xref: /openbmc/linux/fs/aio.c (revision 6774def6)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		unsigned	completed_events;
145 		spinlock_t	completion_lock;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct page		*internal_pages[AIO_RING_PAGES];
149 	struct file		*aio_ring_file;
150 
151 	unsigned		id;
152 };
153 
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr;		/* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
159 
160 static struct kmem_cache	*kiocb_cachep;
161 static struct kmem_cache	*kioctx_cachep;
162 
163 static struct vfsmount *aio_mnt;
164 
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
167 
168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169 {
170 	struct qstr this = QSTR_INIT("[aio]", 5);
171 	struct file *file;
172 	struct path path;
173 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174 	if (IS_ERR(inode))
175 		return ERR_CAST(inode);
176 
177 	inode->i_mapping->a_ops = &aio_ctx_aops;
178 	inode->i_mapping->private_data = ctx;
179 	inode->i_size = PAGE_SIZE * nr_pages;
180 
181 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182 	if (!path.dentry) {
183 		iput(inode);
184 		return ERR_PTR(-ENOMEM);
185 	}
186 	path.mnt = mntget(aio_mnt);
187 
188 	d_instantiate(path.dentry, inode);
189 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190 	if (IS_ERR(file)) {
191 		path_put(&path);
192 		return file;
193 	}
194 
195 	file->f_flags = O_RDWR;
196 	return file;
197 }
198 
199 static struct dentry *aio_mount(struct file_system_type *fs_type,
200 				int flags, const char *dev_name, void *data)
201 {
202 	static const struct dentry_operations ops = {
203 		.d_dname	= simple_dname,
204 	};
205 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
206 }
207 
208 /* aio_setup
209  *	Creates the slab caches used by the aio routines, panic on
210  *	failure as this is done early during the boot sequence.
211  */
212 static int __init aio_setup(void)
213 {
214 	static struct file_system_type aio_fs = {
215 		.name		= "aio",
216 		.mount		= aio_mount,
217 		.kill_sb	= kill_anon_super,
218 	};
219 	aio_mnt = kern_mount(&aio_fs);
220 	if (IS_ERR(aio_mnt))
221 		panic("Failed to create aio fs mount.");
222 
223 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225 
226 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227 
228 	return 0;
229 }
230 __initcall(aio_setup);
231 
232 static void put_aio_ring_file(struct kioctx *ctx)
233 {
234 	struct file *aio_ring_file = ctx->aio_ring_file;
235 	if (aio_ring_file) {
236 		truncate_setsize(aio_ring_file->f_inode, 0);
237 
238 		/* Prevent further access to the kioctx from migratepages */
239 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
241 		ctx->aio_ring_file = NULL;
242 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243 
244 		fput(aio_ring_file);
245 	}
246 }
247 
248 static void aio_free_ring(struct kioctx *ctx)
249 {
250 	int i;
251 
252 	/* Disconnect the kiotx from the ring file.  This prevents future
253 	 * accesses to the kioctx from page migration.
254 	 */
255 	put_aio_ring_file(ctx);
256 
257 	for (i = 0; i < ctx->nr_pages; i++) {
258 		struct page *page;
259 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260 				page_count(ctx->ring_pages[i]));
261 		page = ctx->ring_pages[i];
262 		if (!page)
263 			continue;
264 		ctx->ring_pages[i] = NULL;
265 		put_page(page);
266 	}
267 
268 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269 		kfree(ctx->ring_pages);
270 		ctx->ring_pages = NULL;
271 	}
272 }
273 
274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275 {
276 	vma->vm_ops = &generic_file_vm_ops;
277 	return 0;
278 }
279 
280 static const struct file_operations aio_ring_fops = {
281 	.mmap = aio_ring_mmap,
282 };
283 
284 static int aio_set_page_dirty(struct page *page)
285 {
286 	return 0;
287 }
288 
289 #if IS_ENABLED(CONFIG_MIGRATION)
290 static int aio_migratepage(struct address_space *mapping, struct page *new,
291 			struct page *old, enum migrate_mode mode)
292 {
293 	struct kioctx *ctx;
294 	unsigned long flags;
295 	pgoff_t idx;
296 	int rc;
297 
298 	rc = 0;
299 
300 	/* mapping->private_lock here protects against the kioctx teardown.  */
301 	spin_lock(&mapping->private_lock);
302 	ctx = mapping->private_data;
303 	if (!ctx) {
304 		rc = -EINVAL;
305 		goto out;
306 	}
307 
308 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
309 	 * to the ring's head, and prevents page migration from mucking in
310 	 * a partially initialized kiotx.
311 	 */
312 	if (!mutex_trylock(&ctx->ring_lock)) {
313 		rc = -EAGAIN;
314 		goto out;
315 	}
316 
317 	idx = old->index;
318 	if (idx < (pgoff_t)ctx->nr_pages) {
319 		/* Make sure the old page hasn't already been changed */
320 		if (ctx->ring_pages[idx] != old)
321 			rc = -EAGAIN;
322 	} else
323 		rc = -EINVAL;
324 
325 	if (rc != 0)
326 		goto out_unlock;
327 
328 	/* Writeback must be complete */
329 	BUG_ON(PageWriteback(old));
330 	get_page(new);
331 
332 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333 	if (rc != MIGRATEPAGE_SUCCESS) {
334 		put_page(new);
335 		goto out_unlock;
336 	}
337 
338 	/* Take completion_lock to prevent other writes to the ring buffer
339 	 * while the old page is copied to the new.  This prevents new
340 	 * events from being lost.
341 	 */
342 	spin_lock_irqsave(&ctx->completion_lock, flags);
343 	migrate_page_copy(new, old);
344 	BUG_ON(ctx->ring_pages[idx] != old);
345 	ctx->ring_pages[idx] = new;
346 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
347 
348 	/* The old page is no longer accessible. */
349 	put_page(old);
350 
351 out_unlock:
352 	mutex_unlock(&ctx->ring_lock);
353 out:
354 	spin_unlock(&mapping->private_lock);
355 	return rc;
356 }
357 #endif
358 
359 static const struct address_space_operations aio_ctx_aops = {
360 	.set_page_dirty = aio_set_page_dirty,
361 #if IS_ENABLED(CONFIG_MIGRATION)
362 	.migratepage	= aio_migratepage,
363 #endif
364 };
365 
366 static int aio_setup_ring(struct kioctx *ctx)
367 {
368 	struct aio_ring *ring;
369 	unsigned nr_events = ctx->max_reqs;
370 	struct mm_struct *mm = current->mm;
371 	unsigned long size, unused;
372 	int nr_pages;
373 	int i;
374 	struct file *file;
375 
376 	/* Compensate for the ring buffer's head/tail overlap entry */
377 	nr_events += 2;	/* 1 is required, 2 for good luck */
378 
379 	size = sizeof(struct aio_ring);
380 	size += sizeof(struct io_event) * nr_events;
381 
382 	nr_pages = PFN_UP(size);
383 	if (nr_pages < 0)
384 		return -EINVAL;
385 
386 	file = aio_private_file(ctx, nr_pages);
387 	if (IS_ERR(file)) {
388 		ctx->aio_ring_file = NULL;
389 		return -ENOMEM;
390 	}
391 
392 	ctx->aio_ring_file = file;
393 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394 			/ sizeof(struct io_event);
395 
396 	ctx->ring_pages = ctx->internal_pages;
397 	if (nr_pages > AIO_RING_PAGES) {
398 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399 					  GFP_KERNEL);
400 		if (!ctx->ring_pages) {
401 			put_aio_ring_file(ctx);
402 			return -ENOMEM;
403 		}
404 	}
405 
406 	for (i = 0; i < nr_pages; i++) {
407 		struct page *page;
408 		page = find_or_create_page(file->f_inode->i_mapping,
409 					   i, GFP_HIGHUSER | __GFP_ZERO);
410 		if (!page)
411 			break;
412 		pr_debug("pid(%d) page[%d]->count=%d\n",
413 			 current->pid, i, page_count(page));
414 		SetPageUptodate(page);
415 		SetPageDirty(page);
416 		unlock_page(page);
417 
418 		ctx->ring_pages[i] = page;
419 	}
420 	ctx->nr_pages = i;
421 
422 	if (unlikely(i != nr_pages)) {
423 		aio_free_ring(ctx);
424 		return -ENOMEM;
425 	}
426 
427 	ctx->mmap_size = nr_pages * PAGE_SIZE;
428 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429 
430 	down_write(&mm->mmap_sem);
431 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432 				       PROT_READ | PROT_WRITE,
433 				       MAP_SHARED, 0, &unused);
434 	up_write(&mm->mmap_sem);
435 	if (IS_ERR((void *)ctx->mmap_base)) {
436 		ctx->mmap_size = 0;
437 		aio_free_ring(ctx);
438 		return -ENOMEM;
439 	}
440 
441 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442 
443 	ctx->user_id = ctx->mmap_base;
444 	ctx->nr_events = nr_events; /* trusted copy */
445 
446 	ring = kmap_atomic(ctx->ring_pages[0]);
447 	ring->nr = nr_events;	/* user copy */
448 	ring->id = ~0U;
449 	ring->head = ring->tail = 0;
450 	ring->magic = AIO_RING_MAGIC;
451 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
452 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453 	ring->header_length = sizeof(struct aio_ring);
454 	kunmap_atomic(ring);
455 	flush_dcache_page(ctx->ring_pages[0]);
456 
457 	return 0;
458 }
459 
460 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
461 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463 
464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465 {
466 	struct kioctx *ctx = req->ki_ctx;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(&ctx->ctx_lock, flags);
470 
471 	if (!req->ki_list.next)
472 		list_add(&req->ki_list, &ctx->active_reqs);
473 
474 	req->ki_cancel = cancel;
475 
476 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477 }
478 EXPORT_SYMBOL(kiocb_set_cancel_fn);
479 
480 static int kiocb_cancel(struct kiocb *kiocb)
481 {
482 	kiocb_cancel_fn *old, *cancel;
483 
484 	/*
485 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486 	 * actually has a cancel function, hence the cmpxchg()
487 	 */
488 
489 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
490 	do {
491 		if (!cancel || cancel == KIOCB_CANCELLED)
492 			return -EINVAL;
493 
494 		old = cancel;
495 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496 	} while (cancel != old);
497 
498 	return cancel(kiocb);
499 }
500 
501 static void free_ioctx(struct work_struct *work)
502 {
503 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504 
505 	pr_debug("freeing %p\n", ctx);
506 
507 	aio_free_ring(ctx);
508 	free_percpu(ctx->cpu);
509 	percpu_ref_exit(&ctx->reqs);
510 	percpu_ref_exit(&ctx->users);
511 	kmem_cache_free(kioctx_cachep, ctx);
512 }
513 
514 static void free_ioctx_reqs(struct percpu_ref *ref)
515 {
516 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
517 
518 	/* At this point we know that there are no any in-flight requests */
519 	if (ctx->requests_done)
520 		complete(ctx->requests_done);
521 
522 	INIT_WORK(&ctx->free_work, free_ioctx);
523 	schedule_work(&ctx->free_work);
524 }
525 
526 /*
527  * When this function runs, the kioctx has been removed from the "hash table"
528  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
529  * now it's safe to cancel any that need to be.
530  */
531 static void free_ioctx_users(struct percpu_ref *ref)
532 {
533 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
534 	struct kiocb *req;
535 
536 	spin_lock_irq(&ctx->ctx_lock);
537 
538 	while (!list_empty(&ctx->active_reqs)) {
539 		req = list_first_entry(&ctx->active_reqs,
540 				       struct kiocb, ki_list);
541 
542 		list_del_init(&req->ki_list);
543 		kiocb_cancel(req);
544 	}
545 
546 	spin_unlock_irq(&ctx->ctx_lock);
547 
548 	percpu_ref_kill(&ctx->reqs);
549 	percpu_ref_put(&ctx->reqs);
550 }
551 
552 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
553 {
554 	unsigned i, new_nr;
555 	struct kioctx_table *table, *old;
556 	struct aio_ring *ring;
557 
558 	spin_lock(&mm->ioctx_lock);
559 	table = rcu_dereference_raw(mm->ioctx_table);
560 
561 	while (1) {
562 		if (table)
563 			for (i = 0; i < table->nr; i++)
564 				if (!table->table[i]) {
565 					ctx->id = i;
566 					table->table[i] = ctx;
567 					spin_unlock(&mm->ioctx_lock);
568 
569 					/* While kioctx setup is in progress,
570 					 * we are protected from page migration
571 					 * changes ring_pages by ->ring_lock.
572 					 */
573 					ring = kmap_atomic(ctx->ring_pages[0]);
574 					ring->id = ctx->id;
575 					kunmap_atomic(ring);
576 					return 0;
577 				}
578 
579 		new_nr = (table ? table->nr : 1) * 4;
580 		spin_unlock(&mm->ioctx_lock);
581 
582 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
583 				new_nr, GFP_KERNEL);
584 		if (!table)
585 			return -ENOMEM;
586 
587 		table->nr = new_nr;
588 
589 		spin_lock(&mm->ioctx_lock);
590 		old = rcu_dereference_raw(mm->ioctx_table);
591 
592 		if (!old) {
593 			rcu_assign_pointer(mm->ioctx_table, table);
594 		} else if (table->nr > old->nr) {
595 			memcpy(table->table, old->table,
596 			       old->nr * sizeof(struct kioctx *));
597 
598 			rcu_assign_pointer(mm->ioctx_table, table);
599 			kfree_rcu(old, rcu);
600 		} else {
601 			kfree(table);
602 			table = old;
603 		}
604 	}
605 }
606 
607 static void aio_nr_sub(unsigned nr)
608 {
609 	spin_lock(&aio_nr_lock);
610 	if (WARN_ON(aio_nr - nr > aio_nr))
611 		aio_nr = 0;
612 	else
613 		aio_nr -= nr;
614 	spin_unlock(&aio_nr_lock);
615 }
616 
617 /* ioctx_alloc
618  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
619  */
620 static struct kioctx *ioctx_alloc(unsigned nr_events)
621 {
622 	struct mm_struct *mm = current->mm;
623 	struct kioctx *ctx;
624 	int err = -ENOMEM;
625 
626 	/*
627 	 * We keep track of the number of available ringbuffer slots, to prevent
628 	 * overflow (reqs_available), and we also use percpu counters for this.
629 	 *
630 	 * So since up to half the slots might be on other cpu's percpu counters
631 	 * and unavailable, double nr_events so userspace sees what they
632 	 * expected: additionally, we move req_batch slots to/from percpu
633 	 * counters at a time, so make sure that isn't 0:
634 	 */
635 	nr_events = max(nr_events, num_possible_cpus() * 4);
636 	nr_events *= 2;
637 
638 	/* Prevent overflows */
639 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
640 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
641 		pr_debug("ENOMEM: nr_events too high\n");
642 		return ERR_PTR(-EINVAL);
643 	}
644 
645 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
646 		return ERR_PTR(-EAGAIN);
647 
648 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
649 	if (!ctx)
650 		return ERR_PTR(-ENOMEM);
651 
652 	ctx->max_reqs = nr_events;
653 
654 	spin_lock_init(&ctx->ctx_lock);
655 	spin_lock_init(&ctx->completion_lock);
656 	mutex_init(&ctx->ring_lock);
657 	/* Protect against page migration throughout kiotx setup by keeping
658 	 * the ring_lock mutex held until setup is complete. */
659 	mutex_lock(&ctx->ring_lock);
660 	init_waitqueue_head(&ctx->wait);
661 
662 	INIT_LIST_HEAD(&ctx->active_reqs);
663 
664 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
665 		goto err;
666 
667 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
668 		goto err;
669 
670 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
671 	if (!ctx->cpu)
672 		goto err;
673 
674 	err = aio_setup_ring(ctx);
675 	if (err < 0)
676 		goto err;
677 
678 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
679 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
680 	if (ctx->req_batch < 1)
681 		ctx->req_batch = 1;
682 
683 	/* limit the number of system wide aios */
684 	spin_lock(&aio_nr_lock);
685 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
686 	    aio_nr + nr_events < aio_nr) {
687 		spin_unlock(&aio_nr_lock);
688 		err = -EAGAIN;
689 		goto err_ctx;
690 	}
691 	aio_nr += ctx->max_reqs;
692 	spin_unlock(&aio_nr_lock);
693 
694 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
695 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
696 
697 	err = ioctx_add_table(ctx, mm);
698 	if (err)
699 		goto err_cleanup;
700 
701 	/* Release the ring_lock mutex now that all setup is complete. */
702 	mutex_unlock(&ctx->ring_lock);
703 
704 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
705 		 ctx, ctx->user_id, mm, ctx->nr_events);
706 	return ctx;
707 
708 err_cleanup:
709 	aio_nr_sub(ctx->max_reqs);
710 err_ctx:
711 	aio_free_ring(ctx);
712 err:
713 	mutex_unlock(&ctx->ring_lock);
714 	free_percpu(ctx->cpu);
715 	percpu_ref_exit(&ctx->reqs);
716 	percpu_ref_exit(&ctx->users);
717 	kmem_cache_free(kioctx_cachep, ctx);
718 	pr_debug("error allocating ioctx %d\n", err);
719 	return ERR_PTR(err);
720 }
721 
722 /* kill_ioctx
723  *	Cancels all outstanding aio requests on an aio context.  Used
724  *	when the processes owning a context have all exited to encourage
725  *	the rapid destruction of the kioctx.
726  */
727 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
728 		struct completion *requests_done)
729 {
730 	struct kioctx_table *table;
731 
732 	if (atomic_xchg(&ctx->dead, 1))
733 		return -EINVAL;
734 
735 
736 	spin_lock(&mm->ioctx_lock);
737 	table = rcu_dereference_raw(mm->ioctx_table);
738 	WARN_ON(ctx != table->table[ctx->id]);
739 	table->table[ctx->id] = NULL;
740 	spin_unlock(&mm->ioctx_lock);
741 
742 	/* percpu_ref_kill() will do the necessary call_rcu() */
743 	wake_up_all(&ctx->wait);
744 
745 	/*
746 	 * It'd be more correct to do this in free_ioctx(), after all
747 	 * the outstanding kiocbs have finished - but by then io_destroy
748 	 * has already returned, so io_setup() could potentially return
749 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
750 	 *  could tell).
751 	 */
752 	aio_nr_sub(ctx->max_reqs);
753 
754 	if (ctx->mmap_size)
755 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
756 
757 	ctx->requests_done = requests_done;
758 	percpu_ref_kill(&ctx->users);
759 	return 0;
760 }
761 
762 /* wait_on_sync_kiocb:
763  *	Waits on the given sync kiocb to complete.
764  */
765 ssize_t wait_on_sync_kiocb(struct kiocb *req)
766 {
767 	while (!req->ki_ctx) {
768 		set_current_state(TASK_UNINTERRUPTIBLE);
769 		if (req->ki_ctx)
770 			break;
771 		io_schedule();
772 	}
773 	__set_current_state(TASK_RUNNING);
774 	return req->ki_user_data;
775 }
776 EXPORT_SYMBOL(wait_on_sync_kiocb);
777 
778 /*
779  * exit_aio: called when the last user of mm goes away.  At this point, there is
780  * no way for any new requests to be submited or any of the io_* syscalls to be
781  * called on the context.
782  *
783  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
784  * them.
785  */
786 void exit_aio(struct mm_struct *mm)
787 {
788 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
789 	int i;
790 
791 	if (!table)
792 		return;
793 
794 	for (i = 0; i < table->nr; ++i) {
795 		struct kioctx *ctx = table->table[i];
796 		struct completion requests_done =
797 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
798 
799 		if (!ctx)
800 			continue;
801 		/*
802 		 * We don't need to bother with munmap() here - exit_mmap(mm)
803 		 * is coming and it'll unmap everything. And we simply can't,
804 		 * this is not necessarily our ->mm.
805 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
806 		 * that it needs to unmap the area, just set it to 0.
807 		 */
808 		ctx->mmap_size = 0;
809 		kill_ioctx(mm, ctx, &requests_done);
810 
811 		/* Wait until all IO for the context are done. */
812 		wait_for_completion(&requests_done);
813 	}
814 
815 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
816 	kfree(table);
817 }
818 
819 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
820 {
821 	struct kioctx_cpu *kcpu;
822 	unsigned long flags;
823 
824 	local_irq_save(flags);
825 	kcpu = this_cpu_ptr(ctx->cpu);
826 	kcpu->reqs_available += nr;
827 
828 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
829 		kcpu->reqs_available -= ctx->req_batch;
830 		atomic_add(ctx->req_batch, &ctx->reqs_available);
831 	}
832 
833 	local_irq_restore(flags);
834 }
835 
836 static bool get_reqs_available(struct kioctx *ctx)
837 {
838 	struct kioctx_cpu *kcpu;
839 	bool ret = false;
840 	unsigned long flags;
841 
842 	local_irq_save(flags);
843 	kcpu = this_cpu_ptr(ctx->cpu);
844 	if (!kcpu->reqs_available) {
845 		int old, avail = atomic_read(&ctx->reqs_available);
846 
847 		do {
848 			if (avail < ctx->req_batch)
849 				goto out;
850 
851 			old = avail;
852 			avail = atomic_cmpxchg(&ctx->reqs_available,
853 					       avail, avail - ctx->req_batch);
854 		} while (avail != old);
855 
856 		kcpu->reqs_available += ctx->req_batch;
857 	}
858 
859 	ret = true;
860 	kcpu->reqs_available--;
861 out:
862 	local_irq_restore(flags);
863 	return ret;
864 }
865 
866 /* refill_reqs_available
867  *	Updates the reqs_available reference counts used for tracking the
868  *	number of free slots in the completion ring.  This can be called
869  *	from aio_complete() (to optimistically update reqs_available) or
870  *	from aio_get_req() (the we're out of events case).  It must be
871  *	called holding ctx->completion_lock.
872  */
873 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
874                                   unsigned tail)
875 {
876 	unsigned events_in_ring, completed;
877 
878 	/* Clamp head since userland can write to it. */
879 	head %= ctx->nr_events;
880 	if (head <= tail)
881 		events_in_ring = tail - head;
882 	else
883 		events_in_ring = ctx->nr_events - (head - tail);
884 
885 	completed = ctx->completed_events;
886 	if (events_in_ring < completed)
887 		completed -= events_in_ring;
888 	else
889 		completed = 0;
890 
891 	if (!completed)
892 		return;
893 
894 	ctx->completed_events -= completed;
895 	put_reqs_available(ctx, completed);
896 }
897 
898 /* user_refill_reqs_available
899  *	Called to refill reqs_available when aio_get_req() encounters an
900  *	out of space in the completion ring.
901  */
902 static void user_refill_reqs_available(struct kioctx *ctx)
903 {
904 	spin_lock_irq(&ctx->completion_lock);
905 	if (ctx->completed_events) {
906 		struct aio_ring *ring;
907 		unsigned head;
908 
909 		/* Access of ring->head may race with aio_read_events_ring()
910 		 * here, but that's okay since whether we read the old version
911 		 * or the new version, and either will be valid.  The important
912 		 * part is that head cannot pass tail since we prevent
913 		 * aio_complete() from updating tail by holding
914 		 * ctx->completion_lock.  Even if head is invalid, the check
915 		 * against ctx->completed_events below will make sure we do the
916 		 * safe/right thing.
917 		 */
918 		ring = kmap_atomic(ctx->ring_pages[0]);
919 		head = ring->head;
920 		kunmap_atomic(ring);
921 
922 		refill_reqs_available(ctx, head, ctx->tail);
923 	}
924 
925 	spin_unlock_irq(&ctx->completion_lock);
926 }
927 
928 /* aio_get_req
929  *	Allocate a slot for an aio request.
930  * Returns NULL if no requests are free.
931  */
932 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
933 {
934 	struct kiocb *req;
935 
936 	if (!get_reqs_available(ctx)) {
937 		user_refill_reqs_available(ctx);
938 		if (!get_reqs_available(ctx))
939 			return NULL;
940 	}
941 
942 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
943 	if (unlikely(!req))
944 		goto out_put;
945 
946 	percpu_ref_get(&ctx->reqs);
947 
948 	req->ki_ctx = ctx;
949 	return req;
950 out_put:
951 	put_reqs_available(ctx, 1);
952 	return NULL;
953 }
954 
955 static void kiocb_free(struct kiocb *req)
956 {
957 	if (req->ki_filp)
958 		fput(req->ki_filp);
959 	if (req->ki_eventfd != NULL)
960 		eventfd_ctx_put(req->ki_eventfd);
961 	kmem_cache_free(kiocb_cachep, req);
962 }
963 
964 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
965 {
966 	struct aio_ring __user *ring  = (void __user *)ctx_id;
967 	struct mm_struct *mm = current->mm;
968 	struct kioctx *ctx, *ret = NULL;
969 	struct kioctx_table *table;
970 	unsigned id;
971 
972 	if (get_user(id, &ring->id))
973 		return NULL;
974 
975 	rcu_read_lock();
976 	table = rcu_dereference(mm->ioctx_table);
977 
978 	if (!table || id >= table->nr)
979 		goto out;
980 
981 	ctx = table->table[id];
982 	if (ctx && ctx->user_id == ctx_id) {
983 		percpu_ref_get(&ctx->users);
984 		ret = ctx;
985 	}
986 out:
987 	rcu_read_unlock();
988 	return ret;
989 }
990 
991 /* aio_complete
992  *	Called when the io request on the given iocb is complete.
993  */
994 void aio_complete(struct kiocb *iocb, long res, long res2)
995 {
996 	struct kioctx	*ctx = iocb->ki_ctx;
997 	struct aio_ring	*ring;
998 	struct io_event	*ev_page, *event;
999 	unsigned tail, pos, head;
1000 	unsigned long	flags;
1001 
1002 	/*
1003 	 * Special case handling for sync iocbs:
1004 	 *  - events go directly into the iocb for fast handling
1005 	 *  - the sync task with the iocb in its stack holds the single iocb
1006 	 *    ref, no other paths have a way to get another ref
1007 	 *  - the sync task helpfully left a reference to itself in the iocb
1008 	 */
1009 	if (is_sync_kiocb(iocb)) {
1010 		iocb->ki_user_data = res;
1011 		smp_wmb();
1012 		iocb->ki_ctx = ERR_PTR(-EXDEV);
1013 		wake_up_process(iocb->ki_obj.tsk);
1014 		return;
1015 	}
1016 
1017 	if (iocb->ki_list.next) {
1018 		unsigned long flags;
1019 
1020 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1021 		list_del(&iocb->ki_list);
1022 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1023 	}
1024 
1025 	/*
1026 	 * Add a completion event to the ring buffer. Must be done holding
1027 	 * ctx->completion_lock to prevent other code from messing with the tail
1028 	 * pointer since we might be called from irq context.
1029 	 */
1030 	spin_lock_irqsave(&ctx->completion_lock, flags);
1031 
1032 	tail = ctx->tail;
1033 	pos = tail + AIO_EVENTS_OFFSET;
1034 
1035 	if (++tail >= ctx->nr_events)
1036 		tail = 0;
1037 
1038 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1039 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1040 
1041 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1042 	event->data = iocb->ki_user_data;
1043 	event->res = res;
1044 	event->res2 = res2;
1045 
1046 	kunmap_atomic(ev_page);
1047 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1048 
1049 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1050 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1051 		 res, res2);
1052 
1053 	/* after flagging the request as done, we
1054 	 * must never even look at it again
1055 	 */
1056 	smp_wmb();	/* make event visible before updating tail */
1057 
1058 	ctx->tail = tail;
1059 
1060 	ring = kmap_atomic(ctx->ring_pages[0]);
1061 	head = ring->head;
1062 	ring->tail = tail;
1063 	kunmap_atomic(ring);
1064 	flush_dcache_page(ctx->ring_pages[0]);
1065 
1066 	ctx->completed_events++;
1067 	if (ctx->completed_events > 1)
1068 		refill_reqs_available(ctx, head, tail);
1069 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1070 
1071 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1072 
1073 	/*
1074 	 * Check if the user asked us to deliver the result through an
1075 	 * eventfd. The eventfd_signal() function is safe to be called
1076 	 * from IRQ context.
1077 	 */
1078 	if (iocb->ki_eventfd != NULL)
1079 		eventfd_signal(iocb->ki_eventfd, 1);
1080 
1081 	/* everything turned out well, dispose of the aiocb. */
1082 	kiocb_free(iocb);
1083 
1084 	/*
1085 	 * We have to order our ring_info tail store above and test
1086 	 * of the wait list below outside the wait lock.  This is
1087 	 * like in wake_up_bit() where clearing a bit has to be
1088 	 * ordered with the unlocked test.
1089 	 */
1090 	smp_mb();
1091 
1092 	if (waitqueue_active(&ctx->wait))
1093 		wake_up(&ctx->wait);
1094 
1095 	percpu_ref_put(&ctx->reqs);
1096 }
1097 EXPORT_SYMBOL(aio_complete);
1098 
1099 /* aio_read_events_ring
1100  *	Pull an event off of the ioctx's event ring.  Returns the number of
1101  *	events fetched
1102  */
1103 static long aio_read_events_ring(struct kioctx *ctx,
1104 				 struct io_event __user *event, long nr)
1105 {
1106 	struct aio_ring *ring;
1107 	unsigned head, tail, pos;
1108 	long ret = 0;
1109 	int copy_ret;
1110 
1111 	mutex_lock(&ctx->ring_lock);
1112 
1113 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1114 	ring = kmap_atomic(ctx->ring_pages[0]);
1115 	head = ring->head;
1116 	tail = ring->tail;
1117 	kunmap_atomic(ring);
1118 
1119 	/*
1120 	 * Ensure that once we've read the current tail pointer, that
1121 	 * we also see the events that were stored up to the tail.
1122 	 */
1123 	smp_rmb();
1124 
1125 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1126 
1127 	if (head == tail)
1128 		goto out;
1129 
1130 	head %= ctx->nr_events;
1131 	tail %= ctx->nr_events;
1132 
1133 	while (ret < nr) {
1134 		long avail;
1135 		struct io_event *ev;
1136 		struct page *page;
1137 
1138 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1139 		if (head == tail)
1140 			break;
1141 
1142 		avail = min(avail, nr - ret);
1143 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1144 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1145 
1146 		pos = head + AIO_EVENTS_OFFSET;
1147 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1148 		pos %= AIO_EVENTS_PER_PAGE;
1149 
1150 		ev = kmap(page);
1151 		copy_ret = copy_to_user(event + ret, ev + pos,
1152 					sizeof(*ev) * avail);
1153 		kunmap(page);
1154 
1155 		if (unlikely(copy_ret)) {
1156 			ret = -EFAULT;
1157 			goto out;
1158 		}
1159 
1160 		ret += avail;
1161 		head += avail;
1162 		head %= ctx->nr_events;
1163 	}
1164 
1165 	ring = kmap_atomic(ctx->ring_pages[0]);
1166 	ring->head = head;
1167 	kunmap_atomic(ring);
1168 	flush_dcache_page(ctx->ring_pages[0]);
1169 
1170 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1171 out:
1172 	mutex_unlock(&ctx->ring_lock);
1173 
1174 	return ret;
1175 }
1176 
1177 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1178 			    struct io_event __user *event, long *i)
1179 {
1180 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1181 
1182 	if (ret > 0)
1183 		*i += ret;
1184 
1185 	if (unlikely(atomic_read(&ctx->dead)))
1186 		ret = -EINVAL;
1187 
1188 	if (!*i)
1189 		*i = ret;
1190 
1191 	return ret < 0 || *i >= min_nr;
1192 }
1193 
1194 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1195 			struct io_event __user *event,
1196 			struct timespec __user *timeout)
1197 {
1198 	ktime_t until = { .tv64 = KTIME_MAX };
1199 	long ret = 0;
1200 
1201 	if (timeout) {
1202 		struct timespec	ts;
1203 
1204 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1205 			return -EFAULT;
1206 
1207 		until = timespec_to_ktime(ts);
1208 	}
1209 
1210 	/*
1211 	 * Note that aio_read_events() is being called as the conditional - i.e.
1212 	 * we're calling it after prepare_to_wait() has set task state to
1213 	 * TASK_INTERRUPTIBLE.
1214 	 *
1215 	 * But aio_read_events() can block, and if it blocks it's going to flip
1216 	 * the task state back to TASK_RUNNING.
1217 	 *
1218 	 * This should be ok, provided it doesn't flip the state back to
1219 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1220 	 * will only happen if the mutex_lock() call blocks, and we then find
1221 	 * the ringbuffer empty. So in practice we should be ok, but it's
1222 	 * something to be aware of when touching this code.
1223 	 */
1224 	wait_event_interruptible_hrtimeout(ctx->wait,
1225 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1226 
1227 	if (!ret && signal_pending(current))
1228 		ret = -EINTR;
1229 
1230 	return ret;
1231 }
1232 
1233 /* sys_io_setup:
1234  *	Create an aio_context capable of receiving at least nr_events.
1235  *	ctxp must not point to an aio_context that already exists, and
1236  *	must be initialized to 0 prior to the call.  On successful
1237  *	creation of the aio_context, *ctxp is filled in with the resulting
1238  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1239  *	if the specified nr_events exceeds internal limits.  May fail
1240  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1241  *	of available events.  May fail with -ENOMEM if insufficient kernel
1242  *	resources are available.  May fail with -EFAULT if an invalid
1243  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1244  *	implemented.
1245  */
1246 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1247 {
1248 	struct kioctx *ioctx = NULL;
1249 	unsigned long ctx;
1250 	long ret;
1251 
1252 	ret = get_user(ctx, ctxp);
1253 	if (unlikely(ret))
1254 		goto out;
1255 
1256 	ret = -EINVAL;
1257 	if (unlikely(ctx || nr_events == 0)) {
1258 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1259 		         ctx, nr_events);
1260 		goto out;
1261 	}
1262 
1263 	ioctx = ioctx_alloc(nr_events);
1264 	ret = PTR_ERR(ioctx);
1265 	if (!IS_ERR(ioctx)) {
1266 		ret = put_user(ioctx->user_id, ctxp);
1267 		if (ret)
1268 			kill_ioctx(current->mm, ioctx, NULL);
1269 		percpu_ref_put(&ioctx->users);
1270 	}
1271 
1272 out:
1273 	return ret;
1274 }
1275 
1276 /* sys_io_destroy:
1277  *	Destroy the aio_context specified.  May cancel any outstanding
1278  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1279  *	implemented.  May fail with -EINVAL if the context pointed to
1280  *	is invalid.
1281  */
1282 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1283 {
1284 	struct kioctx *ioctx = lookup_ioctx(ctx);
1285 	if (likely(NULL != ioctx)) {
1286 		struct completion requests_done =
1287 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1288 		int ret;
1289 
1290 		/* Pass requests_done to kill_ioctx() where it can be set
1291 		 * in a thread-safe way. If we try to set it here then we have
1292 		 * a race condition if two io_destroy() called simultaneously.
1293 		 */
1294 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1295 		percpu_ref_put(&ioctx->users);
1296 
1297 		/* Wait until all IO for the context are done. Otherwise kernel
1298 		 * keep using user-space buffers even if user thinks the context
1299 		 * is destroyed.
1300 		 */
1301 		if (!ret)
1302 			wait_for_completion(&requests_done);
1303 
1304 		return ret;
1305 	}
1306 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1307 	return -EINVAL;
1308 }
1309 
1310 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1311 			    unsigned long, loff_t);
1312 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1313 
1314 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1315 				     int rw, char __user *buf,
1316 				     unsigned long *nr_segs,
1317 				     struct iovec **iovec,
1318 				     bool compat)
1319 {
1320 	ssize_t ret;
1321 
1322 	*nr_segs = kiocb->ki_nbytes;
1323 
1324 #ifdef CONFIG_COMPAT
1325 	if (compat)
1326 		ret = compat_rw_copy_check_uvector(rw,
1327 				(struct compat_iovec __user *)buf,
1328 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1329 	else
1330 #endif
1331 		ret = rw_copy_check_uvector(rw,
1332 				(struct iovec __user *)buf,
1333 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1334 	if (ret < 0)
1335 		return ret;
1336 
1337 	/* ki_nbytes now reflect bytes instead of segs */
1338 	kiocb->ki_nbytes = ret;
1339 	return 0;
1340 }
1341 
1342 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1343 				       int rw, char __user *buf,
1344 				       unsigned long *nr_segs,
1345 				       struct iovec *iovec)
1346 {
1347 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1348 		return -EFAULT;
1349 
1350 	iovec->iov_base = buf;
1351 	iovec->iov_len = kiocb->ki_nbytes;
1352 	*nr_segs = 1;
1353 	return 0;
1354 }
1355 
1356 /*
1357  * aio_run_iocb:
1358  *	Performs the initial checks and io submission.
1359  */
1360 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1361 			    char __user *buf, bool compat)
1362 {
1363 	struct file *file = req->ki_filp;
1364 	ssize_t ret;
1365 	unsigned long nr_segs;
1366 	int rw;
1367 	fmode_t mode;
1368 	aio_rw_op *rw_op;
1369 	rw_iter_op *iter_op;
1370 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1371 	struct iov_iter iter;
1372 
1373 	switch (opcode) {
1374 	case IOCB_CMD_PREAD:
1375 	case IOCB_CMD_PREADV:
1376 		mode	= FMODE_READ;
1377 		rw	= READ;
1378 		rw_op	= file->f_op->aio_read;
1379 		iter_op	= file->f_op->read_iter;
1380 		goto rw_common;
1381 
1382 	case IOCB_CMD_PWRITE:
1383 	case IOCB_CMD_PWRITEV:
1384 		mode	= FMODE_WRITE;
1385 		rw	= WRITE;
1386 		rw_op	= file->f_op->aio_write;
1387 		iter_op	= file->f_op->write_iter;
1388 		goto rw_common;
1389 rw_common:
1390 		if (unlikely(!(file->f_mode & mode)))
1391 			return -EBADF;
1392 
1393 		if (!rw_op && !iter_op)
1394 			return -EINVAL;
1395 
1396 		ret = (opcode == IOCB_CMD_PREADV ||
1397 		       opcode == IOCB_CMD_PWRITEV)
1398 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1399 						&iovec, compat)
1400 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1401 						  iovec);
1402 		if (!ret)
1403 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1404 		if (ret < 0) {
1405 			if (iovec != inline_vecs)
1406 				kfree(iovec);
1407 			return ret;
1408 		}
1409 
1410 		req->ki_nbytes = ret;
1411 
1412 		/* XXX: move/kill - rw_verify_area()? */
1413 		/* This matches the pread()/pwrite() logic */
1414 		if (req->ki_pos < 0) {
1415 			ret = -EINVAL;
1416 			break;
1417 		}
1418 
1419 		if (rw == WRITE)
1420 			file_start_write(file);
1421 
1422 		if (iter_op) {
1423 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1424 			ret = iter_op(req, &iter);
1425 		} else {
1426 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1427 		}
1428 
1429 		if (rw == WRITE)
1430 			file_end_write(file);
1431 		break;
1432 
1433 	case IOCB_CMD_FDSYNC:
1434 		if (!file->f_op->aio_fsync)
1435 			return -EINVAL;
1436 
1437 		ret = file->f_op->aio_fsync(req, 1);
1438 		break;
1439 
1440 	case IOCB_CMD_FSYNC:
1441 		if (!file->f_op->aio_fsync)
1442 			return -EINVAL;
1443 
1444 		ret = file->f_op->aio_fsync(req, 0);
1445 		break;
1446 
1447 	default:
1448 		pr_debug("EINVAL: no operation provided\n");
1449 		return -EINVAL;
1450 	}
1451 
1452 	if (iovec != inline_vecs)
1453 		kfree(iovec);
1454 
1455 	if (ret != -EIOCBQUEUED) {
1456 		/*
1457 		 * There's no easy way to restart the syscall since other AIO's
1458 		 * may be already running. Just fail this IO with EINTR.
1459 		 */
1460 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1461 			     ret == -ERESTARTNOHAND ||
1462 			     ret == -ERESTART_RESTARTBLOCK))
1463 			ret = -EINTR;
1464 		aio_complete(req, ret, 0);
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1471 			 struct iocb *iocb, bool compat)
1472 {
1473 	struct kiocb *req;
1474 	ssize_t ret;
1475 
1476 	/* enforce forwards compatibility on users */
1477 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1478 		pr_debug("EINVAL: reserve field set\n");
1479 		return -EINVAL;
1480 	}
1481 
1482 	/* prevent overflows */
1483 	if (unlikely(
1484 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1485 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1486 	    ((ssize_t)iocb->aio_nbytes < 0)
1487 	   )) {
1488 		pr_debug("EINVAL: io_submit: overflow check\n");
1489 		return -EINVAL;
1490 	}
1491 
1492 	req = aio_get_req(ctx);
1493 	if (unlikely(!req))
1494 		return -EAGAIN;
1495 
1496 	req->ki_filp = fget(iocb->aio_fildes);
1497 	if (unlikely(!req->ki_filp)) {
1498 		ret = -EBADF;
1499 		goto out_put_req;
1500 	}
1501 
1502 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1503 		/*
1504 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1505 		 * instance of the file* now. The file descriptor must be
1506 		 * an eventfd() fd, and will be signaled for each completed
1507 		 * event using the eventfd_signal() function.
1508 		 */
1509 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1510 		if (IS_ERR(req->ki_eventfd)) {
1511 			ret = PTR_ERR(req->ki_eventfd);
1512 			req->ki_eventfd = NULL;
1513 			goto out_put_req;
1514 		}
1515 	}
1516 
1517 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1518 	if (unlikely(ret)) {
1519 		pr_debug("EFAULT: aio_key\n");
1520 		goto out_put_req;
1521 	}
1522 
1523 	req->ki_obj.user = user_iocb;
1524 	req->ki_user_data = iocb->aio_data;
1525 	req->ki_pos = iocb->aio_offset;
1526 	req->ki_nbytes = iocb->aio_nbytes;
1527 
1528 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1529 			   (char __user *)(unsigned long)iocb->aio_buf,
1530 			   compat);
1531 	if (ret)
1532 		goto out_put_req;
1533 
1534 	return 0;
1535 out_put_req:
1536 	put_reqs_available(ctx, 1);
1537 	percpu_ref_put(&ctx->reqs);
1538 	kiocb_free(req);
1539 	return ret;
1540 }
1541 
1542 long do_io_submit(aio_context_t ctx_id, long nr,
1543 		  struct iocb __user *__user *iocbpp, bool compat)
1544 {
1545 	struct kioctx *ctx;
1546 	long ret = 0;
1547 	int i = 0;
1548 	struct blk_plug plug;
1549 
1550 	if (unlikely(nr < 0))
1551 		return -EINVAL;
1552 
1553 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1554 		nr = LONG_MAX/sizeof(*iocbpp);
1555 
1556 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1557 		return -EFAULT;
1558 
1559 	ctx = lookup_ioctx(ctx_id);
1560 	if (unlikely(!ctx)) {
1561 		pr_debug("EINVAL: invalid context id\n");
1562 		return -EINVAL;
1563 	}
1564 
1565 	blk_start_plug(&plug);
1566 
1567 	/*
1568 	 * AKPM: should this return a partial result if some of the IOs were
1569 	 * successfully submitted?
1570 	 */
1571 	for (i=0; i<nr; i++) {
1572 		struct iocb __user *user_iocb;
1573 		struct iocb tmp;
1574 
1575 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1576 			ret = -EFAULT;
1577 			break;
1578 		}
1579 
1580 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1581 			ret = -EFAULT;
1582 			break;
1583 		}
1584 
1585 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1586 		if (ret)
1587 			break;
1588 	}
1589 	blk_finish_plug(&plug);
1590 
1591 	percpu_ref_put(&ctx->users);
1592 	return i ? i : ret;
1593 }
1594 
1595 /* sys_io_submit:
1596  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1597  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1598  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1599  *	*iocbpp[0] is not properly initialized, if the operation specified
1600  *	is invalid for the file descriptor in the iocb.  May fail with
1601  *	-EFAULT if any of the data structures point to invalid data.  May
1602  *	fail with -EBADF if the file descriptor specified in the first
1603  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1604  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1605  *	fail with -ENOSYS if not implemented.
1606  */
1607 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1608 		struct iocb __user * __user *, iocbpp)
1609 {
1610 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1611 }
1612 
1613 /* lookup_kiocb
1614  *	Finds a given iocb for cancellation.
1615  */
1616 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1617 				  u32 key)
1618 {
1619 	struct list_head *pos;
1620 
1621 	assert_spin_locked(&ctx->ctx_lock);
1622 
1623 	if (key != KIOCB_KEY)
1624 		return NULL;
1625 
1626 	/* TODO: use a hash or array, this sucks. */
1627 	list_for_each(pos, &ctx->active_reqs) {
1628 		struct kiocb *kiocb = list_kiocb(pos);
1629 		if (kiocb->ki_obj.user == iocb)
1630 			return kiocb;
1631 	}
1632 	return NULL;
1633 }
1634 
1635 /* sys_io_cancel:
1636  *	Attempts to cancel an iocb previously passed to io_submit.  If
1637  *	the operation is successfully cancelled, the resulting event is
1638  *	copied into the memory pointed to by result without being placed
1639  *	into the completion queue and 0 is returned.  May fail with
1640  *	-EFAULT if any of the data structures pointed to are invalid.
1641  *	May fail with -EINVAL if aio_context specified by ctx_id is
1642  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1643  *	cancelled.  Will fail with -ENOSYS if not implemented.
1644  */
1645 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1646 		struct io_event __user *, result)
1647 {
1648 	struct kioctx *ctx;
1649 	struct kiocb *kiocb;
1650 	u32 key;
1651 	int ret;
1652 
1653 	ret = get_user(key, &iocb->aio_key);
1654 	if (unlikely(ret))
1655 		return -EFAULT;
1656 
1657 	ctx = lookup_ioctx(ctx_id);
1658 	if (unlikely(!ctx))
1659 		return -EINVAL;
1660 
1661 	spin_lock_irq(&ctx->ctx_lock);
1662 
1663 	kiocb = lookup_kiocb(ctx, iocb, key);
1664 	if (kiocb)
1665 		ret = kiocb_cancel(kiocb);
1666 	else
1667 		ret = -EINVAL;
1668 
1669 	spin_unlock_irq(&ctx->ctx_lock);
1670 
1671 	if (!ret) {
1672 		/*
1673 		 * The result argument is no longer used - the io_event is
1674 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1675 		 * cancellation is progress:
1676 		 */
1677 		ret = -EINPROGRESS;
1678 	}
1679 
1680 	percpu_ref_put(&ctx->users);
1681 
1682 	return ret;
1683 }
1684 
1685 /* io_getevents:
1686  *	Attempts to read at least min_nr events and up to nr events from
1687  *	the completion queue for the aio_context specified by ctx_id. If
1688  *	it succeeds, the number of read events is returned. May fail with
1689  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1690  *	out of range, if timeout is out of range.  May fail with -EFAULT
1691  *	if any of the memory specified is invalid.  May return 0 or
1692  *	< min_nr if the timeout specified by timeout has elapsed
1693  *	before sufficient events are available, where timeout == NULL
1694  *	specifies an infinite timeout. Note that the timeout pointed to by
1695  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1696  */
1697 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1698 		long, min_nr,
1699 		long, nr,
1700 		struct io_event __user *, events,
1701 		struct timespec __user *, timeout)
1702 {
1703 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1704 	long ret = -EINVAL;
1705 
1706 	if (likely(ioctx)) {
1707 		if (likely(min_nr <= nr && min_nr >= 0))
1708 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1709 		percpu_ref_put(&ioctx->users);
1710 	}
1711 	return ret;
1712 }
1713