1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/anon_inodes.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_table { 70 struct rcu_head rcu; 71 unsigned nr; 72 struct kioctx *table[]; 73 }; 74 75 struct kioctx_cpu { 76 unsigned reqs_available; 77 }; 78 79 struct kioctx { 80 struct percpu_ref users; 81 atomic_t dead; 82 83 unsigned long user_id; 84 85 struct __percpu kioctx_cpu *cpu; 86 87 /* 88 * For percpu reqs_available, number of slots we move to/from global 89 * counter at a time: 90 */ 91 unsigned req_batch; 92 /* 93 * This is what userspace passed to io_setup(), it's not used for 94 * anything but counting against the global max_reqs quota. 95 * 96 * The real limit is nr_events - 1, which will be larger (see 97 * aio_setup_ring()) 98 */ 99 unsigned max_reqs; 100 101 /* Size of ringbuffer, in units of struct io_event */ 102 unsigned nr_events; 103 104 unsigned long mmap_base; 105 unsigned long mmap_size; 106 107 struct page **ring_pages; 108 long nr_pages; 109 110 struct rcu_head rcu_head; 111 struct work_struct free_work; 112 113 struct { 114 /* 115 * This counts the number of available slots in the ringbuffer, 116 * so we avoid overflowing it: it's decremented (if positive) 117 * when allocating a kiocb and incremented when the resulting 118 * io_event is pulled off the ringbuffer. 119 * 120 * We batch accesses to it with a percpu version. 121 */ 122 atomic_t reqs_available; 123 } ____cacheline_aligned_in_smp; 124 125 struct { 126 spinlock_t ctx_lock; 127 struct list_head active_reqs; /* used for cancellation */ 128 } ____cacheline_aligned_in_smp; 129 130 struct { 131 struct mutex ring_lock; 132 wait_queue_head_t wait; 133 } ____cacheline_aligned_in_smp; 134 135 struct { 136 unsigned tail; 137 spinlock_t completion_lock; 138 } ____cacheline_aligned_in_smp; 139 140 struct page *internal_pages[AIO_RING_PAGES]; 141 struct file *aio_ring_file; 142 143 unsigned id; 144 }; 145 146 /*------ sysctl variables----*/ 147 static DEFINE_SPINLOCK(aio_nr_lock); 148 unsigned long aio_nr; /* current system wide number of aio requests */ 149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 150 /*----end sysctl variables---*/ 151 152 static struct kmem_cache *kiocb_cachep; 153 static struct kmem_cache *kioctx_cachep; 154 155 /* aio_setup 156 * Creates the slab caches used by the aio routines, panic on 157 * failure as this is done early during the boot sequence. 158 */ 159 static int __init aio_setup(void) 160 { 161 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 162 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 163 164 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 165 166 return 0; 167 } 168 __initcall(aio_setup); 169 170 static void aio_free_ring(struct kioctx *ctx) 171 { 172 int i; 173 struct file *aio_ring_file = ctx->aio_ring_file; 174 175 for (i = 0; i < ctx->nr_pages; i++) { 176 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 177 page_count(ctx->ring_pages[i])); 178 put_page(ctx->ring_pages[i]); 179 } 180 181 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 182 kfree(ctx->ring_pages); 183 184 if (aio_ring_file) { 185 truncate_setsize(aio_ring_file->f_inode, 0); 186 fput(aio_ring_file); 187 ctx->aio_ring_file = NULL; 188 } 189 } 190 191 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 192 { 193 vma->vm_ops = &generic_file_vm_ops; 194 return 0; 195 } 196 197 static const struct file_operations aio_ring_fops = { 198 .mmap = aio_ring_mmap, 199 }; 200 201 static int aio_set_page_dirty(struct page *page) 202 { 203 return 0; 204 } 205 206 #if IS_ENABLED(CONFIG_MIGRATION) 207 static int aio_migratepage(struct address_space *mapping, struct page *new, 208 struct page *old, enum migrate_mode mode) 209 { 210 struct kioctx *ctx = mapping->private_data; 211 unsigned long flags; 212 unsigned idx = old->index; 213 int rc; 214 215 /* Writeback must be complete */ 216 BUG_ON(PageWriteback(old)); 217 put_page(old); 218 219 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode); 220 if (rc != MIGRATEPAGE_SUCCESS) { 221 get_page(old); 222 return rc; 223 } 224 225 get_page(new); 226 227 spin_lock_irqsave(&ctx->completion_lock, flags); 228 migrate_page_copy(new, old); 229 ctx->ring_pages[idx] = new; 230 spin_unlock_irqrestore(&ctx->completion_lock, flags); 231 232 return rc; 233 } 234 #endif 235 236 static const struct address_space_operations aio_ctx_aops = { 237 .set_page_dirty = aio_set_page_dirty, 238 #if IS_ENABLED(CONFIG_MIGRATION) 239 .migratepage = aio_migratepage, 240 #endif 241 }; 242 243 static int aio_setup_ring(struct kioctx *ctx) 244 { 245 struct aio_ring *ring; 246 unsigned nr_events = ctx->max_reqs; 247 struct mm_struct *mm = current->mm; 248 unsigned long size, populate; 249 int nr_pages; 250 int i; 251 struct file *file; 252 253 /* Compensate for the ring buffer's head/tail overlap entry */ 254 nr_events += 2; /* 1 is required, 2 for good luck */ 255 256 size = sizeof(struct aio_ring); 257 size += sizeof(struct io_event) * nr_events; 258 259 nr_pages = PFN_UP(size); 260 if (nr_pages < 0) 261 return -EINVAL; 262 263 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR); 264 if (IS_ERR(file)) { 265 ctx->aio_ring_file = NULL; 266 return -EAGAIN; 267 } 268 269 file->f_inode->i_mapping->a_ops = &aio_ctx_aops; 270 file->f_inode->i_mapping->private_data = ctx; 271 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages; 272 273 for (i = 0; i < nr_pages; i++) { 274 struct page *page; 275 page = find_or_create_page(file->f_inode->i_mapping, 276 i, GFP_HIGHUSER | __GFP_ZERO); 277 if (!page) 278 break; 279 pr_debug("pid(%d) page[%d]->count=%d\n", 280 current->pid, i, page_count(page)); 281 SetPageUptodate(page); 282 SetPageDirty(page); 283 unlock_page(page); 284 } 285 ctx->aio_ring_file = file; 286 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 287 / sizeof(struct io_event); 288 289 ctx->ring_pages = ctx->internal_pages; 290 if (nr_pages > AIO_RING_PAGES) { 291 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 292 GFP_KERNEL); 293 if (!ctx->ring_pages) 294 return -ENOMEM; 295 } 296 297 ctx->mmap_size = nr_pages * PAGE_SIZE; 298 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 299 300 down_write(&mm->mmap_sem); 301 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 302 PROT_READ | PROT_WRITE, 303 MAP_SHARED | MAP_POPULATE, 0, &populate); 304 if (IS_ERR((void *)ctx->mmap_base)) { 305 up_write(&mm->mmap_sem); 306 ctx->mmap_size = 0; 307 aio_free_ring(ctx); 308 return -EAGAIN; 309 } 310 311 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 312 313 /* We must do this while still holding mmap_sem for write, as we 314 * need to be protected against userspace attempting to mremap() 315 * or munmap() the ring buffer. 316 */ 317 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 318 1, 0, ctx->ring_pages, NULL); 319 320 /* Dropping the reference here is safe as the page cache will hold 321 * onto the pages for us. It is also required so that page migration 322 * can unmap the pages and get the right reference count. 323 */ 324 for (i = 0; i < ctx->nr_pages; i++) 325 put_page(ctx->ring_pages[i]); 326 327 up_write(&mm->mmap_sem); 328 329 if (unlikely(ctx->nr_pages != nr_pages)) { 330 aio_free_ring(ctx); 331 return -EAGAIN; 332 } 333 334 ctx->user_id = ctx->mmap_base; 335 ctx->nr_events = nr_events; /* trusted copy */ 336 337 ring = kmap_atomic(ctx->ring_pages[0]); 338 ring->nr = nr_events; /* user copy */ 339 ring->id = ~0U; 340 ring->head = ring->tail = 0; 341 ring->magic = AIO_RING_MAGIC; 342 ring->compat_features = AIO_RING_COMPAT_FEATURES; 343 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 344 ring->header_length = sizeof(struct aio_ring); 345 kunmap_atomic(ring); 346 flush_dcache_page(ctx->ring_pages[0]); 347 348 return 0; 349 } 350 351 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 352 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 353 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 354 355 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 356 { 357 struct kioctx *ctx = req->ki_ctx; 358 unsigned long flags; 359 360 spin_lock_irqsave(&ctx->ctx_lock, flags); 361 362 if (!req->ki_list.next) 363 list_add(&req->ki_list, &ctx->active_reqs); 364 365 req->ki_cancel = cancel; 366 367 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 368 } 369 EXPORT_SYMBOL(kiocb_set_cancel_fn); 370 371 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 372 { 373 kiocb_cancel_fn *old, *cancel; 374 375 /* 376 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 377 * actually has a cancel function, hence the cmpxchg() 378 */ 379 380 cancel = ACCESS_ONCE(kiocb->ki_cancel); 381 do { 382 if (!cancel || cancel == KIOCB_CANCELLED) 383 return -EINVAL; 384 385 old = cancel; 386 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 387 } while (cancel != old); 388 389 return cancel(kiocb); 390 } 391 392 static void free_ioctx_rcu(struct rcu_head *head) 393 { 394 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 395 396 free_percpu(ctx->cpu); 397 kmem_cache_free(kioctx_cachep, ctx); 398 } 399 400 /* 401 * When this function runs, the kioctx has been removed from the "hash table" 402 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 403 * now it's safe to cancel any that need to be. 404 */ 405 static void free_ioctx(struct work_struct *work) 406 { 407 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 408 struct aio_ring *ring; 409 struct kiocb *req; 410 unsigned cpu, avail; 411 DEFINE_WAIT(wait); 412 413 spin_lock_irq(&ctx->ctx_lock); 414 415 while (!list_empty(&ctx->active_reqs)) { 416 req = list_first_entry(&ctx->active_reqs, 417 struct kiocb, ki_list); 418 419 list_del_init(&req->ki_list); 420 kiocb_cancel(ctx, req); 421 } 422 423 spin_unlock_irq(&ctx->ctx_lock); 424 425 for_each_possible_cpu(cpu) { 426 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu); 427 428 atomic_add(kcpu->reqs_available, &ctx->reqs_available); 429 kcpu->reqs_available = 0; 430 } 431 432 while (1) { 433 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE); 434 435 ring = kmap_atomic(ctx->ring_pages[0]); 436 avail = (ring->head <= ring->tail) 437 ? ring->tail - ring->head 438 : ctx->nr_events - ring->head + ring->tail; 439 440 atomic_add(avail, &ctx->reqs_available); 441 ring->head = ring->tail; 442 kunmap_atomic(ring); 443 444 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1) 445 break; 446 447 schedule(); 448 } 449 finish_wait(&ctx->wait, &wait); 450 451 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1); 452 453 aio_free_ring(ctx); 454 455 pr_debug("freeing %p\n", ctx); 456 457 /* 458 * Here the call_rcu() is between the wait_event() for reqs_active to 459 * hit 0, and freeing the ioctx. 460 * 461 * aio_complete() decrements reqs_active, but it has to touch the ioctx 462 * after to issue a wakeup so we use rcu. 463 */ 464 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 465 } 466 467 static void free_ioctx_ref(struct percpu_ref *ref) 468 { 469 struct kioctx *ctx = container_of(ref, struct kioctx, users); 470 471 INIT_WORK(&ctx->free_work, free_ioctx); 472 schedule_work(&ctx->free_work); 473 } 474 475 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 476 { 477 unsigned i, new_nr; 478 struct kioctx_table *table, *old; 479 struct aio_ring *ring; 480 481 spin_lock(&mm->ioctx_lock); 482 rcu_read_lock(); 483 table = rcu_dereference(mm->ioctx_table); 484 485 while (1) { 486 if (table) 487 for (i = 0; i < table->nr; i++) 488 if (!table->table[i]) { 489 ctx->id = i; 490 table->table[i] = ctx; 491 rcu_read_unlock(); 492 spin_unlock(&mm->ioctx_lock); 493 494 ring = kmap_atomic(ctx->ring_pages[0]); 495 ring->id = ctx->id; 496 kunmap_atomic(ring); 497 return 0; 498 } 499 500 new_nr = (table ? table->nr : 1) * 4; 501 502 rcu_read_unlock(); 503 spin_unlock(&mm->ioctx_lock); 504 505 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 506 new_nr, GFP_KERNEL); 507 if (!table) 508 return -ENOMEM; 509 510 table->nr = new_nr; 511 512 spin_lock(&mm->ioctx_lock); 513 rcu_read_lock(); 514 old = rcu_dereference(mm->ioctx_table); 515 516 if (!old) { 517 rcu_assign_pointer(mm->ioctx_table, table); 518 } else if (table->nr > old->nr) { 519 memcpy(table->table, old->table, 520 old->nr * sizeof(struct kioctx *)); 521 522 rcu_assign_pointer(mm->ioctx_table, table); 523 kfree_rcu(old, rcu); 524 } else { 525 kfree(table); 526 table = old; 527 } 528 } 529 } 530 531 /* ioctx_alloc 532 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 533 */ 534 static struct kioctx *ioctx_alloc(unsigned nr_events) 535 { 536 struct mm_struct *mm = current->mm; 537 struct kioctx *ctx; 538 int err = -ENOMEM; 539 540 /* 541 * We keep track of the number of available ringbuffer slots, to prevent 542 * overflow (reqs_available), and we also use percpu counters for this. 543 * 544 * So since up to half the slots might be on other cpu's percpu counters 545 * and unavailable, double nr_events so userspace sees what they 546 * expected: additionally, we move req_batch slots to/from percpu 547 * counters at a time, so make sure that isn't 0: 548 */ 549 nr_events = max(nr_events, num_possible_cpus() * 4); 550 nr_events *= 2; 551 552 /* Prevent overflows */ 553 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 554 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 555 pr_debug("ENOMEM: nr_events too high\n"); 556 return ERR_PTR(-EINVAL); 557 } 558 559 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 560 return ERR_PTR(-EAGAIN); 561 562 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 563 if (!ctx) 564 return ERR_PTR(-ENOMEM); 565 566 ctx->max_reqs = nr_events; 567 568 if (percpu_ref_init(&ctx->users, free_ioctx_ref)) 569 goto out_freectx; 570 571 spin_lock_init(&ctx->ctx_lock); 572 spin_lock_init(&ctx->completion_lock); 573 mutex_init(&ctx->ring_lock); 574 init_waitqueue_head(&ctx->wait); 575 576 INIT_LIST_HEAD(&ctx->active_reqs); 577 578 ctx->cpu = alloc_percpu(struct kioctx_cpu); 579 if (!ctx->cpu) 580 goto out_freeref; 581 582 if (aio_setup_ring(ctx) < 0) 583 goto out_freepcpu; 584 585 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 586 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 587 if (ctx->req_batch < 1) 588 ctx->req_batch = 1; 589 590 /* limit the number of system wide aios */ 591 spin_lock(&aio_nr_lock); 592 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 593 aio_nr + nr_events < aio_nr) { 594 spin_unlock(&aio_nr_lock); 595 goto out_cleanup; 596 } 597 aio_nr += ctx->max_reqs; 598 spin_unlock(&aio_nr_lock); 599 600 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 601 602 err = ioctx_add_table(ctx, mm); 603 if (err) 604 goto out_cleanup_put; 605 606 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 607 ctx, ctx->user_id, mm, ctx->nr_events); 608 return ctx; 609 610 out_cleanup_put: 611 percpu_ref_put(&ctx->users); 612 out_cleanup: 613 err = -EAGAIN; 614 aio_free_ring(ctx); 615 out_freepcpu: 616 free_percpu(ctx->cpu); 617 out_freeref: 618 free_percpu(ctx->users.pcpu_count); 619 out_freectx: 620 if (ctx->aio_ring_file) 621 fput(ctx->aio_ring_file); 622 kmem_cache_free(kioctx_cachep, ctx); 623 pr_debug("error allocating ioctx %d\n", err); 624 return ERR_PTR(err); 625 } 626 627 /* kill_ioctx 628 * Cancels all outstanding aio requests on an aio context. Used 629 * when the processes owning a context have all exited to encourage 630 * the rapid destruction of the kioctx. 631 */ 632 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 633 { 634 if (!atomic_xchg(&ctx->dead, 1)) { 635 struct kioctx_table *table; 636 637 spin_lock(&mm->ioctx_lock); 638 rcu_read_lock(); 639 table = rcu_dereference(mm->ioctx_table); 640 641 WARN_ON(ctx != table->table[ctx->id]); 642 table->table[ctx->id] = NULL; 643 rcu_read_unlock(); 644 spin_unlock(&mm->ioctx_lock); 645 646 /* percpu_ref_kill() will do the necessary call_rcu() */ 647 wake_up_all(&ctx->wait); 648 649 /* 650 * It'd be more correct to do this in free_ioctx(), after all 651 * the outstanding kiocbs have finished - but by then io_destroy 652 * has already returned, so io_setup() could potentially return 653 * -EAGAIN with no ioctxs actually in use (as far as userspace 654 * could tell). 655 */ 656 spin_lock(&aio_nr_lock); 657 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 658 aio_nr -= ctx->max_reqs; 659 spin_unlock(&aio_nr_lock); 660 661 if (ctx->mmap_size) 662 vm_munmap(ctx->mmap_base, ctx->mmap_size); 663 664 percpu_ref_kill(&ctx->users); 665 } 666 } 667 668 /* wait_on_sync_kiocb: 669 * Waits on the given sync kiocb to complete. 670 */ 671 ssize_t wait_on_sync_kiocb(struct kiocb *req) 672 { 673 while (!req->ki_ctx) { 674 set_current_state(TASK_UNINTERRUPTIBLE); 675 if (req->ki_ctx) 676 break; 677 io_schedule(); 678 } 679 __set_current_state(TASK_RUNNING); 680 return req->ki_user_data; 681 } 682 EXPORT_SYMBOL(wait_on_sync_kiocb); 683 684 /* 685 * exit_aio: called when the last user of mm goes away. At this point, there is 686 * no way for any new requests to be submited or any of the io_* syscalls to be 687 * called on the context. 688 * 689 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 690 * them. 691 */ 692 void exit_aio(struct mm_struct *mm) 693 { 694 struct kioctx_table *table; 695 struct kioctx *ctx; 696 unsigned i = 0; 697 698 while (1) { 699 rcu_read_lock(); 700 table = rcu_dereference(mm->ioctx_table); 701 702 do { 703 if (!table || i >= table->nr) { 704 rcu_read_unlock(); 705 rcu_assign_pointer(mm->ioctx_table, NULL); 706 if (table) 707 kfree(table); 708 return; 709 } 710 711 ctx = table->table[i++]; 712 } while (!ctx); 713 714 rcu_read_unlock(); 715 716 /* 717 * We don't need to bother with munmap() here - 718 * exit_mmap(mm) is coming and it'll unmap everything. 719 * Since aio_free_ring() uses non-zero ->mmap_size 720 * as indicator that it needs to unmap the area, 721 * just set it to 0; aio_free_ring() is the only 722 * place that uses ->mmap_size, so it's safe. 723 */ 724 ctx->mmap_size = 0; 725 726 kill_ioctx(mm, ctx); 727 } 728 } 729 730 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 731 { 732 struct kioctx_cpu *kcpu; 733 734 preempt_disable(); 735 kcpu = this_cpu_ptr(ctx->cpu); 736 737 kcpu->reqs_available += nr; 738 while (kcpu->reqs_available >= ctx->req_batch * 2) { 739 kcpu->reqs_available -= ctx->req_batch; 740 atomic_add(ctx->req_batch, &ctx->reqs_available); 741 } 742 743 preempt_enable(); 744 } 745 746 static bool get_reqs_available(struct kioctx *ctx) 747 { 748 struct kioctx_cpu *kcpu; 749 bool ret = false; 750 751 preempt_disable(); 752 kcpu = this_cpu_ptr(ctx->cpu); 753 754 if (!kcpu->reqs_available) { 755 int old, avail = atomic_read(&ctx->reqs_available); 756 757 do { 758 if (avail < ctx->req_batch) 759 goto out; 760 761 old = avail; 762 avail = atomic_cmpxchg(&ctx->reqs_available, 763 avail, avail - ctx->req_batch); 764 } while (avail != old); 765 766 kcpu->reqs_available += ctx->req_batch; 767 } 768 769 ret = true; 770 kcpu->reqs_available--; 771 out: 772 preempt_enable(); 773 return ret; 774 } 775 776 /* aio_get_req 777 * Allocate a slot for an aio request. 778 * Returns NULL if no requests are free. 779 */ 780 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 781 { 782 struct kiocb *req; 783 784 if (!get_reqs_available(ctx)) 785 return NULL; 786 787 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 788 if (unlikely(!req)) 789 goto out_put; 790 791 req->ki_ctx = ctx; 792 return req; 793 out_put: 794 put_reqs_available(ctx, 1); 795 return NULL; 796 } 797 798 static void kiocb_free(struct kiocb *req) 799 { 800 if (req->ki_filp) 801 fput(req->ki_filp); 802 if (req->ki_eventfd != NULL) 803 eventfd_ctx_put(req->ki_eventfd); 804 kmem_cache_free(kiocb_cachep, req); 805 } 806 807 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 808 { 809 struct aio_ring __user *ring = (void __user *)ctx_id; 810 struct mm_struct *mm = current->mm; 811 struct kioctx *ctx, *ret = NULL; 812 struct kioctx_table *table; 813 unsigned id; 814 815 if (get_user(id, &ring->id)) 816 return NULL; 817 818 rcu_read_lock(); 819 table = rcu_dereference(mm->ioctx_table); 820 821 if (!table || id >= table->nr) 822 goto out; 823 824 ctx = table->table[id]; 825 if (ctx && ctx->user_id == ctx_id) { 826 percpu_ref_get(&ctx->users); 827 ret = ctx; 828 } 829 out: 830 rcu_read_unlock(); 831 return ret; 832 } 833 834 /* aio_complete 835 * Called when the io request on the given iocb is complete. 836 */ 837 void aio_complete(struct kiocb *iocb, long res, long res2) 838 { 839 struct kioctx *ctx = iocb->ki_ctx; 840 struct aio_ring *ring; 841 struct io_event *ev_page, *event; 842 unsigned long flags; 843 unsigned tail, pos; 844 845 /* 846 * Special case handling for sync iocbs: 847 * - events go directly into the iocb for fast handling 848 * - the sync task with the iocb in its stack holds the single iocb 849 * ref, no other paths have a way to get another ref 850 * - the sync task helpfully left a reference to itself in the iocb 851 */ 852 if (is_sync_kiocb(iocb)) { 853 iocb->ki_user_data = res; 854 smp_wmb(); 855 iocb->ki_ctx = ERR_PTR(-EXDEV); 856 wake_up_process(iocb->ki_obj.tsk); 857 return; 858 } 859 860 /* 861 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 862 * need to issue a wakeup after incrementing reqs_available. 863 */ 864 rcu_read_lock(); 865 866 if (iocb->ki_list.next) { 867 unsigned long flags; 868 869 spin_lock_irqsave(&ctx->ctx_lock, flags); 870 list_del(&iocb->ki_list); 871 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 872 } 873 874 /* 875 * Add a completion event to the ring buffer. Must be done holding 876 * ctx->completion_lock to prevent other code from messing with the tail 877 * pointer since we might be called from irq context. 878 */ 879 spin_lock_irqsave(&ctx->completion_lock, flags); 880 881 tail = ctx->tail; 882 pos = tail + AIO_EVENTS_OFFSET; 883 884 if (++tail >= ctx->nr_events) 885 tail = 0; 886 887 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 888 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 889 890 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 891 event->data = iocb->ki_user_data; 892 event->res = res; 893 event->res2 = res2; 894 895 kunmap_atomic(ev_page); 896 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 897 898 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 899 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 900 res, res2); 901 902 /* after flagging the request as done, we 903 * must never even look at it again 904 */ 905 smp_wmb(); /* make event visible before updating tail */ 906 907 ctx->tail = tail; 908 909 ring = kmap_atomic(ctx->ring_pages[0]); 910 ring->tail = tail; 911 kunmap_atomic(ring); 912 flush_dcache_page(ctx->ring_pages[0]); 913 914 spin_unlock_irqrestore(&ctx->completion_lock, flags); 915 916 pr_debug("added to ring %p at [%u]\n", iocb, tail); 917 918 /* 919 * Check if the user asked us to deliver the result through an 920 * eventfd. The eventfd_signal() function is safe to be called 921 * from IRQ context. 922 */ 923 if (iocb->ki_eventfd != NULL) 924 eventfd_signal(iocb->ki_eventfd, 1); 925 926 /* everything turned out well, dispose of the aiocb. */ 927 kiocb_free(iocb); 928 929 /* 930 * We have to order our ring_info tail store above and test 931 * of the wait list below outside the wait lock. This is 932 * like in wake_up_bit() where clearing a bit has to be 933 * ordered with the unlocked test. 934 */ 935 smp_mb(); 936 937 if (waitqueue_active(&ctx->wait)) 938 wake_up(&ctx->wait); 939 940 rcu_read_unlock(); 941 } 942 EXPORT_SYMBOL(aio_complete); 943 944 /* aio_read_events 945 * Pull an event off of the ioctx's event ring. Returns the number of 946 * events fetched 947 */ 948 static long aio_read_events_ring(struct kioctx *ctx, 949 struct io_event __user *event, long nr) 950 { 951 struct aio_ring *ring; 952 unsigned head, tail, pos; 953 long ret = 0; 954 int copy_ret; 955 956 mutex_lock(&ctx->ring_lock); 957 958 ring = kmap_atomic(ctx->ring_pages[0]); 959 head = ring->head; 960 tail = ring->tail; 961 kunmap_atomic(ring); 962 963 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 964 965 if (head == tail) 966 goto out; 967 968 while (ret < nr) { 969 long avail; 970 struct io_event *ev; 971 struct page *page; 972 973 avail = (head <= tail ? tail : ctx->nr_events) - head; 974 if (head == tail) 975 break; 976 977 avail = min(avail, nr - ret); 978 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 979 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 980 981 pos = head + AIO_EVENTS_OFFSET; 982 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 983 pos %= AIO_EVENTS_PER_PAGE; 984 985 ev = kmap(page); 986 copy_ret = copy_to_user(event + ret, ev + pos, 987 sizeof(*ev) * avail); 988 kunmap(page); 989 990 if (unlikely(copy_ret)) { 991 ret = -EFAULT; 992 goto out; 993 } 994 995 ret += avail; 996 head += avail; 997 head %= ctx->nr_events; 998 } 999 1000 ring = kmap_atomic(ctx->ring_pages[0]); 1001 ring->head = head; 1002 kunmap_atomic(ring); 1003 flush_dcache_page(ctx->ring_pages[0]); 1004 1005 pr_debug("%li h%u t%u\n", ret, head, tail); 1006 1007 put_reqs_available(ctx, ret); 1008 out: 1009 mutex_unlock(&ctx->ring_lock); 1010 1011 return ret; 1012 } 1013 1014 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1015 struct io_event __user *event, long *i) 1016 { 1017 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1018 1019 if (ret > 0) 1020 *i += ret; 1021 1022 if (unlikely(atomic_read(&ctx->dead))) 1023 ret = -EINVAL; 1024 1025 if (!*i) 1026 *i = ret; 1027 1028 return ret < 0 || *i >= min_nr; 1029 } 1030 1031 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1032 struct io_event __user *event, 1033 struct timespec __user *timeout) 1034 { 1035 ktime_t until = { .tv64 = KTIME_MAX }; 1036 long ret = 0; 1037 1038 if (timeout) { 1039 struct timespec ts; 1040 1041 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1042 return -EFAULT; 1043 1044 until = timespec_to_ktime(ts); 1045 } 1046 1047 /* 1048 * Note that aio_read_events() is being called as the conditional - i.e. 1049 * we're calling it after prepare_to_wait() has set task state to 1050 * TASK_INTERRUPTIBLE. 1051 * 1052 * But aio_read_events() can block, and if it blocks it's going to flip 1053 * the task state back to TASK_RUNNING. 1054 * 1055 * This should be ok, provided it doesn't flip the state back to 1056 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1057 * will only happen if the mutex_lock() call blocks, and we then find 1058 * the ringbuffer empty. So in practice we should be ok, but it's 1059 * something to be aware of when touching this code. 1060 */ 1061 wait_event_interruptible_hrtimeout(ctx->wait, 1062 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1063 1064 if (!ret && signal_pending(current)) 1065 ret = -EINTR; 1066 1067 return ret; 1068 } 1069 1070 /* sys_io_setup: 1071 * Create an aio_context capable of receiving at least nr_events. 1072 * ctxp must not point to an aio_context that already exists, and 1073 * must be initialized to 0 prior to the call. On successful 1074 * creation of the aio_context, *ctxp is filled in with the resulting 1075 * handle. May fail with -EINVAL if *ctxp is not initialized, 1076 * if the specified nr_events exceeds internal limits. May fail 1077 * with -EAGAIN if the specified nr_events exceeds the user's limit 1078 * of available events. May fail with -ENOMEM if insufficient kernel 1079 * resources are available. May fail with -EFAULT if an invalid 1080 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1081 * implemented. 1082 */ 1083 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1084 { 1085 struct kioctx *ioctx = NULL; 1086 unsigned long ctx; 1087 long ret; 1088 1089 ret = get_user(ctx, ctxp); 1090 if (unlikely(ret)) 1091 goto out; 1092 1093 ret = -EINVAL; 1094 if (unlikely(ctx || nr_events == 0)) { 1095 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1096 ctx, nr_events); 1097 goto out; 1098 } 1099 1100 ioctx = ioctx_alloc(nr_events); 1101 ret = PTR_ERR(ioctx); 1102 if (!IS_ERR(ioctx)) { 1103 ret = put_user(ioctx->user_id, ctxp); 1104 if (ret) 1105 kill_ioctx(current->mm, ioctx); 1106 percpu_ref_put(&ioctx->users); 1107 } 1108 1109 out: 1110 return ret; 1111 } 1112 1113 /* sys_io_destroy: 1114 * Destroy the aio_context specified. May cancel any outstanding 1115 * AIOs and block on completion. Will fail with -ENOSYS if not 1116 * implemented. May fail with -EINVAL if the context pointed to 1117 * is invalid. 1118 */ 1119 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1120 { 1121 struct kioctx *ioctx = lookup_ioctx(ctx); 1122 if (likely(NULL != ioctx)) { 1123 kill_ioctx(current->mm, ioctx); 1124 percpu_ref_put(&ioctx->users); 1125 return 0; 1126 } 1127 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1128 return -EINVAL; 1129 } 1130 1131 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1132 unsigned long, loff_t); 1133 1134 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1135 int rw, char __user *buf, 1136 unsigned long *nr_segs, 1137 struct iovec **iovec, 1138 bool compat) 1139 { 1140 ssize_t ret; 1141 1142 *nr_segs = kiocb->ki_nbytes; 1143 1144 #ifdef CONFIG_COMPAT 1145 if (compat) 1146 ret = compat_rw_copy_check_uvector(rw, 1147 (struct compat_iovec __user *)buf, 1148 *nr_segs, 1, *iovec, iovec); 1149 else 1150 #endif 1151 ret = rw_copy_check_uvector(rw, 1152 (struct iovec __user *)buf, 1153 *nr_segs, 1, *iovec, iovec); 1154 if (ret < 0) 1155 return ret; 1156 1157 /* ki_nbytes now reflect bytes instead of segs */ 1158 kiocb->ki_nbytes = ret; 1159 return 0; 1160 } 1161 1162 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1163 int rw, char __user *buf, 1164 unsigned long *nr_segs, 1165 struct iovec *iovec) 1166 { 1167 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1168 return -EFAULT; 1169 1170 iovec->iov_base = buf; 1171 iovec->iov_len = kiocb->ki_nbytes; 1172 *nr_segs = 1; 1173 return 0; 1174 } 1175 1176 /* 1177 * aio_setup_iocb: 1178 * Performs the initial checks and aio retry method 1179 * setup for the kiocb at the time of io submission. 1180 */ 1181 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1182 char __user *buf, bool compat) 1183 { 1184 struct file *file = req->ki_filp; 1185 ssize_t ret; 1186 unsigned long nr_segs; 1187 int rw; 1188 fmode_t mode; 1189 aio_rw_op *rw_op; 1190 struct iovec inline_vec, *iovec = &inline_vec; 1191 1192 switch (opcode) { 1193 case IOCB_CMD_PREAD: 1194 case IOCB_CMD_PREADV: 1195 mode = FMODE_READ; 1196 rw = READ; 1197 rw_op = file->f_op->aio_read; 1198 goto rw_common; 1199 1200 case IOCB_CMD_PWRITE: 1201 case IOCB_CMD_PWRITEV: 1202 mode = FMODE_WRITE; 1203 rw = WRITE; 1204 rw_op = file->f_op->aio_write; 1205 goto rw_common; 1206 rw_common: 1207 if (unlikely(!(file->f_mode & mode))) 1208 return -EBADF; 1209 1210 if (!rw_op) 1211 return -EINVAL; 1212 1213 ret = (opcode == IOCB_CMD_PREADV || 1214 opcode == IOCB_CMD_PWRITEV) 1215 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1216 &iovec, compat) 1217 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1218 iovec); 1219 if (ret) 1220 return ret; 1221 1222 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1223 if (ret < 0) { 1224 if (iovec != &inline_vec) 1225 kfree(iovec); 1226 return ret; 1227 } 1228 1229 req->ki_nbytes = ret; 1230 1231 /* XXX: move/kill - rw_verify_area()? */ 1232 /* This matches the pread()/pwrite() logic */ 1233 if (req->ki_pos < 0) { 1234 ret = -EINVAL; 1235 break; 1236 } 1237 1238 if (rw == WRITE) 1239 file_start_write(file); 1240 1241 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1242 1243 if (rw == WRITE) 1244 file_end_write(file); 1245 break; 1246 1247 case IOCB_CMD_FDSYNC: 1248 if (!file->f_op->aio_fsync) 1249 return -EINVAL; 1250 1251 ret = file->f_op->aio_fsync(req, 1); 1252 break; 1253 1254 case IOCB_CMD_FSYNC: 1255 if (!file->f_op->aio_fsync) 1256 return -EINVAL; 1257 1258 ret = file->f_op->aio_fsync(req, 0); 1259 break; 1260 1261 default: 1262 pr_debug("EINVAL: no operation provided\n"); 1263 return -EINVAL; 1264 } 1265 1266 if (iovec != &inline_vec) 1267 kfree(iovec); 1268 1269 if (ret != -EIOCBQUEUED) { 1270 /* 1271 * There's no easy way to restart the syscall since other AIO's 1272 * may be already running. Just fail this IO with EINTR. 1273 */ 1274 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1275 ret == -ERESTARTNOHAND || 1276 ret == -ERESTART_RESTARTBLOCK)) 1277 ret = -EINTR; 1278 aio_complete(req, ret, 0); 1279 } 1280 1281 return 0; 1282 } 1283 1284 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1285 struct iocb *iocb, bool compat) 1286 { 1287 struct kiocb *req; 1288 ssize_t ret; 1289 1290 /* enforce forwards compatibility on users */ 1291 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1292 pr_debug("EINVAL: reserve field set\n"); 1293 return -EINVAL; 1294 } 1295 1296 /* prevent overflows */ 1297 if (unlikely( 1298 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1299 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1300 ((ssize_t)iocb->aio_nbytes < 0) 1301 )) { 1302 pr_debug("EINVAL: io_submit: overflow check\n"); 1303 return -EINVAL; 1304 } 1305 1306 req = aio_get_req(ctx); 1307 if (unlikely(!req)) 1308 return -EAGAIN; 1309 1310 req->ki_filp = fget(iocb->aio_fildes); 1311 if (unlikely(!req->ki_filp)) { 1312 ret = -EBADF; 1313 goto out_put_req; 1314 } 1315 1316 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1317 /* 1318 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1319 * instance of the file* now. The file descriptor must be 1320 * an eventfd() fd, and will be signaled for each completed 1321 * event using the eventfd_signal() function. 1322 */ 1323 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1324 if (IS_ERR(req->ki_eventfd)) { 1325 ret = PTR_ERR(req->ki_eventfd); 1326 req->ki_eventfd = NULL; 1327 goto out_put_req; 1328 } 1329 } 1330 1331 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1332 if (unlikely(ret)) { 1333 pr_debug("EFAULT: aio_key\n"); 1334 goto out_put_req; 1335 } 1336 1337 req->ki_obj.user = user_iocb; 1338 req->ki_user_data = iocb->aio_data; 1339 req->ki_pos = iocb->aio_offset; 1340 req->ki_nbytes = iocb->aio_nbytes; 1341 1342 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1343 (char __user *)(unsigned long)iocb->aio_buf, 1344 compat); 1345 if (ret) 1346 goto out_put_req; 1347 1348 return 0; 1349 out_put_req: 1350 put_reqs_available(ctx, 1); 1351 kiocb_free(req); 1352 return ret; 1353 } 1354 1355 long do_io_submit(aio_context_t ctx_id, long nr, 1356 struct iocb __user *__user *iocbpp, bool compat) 1357 { 1358 struct kioctx *ctx; 1359 long ret = 0; 1360 int i = 0; 1361 struct blk_plug plug; 1362 1363 if (unlikely(nr < 0)) 1364 return -EINVAL; 1365 1366 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1367 nr = LONG_MAX/sizeof(*iocbpp); 1368 1369 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1370 return -EFAULT; 1371 1372 ctx = lookup_ioctx(ctx_id); 1373 if (unlikely(!ctx)) { 1374 pr_debug("EINVAL: invalid context id\n"); 1375 return -EINVAL; 1376 } 1377 1378 blk_start_plug(&plug); 1379 1380 /* 1381 * AKPM: should this return a partial result if some of the IOs were 1382 * successfully submitted? 1383 */ 1384 for (i=0; i<nr; i++) { 1385 struct iocb __user *user_iocb; 1386 struct iocb tmp; 1387 1388 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1389 ret = -EFAULT; 1390 break; 1391 } 1392 1393 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1394 ret = -EFAULT; 1395 break; 1396 } 1397 1398 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1399 if (ret) 1400 break; 1401 } 1402 blk_finish_plug(&plug); 1403 1404 percpu_ref_put(&ctx->users); 1405 return i ? i : ret; 1406 } 1407 1408 /* sys_io_submit: 1409 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1410 * the number of iocbs queued. May return -EINVAL if the aio_context 1411 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1412 * *iocbpp[0] is not properly initialized, if the operation specified 1413 * is invalid for the file descriptor in the iocb. May fail with 1414 * -EFAULT if any of the data structures point to invalid data. May 1415 * fail with -EBADF if the file descriptor specified in the first 1416 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1417 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1418 * fail with -ENOSYS if not implemented. 1419 */ 1420 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1421 struct iocb __user * __user *, iocbpp) 1422 { 1423 return do_io_submit(ctx_id, nr, iocbpp, 0); 1424 } 1425 1426 /* lookup_kiocb 1427 * Finds a given iocb for cancellation. 1428 */ 1429 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1430 u32 key) 1431 { 1432 struct list_head *pos; 1433 1434 assert_spin_locked(&ctx->ctx_lock); 1435 1436 if (key != KIOCB_KEY) 1437 return NULL; 1438 1439 /* TODO: use a hash or array, this sucks. */ 1440 list_for_each(pos, &ctx->active_reqs) { 1441 struct kiocb *kiocb = list_kiocb(pos); 1442 if (kiocb->ki_obj.user == iocb) 1443 return kiocb; 1444 } 1445 return NULL; 1446 } 1447 1448 /* sys_io_cancel: 1449 * Attempts to cancel an iocb previously passed to io_submit. If 1450 * the operation is successfully cancelled, the resulting event is 1451 * copied into the memory pointed to by result without being placed 1452 * into the completion queue and 0 is returned. May fail with 1453 * -EFAULT if any of the data structures pointed to are invalid. 1454 * May fail with -EINVAL if aio_context specified by ctx_id is 1455 * invalid. May fail with -EAGAIN if the iocb specified was not 1456 * cancelled. Will fail with -ENOSYS if not implemented. 1457 */ 1458 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1459 struct io_event __user *, result) 1460 { 1461 struct kioctx *ctx; 1462 struct kiocb *kiocb; 1463 u32 key; 1464 int ret; 1465 1466 ret = get_user(key, &iocb->aio_key); 1467 if (unlikely(ret)) 1468 return -EFAULT; 1469 1470 ctx = lookup_ioctx(ctx_id); 1471 if (unlikely(!ctx)) 1472 return -EINVAL; 1473 1474 spin_lock_irq(&ctx->ctx_lock); 1475 1476 kiocb = lookup_kiocb(ctx, iocb, key); 1477 if (kiocb) 1478 ret = kiocb_cancel(ctx, kiocb); 1479 else 1480 ret = -EINVAL; 1481 1482 spin_unlock_irq(&ctx->ctx_lock); 1483 1484 if (!ret) { 1485 /* 1486 * The result argument is no longer used - the io_event is 1487 * always delivered via the ring buffer. -EINPROGRESS indicates 1488 * cancellation is progress: 1489 */ 1490 ret = -EINPROGRESS; 1491 } 1492 1493 percpu_ref_put(&ctx->users); 1494 1495 return ret; 1496 } 1497 1498 /* io_getevents: 1499 * Attempts to read at least min_nr events and up to nr events from 1500 * the completion queue for the aio_context specified by ctx_id. If 1501 * it succeeds, the number of read events is returned. May fail with 1502 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1503 * out of range, if timeout is out of range. May fail with -EFAULT 1504 * if any of the memory specified is invalid. May return 0 or 1505 * < min_nr if the timeout specified by timeout has elapsed 1506 * before sufficient events are available, where timeout == NULL 1507 * specifies an infinite timeout. Note that the timeout pointed to by 1508 * timeout is relative. Will fail with -ENOSYS if not implemented. 1509 */ 1510 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1511 long, min_nr, 1512 long, nr, 1513 struct io_event __user *, events, 1514 struct timespec __user *, timeout) 1515 { 1516 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1517 long ret = -EINVAL; 1518 1519 if (likely(ioctx)) { 1520 if (likely(min_nr <= nr && min_nr >= 0)) 1521 ret = read_events(ioctx, min_nr, nr, events, timeout); 1522 percpu_ref_put(&ioctx->users); 1523 } 1524 return ret; 1525 } 1526