1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 unsigned long aio_nr; /* current system wide number of aio requests */ 224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 227 static struct kmem_cache *kiocb_cachep; 228 static struct kmem_cache *kioctx_cachep; 229 230 static struct vfsmount *aio_mnt; 231 232 static const struct file_operations aio_ring_fops; 233 static const struct address_space_operations aio_ctx_aops; 234 235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 236 { 237 struct file *file; 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 239 if (IS_ERR(inode)) 240 return ERR_CAST(inode); 241 242 inode->i_mapping->a_ops = &aio_ctx_aops; 243 inode->i_mapping->private_data = ctx; 244 inode->i_size = PAGE_SIZE * nr_pages; 245 246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 247 O_RDWR, &aio_ring_fops); 248 if (IS_ERR(file)) 249 iput(inode); 250 return file; 251 } 252 253 static int aio_init_fs_context(struct fs_context *fc) 254 { 255 if (!init_pseudo(fc, AIO_RING_MAGIC)) 256 return -ENOMEM; 257 fc->s_iflags |= SB_I_NOEXEC; 258 return 0; 259 } 260 261 /* aio_setup 262 * Creates the slab caches used by the aio routines, panic on 263 * failure as this is done early during the boot sequence. 264 */ 265 static int __init aio_setup(void) 266 { 267 static struct file_system_type aio_fs = { 268 .name = "aio", 269 .init_fs_context = aio_init_fs_context, 270 .kill_sb = kill_anon_super, 271 }; 272 aio_mnt = kern_mount(&aio_fs); 273 if (IS_ERR(aio_mnt)) 274 panic("Failed to create aio fs mount."); 275 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 278 return 0; 279 } 280 __initcall(aio_setup); 281 282 static void put_aio_ring_file(struct kioctx *ctx) 283 { 284 struct file *aio_ring_file = ctx->aio_ring_file; 285 struct address_space *i_mapping; 286 287 if (aio_ring_file) { 288 truncate_setsize(file_inode(aio_ring_file), 0); 289 290 /* Prevent further access to the kioctx from migratepages */ 291 i_mapping = aio_ring_file->f_mapping; 292 spin_lock(&i_mapping->private_lock); 293 i_mapping->private_data = NULL; 294 ctx->aio_ring_file = NULL; 295 spin_unlock(&i_mapping->private_lock); 296 297 fput(aio_ring_file); 298 } 299 } 300 301 static void aio_free_ring(struct kioctx *ctx) 302 { 303 int i; 304 305 /* Disconnect the kiotx from the ring file. This prevents future 306 * accesses to the kioctx from page migration. 307 */ 308 put_aio_ring_file(ctx); 309 310 for (i = 0; i < ctx->nr_pages; i++) { 311 struct page *page; 312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 313 page_count(ctx->ring_pages[i])); 314 page = ctx->ring_pages[i]; 315 if (!page) 316 continue; 317 ctx->ring_pages[i] = NULL; 318 put_page(page); 319 } 320 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 322 kfree(ctx->ring_pages); 323 ctx->ring_pages = NULL; 324 } 325 } 326 327 static int aio_ring_mremap(struct vm_area_struct *vma) 328 { 329 struct file *file = vma->vm_file; 330 struct mm_struct *mm = vma->vm_mm; 331 struct kioctx_table *table; 332 int i, res = -EINVAL; 333 334 spin_lock(&mm->ioctx_lock); 335 rcu_read_lock(); 336 table = rcu_dereference(mm->ioctx_table); 337 for (i = 0; i < table->nr; i++) { 338 struct kioctx *ctx; 339 340 ctx = rcu_dereference(table->table[i]); 341 if (ctx && ctx->aio_ring_file == file) { 342 if (!atomic_read(&ctx->dead)) { 343 ctx->user_id = ctx->mmap_base = vma->vm_start; 344 res = 0; 345 } 346 break; 347 } 348 } 349 350 rcu_read_unlock(); 351 spin_unlock(&mm->ioctx_lock); 352 return res; 353 } 354 355 static const struct vm_operations_struct aio_ring_vm_ops = { 356 .mremap = aio_ring_mremap, 357 #if IS_ENABLED(CONFIG_MMU) 358 .fault = filemap_fault, 359 .map_pages = filemap_map_pages, 360 .page_mkwrite = filemap_page_mkwrite, 361 #endif 362 }; 363 364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 365 { 366 vma->vm_flags |= VM_DONTEXPAND; 367 vma->vm_ops = &aio_ring_vm_ops; 368 return 0; 369 } 370 371 static const struct file_operations aio_ring_fops = { 372 .mmap = aio_ring_mmap, 373 }; 374 375 #if IS_ENABLED(CONFIG_MIGRATION) 376 static int aio_migratepage(struct address_space *mapping, struct page *new, 377 struct page *old, enum migrate_mode mode) 378 { 379 struct kioctx *ctx; 380 unsigned long flags; 381 pgoff_t idx; 382 int rc; 383 384 /* 385 * We cannot support the _NO_COPY case here, because copy needs to 386 * happen under the ctx->completion_lock. That does not work with the 387 * migration workflow of MIGRATE_SYNC_NO_COPY. 388 */ 389 if (mode == MIGRATE_SYNC_NO_COPY) 390 return -EINVAL; 391 392 rc = 0; 393 394 /* mapping->private_lock here protects against the kioctx teardown. */ 395 spin_lock(&mapping->private_lock); 396 ctx = mapping->private_data; 397 if (!ctx) { 398 rc = -EINVAL; 399 goto out; 400 } 401 402 /* The ring_lock mutex. The prevents aio_read_events() from writing 403 * to the ring's head, and prevents page migration from mucking in 404 * a partially initialized kiotx. 405 */ 406 if (!mutex_trylock(&ctx->ring_lock)) { 407 rc = -EAGAIN; 408 goto out; 409 } 410 411 idx = old->index; 412 if (idx < (pgoff_t)ctx->nr_pages) { 413 /* Make sure the old page hasn't already been changed */ 414 if (ctx->ring_pages[idx] != old) 415 rc = -EAGAIN; 416 } else 417 rc = -EINVAL; 418 419 if (rc != 0) 420 goto out_unlock; 421 422 /* Writeback must be complete */ 423 BUG_ON(PageWriteback(old)); 424 get_page(new); 425 426 rc = migrate_page_move_mapping(mapping, new, old, 1); 427 if (rc != MIGRATEPAGE_SUCCESS) { 428 put_page(new); 429 goto out_unlock; 430 } 431 432 /* Take completion_lock to prevent other writes to the ring buffer 433 * while the old page is copied to the new. This prevents new 434 * events from being lost. 435 */ 436 spin_lock_irqsave(&ctx->completion_lock, flags); 437 migrate_page_copy(new, old); 438 BUG_ON(ctx->ring_pages[idx] != old); 439 ctx->ring_pages[idx] = new; 440 spin_unlock_irqrestore(&ctx->completion_lock, flags); 441 442 /* The old page is no longer accessible. */ 443 put_page(old); 444 445 out_unlock: 446 mutex_unlock(&ctx->ring_lock); 447 out: 448 spin_unlock(&mapping->private_lock); 449 return rc; 450 } 451 #endif 452 453 static const struct address_space_operations aio_ctx_aops = { 454 .set_page_dirty = __set_page_dirty_no_writeback, 455 #if IS_ENABLED(CONFIG_MIGRATION) 456 .migratepage = aio_migratepage, 457 #endif 458 }; 459 460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 461 { 462 struct aio_ring *ring; 463 struct mm_struct *mm = current->mm; 464 unsigned long size, unused; 465 int nr_pages; 466 int i; 467 struct file *file; 468 469 /* Compensate for the ring buffer's head/tail overlap entry */ 470 nr_events += 2; /* 1 is required, 2 for good luck */ 471 472 size = sizeof(struct aio_ring); 473 size += sizeof(struct io_event) * nr_events; 474 475 nr_pages = PFN_UP(size); 476 if (nr_pages < 0) 477 return -EINVAL; 478 479 file = aio_private_file(ctx, nr_pages); 480 if (IS_ERR(file)) { 481 ctx->aio_ring_file = NULL; 482 return -ENOMEM; 483 } 484 485 ctx->aio_ring_file = file; 486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 487 / sizeof(struct io_event); 488 489 ctx->ring_pages = ctx->internal_pages; 490 if (nr_pages > AIO_RING_PAGES) { 491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 492 GFP_KERNEL); 493 if (!ctx->ring_pages) { 494 put_aio_ring_file(ctx); 495 return -ENOMEM; 496 } 497 } 498 499 for (i = 0; i < nr_pages; i++) { 500 struct page *page; 501 page = find_or_create_page(file->f_mapping, 502 i, GFP_HIGHUSER | __GFP_ZERO); 503 if (!page) 504 break; 505 pr_debug("pid(%d) page[%d]->count=%d\n", 506 current->pid, i, page_count(page)); 507 SetPageUptodate(page); 508 unlock_page(page); 509 510 ctx->ring_pages[i] = page; 511 } 512 ctx->nr_pages = i; 513 514 if (unlikely(i != nr_pages)) { 515 aio_free_ring(ctx); 516 return -ENOMEM; 517 } 518 519 ctx->mmap_size = nr_pages * PAGE_SIZE; 520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 521 522 if (mmap_write_lock_killable(mm)) { 523 ctx->mmap_size = 0; 524 aio_free_ring(ctx); 525 return -EINTR; 526 } 527 528 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 529 PROT_READ | PROT_WRITE, 530 MAP_SHARED, 0, &unused, NULL); 531 mmap_write_unlock(mm); 532 if (IS_ERR((void *)ctx->mmap_base)) { 533 ctx->mmap_size = 0; 534 aio_free_ring(ctx); 535 return -ENOMEM; 536 } 537 538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 539 540 ctx->user_id = ctx->mmap_base; 541 ctx->nr_events = nr_events; /* trusted copy */ 542 543 ring = kmap_atomic(ctx->ring_pages[0]); 544 ring->nr = nr_events; /* user copy */ 545 ring->id = ~0U; 546 ring->head = ring->tail = 0; 547 ring->magic = AIO_RING_MAGIC; 548 ring->compat_features = AIO_RING_COMPAT_FEATURES; 549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 550 ring->header_length = sizeof(struct aio_ring); 551 kunmap_atomic(ring); 552 flush_dcache_page(ctx->ring_pages[0]); 553 554 return 0; 555 } 556 557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 560 561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 562 { 563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 564 struct kioctx *ctx = req->ki_ctx; 565 unsigned long flags; 566 567 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 568 return; 569 570 spin_lock_irqsave(&ctx->ctx_lock, flags); 571 list_add_tail(&req->ki_list, &ctx->active_reqs); 572 req->ki_cancel = cancel; 573 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 574 } 575 EXPORT_SYMBOL(kiocb_set_cancel_fn); 576 577 /* 578 * free_ioctx() should be RCU delayed to synchronize against the RCU 579 * protected lookup_ioctx() and also needs process context to call 580 * aio_free_ring(). Use rcu_work. 581 */ 582 static void free_ioctx(struct work_struct *work) 583 { 584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 585 free_rwork); 586 pr_debug("freeing %p\n", ctx); 587 588 aio_free_ring(ctx); 589 free_percpu(ctx->cpu); 590 percpu_ref_exit(&ctx->reqs); 591 percpu_ref_exit(&ctx->users); 592 kmem_cache_free(kioctx_cachep, ctx); 593 } 594 595 static void free_ioctx_reqs(struct percpu_ref *ref) 596 { 597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 598 599 /* At this point we know that there are no any in-flight requests */ 600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 601 complete(&ctx->rq_wait->comp); 602 603 /* Synchronize against RCU protected table->table[] dereferences */ 604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 605 queue_rcu_work(system_wq, &ctx->free_rwork); 606 } 607 608 /* 609 * When this function runs, the kioctx has been removed from the "hash table" 610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 611 * now it's safe to cancel any that need to be. 612 */ 613 static void free_ioctx_users(struct percpu_ref *ref) 614 { 615 struct kioctx *ctx = container_of(ref, struct kioctx, users); 616 struct aio_kiocb *req; 617 618 spin_lock_irq(&ctx->ctx_lock); 619 620 while (!list_empty(&ctx->active_reqs)) { 621 req = list_first_entry(&ctx->active_reqs, 622 struct aio_kiocb, ki_list); 623 req->ki_cancel(&req->rw); 624 list_del_init(&req->ki_list); 625 } 626 627 spin_unlock_irq(&ctx->ctx_lock); 628 629 percpu_ref_kill(&ctx->reqs); 630 percpu_ref_put(&ctx->reqs); 631 } 632 633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 634 { 635 unsigned i, new_nr; 636 struct kioctx_table *table, *old; 637 struct aio_ring *ring; 638 639 spin_lock(&mm->ioctx_lock); 640 table = rcu_dereference_raw(mm->ioctx_table); 641 642 while (1) { 643 if (table) 644 for (i = 0; i < table->nr; i++) 645 if (!rcu_access_pointer(table->table[i])) { 646 ctx->id = i; 647 rcu_assign_pointer(table->table[i], ctx); 648 spin_unlock(&mm->ioctx_lock); 649 650 /* While kioctx setup is in progress, 651 * we are protected from page migration 652 * changes ring_pages by ->ring_lock. 653 */ 654 ring = kmap_atomic(ctx->ring_pages[0]); 655 ring->id = ctx->id; 656 kunmap_atomic(ring); 657 return 0; 658 } 659 660 new_nr = (table ? table->nr : 1) * 4; 661 spin_unlock(&mm->ioctx_lock); 662 663 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 664 if (!table) 665 return -ENOMEM; 666 667 table->nr = new_nr; 668 669 spin_lock(&mm->ioctx_lock); 670 old = rcu_dereference_raw(mm->ioctx_table); 671 672 if (!old) { 673 rcu_assign_pointer(mm->ioctx_table, table); 674 } else if (table->nr > old->nr) { 675 memcpy(table->table, old->table, 676 old->nr * sizeof(struct kioctx *)); 677 678 rcu_assign_pointer(mm->ioctx_table, table); 679 kfree_rcu(old, rcu); 680 } else { 681 kfree(table); 682 table = old; 683 } 684 } 685 } 686 687 static void aio_nr_sub(unsigned nr) 688 { 689 spin_lock(&aio_nr_lock); 690 if (WARN_ON(aio_nr - nr > aio_nr)) 691 aio_nr = 0; 692 else 693 aio_nr -= nr; 694 spin_unlock(&aio_nr_lock); 695 } 696 697 /* ioctx_alloc 698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 699 */ 700 static struct kioctx *ioctx_alloc(unsigned nr_events) 701 { 702 struct mm_struct *mm = current->mm; 703 struct kioctx *ctx; 704 int err = -ENOMEM; 705 706 /* 707 * Store the original nr_events -- what userspace passed to io_setup(), 708 * for counting against the global limit -- before it changes. 709 */ 710 unsigned int max_reqs = nr_events; 711 712 /* 713 * We keep track of the number of available ringbuffer slots, to prevent 714 * overflow (reqs_available), and we also use percpu counters for this. 715 * 716 * So since up to half the slots might be on other cpu's percpu counters 717 * and unavailable, double nr_events so userspace sees what they 718 * expected: additionally, we move req_batch slots to/from percpu 719 * counters at a time, so make sure that isn't 0: 720 */ 721 nr_events = max(nr_events, num_possible_cpus() * 4); 722 nr_events *= 2; 723 724 /* Prevent overflows */ 725 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 726 pr_debug("ENOMEM: nr_events too high\n"); 727 return ERR_PTR(-EINVAL); 728 } 729 730 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 731 return ERR_PTR(-EAGAIN); 732 733 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 734 if (!ctx) 735 return ERR_PTR(-ENOMEM); 736 737 ctx->max_reqs = max_reqs; 738 739 spin_lock_init(&ctx->ctx_lock); 740 spin_lock_init(&ctx->completion_lock); 741 mutex_init(&ctx->ring_lock); 742 /* Protect against page migration throughout kiotx setup by keeping 743 * the ring_lock mutex held until setup is complete. */ 744 mutex_lock(&ctx->ring_lock); 745 init_waitqueue_head(&ctx->wait); 746 747 INIT_LIST_HEAD(&ctx->active_reqs); 748 749 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 750 goto err; 751 752 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 753 goto err; 754 755 ctx->cpu = alloc_percpu(struct kioctx_cpu); 756 if (!ctx->cpu) 757 goto err; 758 759 err = aio_setup_ring(ctx, nr_events); 760 if (err < 0) 761 goto err; 762 763 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 764 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 765 if (ctx->req_batch < 1) 766 ctx->req_batch = 1; 767 768 /* limit the number of system wide aios */ 769 spin_lock(&aio_nr_lock); 770 if (aio_nr + ctx->max_reqs > aio_max_nr || 771 aio_nr + ctx->max_reqs < aio_nr) { 772 spin_unlock(&aio_nr_lock); 773 err = -EAGAIN; 774 goto err_ctx; 775 } 776 aio_nr += ctx->max_reqs; 777 spin_unlock(&aio_nr_lock); 778 779 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 780 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 781 782 err = ioctx_add_table(ctx, mm); 783 if (err) 784 goto err_cleanup; 785 786 /* Release the ring_lock mutex now that all setup is complete. */ 787 mutex_unlock(&ctx->ring_lock); 788 789 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 790 ctx, ctx->user_id, mm, ctx->nr_events); 791 return ctx; 792 793 err_cleanup: 794 aio_nr_sub(ctx->max_reqs); 795 err_ctx: 796 atomic_set(&ctx->dead, 1); 797 if (ctx->mmap_size) 798 vm_munmap(ctx->mmap_base, ctx->mmap_size); 799 aio_free_ring(ctx); 800 err: 801 mutex_unlock(&ctx->ring_lock); 802 free_percpu(ctx->cpu); 803 percpu_ref_exit(&ctx->reqs); 804 percpu_ref_exit(&ctx->users); 805 kmem_cache_free(kioctx_cachep, ctx); 806 pr_debug("error allocating ioctx %d\n", err); 807 return ERR_PTR(err); 808 } 809 810 /* kill_ioctx 811 * Cancels all outstanding aio requests on an aio context. Used 812 * when the processes owning a context have all exited to encourage 813 * the rapid destruction of the kioctx. 814 */ 815 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 816 struct ctx_rq_wait *wait) 817 { 818 struct kioctx_table *table; 819 820 spin_lock(&mm->ioctx_lock); 821 if (atomic_xchg(&ctx->dead, 1)) { 822 spin_unlock(&mm->ioctx_lock); 823 return -EINVAL; 824 } 825 826 table = rcu_dereference_raw(mm->ioctx_table); 827 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 828 RCU_INIT_POINTER(table->table[ctx->id], NULL); 829 spin_unlock(&mm->ioctx_lock); 830 831 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 832 wake_up_all(&ctx->wait); 833 834 /* 835 * It'd be more correct to do this in free_ioctx(), after all 836 * the outstanding kiocbs have finished - but by then io_destroy 837 * has already returned, so io_setup() could potentially return 838 * -EAGAIN with no ioctxs actually in use (as far as userspace 839 * could tell). 840 */ 841 aio_nr_sub(ctx->max_reqs); 842 843 if (ctx->mmap_size) 844 vm_munmap(ctx->mmap_base, ctx->mmap_size); 845 846 ctx->rq_wait = wait; 847 percpu_ref_kill(&ctx->users); 848 return 0; 849 } 850 851 /* 852 * exit_aio: called when the last user of mm goes away. At this point, there is 853 * no way for any new requests to be submited or any of the io_* syscalls to be 854 * called on the context. 855 * 856 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 857 * them. 858 */ 859 void exit_aio(struct mm_struct *mm) 860 { 861 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 862 struct ctx_rq_wait wait; 863 int i, skipped; 864 865 if (!table) 866 return; 867 868 atomic_set(&wait.count, table->nr); 869 init_completion(&wait.comp); 870 871 skipped = 0; 872 for (i = 0; i < table->nr; ++i) { 873 struct kioctx *ctx = 874 rcu_dereference_protected(table->table[i], true); 875 876 if (!ctx) { 877 skipped++; 878 continue; 879 } 880 881 /* 882 * We don't need to bother with munmap() here - exit_mmap(mm) 883 * is coming and it'll unmap everything. And we simply can't, 884 * this is not necessarily our ->mm. 885 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 886 * that it needs to unmap the area, just set it to 0. 887 */ 888 ctx->mmap_size = 0; 889 kill_ioctx(mm, ctx, &wait); 890 } 891 892 if (!atomic_sub_and_test(skipped, &wait.count)) { 893 /* Wait until all IO for the context are done. */ 894 wait_for_completion(&wait.comp); 895 } 896 897 RCU_INIT_POINTER(mm->ioctx_table, NULL); 898 kfree(table); 899 } 900 901 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 902 { 903 struct kioctx_cpu *kcpu; 904 unsigned long flags; 905 906 local_irq_save(flags); 907 kcpu = this_cpu_ptr(ctx->cpu); 908 kcpu->reqs_available += nr; 909 910 while (kcpu->reqs_available >= ctx->req_batch * 2) { 911 kcpu->reqs_available -= ctx->req_batch; 912 atomic_add(ctx->req_batch, &ctx->reqs_available); 913 } 914 915 local_irq_restore(flags); 916 } 917 918 static bool __get_reqs_available(struct kioctx *ctx) 919 { 920 struct kioctx_cpu *kcpu; 921 bool ret = false; 922 unsigned long flags; 923 924 local_irq_save(flags); 925 kcpu = this_cpu_ptr(ctx->cpu); 926 if (!kcpu->reqs_available) { 927 int old, avail = atomic_read(&ctx->reqs_available); 928 929 do { 930 if (avail < ctx->req_batch) 931 goto out; 932 933 old = avail; 934 avail = atomic_cmpxchg(&ctx->reqs_available, 935 avail, avail - ctx->req_batch); 936 } while (avail != old); 937 938 kcpu->reqs_available += ctx->req_batch; 939 } 940 941 ret = true; 942 kcpu->reqs_available--; 943 out: 944 local_irq_restore(flags); 945 return ret; 946 } 947 948 /* refill_reqs_available 949 * Updates the reqs_available reference counts used for tracking the 950 * number of free slots in the completion ring. This can be called 951 * from aio_complete() (to optimistically update reqs_available) or 952 * from aio_get_req() (the we're out of events case). It must be 953 * called holding ctx->completion_lock. 954 */ 955 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 956 unsigned tail) 957 { 958 unsigned events_in_ring, completed; 959 960 /* Clamp head since userland can write to it. */ 961 head %= ctx->nr_events; 962 if (head <= tail) 963 events_in_ring = tail - head; 964 else 965 events_in_ring = ctx->nr_events - (head - tail); 966 967 completed = ctx->completed_events; 968 if (events_in_ring < completed) 969 completed -= events_in_ring; 970 else 971 completed = 0; 972 973 if (!completed) 974 return; 975 976 ctx->completed_events -= completed; 977 put_reqs_available(ctx, completed); 978 } 979 980 /* user_refill_reqs_available 981 * Called to refill reqs_available when aio_get_req() encounters an 982 * out of space in the completion ring. 983 */ 984 static void user_refill_reqs_available(struct kioctx *ctx) 985 { 986 spin_lock_irq(&ctx->completion_lock); 987 if (ctx->completed_events) { 988 struct aio_ring *ring; 989 unsigned head; 990 991 /* Access of ring->head may race with aio_read_events_ring() 992 * here, but that's okay since whether we read the old version 993 * or the new version, and either will be valid. The important 994 * part is that head cannot pass tail since we prevent 995 * aio_complete() from updating tail by holding 996 * ctx->completion_lock. Even if head is invalid, the check 997 * against ctx->completed_events below will make sure we do the 998 * safe/right thing. 999 */ 1000 ring = kmap_atomic(ctx->ring_pages[0]); 1001 head = ring->head; 1002 kunmap_atomic(ring); 1003 1004 refill_reqs_available(ctx, head, ctx->tail); 1005 } 1006 1007 spin_unlock_irq(&ctx->completion_lock); 1008 } 1009 1010 static bool get_reqs_available(struct kioctx *ctx) 1011 { 1012 if (__get_reqs_available(ctx)) 1013 return true; 1014 user_refill_reqs_available(ctx); 1015 return __get_reqs_available(ctx); 1016 } 1017 1018 /* aio_get_req 1019 * Allocate a slot for an aio request. 1020 * Returns NULL if no requests are free. 1021 * 1022 * The refcount is initialized to 2 - one for the async op completion, 1023 * one for the synchronous code that does this. 1024 */ 1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1026 { 1027 struct aio_kiocb *req; 1028 1029 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1030 if (unlikely(!req)) 1031 return NULL; 1032 1033 if (unlikely(!get_reqs_available(ctx))) { 1034 kmem_cache_free(kiocb_cachep, req); 1035 return NULL; 1036 } 1037 1038 percpu_ref_get(&ctx->reqs); 1039 req->ki_ctx = ctx; 1040 INIT_LIST_HEAD(&req->ki_list); 1041 refcount_set(&req->ki_refcnt, 2); 1042 req->ki_eventfd = NULL; 1043 return req; 1044 } 1045 1046 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1047 { 1048 struct aio_ring __user *ring = (void __user *)ctx_id; 1049 struct mm_struct *mm = current->mm; 1050 struct kioctx *ctx, *ret = NULL; 1051 struct kioctx_table *table; 1052 unsigned id; 1053 1054 if (get_user(id, &ring->id)) 1055 return NULL; 1056 1057 rcu_read_lock(); 1058 table = rcu_dereference(mm->ioctx_table); 1059 1060 if (!table || id >= table->nr) 1061 goto out; 1062 1063 id = array_index_nospec(id, table->nr); 1064 ctx = rcu_dereference(table->table[id]); 1065 if (ctx && ctx->user_id == ctx_id) { 1066 if (percpu_ref_tryget_live(&ctx->users)) 1067 ret = ctx; 1068 } 1069 out: 1070 rcu_read_unlock(); 1071 return ret; 1072 } 1073 1074 static inline void iocb_destroy(struct aio_kiocb *iocb) 1075 { 1076 if (iocb->ki_eventfd) 1077 eventfd_ctx_put(iocb->ki_eventfd); 1078 if (iocb->ki_filp) 1079 fput(iocb->ki_filp); 1080 percpu_ref_put(&iocb->ki_ctx->reqs); 1081 kmem_cache_free(kiocb_cachep, iocb); 1082 } 1083 1084 /* aio_complete 1085 * Called when the io request on the given iocb is complete. 1086 */ 1087 static void aio_complete(struct aio_kiocb *iocb) 1088 { 1089 struct kioctx *ctx = iocb->ki_ctx; 1090 struct aio_ring *ring; 1091 struct io_event *ev_page, *event; 1092 unsigned tail, pos, head; 1093 unsigned long flags; 1094 1095 /* 1096 * Add a completion event to the ring buffer. Must be done holding 1097 * ctx->completion_lock to prevent other code from messing with the tail 1098 * pointer since we might be called from irq context. 1099 */ 1100 spin_lock_irqsave(&ctx->completion_lock, flags); 1101 1102 tail = ctx->tail; 1103 pos = tail + AIO_EVENTS_OFFSET; 1104 1105 if (++tail >= ctx->nr_events) 1106 tail = 0; 1107 1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1110 1111 *event = iocb->ki_res; 1112 1113 kunmap_atomic(ev_page); 1114 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1115 1116 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1117 (void __user *)(unsigned long)iocb->ki_res.obj, 1118 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1119 1120 /* after flagging the request as done, we 1121 * must never even look at it again 1122 */ 1123 smp_wmb(); /* make event visible before updating tail */ 1124 1125 ctx->tail = tail; 1126 1127 ring = kmap_atomic(ctx->ring_pages[0]); 1128 head = ring->head; 1129 ring->tail = tail; 1130 kunmap_atomic(ring); 1131 flush_dcache_page(ctx->ring_pages[0]); 1132 1133 ctx->completed_events++; 1134 if (ctx->completed_events > 1) 1135 refill_reqs_available(ctx, head, tail); 1136 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1137 1138 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1139 1140 /* 1141 * Check if the user asked us to deliver the result through an 1142 * eventfd. The eventfd_signal() function is safe to be called 1143 * from IRQ context. 1144 */ 1145 if (iocb->ki_eventfd) 1146 eventfd_signal(iocb->ki_eventfd, 1); 1147 1148 /* 1149 * We have to order our ring_info tail store above and test 1150 * of the wait list below outside the wait lock. This is 1151 * like in wake_up_bit() where clearing a bit has to be 1152 * ordered with the unlocked test. 1153 */ 1154 smp_mb(); 1155 1156 if (waitqueue_active(&ctx->wait)) 1157 wake_up(&ctx->wait); 1158 } 1159 1160 static inline void iocb_put(struct aio_kiocb *iocb) 1161 { 1162 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1163 aio_complete(iocb); 1164 iocb_destroy(iocb); 1165 } 1166 } 1167 1168 /* aio_read_events_ring 1169 * Pull an event off of the ioctx's event ring. Returns the number of 1170 * events fetched 1171 */ 1172 static long aio_read_events_ring(struct kioctx *ctx, 1173 struct io_event __user *event, long nr) 1174 { 1175 struct aio_ring *ring; 1176 unsigned head, tail, pos; 1177 long ret = 0; 1178 int copy_ret; 1179 1180 /* 1181 * The mutex can block and wake us up and that will cause 1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1183 * and repeat. This should be rare enough that it doesn't cause 1184 * peformance issues. See the comment in read_events() for more detail. 1185 */ 1186 sched_annotate_sleep(); 1187 mutex_lock(&ctx->ring_lock); 1188 1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1190 ring = kmap_atomic(ctx->ring_pages[0]); 1191 head = ring->head; 1192 tail = ring->tail; 1193 kunmap_atomic(ring); 1194 1195 /* 1196 * Ensure that once we've read the current tail pointer, that 1197 * we also see the events that were stored up to the tail. 1198 */ 1199 smp_rmb(); 1200 1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1202 1203 if (head == tail) 1204 goto out; 1205 1206 head %= ctx->nr_events; 1207 tail %= ctx->nr_events; 1208 1209 while (ret < nr) { 1210 long avail; 1211 struct io_event *ev; 1212 struct page *page; 1213 1214 avail = (head <= tail ? tail : ctx->nr_events) - head; 1215 if (head == tail) 1216 break; 1217 1218 pos = head + AIO_EVENTS_OFFSET; 1219 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1220 pos %= AIO_EVENTS_PER_PAGE; 1221 1222 avail = min(avail, nr - ret); 1223 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1224 1225 ev = kmap(page); 1226 copy_ret = copy_to_user(event + ret, ev + pos, 1227 sizeof(*ev) * avail); 1228 kunmap(page); 1229 1230 if (unlikely(copy_ret)) { 1231 ret = -EFAULT; 1232 goto out; 1233 } 1234 1235 ret += avail; 1236 head += avail; 1237 head %= ctx->nr_events; 1238 } 1239 1240 ring = kmap_atomic(ctx->ring_pages[0]); 1241 ring->head = head; 1242 kunmap_atomic(ring); 1243 flush_dcache_page(ctx->ring_pages[0]); 1244 1245 pr_debug("%li h%u t%u\n", ret, head, tail); 1246 out: 1247 mutex_unlock(&ctx->ring_lock); 1248 1249 return ret; 1250 } 1251 1252 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1253 struct io_event __user *event, long *i) 1254 { 1255 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1256 1257 if (ret > 0) 1258 *i += ret; 1259 1260 if (unlikely(atomic_read(&ctx->dead))) 1261 ret = -EINVAL; 1262 1263 if (!*i) 1264 *i = ret; 1265 1266 return ret < 0 || *i >= min_nr; 1267 } 1268 1269 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1270 struct io_event __user *event, 1271 ktime_t until) 1272 { 1273 long ret = 0; 1274 1275 /* 1276 * Note that aio_read_events() is being called as the conditional - i.e. 1277 * we're calling it after prepare_to_wait() has set task state to 1278 * TASK_INTERRUPTIBLE. 1279 * 1280 * But aio_read_events() can block, and if it blocks it's going to flip 1281 * the task state back to TASK_RUNNING. 1282 * 1283 * This should be ok, provided it doesn't flip the state back to 1284 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1285 * will only happen if the mutex_lock() call blocks, and we then find 1286 * the ringbuffer empty. So in practice we should be ok, but it's 1287 * something to be aware of when touching this code. 1288 */ 1289 if (until == 0) 1290 aio_read_events(ctx, min_nr, nr, event, &ret); 1291 else 1292 wait_event_interruptible_hrtimeout(ctx->wait, 1293 aio_read_events(ctx, min_nr, nr, event, &ret), 1294 until); 1295 return ret; 1296 } 1297 1298 /* sys_io_setup: 1299 * Create an aio_context capable of receiving at least nr_events. 1300 * ctxp must not point to an aio_context that already exists, and 1301 * must be initialized to 0 prior to the call. On successful 1302 * creation of the aio_context, *ctxp is filled in with the resulting 1303 * handle. May fail with -EINVAL if *ctxp is not initialized, 1304 * if the specified nr_events exceeds internal limits. May fail 1305 * with -EAGAIN if the specified nr_events exceeds the user's limit 1306 * of available events. May fail with -ENOMEM if insufficient kernel 1307 * resources are available. May fail with -EFAULT if an invalid 1308 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1309 * implemented. 1310 */ 1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1312 { 1313 struct kioctx *ioctx = NULL; 1314 unsigned long ctx; 1315 long ret; 1316 1317 ret = get_user(ctx, ctxp); 1318 if (unlikely(ret)) 1319 goto out; 1320 1321 ret = -EINVAL; 1322 if (unlikely(ctx || nr_events == 0)) { 1323 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1324 ctx, nr_events); 1325 goto out; 1326 } 1327 1328 ioctx = ioctx_alloc(nr_events); 1329 ret = PTR_ERR(ioctx); 1330 if (!IS_ERR(ioctx)) { 1331 ret = put_user(ioctx->user_id, ctxp); 1332 if (ret) 1333 kill_ioctx(current->mm, ioctx, NULL); 1334 percpu_ref_put(&ioctx->users); 1335 } 1336 1337 out: 1338 return ret; 1339 } 1340 1341 #ifdef CONFIG_COMPAT 1342 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1343 { 1344 struct kioctx *ioctx = NULL; 1345 unsigned long ctx; 1346 long ret; 1347 1348 ret = get_user(ctx, ctx32p); 1349 if (unlikely(ret)) 1350 goto out; 1351 1352 ret = -EINVAL; 1353 if (unlikely(ctx || nr_events == 0)) { 1354 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1355 ctx, nr_events); 1356 goto out; 1357 } 1358 1359 ioctx = ioctx_alloc(nr_events); 1360 ret = PTR_ERR(ioctx); 1361 if (!IS_ERR(ioctx)) { 1362 /* truncating is ok because it's a user address */ 1363 ret = put_user((u32)ioctx->user_id, ctx32p); 1364 if (ret) 1365 kill_ioctx(current->mm, ioctx, NULL); 1366 percpu_ref_put(&ioctx->users); 1367 } 1368 1369 out: 1370 return ret; 1371 } 1372 #endif 1373 1374 /* sys_io_destroy: 1375 * Destroy the aio_context specified. May cancel any outstanding 1376 * AIOs and block on completion. Will fail with -ENOSYS if not 1377 * implemented. May fail with -EINVAL if the context pointed to 1378 * is invalid. 1379 */ 1380 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1381 { 1382 struct kioctx *ioctx = lookup_ioctx(ctx); 1383 if (likely(NULL != ioctx)) { 1384 struct ctx_rq_wait wait; 1385 int ret; 1386 1387 init_completion(&wait.comp); 1388 atomic_set(&wait.count, 1); 1389 1390 /* Pass requests_done to kill_ioctx() where it can be set 1391 * in a thread-safe way. If we try to set it here then we have 1392 * a race condition if two io_destroy() called simultaneously. 1393 */ 1394 ret = kill_ioctx(current->mm, ioctx, &wait); 1395 percpu_ref_put(&ioctx->users); 1396 1397 /* Wait until all IO for the context are done. Otherwise kernel 1398 * keep using user-space buffers even if user thinks the context 1399 * is destroyed. 1400 */ 1401 if (!ret) 1402 wait_for_completion(&wait.comp); 1403 1404 return ret; 1405 } 1406 pr_debug("EINVAL: invalid context id\n"); 1407 return -EINVAL; 1408 } 1409 1410 static void aio_remove_iocb(struct aio_kiocb *iocb) 1411 { 1412 struct kioctx *ctx = iocb->ki_ctx; 1413 unsigned long flags; 1414 1415 spin_lock_irqsave(&ctx->ctx_lock, flags); 1416 list_del(&iocb->ki_list); 1417 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1418 } 1419 1420 static void aio_complete_rw(struct kiocb *kiocb, long res) 1421 { 1422 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1423 1424 if (!list_empty_careful(&iocb->ki_list)) 1425 aio_remove_iocb(iocb); 1426 1427 if (kiocb->ki_flags & IOCB_WRITE) { 1428 struct inode *inode = file_inode(kiocb->ki_filp); 1429 1430 /* 1431 * Tell lockdep we inherited freeze protection from submission 1432 * thread. 1433 */ 1434 if (S_ISREG(inode->i_mode)) 1435 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1436 file_end_write(kiocb->ki_filp); 1437 } 1438 1439 iocb->ki_res.res = res; 1440 iocb->ki_res.res2 = 0; 1441 iocb_put(iocb); 1442 } 1443 1444 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1445 { 1446 int ret; 1447 1448 req->ki_complete = aio_complete_rw; 1449 req->private = NULL; 1450 req->ki_pos = iocb->aio_offset; 1451 req->ki_flags = iocb_flags(req->ki_filp); 1452 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1453 req->ki_flags |= IOCB_EVENTFD; 1454 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1455 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1456 /* 1457 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1458 * aio_reqprio is interpreted as an I/O scheduling 1459 * class and priority. 1460 */ 1461 ret = ioprio_check_cap(iocb->aio_reqprio); 1462 if (ret) { 1463 pr_debug("aio ioprio check cap error: %d\n", ret); 1464 return ret; 1465 } 1466 1467 req->ki_ioprio = iocb->aio_reqprio; 1468 } else 1469 req->ki_ioprio = get_current_ioprio(); 1470 1471 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1472 if (unlikely(ret)) 1473 return ret; 1474 1475 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1476 return 0; 1477 } 1478 1479 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1480 struct iovec **iovec, bool vectored, bool compat, 1481 struct iov_iter *iter) 1482 { 1483 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1484 size_t len = iocb->aio_nbytes; 1485 1486 if (!vectored) { 1487 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1488 *iovec = NULL; 1489 return ret; 1490 } 1491 1492 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1493 } 1494 1495 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1496 { 1497 switch (ret) { 1498 case -EIOCBQUEUED: 1499 break; 1500 case -ERESTARTSYS: 1501 case -ERESTARTNOINTR: 1502 case -ERESTARTNOHAND: 1503 case -ERESTART_RESTARTBLOCK: 1504 /* 1505 * There's no easy way to restart the syscall since other AIO's 1506 * may be already running. Just fail this IO with EINTR. 1507 */ 1508 ret = -EINTR; 1509 fallthrough; 1510 default: 1511 req->ki_complete(req, ret); 1512 } 1513 } 1514 1515 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1516 bool vectored, bool compat) 1517 { 1518 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1519 struct iov_iter iter; 1520 struct file *file; 1521 int ret; 1522 1523 ret = aio_prep_rw(req, iocb); 1524 if (ret) 1525 return ret; 1526 file = req->ki_filp; 1527 if (unlikely(!(file->f_mode & FMODE_READ))) 1528 return -EBADF; 1529 ret = -EINVAL; 1530 if (unlikely(!file->f_op->read_iter)) 1531 return -EINVAL; 1532 1533 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1534 if (ret < 0) 1535 return ret; 1536 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1537 if (!ret) 1538 aio_rw_done(req, call_read_iter(file, req, &iter)); 1539 kfree(iovec); 1540 return ret; 1541 } 1542 1543 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1544 bool vectored, bool compat) 1545 { 1546 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1547 struct iov_iter iter; 1548 struct file *file; 1549 int ret; 1550 1551 ret = aio_prep_rw(req, iocb); 1552 if (ret) 1553 return ret; 1554 file = req->ki_filp; 1555 1556 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1557 return -EBADF; 1558 if (unlikely(!file->f_op->write_iter)) 1559 return -EINVAL; 1560 1561 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1562 if (ret < 0) 1563 return ret; 1564 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1565 if (!ret) { 1566 /* 1567 * Open-code file_start_write here to grab freeze protection, 1568 * which will be released by another thread in 1569 * aio_complete_rw(). Fool lockdep by telling it the lock got 1570 * released so that it doesn't complain about the held lock when 1571 * we return to userspace. 1572 */ 1573 if (S_ISREG(file_inode(file)->i_mode)) { 1574 sb_start_write(file_inode(file)->i_sb); 1575 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1576 } 1577 req->ki_flags |= IOCB_WRITE; 1578 aio_rw_done(req, call_write_iter(file, req, &iter)); 1579 } 1580 kfree(iovec); 1581 return ret; 1582 } 1583 1584 static void aio_fsync_work(struct work_struct *work) 1585 { 1586 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1587 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1588 1589 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1590 revert_creds(old_cred); 1591 put_cred(iocb->fsync.creds); 1592 iocb_put(iocb); 1593 } 1594 1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1596 bool datasync) 1597 { 1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1599 iocb->aio_rw_flags)) 1600 return -EINVAL; 1601 1602 if (unlikely(!req->file->f_op->fsync)) 1603 return -EINVAL; 1604 1605 req->creds = prepare_creds(); 1606 if (!req->creds) 1607 return -ENOMEM; 1608 1609 req->datasync = datasync; 1610 INIT_WORK(&req->work, aio_fsync_work); 1611 schedule_work(&req->work); 1612 return 0; 1613 } 1614 1615 static void aio_poll_put_work(struct work_struct *work) 1616 { 1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1619 1620 iocb_put(iocb); 1621 } 1622 1623 /* 1624 * Safely lock the waitqueue which the request is on, synchronizing with the 1625 * case where the ->poll() provider decides to free its waitqueue early. 1626 * 1627 * Returns true on success, meaning that req->head->lock was locked, req->wait 1628 * is on req->head, and an RCU read lock was taken. Returns false if the 1629 * request was already removed from its waitqueue (which might no longer exist). 1630 */ 1631 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1632 { 1633 wait_queue_head_t *head; 1634 1635 /* 1636 * While we hold the waitqueue lock and the waitqueue is nonempty, 1637 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1638 * lock in the first place can race with the waitqueue being freed. 1639 * 1640 * We solve this as eventpoll does: by taking advantage of the fact that 1641 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1642 * we enter rcu_read_lock() and see that the pointer to the queue is 1643 * non-NULL, we can then lock it without the memory being freed out from 1644 * under us, then check whether the request is still on the queue. 1645 * 1646 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1647 * case the caller deletes the entry from the queue, leaving it empty. 1648 * In that case, only RCU prevents the queue memory from being freed. 1649 */ 1650 rcu_read_lock(); 1651 head = smp_load_acquire(&req->head); 1652 if (head) { 1653 spin_lock(&head->lock); 1654 if (!list_empty(&req->wait.entry)) 1655 return true; 1656 spin_unlock(&head->lock); 1657 } 1658 rcu_read_unlock(); 1659 return false; 1660 } 1661 1662 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1663 { 1664 spin_unlock(&req->head->lock); 1665 rcu_read_unlock(); 1666 } 1667 1668 static void aio_poll_complete_work(struct work_struct *work) 1669 { 1670 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1671 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1672 struct poll_table_struct pt = { ._key = req->events }; 1673 struct kioctx *ctx = iocb->ki_ctx; 1674 __poll_t mask = 0; 1675 1676 if (!READ_ONCE(req->cancelled)) 1677 mask = vfs_poll(req->file, &pt) & req->events; 1678 1679 /* 1680 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1681 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1682 * synchronize with them. In the cancellation case the list_del_init 1683 * itself is not actually needed, but harmless so we keep it in to 1684 * avoid further branches in the fast path. 1685 */ 1686 spin_lock_irq(&ctx->ctx_lock); 1687 if (poll_iocb_lock_wq(req)) { 1688 if (!mask && !READ_ONCE(req->cancelled)) { 1689 /* 1690 * The request isn't actually ready to be completed yet. 1691 * Reschedule completion if another wakeup came in. 1692 */ 1693 if (req->work_need_resched) { 1694 schedule_work(&req->work); 1695 req->work_need_resched = false; 1696 } else { 1697 req->work_scheduled = false; 1698 } 1699 poll_iocb_unlock_wq(req); 1700 spin_unlock_irq(&ctx->ctx_lock); 1701 return; 1702 } 1703 list_del_init(&req->wait.entry); 1704 poll_iocb_unlock_wq(req); 1705 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1706 list_del_init(&iocb->ki_list); 1707 iocb->ki_res.res = mangle_poll(mask); 1708 spin_unlock_irq(&ctx->ctx_lock); 1709 1710 iocb_put(iocb); 1711 } 1712 1713 /* assumes we are called with irqs disabled */ 1714 static int aio_poll_cancel(struct kiocb *iocb) 1715 { 1716 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1717 struct poll_iocb *req = &aiocb->poll; 1718 1719 if (poll_iocb_lock_wq(req)) { 1720 WRITE_ONCE(req->cancelled, true); 1721 if (!req->work_scheduled) { 1722 schedule_work(&aiocb->poll.work); 1723 req->work_scheduled = true; 1724 } 1725 poll_iocb_unlock_wq(req); 1726 } /* else, the request was force-cancelled by POLLFREE already */ 1727 1728 return 0; 1729 } 1730 1731 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1732 void *key) 1733 { 1734 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1735 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1736 __poll_t mask = key_to_poll(key); 1737 unsigned long flags; 1738 1739 /* for instances that support it check for an event match first: */ 1740 if (mask && !(mask & req->events)) 1741 return 0; 1742 1743 /* 1744 * Complete the request inline if possible. This requires that three 1745 * conditions be met: 1746 * 1. An event mask must have been passed. If a plain wakeup was done 1747 * instead, then mask == 0 and we have to call vfs_poll() to get 1748 * the events, so inline completion isn't possible. 1749 * 2. The completion work must not have already been scheduled. 1750 * 3. ctx_lock must not be busy. We have to use trylock because we 1751 * already hold the waitqueue lock, so this inverts the normal 1752 * locking order. Use irqsave/irqrestore because not all 1753 * filesystems (e.g. fuse) call this function with IRQs disabled, 1754 * yet IRQs have to be disabled before ctx_lock is obtained. 1755 */ 1756 if (mask && !req->work_scheduled && 1757 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1758 struct kioctx *ctx = iocb->ki_ctx; 1759 1760 list_del_init(&req->wait.entry); 1761 list_del(&iocb->ki_list); 1762 iocb->ki_res.res = mangle_poll(mask); 1763 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1764 iocb = NULL; 1765 INIT_WORK(&req->work, aio_poll_put_work); 1766 schedule_work(&req->work); 1767 } 1768 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1769 if (iocb) 1770 iocb_put(iocb); 1771 } else { 1772 /* 1773 * Schedule the completion work if needed. If it was already 1774 * scheduled, record that another wakeup came in. 1775 * 1776 * Don't remove the request from the waitqueue here, as it might 1777 * not actually be complete yet (we won't know until vfs_poll() 1778 * is called), and we must not miss any wakeups. POLLFREE is an 1779 * exception to this; see below. 1780 */ 1781 if (req->work_scheduled) { 1782 req->work_need_resched = true; 1783 } else { 1784 schedule_work(&req->work); 1785 req->work_scheduled = true; 1786 } 1787 1788 /* 1789 * If the waitqueue is being freed early but we can't complete 1790 * the request inline, we have to tear down the request as best 1791 * we can. That means immediately removing the request from its 1792 * waitqueue and preventing all further accesses to the 1793 * waitqueue via the request. We also need to schedule the 1794 * completion work (done above). Also mark the request as 1795 * cancelled, to potentially skip an unneeded call to ->poll(). 1796 */ 1797 if (mask & POLLFREE) { 1798 WRITE_ONCE(req->cancelled, true); 1799 list_del_init(&req->wait.entry); 1800 1801 /* 1802 * Careful: this *must* be the last step, since as soon 1803 * as req->head is NULL'ed out, the request can be 1804 * completed and freed, since aio_poll_complete_work() 1805 * will no longer need to take the waitqueue lock. 1806 */ 1807 smp_store_release(&req->head, NULL); 1808 } 1809 } 1810 return 1; 1811 } 1812 1813 struct aio_poll_table { 1814 struct poll_table_struct pt; 1815 struct aio_kiocb *iocb; 1816 bool queued; 1817 int error; 1818 }; 1819 1820 static void 1821 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1822 struct poll_table_struct *p) 1823 { 1824 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1825 1826 /* multiple wait queues per file are not supported */ 1827 if (unlikely(pt->queued)) { 1828 pt->error = -EINVAL; 1829 return; 1830 } 1831 1832 pt->queued = true; 1833 pt->error = 0; 1834 pt->iocb->poll.head = head; 1835 add_wait_queue(head, &pt->iocb->poll.wait); 1836 } 1837 1838 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1839 { 1840 struct kioctx *ctx = aiocb->ki_ctx; 1841 struct poll_iocb *req = &aiocb->poll; 1842 struct aio_poll_table apt; 1843 bool cancel = false; 1844 __poll_t mask; 1845 1846 /* reject any unknown events outside the normal event mask. */ 1847 if ((u16)iocb->aio_buf != iocb->aio_buf) 1848 return -EINVAL; 1849 /* reject fields that are not defined for poll */ 1850 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1851 return -EINVAL; 1852 1853 INIT_WORK(&req->work, aio_poll_complete_work); 1854 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1855 1856 req->head = NULL; 1857 req->cancelled = false; 1858 req->work_scheduled = false; 1859 req->work_need_resched = false; 1860 1861 apt.pt._qproc = aio_poll_queue_proc; 1862 apt.pt._key = req->events; 1863 apt.iocb = aiocb; 1864 apt.queued = false; 1865 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1866 1867 /* initialized the list so that we can do list_empty checks */ 1868 INIT_LIST_HEAD(&req->wait.entry); 1869 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1870 1871 mask = vfs_poll(req->file, &apt.pt) & req->events; 1872 spin_lock_irq(&ctx->ctx_lock); 1873 if (likely(apt.queued)) { 1874 bool on_queue = poll_iocb_lock_wq(req); 1875 1876 if (!on_queue || req->work_scheduled) { 1877 /* 1878 * aio_poll_wake() already either scheduled the async 1879 * completion work, or completed the request inline. 1880 */ 1881 if (apt.error) /* unsupported case: multiple queues */ 1882 cancel = true; 1883 apt.error = 0; 1884 mask = 0; 1885 } 1886 if (mask || apt.error) { 1887 /* Steal to complete synchronously. */ 1888 list_del_init(&req->wait.entry); 1889 } else if (cancel) { 1890 /* Cancel if possible (may be too late though). */ 1891 WRITE_ONCE(req->cancelled, true); 1892 } else if (on_queue) { 1893 /* 1894 * Actually waiting for an event, so add the request to 1895 * active_reqs so that it can be cancelled if needed. 1896 */ 1897 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1898 aiocb->ki_cancel = aio_poll_cancel; 1899 } 1900 if (on_queue) 1901 poll_iocb_unlock_wq(req); 1902 } 1903 if (mask) { /* no async, we'd stolen it */ 1904 aiocb->ki_res.res = mangle_poll(mask); 1905 apt.error = 0; 1906 } 1907 spin_unlock_irq(&ctx->ctx_lock); 1908 if (mask) 1909 iocb_put(aiocb); 1910 return apt.error; 1911 } 1912 1913 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1914 struct iocb __user *user_iocb, struct aio_kiocb *req, 1915 bool compat) 1916 { 1917 req->ki_filp = fget(iocb->aio_fildes); 1918 if (unlikely(!req->ki_filp)) 1919 return -EBADF; 1920 1921 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1922 struct eventfd_ctx *eventfd; 1923 /* 1924 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1925 * instance of the file* now. The file descriptor must be 1926 * an eventfd() fd, and will be signaled for each completed 1927 * event using the eventfd_signal() function. 1928 */ 1929 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1930 if (IS_ERR(eventfd)) 1931 return PTR_ERR(eventfd); 1932 1933 req->ki_eventfd = eventfd; 1934 } 1935 1936 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1937 pr_debug("EFAULT: aio_key\n"); 1938 return -EFAULT; 1939 } 1940 1941 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1942 req->ki_res.data = iocb->aio_data; 1943 req->ki_res.res = 0; 1944 req->ki_res.res2 = 0; 1945 1946 switch (iocb->aio_lio_opcode) { 1947 case IOCB_CMD_PREAD: 1948 return aio_read(&req->rw, iocb, false, compat); 1949 case IOCB_CMD_PWRITE: 1950 return aio_write(&req->rw, iocb, false, compat); 1951 case IOCB_CMD_PREADV: 1952 return aio_read(&req->rw, iocb, true, compat); 1953 case IOCB_CMD_PWRITEV: 1954 return aio_write(&req->rw, iocb, true, compat); 1955 case IOCB_CMD_FSYNC: 1956 return aio_fsync(&req->fsync, iocb, false); 1957 case IOCB_CMD_FDSYNC: 1958 return aio_fsync(&req->fsync, iocb, true); 1959 case IOCB_CMD_POLL: 1960 return aio_poll(req, iocb); 1961 default: 1962 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1963 return -EINVAL; 1964 } 1965 } 1966 1967 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1968 bool compat) 1969 { 1970 struct aio_kiocb *req; 1971 struct iocb iocb; 1972 int err; 1973 1974 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1975 return -EFAULT; 1976 1977 /* enforce forwards compatibility on users */ 1978 if (unlikely(iocb.aio_reserved2)) { 1979 pr_debug("EINVAL: reserve field set\n"); 1980 return -EINVAL; 1981 } 1982 1983 /* prevent overflows */ 1984 if (unlikely( 1985 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1986 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1987 ((ssize_t)iocb.aio_nbytes < 0) 1988 )) { 1989 pr_debug("EINVAL: overflow check\n"); 1990 return -EINVAL; 1991 } 1992 1993 req = aio_get_req(ctx); 1994 if (unlikely(!req)) 1995 return -EAGAIN; 1996 1997 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 1998 1999 /* Done with the synchronous reference */ 2000 iocb_put(req); 2001 2002 /* 2003 * If err is 0, we'd either done aio_complete() ourselves or have 2004 * arranged for that to be done asynchronously. Anything non-zero 2005 * means that we need to destroy req ourselves. 2006 */ 2007 if (unlikely(err)) { 2008 iocb_destroy(req); 2009 put_reqs_available(ctx, 1); 2010 } 2011 return err; 2012 } 2013 2014 /* sys_io_submit: 2015 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2016 * the number of iocbs queued. May return -EINVAL if the aio_context 2017 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2018 * *iocbpp[0] is not properly initialized, if the operation specified 2019 * is invalid for the file descriptor in the iocb. May fail with 2020 * -EFAULT if any of the data structures point to invalid data. May 2021 * fail with -EBADF if the file descriptor specified in the first 2022 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2023 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2024 * fail with -ENOSYS if not implemented. 2025 */ 2026 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2027 struct iocb __user * __user *, iocbpp) 2028 { 2029 struct kioctx *ctx; 2030 long ret = 0; 2031 int i = 0; 2032 struct blk_plug plug; 2033 2034 if (unlikely(nr < 0)) 2035 return -EINVAL; 2036 2037 ctx = lookup_ioctx(ctx_id); 2038 if (unlikely(!ctx)) { 2039 pr_debug("EINVAL: invalid context id\n"); 2040 return -EINVAL; 2041 } 2042 2043 if (nr > ctx->nr_events) 2044 nr = ctx->nr_events; 2045 2046 if (nr > AIO_PLUG_THRESHOLD) 2047 blk_start_plug(&plug); 2048 for (i = 0; i < nr; i++) { 2049 struct iocb __user *user_iocb; 2050 2051 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2052 ret = -EFAULT; 2053 break; 2054 } 2055 2056 ret = io_submit_one(ctx, user_iocb, false); 2057 if (ret) 2058 break; 2059 } 2060 if (nr > AIO_PLUG_THRESHOLD) 2061 blk_finish_plug(&plug); 2062 2063 percpu_ref_put(&ctx->users); 2064 return i ? i : ret; 2065 } 2066 2067 #ifdef CONFIG_COMPAT 2068 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2069 int, nr, compat_uptr_t __user *, iocbpp) 2070 { 2071 struct kioctx *ctx; 2072 long ret = 0; 2073 int i = 0; 2074 struct blk_plug plug; 2075 2076 if (unlikely(nr < 0)) 2077 return -EINVAL; 2078 2079 ctx = lookup_ioctx(ctx_id); 2080 if (unlikely(!ctx)) { 2081 pr_debug("EINVAL: invalid context id\n"); 2082 return -EINVAL; 2083 } 2084 2085 if (nr > ctx->nr_events) 2086 nr = ctx->nr_events; 2087 2088 if (nr > AIO_PLUG_THRESHOLD) 2089 blk_start_plug(&plug); 2090 for (i = 0; i < nr; i++) { 2091 compat_uptr_t user_iocb; 2092 2093 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2094 ret = -EFAULT; 2095 break; 2096 } 2097 2098 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2099 if (ret) 2100 break; 2101 } 2102 if (nr > AIO_PLUG_THRESHOLD) 2103 blk_finish_plug(&plug); 2104 2105 percpu_ref_put(&ctx->users); 2106 return i ? i : ret; 2107 } 2108 #endif 2109 2110 /* sys_io_cancel: 2111 * Attempts to cancel an iocb previously passed to io_submit. If 2112 * the operation is successfully cancelled, the resulting event is 2113 * copied into the memory pointed to by result without being placed 2114 * into the completion queue and 0 is returned. May fail with 2115 * -EFAULT if any of the data structures pointed to are invalid. 2116 * May fail with -EINVAL if aio_context specified by ctx_id is 2117 * invalid. May fail with -EAGAIN if the iocb specified was not 2118 * cancelled. Will fail with -ENOSYS if not implemented. 2119 */ 2120 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2121 struct io_event __user *, result) 2122 { 2123 struct kioctx *ctx; 2124 struct aio_kiocb *kiocb; 2125 int ret = -EINVAL; 2126 u32 key; 2127 u64 obj = (u64)(unsigned long)iocb; 2128 2129 if (unlikely(get_user(key, &iocb->aio_key))) 2130 return -EFAULT; 2131 if (unlikely(key != KIOCB_KEY)) 2132 return -EINVAL; 2133 2134 ctx = lookup_ioctx(ctx_id); 2135 if (unlikely(!ctx)) 2136 return -EINVAL; 2137 2138 spin_lock_irq(&ctx->ctx_lock); 2139 /* TODO: use a hash or array, this sucks. */ 2140 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2141 if (kiocb->ki_res.obj == obj) { 2142 ret = kiocb->ki_cancel(&kiocb->rw); 2143 list_del_init(&kiocb->ki_list); 2144 break; 2145 } 2146 } 2147 spin_unlock_irq(&ctx->ctx_lock); 2148 2149 if (!ret) { 2150 /* 2151 * The result argument is no longer used - the io_event is 2152 * always delivered via the ring buffer. -EINPROGRESS indicates 2153 * cancellation is progress: 2154 */ 2155 ret = -EINPROGRESS; 2156 } 2157 2158 percpu_ref_put(&ctx->users); 2159 2160 return ret; 2161 } 2162 2163 static long do_io_getevents(aio_context_t ctx_id, 2164 long min_nr, 2165 long nr, 2166 struct io_event __user *events, 2167 struct timespec64 *ts) 2168 { 2169 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2170 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2171 long ret = -EINVAL; 2172 2173 if (likely(ioctx)) { 2174 if (likely(min_nr <= nr && min_nr >= 0)) 2175 ret = read_events(ioctx, min_nr, nr, events, until); 2176 percpu_ref_put(&ioctx->users); 2177 } 2178 2179 return ret; 2180 } 2181 2182 /* io_getevents: 2183 * Attempts to read at least min_nr events and up to nr events from 2184 * the completion queue for the aio_context specified by ctx_id. If 2185 * it succeeds, the number of read events is returned. May fail with 2186 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2187 * out of range, if timeout is out of range. May fail with -EFAULT 2188 * if any of the memory specified is invalid. May return 0 or 2189 * < min_nr if the timeout specified by timeout has elapsed 2190 * before sufficient events are available, where timeout == NULL 2191 * specifies an infinite timeout. Note that the timeout pointed to by 2192 * timeout is relative. Will fail with -ENOSYS if not implemented. 2193 */ 2194 #ifdef CONFIG_64BIT 2195 2196 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2197 long, min_nr, 2198 long, nr, 2199 struct io_event __user *, events, 2200 struct __kernel_timespec __user *, timeout) 2201 { 2202 struct timespec64 ts; 2203 int ret; 2204 2205 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2206 return -EFAULT; 2207 2208 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2209 if (!ret && signal_pending(current)) 2210 ret = -EINTR; 2211 return ret; 2212 } 2213 2214 #endif 2215 2216 struct __aio_sigset { 2217 const sigset_t __user *sigmask; 2218 size_t sigsetsize; 2219 }; 2220 2221 SYSCALL_DEFINE6(io_pgetevents, 2222 aio_context_t, ctx_id, 2223 long, min_nr, 2224 long, nr, 2225 struct io_event __user *, events, 2226 struct __kernel_timespec __user *, timeout, 2227 const struct __aio_sigset __user *, usig) 2228 { 2229 struct __aio_sigset ksig = { NULL, }; 2230 struct timespec64 ts; 2231 bool interrupted; 2232 int ret; 2233 2234 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2235 return -EFAULT; 2236 2237 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2238 return -EFAULT; 2239 2240 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2241 if (ret) 2242 return ret; 2243 2244 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2245 2246 interrupted = signal_pending(current); 2247 restore_saved_sigmask_unless(interrupted); 2248 if (interrupted && !ret) 2249 ret = -ERESTARTNOHAND; 2250 2251 return ret; 2252 } 2253 2254 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2255 2256 SYSCALL_DEFINE6(io_pgetevents_time32, 2257 aio_context_t, ctx_id, 2258 long, min_nr, 2259 long, nr, 2260 struct io_event __user *, events, 2261 struct old_timespec32 __user *, timeout, 2262 const struct __aio_sigset __user *, usig) 2263 { 2264 struct __aio_sigset ksig = { NULL, }; 2265 struct timespec64 ts; 2266 bool interrupted; 2267 int ret; 2268 2269 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2270 return -EFAULT; 2271 2272 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2273 return -EFAULT; 2274 2275 2276 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2277 if (ret) 2278 return ret; 2279 2280 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2281 2282 interrupted = signal_pending(current); 2283 restore_saved_sigmask_unless(interrupted); 2284 if (interrupted && !ret) 2285 ret = -ERESTARTNOHAND; 2286 2287 return ret; 2288 } 2289 2290 #endif 2291 2292 #if defined(CONFIG_COMPAT_32BIT_TIME) 2293 2294 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2295 __s32, min_nr, 2296 __s32, nr, 2297 struct io_event __user *, events, 2298 struct old_timespec32 __user *, timeout) 2299 { 2300 struct timespec64 t; 2301 int ret; 2302 2303 if (timeout && get_old_timespec32(&t, timeout)) 2304 return -EFAULT; 2305 2306 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2307 if (!ret && signal_pending(current)) 2308 ret = -EINTR; 2309 return ret; 2310 } 2311 2312 #endif 2313 2314 #ifdef CONFIG_COMPAT 2315 2316 struct __compat_aio_sigset { 2317 compat_uptr_t sigmask; 2318 compat_size_t sigsetsize; 2319 }; 2320 2321 #if defined(CONFIG_COMPAT_32BIT_TIME) 2322 2323 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2324 compat_aio_context_t, ctx_id, 2325 compat_long_t, min_nr, 2326 compat_long_t, nr, 2327 struct io_event __user *, events, 2328 struct old_timespec32 __user *, timeout, 2329 const struct __compat_aio_sigset __user *, usig) 2330 { 2331 struct __compat_aio_sigset ksig = { 0, }; 2332 struct timespec64 t; 2333 bool interrupted; 2334 int ret; 2335 2336 if (timeout && get_old_timespec32(&t, timeout)) 2337 return -EFAULT; 2338 2339 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2340 return -EFAULT; 2341 2342 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2343 if (ret) 2344 return ret; 2345 2346 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2347 2348 interrupted = signal_pending(current); 2349 restore_saved_sigmask_unless(interrupted); 2350 if (interrupted && !ret) 2351 ret = -ERESTARTNOHAND; 2352 2353 return ret; 2354 } 2355 2356 #endif 2357 2358 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2359 compat_aio_context_t, ctx_id, 2360 compat_long_t, min_nr, 2361 compat_long_t, nr, 2362 struct io_event __user *, events, 2363 struct __kernel_timespec __user *, timeout, 2364 const struct __compat_aio_sigset __user *, usig) 2365 { 2366 struct __compat_aio_sigset ksig = { 0, }; 2367 struct timespec64 t; 2368 bool interrupted; 2369 int ret; 2370 2371 if (timeout && get_timespec64(&t, timeout)) 2372 return -EFAULT; 2373 2374 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2375 return -EFAULT; 2376 2377 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2378 if (ret) 2379 return ret; 2380 2381 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2382 2383 interrupted = signal_pending(current); 2384 restore_saved_sigmask_unless(interrupted); 2385 if (interrupted && !ret) 2386 ret = -ERESTARTNOHAND; 2387 2388 return ret; 2389 } 2390 #endif 2391