1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 /* 116 * signals when all in-flight requests are done 117 */ 118 struct completion *requests_done; 119 120 struct { 121 /* 122 * This counts the number of available slots in the ringbuffer, 123 * so we avoid overflowing it: it's decremented (if positive) 124 * when allocating a kiocb and incremented when the resulting 125 * io_event is pulled off the ringbuffer. 126 * 127 * We batch accesses to it with a percpu version. 128 */ 129 atomic_t reqs_available; 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 spinlock_t ctx_lock; 134 struct list_head active_reqs; /* used for cancellation */ 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 struct mutex ring_lock; 139 wait_queue_head_t wait; 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 unsigned tail; 144 spinlock_t completion_lock; 145 } ____cacheline_aligned_in_smp; 146 147 struct page *internal_pages[AIO_RING_PAGES]; 148 struct file *aio_ring_file; 149 150 unsigned id; 151 }; 152 153 /*------ sysctl variables----*/ 154 static DEFINE_SPINLOCK(aio_nr_lock); 155 unsigned long aio_nr; /* current system wide number of aio requests */ 156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 157 /*----end sysctl variables---*/ 158 159 static struct kmem_cache *kiocb_cachep; 160 static struct kmem_cache *kioctx_cachep; 161 162 static struct vfsmount *aio_mnt; 163 164 static const struct file_operations aio_ring_fops; 165 static const struct address_space_operations aio_ctx_aops; 166 167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 168 { 169 struct qstr this = QSTR_INIT("[aio]", 5); 170 struct file *file; 171 struct path path; 172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 173 if (IS_ERR(inode)) 174 return ERR_CAST(inode); 175 176 inode->i_mapping->a_ops = &aio_ctx_aops; 177 inode->i_mapping->private_data = ctx; 178 inode->i_size = PAGE_SIZE * nr_pages; 179 180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 181 if (!path.dentry) { 182 iput(inode); 183 return ERR_PTR(-ENOMEM); 184 } 185 path.mnt = mntget(aio_mnt); 186 187 d_instantiate(path.dentry, inode); 188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 189 if (IS_ERR(file)) { 190 path_put(&path); 191 return file; 192 } 193 194 file->f_flags = O_RDWR; 195 file->private_data = ctx; 196 return file; 197 } 198 199 static struct dentry *aio_mount(struct file_system_type *fs_type, 200 int flags, const char *dev_name, void *data) 201 { 202 static const struct dentry_operations ops = { 203 .d_dname = simple_dname, 204 }; 205 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 206 } 207 208 /* aio_setup 209 * Creates the slab caches used by the aio routines, panic on 210 * failure as this is done early during the boot sequence. 211 */ 212 static int __init aio_setup(void) 213 { 214 static struct file_system_type aio_fs = { 215 .name = "aio", 216 .mount = aio_mount, 217 .kill_sb = kill_anon_super, 218 }; 219 aio_mnt = kern_mount(&aio_fs); 220 if (IS_ERR(aio_mnt)) 221 panic("Failed to create aio fs mount."); 222 223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 225 226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 227 228 return 0; 229 } 230 __initcall(aio_setup); 231 232 static void put_aio_ring_file(struct kioctx *ctx) 233 { 234 struct file *aio_ring_file = ctx->aio_ring_file; 235 if (aio_ring_file) { 236 truncate_setsize(aio_ring_file->f_inode, 0); 237 238 /* Prevent further access to the kioctx from migratepages */ 239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 240 aio_ring_file->f_inode->i_mapping->private_data = NULL; 241 ctx->aio_ring_file = NULL; 242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 243 244 fput(aio_ring_file); 245 } 246 } 247 248 static void aio_free_ring(struct kioctx *ctx) 249 { 250 int i; 251 252 /* Disconnect the kiotx from the ring file. This prevents future 253 * accesses to the kioctx from page migration. 254 */ 255 put_aio_ring_file(ctx); 256 257 for (i = 0; i < ctx->nr_pages; i++) { 258 struct page *page; 259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 260 page_count(ctx->ring_pages[i])); 261 page = ctx->ring_pages[i]; 262 if (!page) 263 continue; 264 ctx->ring_pages[i] = NULL; 265 put_page(page); 266 } 267 268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 269 kfree(ctx->ring_pages); 270 ctx->ring_pages = NULL; 271 } 272 } 273 274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 275 { 276 vma->vm_ops = &generic_file_vm_ops; 277 return 0; 278 } 279 280 static const struct file_operations aio_ring_fops = { 281 .mmap = aio_ring_mmap, 282 }; 283 284 static int aio_set_page_dirty(struct page *page) 285 { 286 return 0; 287 } 288 289 #if IS_ENABLED(CONFIG_MIGRATION) 290 static int aio_migratepage(struct address_space *mapping, struct page *new, 291 struct page *old, enum migrate_mode mode) 292 { 293 struct kioctx *ctx; 294 unsigned long flags; 295 pgoff_t idx; 296 int rc; 297 298 rc = 0; 299 300 /* mapping->private_lock here protects against the kioctx teardown. */ 301 spin_lock(&mapping->private_lock); 302 ctx = mapping->private_data; 303 if (!ctx) { 304 rc = -EINVAL; 305 goto out; 306 } 307 308 /* The ring_lock mutex. The prevents aio_read_events() from writing 309 * to the ring's head, and prevents page migration from mucking in 310 * a partially initialized kiotx. 311 */ 312 if (!mutex_trylock(&ctx->ring_lock)) { 313 rc = -EAGAIN; 314 goto out; 315 } 316 317 idx = old->index; 318 if (idx < (pgoff_t)ctx->nr_pages) { 319 /* Make sure the old page hasn't already been changed */ 320 if (ctx->ring_pages[idx] != old) 321 rc = -EAGAIN; 322 } else 323 rc = -EINVAL; 324 325 if (rc != 0) 326 goto out_unlock; 327 328 /* Writeback must be complete */ 329 BUG_ON(PageWriteback(old)); 330 get_page(new); 331 332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 333 if (rc != MIGRATEPAGE_SUCCESS) { 334 put_page(new); 335 goto out_unlock; 336 } 337 338 /* Take completion_lock to prevent other writes to the ring buffer 339 * while the old page is copied to the new. This prevents new 340 * events from being lost. 341 */ 342 spin_lock_irqsave(&ctx->completion_lock, flags); 343 migrate_page_copy(new, old); 344 BUG_ON(ctx->ring_pages[idx] != old); 345 ctx->ring_pages[idx] = new; 346 spin_unlock_irqrestore(&ctx->completion_lock, flags); 347 348 /* The old page is no longer accessible. */ 349 put_page(old); 350 351 out_unlock: 352 mutex_unlock(&ctx->ring_lock); 353 out: 354 spin_unlock(&mapping->private_lock); 355 return rc; 356 } 357 #endif 358 359 static const struct address_space_operations aio_ctx_aops = { 360 .set_page_dirty = aio_set_page_dirty, 361 #if IS_ENABLED(CONFIG_MIGRATION) 362 .migratepage = aio_migratepage, 363 #endif 364 }; 365 366 static int aio_setup_ring(struct kioctx *ctx) 367 { 368 struct aio_ring *ring; 369 unsigned nr_events = ctx->max_reqs; 370 struct mm_struct *mm = current->mm; 371 unsigned long size, unused; 372 int nr_pages; 373 int i; 374 struct file *file; 375 376 /* Compensate for the ring buffer's head/tail overlap entry */ 377 nr_events += 2; /* 1 is required, 2 for good luck */ 378 379 size = sizeof(struct aio_ring); 380 size += sizeof(struct io_event) * nr_events; 381 382 nr_pages = PFN_UP(size); 383 if (nr_pages < 0) 384 return -EINVAL; 385 386 file = aio_private_file(ctx, nr_pages); 387 if (IS_ERR(file)) { 388 ctx->aio_ring_file = NULL; 389 return -ENOMEM; 390 } 391 392 ctx->aio_ring_file = file; 393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 394 / sizeof(struct io_event); 395 396 ctx->ring_pages = ctx->internal_pages; 397 if (nr_pages > AIO_RING_PAGES) { 398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 399 GFP_KERNEL); 400 if (!ctx->ring_pages) { 401 put_aio_ring_file(ctx); 402 return -ENOMEM; 403 } 404 } 405 406 for (i = 0; i < nr_pages; i++) { 407 struct page *page; 408 page = find_or_create_page(file->f_inode->i_mapping, 409 i, GFP_HIGHUSER | __GFP_ZERO); 410 if (!page) 411 break; 412 pr_debug("pid(%d) page[%d]->count=%d\n", 413 current->pid, i, page_count(page)); 414 SetPageUptodate(page); 415 SetPageDirty(page); 416 unlock_page(page); 417 418 ctx->ring_pages[i] = page; 419 } 420 ctx->nr_pages = i; 421 422 if (unlikely(i != nr_pages)) { 423 aio_free_ring(ctx); 424 return -ENOMEM; 425 } 426 427 ctx->mmap_size = nr_pages * PAGE_SIZE; 428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 429 430 down_write(&mm->mmap_sem); 431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 432 PROT_READ | PROT_WRITE, 433 MAP_SHARED, 0, &unused); 434 up_write(&mm->mmap_sem); 435 if (IS_ERR((void *)ctx->mmap_base)) { 436 ctx->mmap_size = 0; 437 aio_free_ring(ctx); 438 return -ENOMEM; 439 } 440 441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 442 443 ctx->user_id = ctx->mmap_base; 444 ctx->nr_events = nr_events; /* trusted copy */ 445 446 ring = kmap_atomic(ctx->ring_pages[0]); 447 ring->nr = nr_events; /* user copy */ 448 ring->id = ~0U; 449 ring->head = ring->tail = 0; 450 ring->magic = AIO_RING_MAGIC; 451 ring->compat_features = AIO_RING_COMPAT_FEATURES; 452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 453 ring->header_length = sizeof(struct aio_ring); 454 kunmap_atomic(ring); 455 flush_dcache_page(ctx->ring_pages[0]); 456 457 return 0; 458 } 459 460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 463 464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 465 { 466 struct kioctx *ctx = req->ki_ctx; 467 unsigned long flags; 468 469 spin_lock_irqsave(&ctx->ctx_lock, flags); 470 471 if (!req->ki_list.next) 472 list_add(&req->ki_list, &ctx->active_reqs); 473 474 req->ki_cancel = cancel; 475 476 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 477 } 478 EXPORT_SYMBOL(kiocb_set_cancel_fn); 479 480 static int kiocb_cancel(struct kiocb *kiocb) 481 { 482 kiocb_cancel_fn *old, *cancel; 483 484 /* 485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 486 * actually has a cancel function, hence the cmpxchg() 487 */ 488 489 cancel = ACCESS_ONCE(kiocb->ki_cancel); 490 do { 491 if (!cancel || cancel == KIOCB_CANCELLED) 492 return -EINVAL; 493 494 old = cancel; 495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 496 } while (cancel != old); 497 498 return cancel(kiocb); 499 } 500 501 static void free_ioctx(struct work_struct *work) 502 { 503 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 504 505 pr_debug("freeing %p\n", ctx); 506 507 aio_free_ring(ctx); 508 free_percpu(ctx->cpu); 509 percpu_ref_exit(&ctx->reqs); 510 percpu_ref_exit(&ctx->users); 511 kmem_cache_free(kioctx_cachep, ctx); 512 } 513 514 static void free_ioctx_reqs(struct percpu_ref *ref) 515 { 516 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 517 518 /* At this point we know that there are no any in-flight requests */ 519 if (ctx->requests_done) 520 complete(ctx->requests_done); 521 522 INIT_WORK(&ctx->free_work, free_ioctx); 523 schedule_work(&ctx->free_work); 524 } 525 526 /* 527 * When this function runs, the kioctx has been removed from the "hash table" 528 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 529 * now it's safe to cancel any that need to be. 530 */ 531 static void free_ioctx_users(struct percpu_ref *ref) 532 { 533 struct kioctx *ctx = container_of(ref, struct kioctx, users); 534 struct kiocb *req; 535 536 spin_lock_irq(&ctx->ctx_lock); 537 538 while (!list_empty(&ctx->active_reqs)) { 539 req = list_first_entry(&ctx->active_reqs, 540 struct kiocb, ki_list); 541 542 list_del_init(&req->ki_list); 543 kiocb_cancel(req); 544 } 545 546 spin_unlock_irq(&ctx->ctx_lock); 547 548 percpu_ref_kill(&ctx->reqs); 549 percpu_ref_put(&ctx->reqs); 550 } 551 552 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 553 { 554 unsigned i, new_nr; 555 struct kioctx_table *table, *old; 556 struct aio_ring *ring; 557 558 spin_lock(&mm->ioctx_lock); 559 rcu_read_lock(); 560 table = rcu_dereference(mm->ioctx_table); 561 562 while (1) { 563 if (table) 564 for (i = 0; i < table->nr; i++) 565 if (!table->table[i]) { 566 ctx->id = i; 567 table->table[i] = ctx; 568 rcu_read_unlock(); 569 spin_unlock(&mm->ioctx_lock); 570 571 /* While kioctx setup is in progress, 572 * we are protected from page migration 573 * changes ring_pages by ->ring_lock. 574 */ 575 ring = kmap_atomic(ctx->ring_pages[0]); 576 ring->id = ctx->id; 577 kunmap_atomic(ring); 578 return 0; 579 } 580 581 new_nr = (table ? table->nr : 1) * 4; 582 583 rcu_read_unlock(); 584 spin_unlock(&mm->ioctx_lock); 585 586 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 587 new_nr, GFP_KERNEL); 588 if (!table) 589 return -ENOMEM; 590 591 table->nr = new_nr; 592 593 spin_lock(&mm->ioctx_lock); 594 rcu_read_lock(); 595 old = rcu_dereference(mm->ioctx_table); 596 597 if (!old) { 598 rcu_assign_pointer(mm->ioctx_table, table); 599 } else if (table->nr > old->nr) { 600 memcpy(table->table, old->table, 601 old->nr * sizeof(struct kioctx *)); 602 603 rcu_assign_pointer(mm->ioctx_table, table); 604 kfree_rcu(old, rcu); 605 } else { 606 kfree(table); 607 table = old; 608 } 609 } 610 } 611 612 static void aio_nr_sub(unsigned nr) 613 { 614 spin_lock(&aio_nr_lock); 615 if (WARN_ON(aio_nr - nr > aio_nr)) 616 aio_nr = 0; 617 else 618 aio_nr -= nr; 619 spin_unlock(&aio_nr_lock); 620 } 621 622 /* ioctx_alloc 623 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 624 */ 625 static struct kioctx *ioctx_alloc(unsigned nr_events) 626 { 627 struct mm_struct *mm = current->mm; 628 struct kioctx *ctx; 629 int err = -ENOMEM; 630 631 /* 632 * We keep track of the number of available ringbuffer slots, to prevent 633 * overflow (reqs_available), and we also use percpu counters for this. 634 * 635 * So since up to half the slots might be on other cpu's percpu counters 636 * and unavailable, double nr_events so userspace sees what they 637 * expected: additionally, we move req_batch slots to/from percpu 638 * counters at a time, so make sure that isn't 0: 639 */ 640 nr_events = max(nr_events, num_possible_cpus() * 4); 641 nr_events *= 2; 642 643 /* Prevent overflows */ 644 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 645 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 646 pr_debug("ENOMEM: nr_events too high\n"); 647 return ERR_PTR(-EINVAL); 648 } 649 650 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 651 return ERR_PTR(-EAGAIN); 652 653 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 654 if (!ctx) 655 return ERR_PTR(-ENOMEM); 656 657 ctx->max_reqs = nr_events; 658 659 spin_lock_init(&ctx->ctx_lock); 660 spin_lock_init(&ctx->completion_lock); 661 mutex_init(&ctx->ring_lock); 662 /* Protect against page migration throughout kiotx setup by keeping 663 * the ring_lock mutex held until setup is complete. */ 664 mutex_lock(&ctx->ring_lock); 665 init_waitqueue_head(&ctx->wait); 666 667 INIT_LIST_HEAD(&ctx->active_reqs); 668 669 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 670 goto err; 671 672 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 673 goto err; 674 675 ctx->cpu = alloc_percpu(struct kioctx_cpu); 676 if (!ctx->cpu) 677 goto err; 678 679 err = aio_setup_ring(ctx); 680 if (err < 0) 681 goto err; 682 683 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 684 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 685 if (ctx->req_batch < 1) 686 ctx->req_batch = 1; 687 688 /* limit the number of system wide aios */ 689 spin_lock(&aio_nr_lock); 690 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 691 aio_nr + nr_events < aio_nr) { 692 spin_unlock(&aio_nr_lock); 693 err = -EAGAIN; 694 goto err_ctx; 695 } 696 aio_nr += ctx->max_reqs; 697 spin_unlock(&aio_nr_lock); 698 699 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 700 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 701 702 err = ioctx_add_table(ctx, mm); 703 if (err) 704 goto err_cleanup; 705 706 /* Release the ring_lock mutex now that all setup is complete. */ 707 mutex_unlock(&ctx->ring_lock); 708 709 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 710 ctx, ctx->user_id, mm, ctx->nr_events); 711 return ctx; 712 713 err_cleanup: 714 aio_nr_sub(ctx->max_reqs); 715 err_ctx: 716 aio_free_ring(ctx); 717 err: 718 mutex_unlock(&ctx->ring_lock); 719 free_percpu(ctx->cpu); 720 percpu_ref_exit(&ctx->reqs); 721 percpu_ref_exit(&ctx->users); 722 kmem_cache_free(kioctx_cachep, ctx); 723 pr_debug("error allocating ioctx %d\n", err); 724 return ERR_PTR(err); 725 } 726 727 /* kill_ioctx 728 * Cancels all outstanding aio requests on an aio context. Used 729 * when the processes owning a context have all exited to encourage 730 * the rapid destruction of the kioctx. 731 */ 732 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 733 struct completion *requests_done) 734 { 735 struct kioctx_table *table; 736 737 if (atomic_xchg(&ctx->dead, 1)) 738 return -EINVAL; 739 740 741 spin_lock(&mm->ioctx_lock); 742 rcu_read_lock(); 743 table = rcu_dereference(mm->ioctx_table); 744 745 WARN_ON(ctx != table->table[ctx->id]); 746 table->table[ctx->id] = NULL; 747 rcu_read_unlock(); 748 spin_unlock(&mm->ioctx_lock); 749 750 /* percpu_ref_kill() will do the necessary call_rcu() */ 751 wake_up_all(&ctx->wait); 752 753 /* 754 * It'd be more correct to do this in free_ioctx(), after all 755 * the outstanding kiocbs have finished - but by then io_destroy 756 * has already returned, so io_setup() could potentially return 757 * -EAGAIN with no ioctxs actually in use (as far as userspace 758 * could tell). 759 */ 760 aio_nr_sub(ctx->max_reqs); 761 762 if (ctx->mmap_size) 763 vm_munmap(ctx->mmap_base, ctx->mmap_size); 764 765 ctx->requests_done = requests_done; 766 percpu_ref_kill(&ctx->users); 767 return 0; 768 } 769 770 /* wait_on_sync_kiocb: 771 * Waits on the given sync kiocb to complete. 772 */ 773 ssize_t wait_on_sync_kiocb(struct kiocb *req) 774 { 775 while (!req->ki_ctx) { 776 set_current_state(TASK_UNINTERRUPTIBLE); 777 if (req->ki_ctx) 778 break; 779 io_schedule(); 780 } 781 __set_current_state(TASK_RUNNING); 782 return req->ki_user_data; 783 } 784 EXPORT_SYMBOL(wait_on_sync_kiocb); 785 786 /* 787 * exit_aio: called when the last user of mm goes away. At this point, there is 788 * no way for any new requests to be submited or any of the io_* syscalls to be 789 * called on the context. 790 * 791 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 792 * them. 793 */ 794 void exit_aio(struct mm_struct *mm) 795 { 796 struct kioctx_table *table; 797 struct kioctx *ctx; 798 unsigned i = 0; 799 800 while (1) { 801 rcu_read_lock(); 802 table = rcu_dereference(mm->ioctx_table); 803 804 do { 805 if (!table || i >= table->nr) { 806 rcu_read_unlock(); 807 rcu_assign_pointer(mm->ioctx_table, NULL); 808 if (table) 809 kfree(table); 810 return; 811 } 812 813 ctx = table->table[i++]; 814 } while (!ctx); 815 816 rcu_read_unlock(); 817 818 /* 819 * We don't need to bother with munmap() here - 820 * exit_mmap(mm) is coming and it'll unmap everything. 821 * Since aio_free_ring() uses non-zero ->mmap_size 822 * as indicator that it needs to unmap the area, 823 * just set it to 0; aio_free_ring() is the only 824 * place that uses ->mmap_size, so it's safe. 825 */ 826 ctx->mmap_size = 0; 827 828 kill_ioctx(mm, ctx, NULL); 829 } 830 } 831 832 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 833 { 834 struct kioctx_cpu *kcpu; 835 unsigned long flags; 836 837 preempt_disable(); 838 kcpu = this_cpu_ptr(ctx->cpu); 839 840 local_irq_save(flags); 841 kcpu->reqs_available += nr; 842 843 while (kcpu->reqs_available >= ctx->req_batch * 2) { 844 kcpu->reqs_available -= ctx->req_batch; 845 atomic_add(ctx->req_batch, &ctx->reqs_available); 846 } 847 848 local_irq_restore(flags); 849 preempt_enable(); 850 } 851 852 static bool get_reqs_available(struct kioctx *ctx) 853 { 854 struct kioctx_cpu *kcpu; 855 bool ret = false; 856 unsigned long flags; 857 858 preempt_disable(); 859 kcpu = this_cpu_ptr(ctx->cpu); 860 861 local_irq_save(flags); 862 if (!kcpu->reqs_available) { 863 int old, avail = atomic_read(&ctx->reqs_available); 864 865 do { 866 if (avail < ctx->req_batch) 867 goto out; 868 869 old = avail; 870 avail = atomic_cmpxchg(&ctx->reqs_available, 871 avail, avail - ctx->req_batch); 872 } while (avail != old); 873 874 kcpu->reqs_available += ctx->req_batch; 875 } 876 877 ret = true; 878 kcpu->reqs_available--; 879 out: 880 local_irq_restore(flags); 881 preempt_enable(); 882 return ret; 883 } 884 885 /* aio_get_req 886 * Allocate a slot for an aio request. 887 * Returns NULL if no requests are free. 888 */ 889 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 890 { 891 struct kiocb *req; 892 893 if (!get_reqs_available(ctx)) 894 return NULL; 895 896 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 897 if (unlikely(!req)) 898 goto out_put; 899 900 percpu_ref_get(&ctx->reqs); 901 902 req->ki_ctx = ctx; 903 return req; 904 out_put: 905 put_reqs_available(ctx, 1); 906 return NULL; 907 } 908 909 static void kiocb_free(struct kiocb *req) 910 { 911 if (req->ki_filp) 912 fput(req->ki_filp); 913 if (req->ki_eventfd != NULL) 914 eventfd_ctx_put(req->ki_eventfd); 915 kmem_cache_free(kiocb_cachep, req); 916 } 917 918 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 919 { 920 struct aio_ring __user *ring = (void __user *)ctx_id; 921 struct mm_struct *mm = current->mm; 922 struct kioctx *ctx, *ret = NULL; 923 struct kioctx_table *table; 924 unsigned id; 925 926 if (get_user(id, &ring->id)) 927 return NULL; 928 929 rcu_read_lock(); 930 table = rcu_dereference(mm->ioctx_table); 931 932 if (!table || id >= table->nr) 933 goto out; 934 935 ctx = table->table[id]; 936 if (ctx && ctx->user_id == ctx_id) { 937 percpu_ref_get(&ctx->users); 938 ret = ctx; 939 } 940 out: 941 rcu_read_unlock(); 942 return ret; 943 } 944 945 /* aio_complete 946 * Called when the io request on the given iocb is complete. 947 */ 948 void aio_complete(struct kiocb *iocb, long res, long res2) 949 { 950 struct kioctx *ctx = iocb->ki_ctx; 951 struct aio_ring *ring; 952 struct io_event *ev_page, *event; 953 unsigned long flags; 954 unsigned tail, pos; 955 956 /* 957 * Special case handling for sync iocbs: 958 * - events go directly into the iocb for fast handling 959 * - the sync task with the iocb in its stack holds the single iocb 960 * ref, no other paths have a way to get another ref 961 * - the sync task helpfully left a reference to itself in the iocb 962 */ 963 if (is_sync_kiocb(iocb)) { 964 iocb->ki_user_data = res; 965 smp_wmb(); 966 iocb->ki_ctx = ERR_PTR(-EXDEV); 967 wake_up_process(iocb->ki_obj.tsk); 968 return; 969 } 970 971 if (iocb->ki_list.next) { 972 unsigned long flags; 973 974 spin_lock_irqsave(&ctx->ctx_lock, flags); 975 list_del(&iocb->ki_list); 976 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 977 } 978 979 /* 980 * Add a completion event to the ring buffer. Must be done holding 981 * ctx->completion_lock to prevent other code from messing with the tail 982 * pointer since we might be called from irq context. 983 */ 984 spin_lock_irqsave(&ctx->completion_lock, flags); 985 986 tail = ctx->tail; 987 pos = tail + AIO_EVENTS_OFFSET; 988 989 if (++tail >= ctx->nr_events) 990 tail = 0; 991 992 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 993 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 994 995 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 996 event->data = iocb->ki_user_data; 997 event->res = res; 998 event->res2 = res2; 999 1000 kunmap_atomic(ev_page); 1001 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1002 1003 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1004 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1005 res, res2); 1006 1007 /* after flagging the request as done, we 1008 * must never even look at it again 1009 */ 1010 smp_wmb(); /* make event visible before updating tail */ 1011 1012 ctx->tail = tail; 1013 1014 ring = kmap_atomic(ctx->ring_pages[0]); 1015 ring->tail = tail; 1016 kunmap_atomic(ring); 1017 flush_dcache_page(ctx->ring_pages[0]); 1018 1019 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1020 1021 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1022 1023 /* 1024 * Check if the user asked us to deliver the result through an 1025 * eventfd. The eventfd_signal() function is safe to be called 1026 * from IRQ context. 1027 */ 1028 if (iocb->ki_eventfd != NULL) 1029 eventfd_signal(iocb->ki_eventfd, 1); 1030 1031 /* everything turned out well, dispose of the aiocb. */ 1032 kiocb_free(iocb); 1033 put_reqs_available(ctx, 1); 1034 1035 /* 1036 * We have to order our ring_info tail store above and test 1037 * of the wait list below outside the wait lock. This is 1038 * like in wake_up_bit() where clearing a bit has to be 1039 * ordered with the unlocked test. 1040 */ 1041 smp_mb(); 1042 1043 if (waitqueue_active(&ctx->wait)) 1044 wake_up(&ctx->wait); 1045 1046 percpu_ref_put(&ctx->reqs); 1047 } 1048 EXPORT_SYMBOL(aio_complete); 1049 1050 /* aio_read_events 1051 * Pull an event off of the ioctx's event ring. Returns the number of 1052 * events fetched 1053 */ 1054 static long aio_read_events_ring(struct kioctx *ctx, 1055 struct io_event __user *event, long nr) 1056 { 1057 struct aio_ring *ring; 1058 unsigned head, tail, pos; 1059 long ret = 0; 1060 int copy_ret; 1061 1062 mutex_lock(&ctx->ring_lock); 1063 1064 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1065 ring = kmap_atomic(ctx->ring_pages[0]); 1066 head = ring->head; 1067 tail = ring->tail; 1068 kunmap_atomic(ring); 1069 1070 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1071 1072 if (head == tail) 1073 goto out; 1074 1075 head %= ctx->nr_events; 1076 tail %= ctx->nr_events; 1077 1078 while (ret < nr) { 1079 long avail; 1080 struct io_event *ev; 1081 struct page *page; 1082 1083 avail = (head <= tail ? tail : ctx->nr_events) - head; 1084 if (head == tail) 1085 break; 1086 1087 avail = min(avail, nr - ret); 1088 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1089 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1090 1091 pos = head + AIO_EVENTS_OFFSET; 1092 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1093 pos %= AIO_EVENTS_PER_PAGE; 1094 1095 ev = kmap(page); 1096 copy_ret = copy_to_user(event + ret, ev + pos, 1097 sizeof(*ev) * avail); 1098 kunmap(page); 1099 1100 if (unlikely(copy_ret)) { 1101 ret = -EFAULT; 1102 goto out; 1103 } 1104 1105 ret += avail; 1106 head += avail; 1107 head %= ctx->nr_events; 1108 } 1109 1110 ring = kmap_atomic(ctx->ring_pages[0]); 1111 ring->head = head; 1112 kunmap_atomic(ring); 1113 flush_dcache_page(ctx->ring_pages[0]); 1114 1115 pr_debug("%li h%u t%u\n", ret, head, tail); 1116 out: 1117 mutex_unlock(&ctx->ring_lock); 1118 1119 return ret; 1120 } 1121 1122 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1123 struct io_event __user *event, long *i) 1124 { 1125 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1126 1127 if (ret > 0) 1128 *i += ret; 1129 1130 if (unlikely(atomic_read(&ctx->dead))) 1131 ret = -EINVAL; 1132 1133 if (!*i) 1134 *i = ret; 1135 1136 return ret < 0 || *i >= min_nr; 1137 } 1138 1139 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1140 struct io_event __user *event, 1141 struct timespec __user *timeout) 1142 { 1143 ktime_t until = { .tv64 = KTIME_MAX }; 1144 long ret = 0; 1145 1146 if (timeout) { 1147 struct timespec ts; 1148 1149 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1150 return -EFAULT; 1151 1152 until = timespec_to_ktime(ts); 1153 } 1154 1155 /* 1156 * Note that aio_read_events() is being called as the conditional - i.e. 1157 * we're calling it after prepare_to_wait() has set task state to 1158 * TASK_INTERRUPTIBLE. 1159 * 1160 * But aio_read_events() can block, and if it blocks it's going to flip 1161 * the task state back to TASK_RUNNING. 1162 * 1163 * This should be ok, provided it doesn't flip the state back to 1164 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1165 * will only happen if the mutex_lock() call blocks, and we then find 1166 * the ringbuffer empty. So in practice we should be ok, but it's 1167 * something to be aware of when touching this code. 1168 */ 1169 wait_event_interruptible_hrtimeout(ctx->wait, 1170 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1171 1172 if (!ret && signal_pending(current)) 1173 ret = -EINTR; 1174 1175 return ret; 1176 } 1177 1178 /* sys_io_setup: 1179 * Create an aio_context capable of receiving at least nr_events. 1180 * ctxp must not point to an aio_context that already exists, and 1181 * must be initialized to 0 prior to the call. On successful 1182 * creation of the aio_context, *ctxp is filled in with the resulting 1183 * handle. May fail with -EINVAL if *ctxp is not initialized, 1184 * if the specified nr_events exceeds internal limits. May fail 1185 * with -EAGAIN if the specified nr_events exceeds the user's limit 1186 * of available events. May fail with -ENOMEM if insufficient kernel 1187 * resources are available. May fail with -EFAULT if an invalid 1188 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1189 * implemented. 1190 */ 1191 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1192 { 1193 struct kioctx *ioctx = NULL; 1194 unsigned long ctx; 1195 long ret; 1196 1197 ret = get_user(ctx, ctxp); 1198 if (unlikely(ret)) 1199 goto out; 1200 1201 ret = -EINVAL; 1202 if (unlikely(ctx || nr_events == 0)) { 1203 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1204 ctx, nr_events); 1205 goto out; 1206 } 1207 1208 ioctx = ioctx_alloc(nr_events); 1209 ret = PTR_ERR(ioctx); 1210 if (!IS_ERR(ioctx)) { 1211 ret = put_user(ioctx->user_id, ctxp); 1212 if (ret) 1213 kill_ioctx(current->mm, ioctx, NULL); 1214 percpu_ref_put(&ioctx->users); 1215 } 1216 1217 out: 1218 return ret; 1219 } 1220 1221 /* sys_io_destroy: 1222 * Destroy the aio_context specified. May cancel any outstanding 1223 * AIOs and block on completion. Will fail with -ENOSYS if not 1224 * implemented. May fail with -EINVAL if the context pointed to 1225 * is invalid. 1226 */ 1227 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1228 { 1229 struct kioctx *ioctx = lookup_ioctx(ctx); 1230 if (likely(NULL != ioctx)) { 1231 struct completion requests_done = 1232 COMPLETION_INITIALIZER_ONSTACK(requests_done); 1233 int ret; 1234 1235 /* Pass requests_done to kill_ioctx() where it can be set 1236 * in a thread-safe way. If we try to set it here then we have 1237 * a race condition if two io_destroy() called simultaneously. 1238 */ 1239 ret = kill_ioctx(current->mm, ioctx, &requests_done); 1240 percpu_ref_put(&ioctx->users); 1241 1242 /* Wait until all IO for the context are done. Otherwise kernel 1243 * keep using user-space buffers even if user thinks the context 1244 * is destroyed. 1245 */ 1246 if (!ret) 1247 wait_for_completion(&requests_done); 1248 1249 return ret; 1250 } 1251 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1252 return -EINVAL; 1253 } 1254 1255 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1256 unsigned long, loff_t); 1257 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1258 1259 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1260 int rw, char __user *buf, 1261 unsigned long *nr_segs, 1262 struct iovec **iovec, 1263 bool compat) 1264 { 1265 ssize_t ret; 1266 1267 *nr_segs = kiocb->ki_nbytes; 1268 1269 #ifdef CONFIG_COMPAT 1270 if (compat) 1271 ret = compat_rw_copy_check_uvector(rw, 1272 (struct compat_iovec __user *)buf, 1273 *nr_segs, 1, *iovec, iovec); 1274 else 1275 #endif 1276 ret = rw_copy_check_uvector(rw, 1277 (struct iovec __user *)buf, 1278 *nr_segs, 1, *iovec, iovec); 1279 if (ret < 0) 1280 return ret; 1281 1282 /* ki_nbytes now reflect bytes instead of segs */ 1283 kiocb->ki_nbytes = ret; 1284 return 0; 1285 } 1286 1287 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1288 int rw, char __user *buf, 1289 unsigned long *nr_segs, 1290 struct iovec *iovec) 1291 { 1292 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1293 return -EFAULT; 1294 1295 iovec->iov_base = buf; 1296 iovec->iov_len = kiocb->ki_nbytes; 1297 *nr_segs = 1; 1298 return 0; 1299 } 1300 1301 /* 1302 * aio_setup_iocb: 1303 * Performs the initial checks and aio retry method 1304 * setup for the kiocb at the time of io submission. 1305 */ 1306 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1307 char __user *buf, bool compat) 1308 { 1309 struct file *file = req->ki_filp; 1310 ssize_t ret; 1311 unsigned long nr_segs; 1312 int rw; 1313 fmode_t mode; 1314 aio_rw_op *rw_op; 1315 rw_iter_op *iter_op; 1316 struct iovec inline_vec, *iovec = &inline_vec; 1317 struct iov_iter iter; 1318 1319 switch (opcode) { 1320 case IOCB_CMD_PREAD: 1321 case IOCB_CMD_PREADV: 1322 mode = FMODE_READ; 1323 rw = READ; 1324 rw_op = file->f_op->aio_read; 1325 iter_op = file->f_op->read_iter; 1326 goto rw_common; 1327 1328 case IOCB_CMD_PWRITE: 1329 case IOCB_CMD_PWRITEV: 1330 mode = FMODE_WRITE; 1331 rw = WRITE; 1332 rw_op = file->f_op->aio_write; 1333 iter_op = file->f_op->write_iter; 1334 goto rw_common; 1335 rw_common: 1336 if (unlikely(!(file->f_mode & mode))) 1337 return -EBADF; 1338 1339 if (!rw_op && !iter_op) 1340 return -EINVAL; 1341 1342 ret = (opcode == IOCB_CMD_PREADV || 1343 opcode == IOCB_CMD_PWRITEV) 1344 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1345 &iovec, compat) 1346 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1347 iovec); 1348 if (!ret) 1349 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1350 if (ret < 0) { 1351 if (iovec != &inline_vec) 1352 kfree(iovec); 1353 return ret; 1354 } 1355 1356 req->ki_nbytes = ret; 1357 1358 /* XXX: move/kill - rw_verify_area()? */ 1359 /* This matches the pread()/pwrite() logic */ 1360 if (req->ki_pos < 0) { 1361 ret = -EINVAL; 1362 break; 1363 } 1364 1365 if (rw == WRITE) 1366 file_start_write(file); 1367 1368 if (iter_op) { 1369 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes); 1370 ret = iter_op(req, &iter); 1371 } else { 1372 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1373 } 1374 1375 if (rw == WRITE) 1376 file_end_write(file); 1377 break; 1378 1379 case IOCB_CMD_FDSYNC: 1380 if (!file->f_op->aio_fsync) 1381 return -EINVAL; 1382 1383 ret = file->f_op->aio_fsync(req, 1); 1384 break; 1385 1386 case IOCB_CMD_FSYNC: 1387 if (!file->f_op->aio_fsync) 1388 return -EINVAL; 1389 1390 ret = file->f_op->aio_fsync(req, 0); 1391 break; 1392 1393 default: 1394 pr_debug("EINVAL: no operation provided\n"); 1395 return -EINVAL; 1396 } 1397 1398 if (iovec != &inline_vec) 1399 kfree(iovec); 1400 1401 if (ret != -EIOCBQUEUED) { 1402 /* 1403 * There's no easy way to restart the syscall since other AIO's 1404 * may be already running. Just fail this IO with EINTR. 1405 */ 1406 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1407 ret == -ERESTARTNOHAND || 1408 ret == -ERESTART_RESTARTBLOCK)) 1409 ret = -EINTR; 1410 aio_complete(req, ret, 0); 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1417 struct iocb *iocb, bool compat) 1418 { 1419 struct kiocb *req; 1420 ssize_t ret; 1421 1422 /* enforce forwards compatibility on users */ 1423 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1424 pr_debug("EINVAL: reserve field set\n"); 1425 return -EINVAL; 1426 } 1427 1428 /* prevent overflows */ 1429 if (unlikely( 1430 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1431 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1432 ((ssize_t)iocb->aio_nbytes < 0) 1433 )) { 1434 pr_debug("EINVAL: io_submit: overflow check\n"); 1435 return -EINVAL; 1436 } 1437 1438 req = aio_get_req(ctx); 1439 if (unlikely(!req)) 1440 return -EAGAIN; 1441 1442 req->ki_filp = fget(iocb->aio_fildes); 1443 if (unlikely(!req->ki_filp)) { 1444 ret = -EBADF; 1445 goto out_put_req; 1446 } 1447 1448 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1449 /* 1450 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1451 * instance of the file* now. The file descriptor must be 1452 * an eventfd() fd, and will be signaled for each completed 1453 * event using the eventfd_signal() function. 1454 */ 1455 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1456 if (IS_ERR(req->ki_eventfd)) { 1457 ret = PTR_ERR(req->ki_eventfd); 1458 req->ki_eventfd = NULL; 1459 goto out_put_req; 1460 } 1461 } 1462 1463 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1464 if (unlikely(ret)) { 1465 pr_debug("EFAULT: aio_key\n"); 1466 goto out_put_req; 1467 } 1468 1469 req->ki_obj.user = user_iocb; 1470 req->ki_user_data = iocb->aio_data; 1471 req->ki_pos = iocb->aio_offset; 1472 req->ki_nbytes = iocb->aio_nbytes; 1473 1474 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1475 (char __user *)(unsigned long)iocb->aio_buf, 1476 compat); 1477 if (ret) 1478 goto out_put_req; 1479 1480 return 0; 1481 out_put_req: 1482 put_reqs_available(ctx, 1); 1483 percpu_ref_put(&ctx->reqs); 1484 kiocb_free(req); 1485 return ret; 1486 } 1487 1488 long do_io_submit(aio_context_t ctx_id, long nr, 1489 struct iocb __user *__user *iocbpp, bool compat) 1490 { 1491 struct kioctx *ctx; 1492 long ret = 0; 1493 int i = 0; 1494 struct blk_plug plug; 1495 1496 if (unlikely(nr < 0)) 1497 return -EINVAL; 1498 1499 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1500 nr = LONG_MAX/sizeof(*iocbpp); 1501 1502 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1503 return -EFAULT; 1504 1505 ctx = lookup_ioctx(ctx_id); 1506 if (unlikely(!ctx)) { 1507 pr_debug("EINVAL: invalid context id\n"); 1508 return -EINVAL; 1509 } 1510 1511 blk_start_plug(&plug); 1512 1513 /* 1514 * AKPM: should this return a partial result if some of the IOs were 1515 * successfully submitted? 1516 */ 1517 for (i=0; i<nr; i++) { 1518 struct iocb __user *user_iocb; 1519 struct iocb tmp; 1520 1521 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1522 ret = -EFAULT; 1523 break; 1524 } 1525 1526 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1527 ret = -EFAULT; 1528 break; 1529 } 1530 1531 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1532 if (ret) 1533 break; 1534 } 1535 blk_finish_plug(&plug); 1536 1537 percpu_ref_put(&ctx->users); 1538 return i ? i : ret; 1539 } 1540 1541 /* sys_io_submit: 1542 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1543 * the number of iocbs queued. May return -EINVAL if the aio_context 1544 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1545 * *iocbpp[0] is not properly initialized, if the operation specified 1546 * is invalid for the file descriptor in the iocb. May fail with 1547 * -EFAULT if any of the data structures point to invalid data. May 1548 * fail with -EBADF if the file descriptor specified in the first 1549 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1550 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1551 * fail with -ENOSYS if not implemented. 1552 */ 1553 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1554 struct iocb __user * __user *, iocbpp) 1555 { 1556 return do_io_submit(ctx_id, nr, iocbpp, 0); 1557 } 1558 1559 /* lookup_kiocb 1560 * Finds a given iocb for cancellation. 1561 */ 1562 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1563 u32 key) 1564 { 1565 struct list_head *pos; 1566 1567 assert_spin_locked(&ctx->ctx_lock); 1568 1569 if (key != KIOCB_KEY) 1570 return NULL; 1571 1572 /* TODO: use a hash or array, this sucks. */ 1573 list_for_each(pos, &ctx->active_reqs) { 1574 struct kiocb *kiocb = list_kiocb(pos); 1575 if (kiocb->ki_obj.user == iocb) 1576 return kiocb; 1577 } 1578 return NULL; 1579 } 1580 1581 /* sys_io_cancel: 1582 * Attempts to cancel an iocb previously passed to io_submit. If 1583 * the operation is successfully cancelled, the resulting event is 1584 * copied into the memory pointed to by result without being placed 1585 * into the completion queue and 0 is returned. May fail with 1586 * -EFAULT if any of the data structures pointed to are invalid. 1587 * May fail with -EINVAL if aio_context specified by ctx_id is 1588 * invalid. May fail with -EAGAIN if the iocb specified was not 1589 * cancelled. Will fail with -ENOSYS if not implemented. 1590 */ 1591 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1592 struct io_event __user *, result) 1593 { 1594 struct kioctx *ctx; 1595 struct kiocb *kiocb; 1596 u32 key; 1597 int ret; 1598 1599 ret = get_user(key, &iocb->aio_key); 1600 if (unlikely(ret)) 1601 return -EFAULT; 1602 1603 ctx = lookup_ioctx(ctx_id); 1604 if (unlikely(!ctx)) 1605 return -EINVAL; 1606 1607 spin_lock_irq(&ctx->ctx_lock); 1608 1609 kiocb = lookup_kiocb(ctx, iocb, key); 1610 if (kiocb) 1611 ret = kiocb_cancel(kiocb); 1612 else 1613 ret = -EINVAL; 1614 1615 spin_unlock_irq(&ctx->ctx_lock); 1616 1617 if (!ret) { 1618 /* 1619 * The result argument is no longer used - the io_event is 1620 * always delivered via the ring buffer. -EINPROGRESS indicates 1621 * cancellation is progress: 1622 */ 1623 ret = -EINPROGRESS; 1624 } 1625 1626 percpu_ref_put(&ctx->users); 1627 1628 return ret; 1629 } 1630 1631 /* io_getevents: 1632 * Attempts to read at least min_nr events and up to nr events from 1633 * the completion queue for the aio_context specified by ctx_id. If 1634 * it succeeds, the number of read events is returned. May fail with 1635 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1636 * out of range, if timeout is out of range. May fail with -EFAULT 1637 * if any of the memory specified is invalid. May return 0 or 1638 * < min_nr if the timeout specified by timeout has elapsed 1639 * before sufficient events are available, where timeout == NULL 1640 * specifies an infinite timeout. Note that the timeout pointed to by 1641 * timeout is relative. Will fail with -ENOSYS if not implemented. 1642 */ 1643 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1644 long, min_nr, 1645 long, nr, 1646 struct io_event __user *, events, 1647 struct timespec __user *, timeout) 1648 { 1649 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1650 long ret = -EINVAL; 1651 1652 if (likely(ioctx)) { 1653 if (likely(min_nr <= nr && min_nr >= 0)) 1654 ret = read_events(ioctx, min_nr, nr, events, timeout); 1655 percpu_ref_put(&ioctx->users); 1656 } 1657 return ret; 1658 } 1659