ioctx(struct kioctx *ctx)
215 {
216 	BUG_ON(ctx->reqs_active);
217 
218 	cancel_delayed_work(&ctx->wq);
219 	cancel_work_sync(&ctx->wq.work);
220 	aio_free_ring(ctx);
221 	mmdrop(ctx->mm);
222 	ctx->mm = NULL;
223 	pr_debug("__put_ioctx: freeing %p\n", ctx);
224 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
225 }
226 
227 #define get_ioctx(kioctx) do {						\
228 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
229 	atomic_inc(&(kioctx)->users);					\
230 } while (0)
231 #define put_ioctx(kioctx) do {						\
232 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
233 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
234 		__put_ioctx(kioctx);					\
235 } while (0)
236 
237 /* ioctx_alloc
238  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
239  */
240 static struct kioctx *ioctx_alloc(unsigned nr_events)
241 {
242 	struct mm_struct *mm;
243 	struct kioctx *ctx;
244 	int did_sync = 0;
245 
246 	/* Prevent overflows */
247 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
248 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
249 		pr_debug("ENOMEM: nr_events too high\n");
250 		return ERR_PTR(-EINVAL);
251 	}
252 
253 	if ((unsigned long)nr_events > aio_max_nr)
254 		return ERR_PTR(-EAGAIN);
255 
256 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
257 	if (!ctx)
258 		return ERR_PTR(-ENOMEM);
259 
260 	ctx->max_reqs = nr_events;
261 	mm = ctx->mm = current->mm;
262 	atomic_inc(&mm->mm_count);
263 
264 	atomic_set(&ctx->users, 1);
265 	spin_lock_init(&ctx->ctx_lock);
266 	spin_lock_init(&ctx->ring_info.ring_lock);
267 	init_waitqueue_head(&ctx->wait);
268 
269 	INIT_LIST_HEAD(&ctx->active_reqs);
270 	INIT_LIST_HEAD(&ctx->run_list);
271 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
272 
273 	if (aio_setup_ring(ctx) < 0)
274 		goto out_freectx;
275 
276 	/* limit the number of system wide aios */
277 	do {
278 		spin_lock_bh(&aio_nr_lock);
279 		if (aio_nr + nr_events > aio_max_nr ||
280 		    aio_nr + nr_events < aio_nr)
281 			ctx->max_reqs = 0;
282 		else
283 			aio_nr += ctx->max_reqs;
284 		spin_unlock_bh(&aio_nr_lock);
285 		if (ctx->max_reqs || did_sync)
286 			break;
287 
288 		/* wait for rcu callbacks to have completed before giving up */
289 		synchronize_rcu();
290 		did_sync = 1;
291 		ctx->max_reqs = nr_events;
292 	} while (1);
293 
294 	if (ctx->max_reqs == 0)
295 		goto out_cleanup;
296 
297 	/* now link into global list. */
298 	spin_lock(&mm->ioctx_lock);
299 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
300 	spin_unlock(&mm->ioctx_lock);
301 
302 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
303 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
304 	return ctx;
305 
306 out_cleanup:
307 	__put_ioctx(ctx);
308 	return ERR_PTR(-EAGAIN);
309 
310 out_freectx:
311 	mmdrop(mm);
312 	kmem_cache_free(kioctx_cachep, ctx);
313 	ctx = ERR_PTR(-ENOMEM);
314 
315 	dprintk("aio: error allocating ioctx %p\n", ctx);
316 	return ctx;
317 }
318 
319 /* aio_cancel_all
320  *	Cancels all outstanding aio requests on an aio context.  Used
321  *	when the processes owning a context have all exited to encourage
322  *	the rapid destruction of the kioctx.
323  */
324 static void aio_cancel_all(struct kioctx *ctx)
325 {
326 	int (*cancel)(struct kiocb *, struct io_event *);
327 	struct io_event res;
328 	spin_lock_irq(&ctx->ctx_lock);
329 	ctx->dead = 1;
330 	while (!list_empty(&ctx->active_reqs)) {
331 		struct list_head *pos = ctx->active_reqs.next;
332 		struct kiocb *iocb = list_kiocb(pos);
333 		list_del_init(&iocb->ki_list);
334 		cancel = iocb->ki_cancel;
335 		kiocbSetCancelled(iocb);
336 		if (cancel) {
337 			iocb->ki_users++;
338 			spin_unlock_irq(&ctx->ctx_lock);
339 			cancel(iocb, &res);
340 			spin_lock_irq(&ctx->ctx_lock);
341 		}
342 	}
343 	spin_unlock_irq(&ctx->ctx_lock);
344 }
345 
346 static void wait_for_all_aios(struct kioctx *ctx)
347 {
348 	struct task_struct *tsk = current;
349 	DECLARE_WAITQUEUE(wait, tsk);
350 
351 	spin_lock_irq(&ctx->ctx_lock);
352 	if (!ctx->reqs_active)
353 		goto out;
354 
355 	add_wait_queue(&ctx->wait, &wait);
356 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
357 	while (ctx->reqs_active) {
358 		spin_unlock_irq(&ctx->ctx_lock);
359 		io_schedule();
360 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
361 		spin_lock_irq(&ctx->ctx_lock);
362 	}
363 	__set_task_state(tsk, TASK_RUNNING);
364 	remove_wait_queue(&ctx->wait, &wait);
365 
366 out:
367 	spin_unlock_irq(&ctx->ctx_lock);
368 }
369 
370 /* wait_on_sync_kiocb:
371  *	Waits on the given sync kiocb to complete.
372  */
373 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
374 {
375 	while (iocb->ki_users) {
376 		set_current_state(TASK_UNINTERRUPTIBLE);
377 		if (!iocb->ki_users)
378 			break;
379 		io_schedule();
380 	}
381 	__set_current_state(TASK_RUNNING);
382 	return iocb->ki_user_data;
383 }
384 EXPORT_SYMBOL(wait_on_sync_kiocb);
385 
386 /* exit_aio: called when the last user of mm goes away.  At this point,
387  * there is no way for any new requests to be submited or any of the
388  * io_* syscalls to be called on the context.  However, there may be
389  * outstanding requests which hold references to the context; as they
390  * go away, they will call put_ioctx and release any pinned memory
391  * associated with the request (held via struct page * references).
392  */
393 void exit_aio(struct mm_struct *mm)
394 {
395 	struct kioctx *ctx;
396 
397 	while (!hlist_empty(&mm->ioctx_list)) {
398 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
399 		hlist_del_rcu(&ctx->list);
400 
401 		aio_cancel_all(ctx);
402 
403 		wait_for_all_aios(ctx);
404 		/*
405 		 * Ensure we don't leave the ctx on the aio_wq
406 		 */
407 		cancel_work_sync(&ctx->wq.work);
408 
409 		if (1 != atomic_read(&ctx->users))
410 			printk(KERN_DEBUG
411 				"exit_aio:ioctx still alive: %d %d %d\n",
412 				atomic_read(&ctx->users), ctx->dead,
413 				ctx->reqs_active);
414 		put_ioctx(ctx);
415 	}
416 }
417 
418 /* aio_get_req
419  *	Allocate a slot for an aio request.  Increments the users count
420  * of the kioctx so that the kioctx stays around until all requests are
421  * complete.  Returns NULL if no requests are free.
422  *
423  * Returns with kiocb->users set to 2.  The io submit code path holds
424  * an extra reference while submitting the i/o.
425  * This prevents races between the aio code path referencing the
426  * req (after submitting it) and aio_complete() freeing the req.
427  */
428 static struct kiocb *__aio_get_req(struct kioctx *ctx)
429 {
430 	struct kiocb *req = NULL;
431 	struct aio_ring *ring;
432 	int okay = 0;
433 
434 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
435 	if (unlikely(!req))
436 		return NULL;
437 
438 	req->ki_flags = 0;
439 	req->ki_users = 2;
440 	req->ki_key = 0;
441 	req->ki_ctx = ctx;
442 	req->ki_cancel = NULL;
443 	req->ki_retry = NULL;
444 	req->ki_dtor = NULL;
445 	req->private = NULL;
446 	req->ki_iovec = NULL;
447 	INIT_LIST_HEAD(&req->ki_run_list);
448 	req->ki_eventfd = NULL;
449 
450 	/* Check if the completion queue has enough free space to
451 	 * accept an event from this io.
452 	 */
453 	spin_lock_irq(&ctx->ctx_lock);
454 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
455 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
456 		list_add(&req->ki_list, &ctx->active_reqs);
457 		ctx->reqs_active++;
458 		okay = 1;
459 	}
460 	kunmap_atomic(ring, KM_USER0);
461 	spin_unlock_irq(&ctx->ctx_lock);
462 
463 	if (!okay) {
464 		kmem_cache_free(kiocb_cachep, req);
465 		req = NULL;
466 	}
467 
468 	return req;
469 }
470 
471 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
472 {
473 	struct kiocb *req;
474 	/* Handle a potential starvation case -- should be exceedingly rare as
475 	 * requests will be stuck on fput_head only if the aio_fput_routine is
476 	 * delayed and the requests were the last user of the struct file.
477 	 */
478 	req = __aio_get_req(ctx);
479 	if (unlikely(NULL == req)) {
480 		aio_fput_routine(NULL);
481 		req = __aio_get_req(ctx);
482 	}
483 	return req;
484 }
485 
486 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
487 {
488 	assert_spin_locked(&ctx->ctx_lock);
489 
490 	if (req->ki_eventfd != NULL)
491 		eventfd_ctx_put(req->ki_eventfd);
492 	if (req->ki_dtor)
493 		req->ki_dtor(req);
494 	if (req->ki_iovec != &req->ki_inline_vec)
495 		kfree(req->ki_iovec);
496 	kmem_cache_free(kiocb_cachep, req);
497 	ctx->reqs_active--;
498 
499 	if (unlikely(!ctx->reqs_active && ctx->dead))
500 		wake_up(&ctx->wait);
501 }
502 
503 static void aio_fput_routine(struct work_struct *data)
504 {
505 	spin_lock_irq(&fput_lock);
506 	while (likely(!list_empty(&fput_head))) {
507 		struct kiocb *req = list_kiocb(fput_head.next);
508 		struct kioctx *ctx = req->ki_ctx;
509 
510 		list_del(&req->ki_list);
511 		spin_unlock_irq(&fput_lock);
512 
513 		/* Complete the fput(s) */
514 		if (req->ki_filp != NULL)
515 			__fput(req->ki_filp);
516 
517 		/* Link the iocb into the context's free list */
518 		spin_lock_irq(&ctx->ctx_lock);
519 		really_put_req(ctx, req);
520 		spin_unlock_irq(&ctx->ctx_lock);
521 
522 		put_ioctx(ctx);
523 		spin_lock_irq(&fput_lock);
524 	}
525 	spin_unlock_irq(&fput_lock);
526 }
527 
528 /* __aio_put_req
529  *	Returns true if this put was the last user of the request.
530  */
531 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
532 {
533 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
534 		req, atomic_long_read(&req->ki_filp->f_count));
535 
536 	assert_spin_locked(&ctx->ctx_lock);
537 
538 	req->ki_users--;
539 	BUG_ON(req->ki_users < 0);
540 	if (likely(req->ki_users))
541 		return 0;
542 	list_del(&req->ki_list);		/* remove from active_reqs */
543 	req->ki_cancel = NULL;
544 	req->ki_retry = NULL;
545 
546 	/*
547 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
548 	 * schedule work in case it is not __fput() time. In normal cases,
549 	 * we would not be holding the last reference to the file*, so
550 	 * this function will be executed w/out any aio kthread wakeup.
551 	 */
552 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
553 		get_ioctx(ctx);
554 		spin_lock(&fput_lock);
555 		list_add(&req->ki_list, &fput_head);
556 		spin_unlock(&fput_lock);
557 		queue_work(aio_wq, &fput_work);
558 	} else {
559 		req->ki_filp = NULL;
560 		really_put_req(ctx, req);
561 	}
562 	return 1;
563 }
564 
565 /* aio_put_req
566  *	Returns true if this put was the last user of the kiocb,
567  *	false if the request is still in use.
568  */
569 int aio_put_req(struct kiocb *req)
570 {
571 	struct kioctx *ctx = req->ki_ctx;
572 	int ret;
573 	spin_lock_irq(&ctx->ctx_lock);
574 	ret = __aio_put_req(ctx, req);
575 	spin_unlock_irq(&ctx->ctx_lock);
576 	return ret;
577 }
578 EXPORT_SYMBOL(aio_put_req);
579 
580 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
581 {
582 	struct mm_struct *mm = current->mm;
583 	struct kioctx *ctx, *ret = NULL;
584 	struct hlist_node *n;
585 
586 	rcu_read_lock();
587 
588 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
589 		if (ctx->user_id == ctx_id && !ctx->dead) {
590 			get_ioctx(ctx);
591 			ret = ctx;
592 			break;
593 		}
594 	}
595 
596 	rcu_read_unlock();
597 	return ret;
598 }
599 
600 /*
601  * Queue up a kiocb to be retried. Assumes that the kiocb
602  * has already been marked as kicked, and places it on
603  * the retry run list for the corresponding ioctx, if it
604  * isn't already queued. Returns 1 if it actually queued
605  * the kiocb (to tell the caller to activate the work
606  * queue to process it), or 0, if it found that it was
607  * already queued.
608  */
609 static inline int __queue_kicked_iocb(struct kiocb *iocb)
610 {
611 	struct kioctx *ctx = iocb->ki_ctx;
612 
613 	assert_spin_locked(&ctx->ctx_lock);
614 
615 	if (list_empty(&iocb->ki_run_list)) {
616 		list_add_tail(&iocb->ki_run_list,
617 			&ctx->run_list);
618 		return 1;
619 	}
620 	return 0;
621 }
622 
623 /* aio_run_iocb
624  *	This is the core aio execution routine. It is
625  *	invoked both for initial i/o submission and
626  *	subsequent retries via the aio_kick_handler.
627  *	Expects to be invoked with iocb->ki_ctx->lock
628  *	already held. The lock is released and reacquired
629  *	as needed during processing.
630  *
631  * Calls the iocb retry method (already setup for the
632  * iocb on initial submission) for operation specific
633  * handling, but takes care of most of common retry
634  * execution details for a given iocb. The retry method
635  * needs to be non-blocking as far as possible, to avoid
636  * holding up other iocbs waiting to be serviced by the
637  * retry kernel thread.
638  *
639  * The trickier parts in this code have to do with
640  * ensuring that only one retry instance is in progress
641  * for a given iocb at any time. Providing that guarantee
642  * simplifies the coding of individual aio operations as
643  * it avoids various potential races.
644  */
645 static ssize_t aio_run_iocb(struct kiocb *iocb)
646 {
647 	struct kioctx	*ctx = iocb->ki_ctx;
648 	ssize_t (*retry)(struct kiocb *);
649 	ssize_t ret;
650 
651 	if (!(retry = iocb->ki_retry)) {
652 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
653 		return 0;
654 	}
655 
656 	/*
657 	 * We don't want the next retry iteration for this
658 	 * operation to start until this one has returned and
659 	 * updated the iocb state. However, wait_queue functions
660 	 * can trigger a kick_iocb from interrupt context in the
661 	 * meantime, indicating that data is available for the next
662 	 * iteration. We want to remember that and enable the
663 	 * next retry iteration _after_ we are through with
664 	 * this one.
665 	 *
666 	 * So, in order to be able to register a "kick", but
667 	 * prevent it from being queued now, we clear the kick
668 	 * flag, but make the kick code *think* that the iocb is
669 	 * still on the run list until we are actually done.
670 	 * When we are done with this iteration, we check if
671 	 * the iocb was kicked in the meantime and if so, queue
672 	 * it up afresh.
673 	 */
674 
675 	kiocbClearKicked(iocb);
676 
677 	/*
678 	 * This is so that aio_complete knows it doesn't need to
679 	 * pull the iocb off the run list (We can't just call
680 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
681 	 * queue this on the run list yet)
682 	 */
683 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
684 	spin_unlock_irq(&ctx->ctx_lock);
685 
686 	/* Quit retrying if the i/o has been cancelled */
687 	if (kiocbIsCancelled(iocb)) {
688 		ret = -EINTR;
689 		aio_complete(iocb, ret, 0);
690 		/* must not access the iocb after this */
691 		goto out;
692 	}
693 
694 	/*
695 	 * Now we are all set to call the retry method in async
696 	 * context.
697 	 */
698 	ret = retry(iocb);
699 
700 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
701 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
702 		aio_complete(iocb, ret, 0);
703 	}
704 out:
705 	spin_lock_irq(&ctx->ctx_lock);
706 
707 	if (-EIOCBRETRY == ret) {
708 		/*
709 		 * OK, now that we are done with this iteration
710 		 * and know that there is more left to go,
711 		 * this is where we let go so that a subsequent
712 		 * "kick" can start the next iteration
713 		 */
714 
715 		/* will make __queue_kicked_iocb succeed from here on */
716 		INIT_LIST_HEAD(&iocb->ki_run_list);
717 		/* we must queue the next iteration ourselves, if it
718 		 * has already been kicked */
719 		if (kiocbIsKicked(iocb)) {
720 			__queue_kicked_iocb(iocb);
721 
722 			/*
723 			 * __queue_kicked_iocb will always return 1 here, because
724 			 * iocb->ki_run_list is empty at this point so it should
725 			 * be safe to unconditionally queue the context into the
726 			 * work queue.
727 			 */
728 			aio_queue_work(ctx);
729 		}
730 	}
731 	return ret;
732 }
733 
734 /*
735  * __aio_run_iocbs:
736  * 	Process all pending retries queued on the ioctx
737  * 	run list.
738  * Assumes it is operating within the aio issuer's mm
739  * context.
740  */
741 static int __aio_run_iocbs(struct kioctx *ctx)
742 {
743 	struct kiocb *iocb;
744 	struct list_head run_list;
745 
746 	assert_spin_locked(&ctx->ctx_lock);
747 
748 	list_replace_init(&ctx->run_list, &run_list);
749 	while (!list_empty(&run_list)) {
750 		iocb = list_entry(run_list.next, struct kiocb,
751 			ki_run_list);
752 		list_del(&iocb->ki_run_list);
753 		/*
754 		 * Hold an extra reference while retrying i/o.
755 		 */
756 		iocb->ki_users++;       /* grab extra reference */
757 		aio_run_iocb(iocb);
758 		__aio_put_req(ctx, iocb);
759  	}
760 	if (!list_empty(&ctx->run_list))
761 		return 1;
762 	return 0;
763 }
764 
765 static void aio_queue_work(struct kioctx * ctx)
766 {
767 	unsigned long timeout;
768 	/*
769 	 * if someone is waiting, get the work started right
770 	 * away, otherwise, use a longer delay
771 	 */
772 	smp_mb();
773 	if (waitqueue_active(&ctx->wait))
774 		timeout = 1;
775 	else
776 		timeout = HZ/10;
777 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
778 }
779 
780 
781 /*
782  * aio_run_iocbs:
783  * 	Process all pending retries queued on the ioctx
784  * 	run list.
785  * Assumes it is operating within the aio issuer's mm
786  * context.
787  */
788 static inline void aio_run_iocbs(struct kioctx *ctx)
789 {
790 	int requeue;
791 
792 	spin_lock_irq(&ctx->ctx_lock);
793 
794 	requeue = __aio_run_iocbs(ctx);
795 	spin_unlock_irq(&ctx->ctx_lock);
796 	if (requeue)
797 		aio_queue_work(ctx);
798 }
799 
800 /*
801  * just like aio_run_iocbs, but keeps running them until
802  * the list stays empty
803  */
804 static inline void aio_run_all_iocbs(struct kioctx *ctx)
805 {
806 	spin_lock_irq(&ctx->ctx_lock);
807 	while (__aio_run_iocbs(ctx))
808 		;
809 	spin_unlock_irq(&ctx->ctx_lock);
810 }
811 
812 /*
813  * aio_kick_handler:
814  * 	Work queue handler triggered to process pending
815  * 	retries on an ioctx. Takes on the aio issuer's
816  *	mm context before running the iocbs, so that
817  *	copy_xxx_user operates on the issuer's address
818  *      space.
819  * Run on aiod's context.
820  */
821 static void aio_kick_handler(struct work_struct *work)
822 {
823 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
824 	mm_segment_t oldfs = get_fs();
825 	struct mm_struct *mm;
826 	int requeue;
827 
828 	set_fs(USER_DS);
829 	use_mm(ctx->mm);
830 	spin_lock_irq(&ctx->ctx_lock);
831 	requeue =__aio_run_iocbs(ctx);
832 	mm = ctx->mm;
833 	spin_unlock_irq(&ctx->ctx_lock);
834  	unuse_mm(mm);
835 	set_fs(oldfs);
836 	/*
837 	 * we're in a worker thread already, don't use queue_delayed_work,
838 	 */
839 	if (requeue)
840 		queue_delayed_work(aio_wq, &ctx->wq, 0);
841 }
842 
843 
844 /*
845  * Called by kick_iocb to queue the kiocb for retry
846  * and if required activate the aio work queue to process
847  * it
848  */
849 static void try_queue_kicked_iocb(struct kiocb *iocb)
850 {
851  	struct kioctx	*ctx = iocb->ki_ctx;
852 	unsigned long flags;
853 	int run = 0;
854 
855 	/* We're supposed to be the only path putting the iocb back on the run
856 	 * list.  If we find that the iocb is *back* on a wait queue already
857 	 * than retry has happened before we could queue the iocb.  This also
858 	 * means that the retry could have completed and freed our iocb, no
859 	 * good. */
860 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
861 
862 	spin_lock_irqsave(&ctx->ctx_lock, flags);
863 	/* set this inside the lock so that we can't race with aio_run_iocb()
864 	 * testing it and putting the iocb on the run list under the lock */
865 	if (!kiocbTryKick(iocb))
866 		run = __queue_kicked_iocb(iocb);
867 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
868 	if (run)
869 		aio_queue_work(ctx);
870 }
871 
872 /*
873  * kick_iocb:
874  *      Called typically from a wait queue callback context
875  *      (aio_wake_function) to trigger a retry of the iocb.
876  *      The retry is usually executed by aio workqueue
877  *      threads (See aio_kick_handler).
878  */
879 void kick_iocb(struct kiocb *iocb)
880 {
881 	/* sync iocbs are easy: they can only ever be executing from a
882 	 * single context. */
883 	if (is_sync_kiocb(iocb)) {
884 		kiocbSetKicked(iocb);
885 	        wake_up_process(iocb->ki_obj.tsk);
886 		return;
887 	}
888 
889 	try_queue_kicked_iocb(iocb);
890 }
891 EXPORT_SYMBOL(kick_iocb);
892 
893 /* aio_complete
894  *	Called when the io request on the given iocb is complete.
895  *	Returns true if this is the last user of the request.  The
896  *	only other user of the request can be the cancellation code.
897  */
898 int aio_complete(struct kiocb *iocb, long res, long res2)
899 {
900 	struct kioctx	*ctx = iocb->ki_ctx;
901 	struct aio_ring_info	*info;
902 	struct aio_ring	*ring;
903 	struct io_event	*event;
904 	unsigned long	flags;
905 	unsigned long	tail;
906 	int		ret;
907 
908 	/*
909 	 * Special case handling for sync iocbs:
910 	 *  - events go directly into the iocb for fast handling
911 	 *  - the sync task with the iocb in its stack holds the single iocb
912 	 *    ref, no other paths have a way to get another ref
913 	 *  - the sync task helpfully left a reference to itself in the iocb
914 	 */
915 	if (is_sync_kiocb(iocb)) {
916 		BUG_ON(iocb->ki_users != 1);
917 		iocb->ki_user_data = res;
918 		iocb->ki_users = 0;
919 		wake_up_process(iocb->ki_obj.tsk);
920 		return 1;
921 	}
922 
923 	info = &ctx->ring_info;
924 
925 	/* add a completion event to the ring buffer.
926 	 * must be done holding ctx->ctx_lock to prevent
927 	 * other code from messing with the tail
928 	 * pointer since we might be called from irq
929 	 * context.
930 	 */
931 	spin_lock_irqsave(&ctx->ctx_lock, flags);
932 
933 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
934 		list_del_init(&iocb->ki_run_list);
935 
936 	/*
937 	 * cancelled requests don't get events, userland was given one
938 	 * when the event got cancelled.
939 	 */
940 	if (kiocbIsCancelled(iocb))
941 		goto put_rq;
942 
943 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
944 
945 	tail = info->tail;
946 	event = aio_ring_event(info, tail, KM_IRQ0);
947 	if (++tail >= info->nr)
948 		tail = 0;
949 
950 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
951 	event->data = iocb->ki_user_data;
952 	event->res = res;
953 	event->res2 = res2;
954 
955 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
956 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
957 		res, res2);
958 
959 	/* after flagging the request as done, we
960 	 * must never even look at it again
961 	 */
962 	smp_wmb();	/* make event visible before updating tail */
963 
964 	info->tail = tail;
965 	ring->tail = tail;
966 
967 	put_aio_ring_event(event, KM_IRQ0);
968 	kunmap_atomic(ring, KM_IRQ1);
969 
970 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
971 
972 	/*
973 	 * Check if the user asked us to deliver the result through an
974 	 * eventfd. The eventfd_signal() function is safe to be called
975 	 * from IRQ context.
976 	 */
977 	if (iocb->ki_eventfd != NULL)
978 		eventfd_signal(iocb->ki_eventfd, 1);
979 
980 put_rq:
981 	/* everything turned out well, dispose of the aiocb. */
982 	ret = __aio_put_req(ctx, iocb);
983 
984 	/*
985 	 * We have to order our ring_info tail store above and test
986 	 * of the wait list below outside the wait lock.  This is
987 	 * like in wake_up_bit() where clearing a bit has to be
988 	 * ordered with the unlocked test.
989 	 */
990 	smp_mb();
991 
992 	if (waitqueue_active(&ctx->wait))
993 		wake_up(&ctx->wait);
994 
995 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
996 	return ret;
997 }
998 EXPORT_SYMBOL(aio_complete);
999 
1000 /* aio_read_evt
1001  *	Pull an event off of the ioctx's event ring.  Returns the number of
1002  *	events fetched (0 or 1 ;-)
1003  *	FIXME: make this use cmpxchg.
1004  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1005  */
1006 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1007 {
1008 	struct aio_ring_info *info = &ioctx->ring_info;
1009 	struct aio_ring *ring;
1010 	unsigned long head;
1011 	int ret = 0;
1012 
1013 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1014 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1015 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1016 		 (unsigned long)ring->nr);
1017 
1018 	if (ring->head == ring->tail)
1019 		goto out;
1020 
1021 	spin_lock(&info->ring_lock);
1022 
1023 	head = ring->head % info->nr;
1024 	if (head != ring->tail) {
1025 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1026 		*ent = *evp;
1027 		head = (head + 1) % info->nr;
1028 		smp_mb(); /* finish reading the event before updatng the head */
1029 		ring->head = head;
1030 		ret = 1;
1031 		put_aio_ring_event(evp, KM_USER1);
1032 	}
1033 	spin_unlock(&info->ring_lock);
1034 
1035 out:
1036 	kunmap_atomic(ring, KM_USER0);
1037 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1038 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1039 	return ret;
1040 }
1041 
1042 struct aio_timeout {
1043 	struct timer_list	timer;
1044 	int			timed_out;
1045 	struct task_struct	*p;
1046 };
1047 
1048 static void timeout_func(unsigned long data)
1049 {
1050 	struct aio_timeout *to = (struct aio_timeout *)data;
1051 
1052 	to->timed_out = 1;
1053 	wake_up_process(to->p);
1054 }
1055 
1056 static inline void init_timeout(struct aio_timeout *to)
1057 {
1058 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1059 	to->timed_out = 0;
1060 	to->p = current;
1061 }
1062 
1063 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1064 			       const struct timespec *ts)
1065 {
1066 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1067 	if (time_after(to->timer.expires, jiffies))
1068 		add_timer(&to->timer);
1069 	else
1070 		to->timed_out = 1;
1071 }
1072 
1073 static inline void clear_timeout(struct aio_timeout *to)
1074 {
1075 	del_singleshot_timer_sync(&to->timer);
1076 }
1077 
1078 static int read_events(struct kioctx *ctx,
1079 			long min_nr, long nr,
1080 			struct io_event __user *event,
1081 			struct timespec __user *timeout)
1082 {
1083 	long			start_jiffies = jiffies;
1084 	struct task_struct	*tsk = current;
1085 	DECLARE_WAITQUEUE(wait, tsk);
1086 	int			ret;
1087 	int			i = 0;
1088 	struct io_event		ent;
1089 	struct aio_timeout	to;
1090 	int			retry = 0;
1091 
1092 	/* needed to zero any padding within an entry (there shouldn't be
1093 	 * any, but C is fun!
1094 	 */
1095 	memset(&ent, 0, sizeof(ent));
1096 retry:
1097 	ret = 0;
1098 	while (likely(i < nr)) {
1099 		ret = aio_read_evt(ctx, &ent);
1100 		if (unlikely(ret <= 0))
1101 			break;
1102 
1103 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1104 			ent.data, ent.obj, ent.res, ent.res2);
1105 
1106 		/* Could we split the check in two? */
1107 		ret = -EFAULT;
1108 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1109 			dprintk("aio: lost an event due to EFAULT.\n");
1110 			break;
1111 		}
1112 		ret = 0;
1113 
1114 		/* Good, event copied to userland, update counts. */
1115 		event ++;
1116 		i ++;
1117 	}
1118 
1119 	if (min_nr <= i)
1120 		return i;
1121 	if (ret)
1122 		return ret;
1123 
1124 	/* End fast path */
1125 
1126 	/* racey check, but it gets redone */
1127 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1128 		retry = 1;
1129 		aio_run_all_iocbs(ctx);
1130 		goto retry;
1131 	}
1132 
1133 	init_timeout(&to);
1134 	if (timeout) {
1135 		struct timespec	ts;
1136 		ret = -EFAULT;
1137 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1138 			goto out;
1139 
1140 		set_timeout(start_jiffies, &to, &ts);
1141 	}
1142 
1143 	while (likely(i < nr)) {
1144 		add_wait_queue_exclusive(&ctx->wait, &wait);
1145 		do {
1146 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1147 			ret = aio_read_evt(ctx, &ent);
1148 			if (ret)
1149 				break;
1150 			if (min_nr <= i)
1151 				break;
1152 			if (unlikely(ctx->dead)) {
1153 				ret = -EINVAL;
1154 				break;
1155 			}
1156 			if (to.timed_out)	/* Only check after read evt */
1157 				break;
1158 			/* Try to only show up in io wait if there are ops
1159 			 *  in flight */
1160 			if (ctx->reqs_active)
1161 				io_schedule();
1162 			else
1163 				schedule();
1164 			if (signal_pending(tsk)) {
1165 				ret = -EINTR;
1166 				break;
1167 			}
1168 			/*ret = aio_read_evt(ctx, &ent);*/
1169 		} while (1) ;
1170 
1171 		set_task_state(tsk, TASK_RUNNING);
1172 		remove_wait_queue(&ctx->wait, &wait);
1173 
1174 		if (unlikely(ret <= 0))
1175 			break;
1176 
1177 		ret = -EFAULT;
1178 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1179 			dprintk("aio: lost an event due to EFAULT.\n");
1180 			break;
1181 		}
1182 
1183 		/* Good, event copied to userland, update counts. */
1184 		event ++;
1185 		i ++;
1186 	}
1187 
1188 	if (timeout)
1189 		clear_timeout(&to);
1190 out:
1191 	destroy_timer_on_stack(&to.timer);
1192 	return i ? i : ret;
1193 }
1194 
1195 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1196  * against races with itself via ->dead.
1197  */
1198 static void io_destroy(struct kioctx *ioctx)
1199 {
1200 	struct mm_struct *mm = current->mm;
1201 	int was_dead;
1202 
1203 	/* delete the entry from the list is someone else hasn't already */
1204 	spin_lock(&mm->ioctx_lock);
1205 	was_dead = ioctx->dead;
1206 	ioctx->dead = 1;
1207 	hlist_del_rcu(&ioctx->list);
1208 	spin_unlock(&mm->ioctx_lock);
1209 
1210 	dprintk("aio_release(%p)\n", ioctx);
1211 	if (likely(!was_dead))
1212 		put_ioctx(ioctx);	/* twice for the list */
1213 
1214 	aio_cancel_all(ioctx);
1215 	wait_for_all_aios(ioctx);
1216 
1217 	/*
1218 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1219 	 * by other CPUs at this point.  Right now, we rely on the
1220 	 * locking done by the above calls to ensure this consistency.
1221 	 */
1222 	wake_up(&ioctx->wait);
1223 	put_ioctx(ioctx);	/* once for the lookup */
1224 }
1225 
1226 /* sys_io_setup:
1227  *	Create an aio_context capable of receiving at least nr_events.
1228  *	ctxp must not point to an aio_context that already exists, and
1229  *	must be initialized to 0 prior to the call.  On successful
1230  *	creation of the aio_context, *ctxp is filled in with the resulting
1231  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1232  *	if the specified nr_events exceeds internal limits.  May fail
1233  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1234  *	of available events.  May fail with -ENOMEM if insufficient kernel
1235  *	resources are available.  May fail with -EFAULT if an invalid
1236  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1237  *	implemented.
1238  */
1239 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1240 {
1241 	struct kioctx *ioctx = NULL;
1242 	unsigned long ctx;
1243 	long ret;
1244 
1245 	ret = get_user(ctx, ctxp);
1246 	if (unlikely(ret))
1247 		goto out;
1248 
1249 	ret = -EINVAL;
1250 	if (unlikely(ctx || nr_events == 0)) {
1251 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1252 		         ctx, nr_events);
1253 		goto out;
1254 	}
1255 
1256 	ioctx = ioctx_alloc(nr_events);
1257 	ret = PTR_ERR(ioctx);
1258 	if (!IS_ERR(ioctx)) {
1259 		ret = put_user(ioctx->user_id, ctxp);
1260 		if (!ret)
1261 			return 0;
1262 
1263 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1264 		io_destroy(ioctx);
1265 	}
1266 
1267 out:
1268 	return ret;
1269 }
1270 
1271 /* sys_io_destroy:
1272  *	Destroy the aio_context specified.  May cancel any outstanding
1273  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1274  *	implemented.  May fail with -EFAULT if the context pointed to
1275  *	is invalid.
1276  */
1277 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1278 {
1279 	struct kioctx *ioctx = lookup_ioctx(ctx);
1280 	if (likely(NULL != ioctx)) {
1281 		io_destroy(ioctx);
1282 		return 0;
1283 	}
1284 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1285 	return -EINVAL;
1286 }
1287 
1288 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1289 {
1290 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1291 
1292 	BUG_ON(ret <= 0);
1293 
1294 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1295 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1296 		iov->iov_base += this;
1297 		iov->iov_len -= this;
1298 		iocb->ki_left -= this;
1299 		ret -= this;
1300 		if (iov->iov_len == 0) {
1301 			iocb->ki_cur_seg++;
1302 			iov++;
1303 		}
1304 	}
1305 
1306 	/* the caller should not have done more io than what fit in
1307 	 * the remaining iovecs */
1308 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1309 }
1310 
1311 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1312 {
1313 	struct file *file = iocb->ki_filp;
1314 	struct address_space *mapping = file->f_mapping;
1315 	struct inode *inode = mapping->host;
1316 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1317 			 unsigned long, loff_t);
1318 	ssize_t ret = 0;
1319 	unsigned short opcode;
1320 
1321 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1322 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1323 		rw_op = file->f_op->aio_read;
1324 		opcode = IOCB_CMD_PREADV;
1325 	} else {
1326 		rw_op = file->f_op->aio_write;
1327 		opcode = IOCB_CMD_PWRITEV;
1328 	}
1329 
1330 	/* This matches the pread()/pwrite() logic */
1331 	if (iocb->ki_pos < 0)
1332 		return -EINVAL;
1333 
1334 	do {
1335 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1336 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1337 			    iocb->ki_pos);
1338 		if (ret > 0)
1339 			aio_advance_iovec(iocb, ret);
1340 
1341 	/* retry all partial writes.  retry partial reads as long as its a
1342 	 * regular file. */
1343 	} while (ret > 0 && iocb->ki_left > 0 &&
1344 		 (opcode == IOCB_CMD_PWRITEV ||
1345 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1346 
1347 	/* This means we must have transferred all that we could */
1348 	/* No need to retry anymore */
1349 	if ((ret == 0) || (iocb->ki_left == 0))
1350 		ret = iocb->ki_nbytes - iocb->ki_left;
1351 
1352 	/* If we managed to write some out we return that, rather than
1353 	 * the eventual error. */
1354 	if (opcode == IOCB_CMD_PWRITEV
1355 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1356 	    && iocb->ki_nbytes - iocb->ki_left)
1357 		ret = iocb->ki_nbytes - iocb->ki_left;
1358 
1359 	return ret;
1360 }
1361 
1362 static ssize_t aio_fdsync(struct kiocb *iocb)
1363 {
1364 	struct file *file = iocb->ki_filp;
1365 	ssize_t ret = -EINVAL;
1366 
1367 	if (file->f_op->aio_fsync)
1368 		ret = file->f_op->aio_fsync(iocb, 1);
1369 	return ret;
1370 }
1371 
1372 static ssize_t aio_fsync(struct kiocb *iocb)
1373 {
1374 	struct file *file = iocb->ki_filp;
1375 	ssize_t ret = -EINVAL;
1376 
1377 	if (file->f_op->aio_fsync)
1378 		ret = file->f_op->aio_fsync(iocb, 0);
1379 	return ret;
1380 }
1381 
1382 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1383 {
1384 	ssize_t ret;
1385 
1386 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1387 				    kiocb->ki_nbytes, 1,
1388 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1389 	if (ret < 0)
1390 		goto out;
1391 
1392 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1393 	kiocb->ki_cur_seg = 0;
1394 	/* ki_nbytes/left now reflect bytes instead of segs */
1395 	kiocb->ki_nbytes = ret;
1396 	kiocb->ki_left = ret;
1397 
1398 	ret = 0;
1399 out:
1400 	return ret;
1401 }
1402 
1403 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1404 {
1405 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1406 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1407 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1408 	kiocb->ki_nr_segs = 1;
1409 	kiocb->ki_cur_seg = 0;
1410 	return 0;
1411 }
1412 
1413 /*
1414  * aio_setup_iocb:
1415  *	Performs the initial checks and aio retry method
1416  *	setup for the kiocb at the time of io submission.
1417  */
1418 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1419 {
1420 	struct file *file = kiocb->ki_filp;
1421 	ssize_t ret = 0;
1422 
1423 	switch (kiocb->ki_opcode) {
1424 	case IOCB_CMD_PREAD:
1425 		ret = -EBADF;
1426 		if (unlikely(!(file->f_mode & FMODE_READ)))
1427 			break;
1428 		ret = -EFAULT;
1429 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1430 			kiocb->ki_left)))
1431 			break;
1432 		ret = security_file_permission(file, MAY_READ);
1433 		if (unlikely(ret))
1434 			break;
1435 		ret = aio_setup_single_vector(kiocb);
1436 		if (ret)
1437 			break;
1438 		ret = -EINVAL;
1439 		if (file->f_op->aio_read)
1440 			kiocb->ki_retry = aio_rw_vect_retry;
1441 		break;
1442 	case IOCB_CMD_PWRITE:
1443 		ret = -EBADF;
1444 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1445 			break;
1446 		ret = -EFAULT;
1447 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1448 			kiocb->ki_left)))
1449 			break;
1450 		ret = security_file_permission(file, MAY_WRITE);
1451 		if (unlikely(ret))
1452 			break;
1453 		ret = aio_setup_single_vector(kiocb);
1454 		if (ret)
1455 			break;
1456 		ret = -EINVAL;
1457 		if (file->f_op->aio_write)
1458 			kiocb->ki_retry = aio_rw_vect_retry;
1459 		break;
1460 	case IOCB_CMD_PREADV:
1461 		ret = -EBADF;
1462 		if (unlikely(!(file->f_mode & FMODE_READ)))
1463 			break;
1464 		ret = security_file_permission(file, MAY_READ);
1465 		if (unlikely(ret))
1466 			break;
1467 		ret = aio_setup_vectored_rw(READ, kiocb);
1468 		if (ret)
1469 			break;
1470 		ret = -EINVAL;
1471 		if (file->f_op->aio_read)
1472 			kiocb->ki_retry = aio_rw_vect_retry;
1473 		break;
1474 	case IOCB_CMD_PWRITEV:
1475 		ret = -EBADF;
1476 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1477 			break;
1478 		ret = security_file_permission(file, MAY_WRITE);
1479 		if (unlikely(ret))
1480 			break;
1481 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1482 		if (ret)
1483 			break;
1484 		ret = -EINVAL;
1485 		if (file->f_op->aio_write)
1486 			kiocb->ki_retry = aio_rw_vect_retry;
1487 		break;
1488 	case IOCB_CMD_FDSYNC:
1489 		ret = -EINVAL;
1490 		if (file->f_op->aio_fsync)
1491 			kiocb->ki_retry = aio_fdsync;
1492 		break;
1493 	case IOCB_CMD_FSYNC:
1494 		ret = -EINVAL;
1495 		if (file->f_op->aio_fsync)
1496 			kiocb->ki_retry = aio_fsync;
1497 		break;
1498 	default:
1499 		dprintk("EINVAL: io_submit: no operation provided\n");
1500 		ret = -EINVAL;
1501 	}
1502 
1503 	if (!kiocb->ki_retry)
1504 		return ret;
1505 
1506 	return 0;
1507 }
1508 
1509 /*
1510  * aio_wake_function:
1511  * 	wait queue callback function for aio notification,
1512  * 	Simply triggers a retry of the operation via kick_iocb.
1513  *
1514  * 	This callback is specified in the wait queue entry in
1515  *	a kiocb.
1516  *
1517  * Note:
1518  * This routine is executed with the wait queue lock held.
1519  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1520  * the ioctx lock inside the wait queue lock. This is safe
1521  * because this callback isn't used for wait queues which
1522  * are nested inside ioctx lock (i.e. ctx->wait)
1523  */
1524 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1525 			     int sync, void *key)
1526 {
1527 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1528 
1529 	list_del_init(&wait->task_list);
1530 	kick_iocb(iocb);
1531 	return 1;
1532 }
1533 
1534 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1535 			 struct iocb *iocb)
1536 {
1537 	struct kiocb *req;
1538 	struct file *file;
1539 	ssize_t ret;
1540 
1541 	/* enforce forwards compatibility on users */
1542 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1543 		pr_debug("EINVAL: io_submit: reserve field set\n");
1544 		return -EINVAL;
1545 	}
1546 
1547 	/* prevent overflows */
1548 	if (unlikely(
1549 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1550 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1551 	    ((ssize_t)iocb->aio_nbytes < 0)
1552 	   )) {
1553 		pr_debug("EINVAL: io_submit: overflow check\n");
1554 		return -EINVAL;
1555 	}
1556 
1557 	file = fget(iocb->aio_fildes);
1558 	if (unlikely(!file))
1559 		return -EBADF;
1560 
1561 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1562 	if (unlikely(!req)) {
1563 		fput(file);
1564 		return -EAGAIN;
1565 	}
1566 	req->ki_filp = file;
1567 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1568 		/*
1569 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1570 		 * instance of the file* now. The file descriptor must be
1571 		 * an eventfd() fd, and will be signaled for each completed
1572 		 * event using the eventfd_signal() function.
1573 		 */
1574 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1575 		if (IS_ERR(req->ki_eventfd)) {
1576 			ret = PTR_ERR(req->ki_eventfd);
1577 			req->ki_eventfd = NULL;
1578 			goto out_put_req;
1579 		}
1580 	}
1581 
1582 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1583 	if (unlikely(ret)) {
1584 		dprintk("EFAULT: aio_key\n");
1585 		goto out_put_req;
1586 	}
1587 
1588 	req->ki_obj.user = user_iocb;
1589 	req->ki_user_data = iocb->aio_data;
1590 	req->ki_pos = iocb->aio_offset;
1591 
1592 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1593 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1594 	req->ki_opcode = iocb->aio_lio_opcode;
1595 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1596 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1597 
1598 	ret = aio_setup_iocb(req);
1599 
1600 	if (ret)
1601 		goto out_put_req;
1602 
1603 	spin_lock_irq(&ctx->ctx_lock);
1604 	aio_run_iocb(req);
1605 	if (!list_empty(&ctx->run_list)) {
1606 		/* drain the run list */
1607 		while (__aio_run_iocbs(ctx))
1608 			;
1609 	}
1610 	spin_unlock_irq(&ctx->ctx_lock);
1611 	aio_put_req(req);	/* drop extra ref to req */
1612 	return 0;
1613 
1614 out_put_req:
1615 	aio_put_req(req);	/* drop extra ref to req */
1616 	aio_put_req(req);	/* drop i/o ref to req */
1617 	return ret;
1618 }
1619 
1620 /* sys_io_submit:
1621  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1622  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1623  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1624  *	*iocbpp[0] is not properly initialized, if the operation specified
1625  *	is invalid for the file descriptor in the iocb.  May fail with
1626  *	-EFAULT if any of the data structures point to invalid data.  May
1627  *	fail with -EBADF if the file descriptor specified in the first
1628  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1629  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1630  *	fail with -ENOSYS if not implemented.
1631  */
1632 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1633 		struct iocb __user * __user *, iocbpp)
1634 {
1635 	struct kioctx *ctx;
1636 	long ret = 0;
1637 	int i;
1638 
1639 	if (unlikely(nr < 0))
1640 		return -EINVAL;
1641 
1642 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1643 		return -EFAULT;
1644 
1645 	ctx = lookup_ioctx(ctx_id);
1646 	if (unlikely(!ctx)) {
1647 		pr_debug("EINVAL: io_submit: invalid context id\n");
1648 		return -EINVAL;
1649 	}
1650 
1651 	/*
1652 	 * AKPM: should this return a partial result if some of the IOs were
1653 	 * successfully submitted?
1654 	 */
1655 	for (i=0; i<nr; i++) {
1656 		struct iocb __user *user_iocb;
1657 		struct iocb tmp;
1658 
1659 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1660 			ret = -EFAULT;
1661 			break;
1662 		}
1663 
1664 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1665 			ret = -EFAULT;
1666 			break;
1667 		}
1668 
1669 		ret = io_submit_one(ctx, user_iocb, &tmp);
1670 		if (ret)
1671 			break;
1672 	}
1673 
1674 	put_ioctx(ctx);
1675 	return i ? i : ret;
1676 }
1677 
1678 /* lookup_kiocb
1679  *	Finds a given iocb for cancellation.
1680  */
1681 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1682 				  u32 key)
1683 {
1684 	struct list_head *pos;
1685 
1686 	assert_spin_locked(&ctx->ctx_lock);
1687 
1688 	/* TODO: use a hash or array, this sucks. */
1689 	list_for_each(pos, &ctx->active_reqs) {
1690 		struct kiocb *kiocb = list_kiocb(pos);
1691 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1692 			return kiocb;
1693 	}
1694 	return NULL;
1695 }
1696 
1697 /* sys_io_cancel:
1698  *	Attempts to cancel an iocb previously passed to io_submit.  If
1699  *	the operation is successfully cancelled, the resulting event is
1700  *	copied into the memory pointed to by result without being placed
1701  *	into the completion queue and 0 is returned.  May fail with
1702  *	-EFAULT if any of the data structures pointed to are invalid.
1703  *	May fail with -EINVAL if aio_context specified by ctx_id is
1704  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1705  *	cancelled.  Will fail with -ENOSYS if not implemented.
1706  */
1707 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1708 		struct io_event __user *, result)
1709 {
1710 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1711 	struct kioctx *ctx;
1712 	struct kiocb *kiocb;
1713 	u32 key;
1714 	int ret;
1715 
1716 	ret = get_user(key, &iocb->aio_key);
1717 	if (unlikely(ret))
1718 		return -EFAULT;
1719 
1720 	ctx = lookup_ioctx(ctx_id);
1721 	if (unlikely(!ctx))
1722 		return -EINVAL;
1723 
1724 	spin_lock_irq(&ctx->ctx_lock);
1725 	ret = -EAGAIN;
1726 	kiocb = lookup_kiocb(ctx, iocb, key);
1727 	if (kiocb && kiocb->ki_cancel) {
1728 		cancel = kiocb->ki_cancel;
1729 		kiocb->ki_users ++;
1730 		kiocbSetCancelled(kiocb);
1731 	} else
1732 		cancel = NULL;
1733 	spin_unlock_irq(&ctx->ctx_lock);
1734 
1735 	if (NULL != cancel) {
1736 		struct io_event tmp;
1737 		pr_debug("calling cancel\n");
1738 		memset(&tmp, 0, sizeof(tmp));
1739 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1740 		tmp.data = kiocb->ki_user_data;
1741 		ret = cancel(kiocb, &tmp);
1742 		if (!ret) {
1743 			/* Cancellation succeeded -- copy the result
1744 			 * into the user's buffer.
1745 			 */
1746 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1747 				ret = -EFAULT;
1748 		}
1749 	} else
1750 		ret = -EINVAL;
1751 
1752 	put_ioctx(ctx);
1753 
1754 	return ret;
1755 }
1756 
1757 /* io_getevents:
1758  *	Attempts to read at least min_nr events and up to nr events from
1759  *	the completion queue for the aio_context specified by ctx_id.  May
1760  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1761  *	if nr is out of range, if when is out of range.  May fail with
1762  *	-EFAULT if any of the memory specified to is invalid.  May return
1763  *	0 or < min_nr if no events are available and the timeout specified
1764  *	by when	has elapsed, where when == NULL specifies an infinite
1765  *	timeout.  Note that the timeout pointed to by when is relative and
1766  *	will be updated if not NULL and the operation blocks.  Will fail
1767  *	with -ENOSYS if not implemented.
1768  */
1769 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1770 		long, min_nr,
1771 		long, nr,
1772 		struct io_event __user *, events,
1773 		struct timespec __user *, timeout)
1774 {
1775 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1776 	long ret = -EINVAL;
1777 
1778 	if (likely(ioctx)) {
1779 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1780 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1781 		put_ioctx(ioctx);
1782 	}
1783 
1784 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1785 	return ret;
1786 }
1787