xref: /openbmc/linux/fs/aio.c (revision 588b48ca)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		spinlock_t	completion_lock;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct page		*internal_pages[AIO_RING_PAGES];
148 	struct file		*aio_ring_file;
149 
150 	unsigned		id;
151 };
152 
153 /*------ sysctl variables----*/
154 static DEFINE_SPINLOCK(aio_nr_lock);
155 unsigned long aio_nr;		/* current system wide number of aio requests */
156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
157 /*----end sysctl variables---*/
158 
159 static struct kmem_cache	*kiocb_cachep;
160 static struct kmem_cache	*kioctx_cachep;
161 
162 static struct vfsmount *aio_mnt;
163 
164 static const struct file_operations aio_ring_fops;
165 static const struct address_space_operations aio_ctx_aops;
166 
167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
168 {
169 	struct qstr this = QSTR_INIT("[aio]", 5);
170 	struct file *file;
171 	struct path path;
172 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
173 	if (IS_ERR(inode))
174 		return ERR_CAST(inode);
175 
176 	inode->i_mapping->a_ops = &aio_ctx_aops;
177 	inode->i_mapping->private_data = ctx;
178 	inode->i_size = PAGE_SIZE * nr_pages;
179 
180 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
181 	if (!path.dentry) {
182 		iput(inode);
183 		return ERR_PTR(-ENOMEM);
184 	}
185 	path.mnt = mntget(aio_mnt);
186 
187 	d_instantiate(path.dentry, inode);
188 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
189 	if (IS_ERR(file)) {
190 		path_put(&path);
191 		return file;
192 	}
193 
194 	file->f_flags = O_RDWR;
195 	return file;
196 }
197 
198 static struct dentry *aio_mount(struct file_system_type *fs_type,
199 				int flags, const char *dev_name, void *data)
200 {
201 	static const struct dentry_operations ops = {
202 		.d_dname	= simple_dname,
203 	};
204 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
205 }
206 
207 /* aio_setup
208  *	Creates the slab caches used by the aio routines, panic on
209  *	failure as this is done early during the boot sequence.
210  */
211 static int __init aio_setup(void)
212 {
213 	static struct file_system_type aio_fs = {
214 		.name		= "aio",
215 		.mount		= aio_mount,
216 		.kill_sb	= kill_anon_super,
217 	};
218 	aio_mnt = kern_mount(&aio_fs);
219 	if (IS_ERR(aio_mnt))
220 		panic("Failed to create aio fs mount.");
221 
222 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
223 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224 
225 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
226 
227 	return 0;
228 }
229 __initcall(aio_setup);
230 
231 static void put_aio_ring_file(struct kioctx *ctx)
232 {
233 	struct file *aio_ring_file = ctx->aio_ring_file;
234 	if (aio_ring_file) {
235 		truncate_setsize(aio_ring_file->f_inode, 0);
236 
237 		/* Prevent further access to the kioctx from migratepages */
238 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
239 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
240 		ctx->aio_ring_file = NULL;
241 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
242 
243 		fput(aio_ring_file);
244 	}
245 }
246 
247 static void aio_free_ring(struct kioctx *ctx)
248 {
249 	int i;
250 
251 	/* Disconnect the kiotx from the ring file.  This prevents future
252 	 * accesses to the kioctx from page migration.
253 	 */
254 	put_aio_ring_file(ctx);
255 
256 	for (i = 0; i < ctx->nr_pages; i++) {
257 		struct page *page;
258 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
259 				page_count(ctx->ring_pages[i]));
260 		page = ctx->ring_pages[i];
261 		if (!page)
262 			continue;
263 		ctx->ring_pages[i] = NULL;
264 		put_page(page);
265 	}
266 
267 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
268 		kfree(ctx->ring_pages);
269 		ctx->ring_pages = NULL;
270 	}
271 }
272 
273 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
274 {
275 	vma->vm_ops = &generic_file_vm_ops;
276 	return 0;
277 }
278 
279 static const struct file_operations aio_ring_fops = {
280 	.mmap = aio_ring_mmap,
281 };
282 
283 static int aio_set_page_dirty(struct page *page)
284 {
285 	return 0;
286 }
287 
288 #if IS_ENABLED(CONFIG_MIGRATION)
289 static int aio_migratepage(struct address_space *mapping, struct page *new,
290 			struct page *old, enum migrate_mode mode)
291 {
292 	struct kioctx *ctx;
293 	unsigned long flags;
294 	pgoff_t idx;
295 	int rc;
296 
297 	rc = 0;
298 
299 	/* mapping->private_lock here protects against the kioctx teardown.  */
300 	spin_lock(&mapping->private_lock);
301 	ctx = mapping->private_data;
302 	if (!ctx) {
303 		rc = -EINVAL;
304 		goto out;
305 	}
306 
307 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
308 	 * to the ring's head, and prevents page migration from mucking in
309 	 * a partially initialized kiotx.
310 	 */
311 	if (!mutex_trylock(&ctx->ring_lock)) {
312 		rc = -EAGAIN;
313 		goto out;
314 	}
315 
316 	idx = old->index;
317 	if (idx < (pgoff_t)ctx->nr_pages) {
318 		/* Make sure the old page hasn't already been changed */
319 		if (ctx->ring_pages[idx] != old)
320 			rc = -EAGAIN;
321 	} else
322 		rc = -EINVAL;
323 
324 	if (rc != 0)
325 		goto out_unlock;
326 
327 	/* Writeback must be complete */
328 	BUG_ON(PageWriteback(old));
329 	get_page(new);
330 
331 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
332 	if (rc != MIGRATEPAGE_SUCCESS) {
333 		put_page(new);
334 		goto out_unlock;
335 	}
336 
337 	/* Take completion_lock to prevent other writes to the ring buffer
338 	 * while the old page is copied to the new.  This prevents new
339 	 * events from being lost.
340 	 */
341 	spin_lock_irqsave(&ctx->completion_lock, flags);
342 	migrate_page_copy(new, old);
343 	BUG_ON(ctx->ring_pages[idx] != old);
344 	ctx->ring_pages[idx] = new;
345 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
346 
347 	/* The old page is no longer accessible. */
348 	put_page(old);
349 
350 out_unlock:
351 	mutex_unlock(&ctx->ring_lock);
352 out:
353 	spin_unlock(&mapping->private_lock);
354 	return rc;
355 }
356 #endif
357 
358 static const struct address_space_operations aio_ctx_aops = {
359 	.set_page_dirty = aio_set_page_dirty,
360 #if IS_ENABLED(CONFIG_MIGRATION)
361 	.migratepage	= aio_migratepage,
362 #endif
363 };
364 
365 static int aio_setup_ring(struct kioctx *ctx)
366 {
367 	struct aio_ring *ring;
368 	unsigned nr_events = ctx->max_reqs;
369 	struct mm_struct *mm = current->mm;
370 	unsigned long size, unused;
371 	int nr_pages;
372 	int i;
373 	struct file *file;
374 
375 	/* Compensate for the ring buffer's head/tail overlap entry */
376 	nr_events += 2;	/* 1 is required, 2 for good luck */
377 
378 	size = sizeof(struct aio_ring);
379 	size += sizeof(struct io_event) * nr_events;
380 
381 	nr_pages = PFN_UP(size);
382 	if (nr_pages < 0)
383 		return -EINVAL;
384 
385 	file = aio_private_file(ctx, nr_pages);
386 	if (IS_ERR(file)) {
387 		ctx->aio_ring_file = NULL;
388 		return -ENOMEM;
389 	}
390 
391 	ctx->aio_ring_file = file;
392 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
393 			/ sizeof(struct io_event);
394 
395 	ctx->ring_pages = ctx->internal_pages;
396 	if (nr_pages > AIO_RING_PAGES) {
397 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
398 					  GFP_KERNEL);
399 		if (!ctx->ring_pages) {
400 			put_aio_ring_file(ctx);
401 			return -ENOMEM;
402 		}
403 	}
404 
405 	for (i = 0; i < nr_pages; i++) {
406 		struct page *page;
407 		page = find_or_create_page(file->f_inode->i_mapping,
408 					   i, GFP_HIGHUSER | __GFP_ZERO);
409 		if (!page)
410 			break;
411 		pr_debug("pid(%d) page[%d]->count=%d\n",
412 			 current->pid, i, page_count(page));
413 		SetPageUptodate(page);
414 		SetPageDirty(page);
415 		unlock_page(page);
416 
417 		ctx->ring_pages[i] = page;
418 	}
419 	ctx->nr_pages = i;
420 
421 	if (unlikely(i != nr_pages)) {
422 		aio_free_ring(ctx);
423 		return -ENOMEM;
424 	}
425 
426 	ctx->mmap_size = nr_pages * PAGE_SIZE;
427 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
428 
429 	down_write(&mm->mmap_sem);
430 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
431 				       PROT_READ | PROT_WRITE,
432 				       MAP_SHARED, 0, &unused);
433 	up_write(&mm->mmap_sem);
434 	if (IS_ERR((void *)ctx->mmap_base)) {
435 		ctx->mmap_size = 0;
436 		aio_free_ring(ctx);
437 		return -ENOMEM;
438 	}
439 
440 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
441 
442 	ctx->user_id = ctx->mmap_base;
443 	ctx->nr_events = nr_events; /* trusted copy */
444 
445 	ring = kmap_atomic(ctx->ring_pages[0]);
446 	ring->nr = nr_events;	/* user copy */
447 	ring->id = ~0U;
448 	ring->head = ring->tail = 0;
449 	ring->magic = AIO_RING_MAGIC;
450 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
451 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
452 	ring->header_length = sizeof(struct aio_ring);
453 	kunmap_atomic(ring);
454 	flush_dcache_page(ctx->ring_pages[0]);
455 
456 	return 0;
457 }
458 
459 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
460 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
461 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
462 
463 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
464 {
465 	struct kioctx *ctx = req->ki_ctx;
466 	unsigned long flags;
467 
468 	spin_lock_irqsave(&ctx->ctx_lock, flags);
469 
470 	if (!req->ki_list.next)
471 		list_add(&req->ki_list, &ctx->active_reqs);
472 
473 	req->ki_cancel = cancel;
474 
475 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
476 }
477 EXPORT_SYMBOL(kiocb_set_cancel_fn);
478 
479 static int kiocb_cancel(struct kiocb *kiocb)
480 {
481 	kiocb_cancel_fn *old, *cancel;
482 
483 	/*
484 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
485 	 * actually has a cancel function, hence the cmpxchg()
486 	 */
487 
488 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
489 	do {
490 		if (!cancel || cancel == KIOCB_CANCELLED)
491 			return -EINVAL;
492 
493 		old = cancel;
494 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
495 	} while (cancel != old);
496 
497 	return cancel(kiocb);
498 }
499 
500 static void free_ioctx(struct work_struct *work)
501 {
502 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
503 
504 	pr_debug("freeing %p\n", ctx);
505 
506 	aio_free_ring(ctx);
507 	free_percpu(ctx->cpu);
508 	percpu_ref_exit(&ctx->reqs);
509 	percpu_ref_exit(&ctx->users);
510 	kmem_cache_free(kioctx_cachep, ctx);
511 }
512 
513 static void free_ioctx_reqs(struct percpu_ref *ref)
514 {
515 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
516 
517 	/* At this point we know that there are no any in-flight requests */
518 	if (ctx->requests_done)
519 		complete(ctx->requests_done);
520 
521 	INIT_WORK(&ctx->free_work, free_ioctx);
522 	schedule_work(&ctx->free_work);
523 }
524 
525 /*
526  * When this function runs, the kioctx has been removed from the "hash table"
527  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
528  * now it's safe to cancel any that need to be.
529  */
530 static void free_ioctx_users(struct percpu_ref *ref)
531 {
532 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
533 	struct kiocb *req;
534 
535 	spin_lock_irq(&ctx->ctx_lock);
536 
537 	while (!list_empty(&ctx->active_reqs)) {
538 		req = list_first_entry(&ctx->active_reqs,
539 				       struct kiocb, ki_list);
540 
541 		list_del_init(&req->ki_list);
542 		kiocb_cancel(req);
543 	}
544 
545 	spin_unlock_irq(&ctx->ctx_lock);
546 
547 	percpu_ref_kill(&ctx->reqs);
548 	percpu_ref_put(&ctx->reqs);
549 }
550 
551 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
552 {
553 	unsigned i, new_nr;
554 	struct kioctx_table *table, *old;
555 	struct aio_ring *ring;
556 
557 	spin_lock(&mm->ioctx_lock);
558 	table = rcu_dereference_raw(mm->ioctx_table);
559 
560 	while (1) {
561 		if (table)
562 			for (i = 0; i < table->nr; i++)
563 				if (!table->table[i]) {
564 					ctx->id = i;
565 					table->table[i] = ctx;
566 					spin_unlock(&mm->ioctx_lock);
567 
568 					/* While kioctx setup is in progress,
569 					 * we are protected from page migration
570 					 * changes ring_pages by ->ring_lock.
571 					 */
572 					ring = kmap_atomic(ctx->ring_pages[0]);
573 					ring->id = ctx->id;
574 					kunmap_atomic(ring);
575 					return 0;
576 				}
577 
578 		new_nr = (table ? table->nr : 1) * 4;
579 		spin_unlock(&mm->ioctx_lock);
580 
581 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
582 				new_nr, GFP_KERNEL);
583 		if (!table)
584 			return -ENOMEM;
585 
586 		table->nr = new_nr;
587 
588 		spin_lock(&mm->ioctx_lock);
589 		old = rcu_dereference_raw(mm->ioctx_table);
590 
591 		if (!old) {
592 			rcu_assign_pointer(mm->ioctx_table, table);
593 		} else if (table->nr > old->nr) {
594 			memcpy(table->table, old->table,
595 			       old->nr * sizeof(struct kioctx *));
596 
597 			rcu_assign_pointer(mm->ioctx_table, table);
598 			kfree_rcu(old, rcu);
599 		} else {
600 			kfree(table);
601 			table = old;
602 		}
603 	}
604 }
605 
606 static void aio_nr_sub(unsigned nr)
607 {
608 	spin_lock(&aio_nr_lock);
609 	if (WARN_ON(aio_nr - nr > aio_nr))
610 		aio_nr = 0;
611 	else
612 		aio_nr -= nr;
613 	spin_unlock(&aio_nr_lock);
614 }
615 
616 /* ioctx_alloc
617  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
618  */
619 static struct kioctx *ioctx_alloc(unsigned nr_events)
620 {
621 	struct mm_struct *mm = current->mm;
622 	struct kioctx *ctx;
623 	int err = -ENOMEM;
624 
625 	/*
626 	 * We keep track of the number of available ringbuffer slots, to prevent
627 	 * overflow (reqs_available), and we also use percpu counters for this.
628 	 *
629 	 * So since up to half the slots might be on other cpu's percpu counters
630 	 * and unavailable, double nr_events so userspace sees what they
631 	 * expected: additionally, we move req_batch slots to/from percpu
632 	 * counters at a time, so make sure that isn't 0:
633 	 */
634 	nr_events = max(nr_events, num_possible_cpus() * 4);
635 	nr_events *= 2;
636 
637 	/* Prevent overflows */
638 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
639 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
640 		pr_debug("ENOMEM: nr_events too high\n");
641 		return ERR_PTR(-EINVAL);
642 	}
643 
644 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
645 		return ERR_PTR(-EAGAIN);
646 
647 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
648 	if (!ctx)
649 		return ERR_PTR(-ENOMEM);
650 
651 	ctx->max_reqs = nr_events;
652 
653 	spin_lock_init(&ctx->ctx_lock);
654 	spin_lock_init(&ctx->completion_lock);
655 	mutex_init(&ctx->ring_lock);
656 	/* Protect against page migration throughout kiotx setup by keeping
657 	 * the ring_lock mutex held until setup is complete. */
658 	mutex_lock(&ctx->ring_lock);
659 	init_waitqueue_head(&ctx->wait);
660 
661 	INIT_LIST_HEAD(&ctx->active_reqs);
662 
663 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
664 		goto err;
665 
666 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
667 		goto err;
668 
669 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
670 	if (!ctx->cpu)
671 		goto err;
672 
673 	err = aio_setup_ring(ctx);
674 	if (err < 0)
675 		goto err;
676 
677 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
678 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
679 	if (ctx->req_batch < 1)
680 		ctx->req_batch = 1;
681 
682 	/* limit the number of system wide aios */
683 	spin_lock(&aio_nr_lock);
684 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
685 	    aio_nr + nr_events < aio_nr) {
686 		spin_unlock(&aio_nr_lock);
687 		err = -EAGAIN;
688 		goto err_ctx;
689 	}
690 	aio_nr += ctx->max_reqs;
691 	spin_unlock(&aio_nr_lock);
692 
693 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
694 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
695 
696 	err = ioctx_add_table(ctx, mm);
697 	if (err)
698 		goto err_cleanup;
699 
700 	/* Release the ring_lock mutex now that all setup is complete. */
701 	mutex_unlock(&ctx->ring_lock);
702 
703 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
704 		 ctx, ctx->user_id, mm, ctx->nr_events);
705 	return ctx;
706 
707 err_cleanup:
708 	aio_nr_sub(ctx->max_reqs);
709 err_ctx:
710 	aio_free_ring(ctx);
711 err:
712 	mutex_unlock(&ctx->ring_lock);
713 	free_percpu(ctx->cpu);
714 	percpu_ref_exit(&ctx->reqs);
715 	percpu_ref_exit(&ctx->users);
716 	kmem_cache_free(kioctx_cachep, ctx);
717 	pr_debug("error allocating ioctx %d\n", err);
718 	return ERR_PTR(err);
719 }
720 
721 /* kill_ioctx
722  *	Cancels all outstanding aio requests on an aio context.  Used
723  *	when the processes owning a context have all exited to encourage
724  *	the rapid destruction of the kioctx.
725  */
726 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
727 		struct completion *requests_done)
728 {
729 	struct kioctx_table *table;
730 
731 	if (atomic_xchg(&ctx->dead, 1))
732 		return -EINVAL;
733 
734 
735 	spin_lock(&mm->ioctx_lock);
736 	table = rcu_dereference_raw(mm->ioctx_table);
737 	WARN_ON(ctx != table->table[ctx->id]);
738 	table->table[ctx->id] = NULL;
739 	spin_unlock(&mm->ioctx_lock);
740 
741 	/* percpu_ref_kill() will do the necessary call_rcu() */
742 	wake_up_all(&ctx->wait);
743 
744 	/*
745 	 * It'd be more correct to do this in free_ioctx(), after all
746 	 * the outstanding kiocbs have finished - but by then io_destroy
747 	 * has already returned, so io_setup() could potentially return
748 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
749 	 *  could tell).
750 	 */
751 	aio_nr_sub(ctx->max_reqs);
752 
753 	if (ctx->mmap_size)
754 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
755 
756 	ctx->requests_done = requests_done;
757 	percpu_ref_kill(&ctx->users);
758 	return 0;
759 }
760 
761 /* wait_on_sync_kiocb:
762  *	Waits on the given sync kiocb to complete.
763  */
764 ssize_t wait_on_sync_kiocb(struct kiocb *req)
765 {
766 	while (!req->ki_ctx) {
767 		set_current_state(TASK_UNINTERRUPTIBLE);
768 		if (req->ki_ctx)
769 			break;
770 		io_schedule();
771 	}
772 	__set_current_state(TASK_RUNNING);
773 	return req->ki_user_data;
774 }
775 EXPORT_SYMBOL(wait_on_sync_kiocb);
776 
777 /*
778  * exit_aio: called when the last user of mm goes away.  At this point, there is
779  * no way for any new requests to be submited or any of the io_* syscalls to be
780  * called on the context.
781  *
782  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
783  * them.
784  */
785 void exit_aio(struct mm_struct *mm)
786 {
787 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
788 	int i;
789 
790 	if (!table)
791 		return;
792 
793 	for (i = 0; i < table->nr; ++i) {
794 		struct kioctx *ctx = table->table[i];
795 
796 		if (!ctx)
797 			continue;
798 		/*
799 		 * We don't need to bother with munmap() here - exit_mmap(mm)
800 		 * is coming and it'll unmap everything. And we simply can't,
801 		 * this is not necessarily our ->mm.
802 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
803 		 * that it needs to unmap the area, just set it to 0.
804 		 */
805 		ctx->mmap_size = 0;
806 		kill_ioctx(mm, ctx, NULL);
807 	}
808 
809 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
810 	kfree(table);
811 }
812 
813 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
814 {
815 	struct kioctx_cpu *kcpu;
816 	unsigned long flags;
817 
818 	local_irq_save(flags);
819 	kcpu = this_cpu_ptr(ctx->cpu);
820 	kcpu->reqs_available += nr;
821 
822 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
823 		kcpu->reqs_available -= ctx->req_batch;
824 		atomic_add(ctx->req_batch, &ctx->reqs_available);
825 	}
826 
827 	local_irq_restore(flags);
828 }
829 
830 static bool get_reqs_available(struct kioctx *ctx)
831 {
832 	struct kioctx_cpu *kcpu;
833 	bool ret = false;
834 	unsigned long flags;
835 
836 	local_irq_save(flags);
837 	kcpu = this_cpu_ptr(ctx->cpu);
838 	if (!kcpu->reqs_available) {
839 		int old, avail = atomic_read(&ctx->reqs_available);
840 
841 		do {
842 			if (avail < ctx->req_batch)
843 				goto out;
844 
845 			old = avail;
846 			avail = atomic_cmpxchg(&ctx->reqs_available,
847 					       avail, avail - ctx->req_batch);
848 		} while (avail != old);
849 
850 		kcpu->reqs_available += ctx->req_batch;
851 	}
852 
853 	ret = true;
854 	kcpu->reqs_available--;
855 out:
856 	local_irq_restore(flags);
857 	return ret;
858 }
859 
860 /* aio_get_req
861  *	Allocate a slot for an aio request.
862  * Returns NULL if no requests are free.
863  */
864 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
865 {
866 	struct kiocb *req;
867 
868 	if (!get_reqs_available(ctx))
869 		return NULL;
870 
871 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
872 	if (unlikely(!req))
873 		goto out_put;
874 
875 	percpu_ref_get(&ctx->reqs);
876 
877 	req->ki_ctx = ctx;
878 	return req;
879 out_put:
880 	put_reqs_available(ctx, 1);
881 	return NULL;
882 }
883 
884 static void kiocb_free(struct kiocb *req)
885 {
886 	if (req->ki_filp)
887 		fput(req->ki_filp);
888 	if (req->ki_eventfd != NULL)
889 		eventfd_ctx_put(req->ki_eventfd);
890 	kmem_cache_free(kiocb_cachep, req);
891 }
892 
893 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
894 {
895 	struct aio_ring __user *ring  = (void __user *)ctx_id;
896 	struct mm_struct *mm = current->mm;
897 	struct kioctx *ctx, *ret = NULL;
898 	struct kioctx_table *table;
899 	unsigned id;
900 
901 	if (get_user(id, &ring->id))
902 		return NULL;
903 
904 	rcu_read_lock();
905 	table = rcu_dereference(mm->ioctx_table);
906 
907 	if (!table || id >= table->nr)
908 		goto out;
909 
910 	ctx = table->table[id];
911 	if (ctx && ctx->user_id == ctx_id) {
912 		percpu_ref_get(&ctx->users);
913 		ret = ctx;
914 	}
915 out:
916 	rcu_read_unlock();
917 	return ret;
918 }
919 
920 /* aio_complete
921  *	Called when the io request on the given iocb is complete.
922  */
923 void aio_complete(struct kiocb *iocb, long res, long res2)
924 {
925 	struct kioctx	*ctx = iocb->ki_ctx;
926 	struct aio_ring	*ring;
927 	struct io_event	*ev_page, *event;
928 	unsigned long	flags;
929 	unsigned tail, pos;
930 
931 	/*
932 	 * Special case handling for sync iocbs:
933 	 *  - events go directly into the iocb for fast handling
934 	 *  - the sync task with the iocb in its stack holds the single iocb
935 	 *    ref, no other paths have a way to get another ref
936 	 *  - the sync task helpfully left a reference to itself in the iocb
937 	 */
938 	if (is_sync_kiocb(iocb)) {
939 		iocb->ki_user_data = res;
940 		smp_wmb();
941 		iocb->ki_ctx = ERR_PTR(-EXDEV);
942 		wake_up_process(iocb->ki_obj.tsk);
943 		return;
944 	}
945 
946 	if (iocb->ki_list.next) {
947 		unsigned long flags;
948 
949 		spin_lock_irqsave(&ctx->ctx_lock, flags);
950 		list_del(&iocb->ki_list);
951 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
952 	}
953 
954 	/*
955 	 * Add a completion event to the ring buffer. Must be done holding
956 	 * ctx->completion_lock to prevent other code from messing with the tail
957 	 * pointer since we might be called from irq context.
958 	 */
959 	spin_lock_irqsave(&ctx->completion_lock, flags);
960 
961 	tail = ctx->tail;
962 	pos = tail + AIO_EVENTS_OFFSET;
963 
964 	if (++tail >= ctx->nr_events)
965 		tail = 0;
966 
967 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
968 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
969 
970 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
971 	event->data = iocb->ki_user_data;
972 	event->res = res;
973 	event->res2 = res2;
974 
975 	kunmap_atomic(ev_page);
976 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
977 
978 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
979 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
980 		 res, res2);
981 
982 	/* after flagging the request as done, we
983 	 * must never even look at it again
984 	 */
985 	smp_wmb();	/* make event visible before updating tail */
986 
987 	ctx->tail = tail;
988 
989 	ring = kmap_atomic(ctx->ring_pages[0]);
990 	ring->tail = tail;
991 	kunmap_atomic(ring);
992 	flush_dcache_page(ctx->ring_pages[0]);
993 
994 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
995 
996 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
997 
998 	/*
999 	 * Check if the user asked us to deliver the result through an
1000 	 * eventfd. The eventfd_signal() function is safe to be called
1001 	 * from IRQ context.
1002 	 */
1003 	if (iocb->ki_eventfd != NULL)
1004 		eventfd_signal(iocb->ki_eventfd, 1);
1005 
1006 	/* everything turned out well, dispose of the aiocb. */
1007 	kiocb_free(iocb);
1008 	put_reqs_available(ctx, 1);
1009 
1010 	/*
1011 	 * We have to order our ring_info tail store above and test
1012 	 * of the wait list below outside the wait lock.  This is
1013 	 * like in wake_up_bit() where clearing a bit has to be
1014 	 * ordered with the unlocked test.
1015 	 */
1016 	smp_mb();
1017 
1018 	if (waitqueue_active(&ctx->wait))
1019 		wake_up(&ctx->wait);
1020 
1021 	percpu_ref_put(&ctx->reqs);
1022 }
1023 EXPORT_SYMBOL(aio_complete);
1024 
1025 /* aio_read_events_ring
1026  *	Pull an event off of the ioctx's event ring.  Returns the number of
1027  *	events fetched
1028  */
1029 static long aio_read_events_ring(struct kioctx *ctx,
1030 				 struct io_event __user *event, long nr)
1031 {
1032 	struct aio_ring *ring;
1033 	unsigned head, tail, pos;
1034 	long ret = 0;
1035 	int copy_ret;
1036 
1037 	mutex_lock(&ctx->ring_lock);
1038 
1039 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1040 	ring = kmap_atomic(ctx->ring_pages[0]);
1041 	head = ring->head;
1042 	tail = ring->tail;
1043 	kunmap_atomic(ring);
1044 
1045 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1046 
1047 	if (head == tail)
1048 		goto out;
1049 
1050 	head %= ctx->nr_events;
1051 	tail %= ctx->nr_events;
1052 
1053 	while (ret < nr) {
1054 		long avail;
1055 		struct io_event *ev;
1056 		struct page *page;
1057 
1058 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1059 		if (head == tail)
1060 			break;
1061 
1062 		avail = min(avail, nr - ret);
1063 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1064 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1065 
1066 		pos = head + AIO_EVENTS_OFFSET;
1067 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1068 		pos %= AIO_EVENTS_PER_PAGE;
1069 
1070 		ev = kmap(page);
1071 		copy_ret = copy_to_user(event + ret, ev + pos,
1072 					sizeof(*ev) * avail);
1073 		kunmap(page);
1074 
1075 		if (unlikely(copy_ret)) {
1076 			ret = -EFAULT;
1077 			goto out;
1078 		}
1079 
1080 		ret += avail;
1081 		head += avail;
1082 		head %= ctx->nr_events;
1083 	}
1084 
1085 	ring = kmap_atomic(ctx->ring_pages[0]);
1086 	ring->head = head;
1087 	kunmap_atomic(ring);
1088 	flush_dcache_page(ctx->ring_pages[0]);
1089 
1090 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1091 out:
1092 	mutex_unlock(&ctx->ring_lock);
1093 
1094 	return ret;
1095 }
1096 
1097 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1098 			    struct io_event __user *event, long *i)
1099 {
1100 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1101 
1102 	if (ret > 0)
1103 		*i += ret;
1104 
1105 	if (unlikely(atomic_read(&ctx->dead)))
1106 		ret = -EINVAL;
1107 
1108 	if (!*i)
1109 		*i = ret;
1110 
1111 	return ret < 0 || *i >= min_nr;
1112 }
1113 
1114 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1115 			struct io_event __user *event,
1116 			struct timespec __user *timeout)
1117 {
1118 	ktime_t until = { .tv64 = KTIME_MAX };
1119 	long ret = 0;
1120 
1121 	if (timeout) {
1122 		struct timespec	ts;
1123 
1124 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1125 			return -EFAULT;
1126 
1127 		until = timespec_to_ktime(ts);
1128 	}
1129 
1130 	/*
1131 	 * Note that aio_read_events() is being called as the conditional - i.e.
1132 	 * we're calling it after prepare_to_wait() has set task state to
1133 	 * TASK_INTERRUPTIBLE.
1134 	 *
1135 	 * But aio_read_events() can block, and if it blocks it's going to flip
1136 	 * the task state back to TASK_RUNNING.
1137 	 *
1138 	 * This should be ok, provided it doesn't flip the state back to
1139 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1140 	 * will only happen if the mutex_lock() call blocks, and we then find
1141 	 * the ringbuffer empty. So in practice we should be ok, but it's
1142 	 * something to be aware of when touching this code.
1143 	 */
1144 	wait_event_interruptible_hrtimeout(ctx->wait,
1145 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1146 
1147 	if (!ret && signal_pending(current))
1148 		ret = -EINTR;
1149 
1150 	return ret;
1151 }
1152 
1153 /* sys_io_setup:
1154  *	Create an aio_context capable of receiving at least nr_events.
1155  *	ctxp must not point to an aio_context that already exists, and
1156  *	must be initialized to 0 prior to the call.  On successful
1157  *	creation of the aio_context, *ctxp is filled in with the resulting
1158  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1159  *	if the specified nr_events exceeds internal limits.  May fail
1160  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1161  *	of available events.  May fail with -ENOMEM if insufficient kernel
1162  *	resources are available.  May fail with -EFAULT if an invalid
1163  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1164  *	implemented.
1165  */
1166 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1167 {
1168 	struct kioctx *ioctx = NULL;
1169 	unsigned long ctx;
1170 	long ret;
1171 
1172 	ret = get_user(ctx, ctxp);
1173 	if (unlikely(ret))
1174 		goto out;
1175 
1176 	ret = -EINVAL;
1177 	if (unlikely(ctx || nr_events == 0)) {
1178 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1179 		         ctx, nr_events);
1180 		goto out;
1181 	}
1182 
1183 	ioctx = ioctx_alloc(nr_events);
1184 	ret = PTR_ERR(ioctx);
1185 	if (!IS_ERR(ioctx)) {
1186 		ret = put_user(ioctx->user_id, ctxp);
1187 		if (ret)
1188 			kill_ioctx(current->mm, ioctx, NULL);
1189 		percpu_ref_put(&ioctx->users);
1190 	}
1191 
1192 out:
1193 	return ret;
1194 }
1195 
1196 /* sys_io_destroy:
1197  *	Destroy the aio_context specified.  May cancel any outstanding
1198  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1199  *	implemented.  May fail with -EINVAL if the context pointed to
1200  *	is invalid.
1201  */
1202 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1203 {
1204 	struct kioctx *ioctx = lookup_ioctx(ctx);
1205 	if (likely(NULL != ioctx)) {
1206 		struct completion requests_done =
1207 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1208 		int ret;
1209 
1210 		/* Pass requests_done to kill_ioctx() where it can be set
1211 		 * in a thread-safe way. If we try to set it here then we have
1212 		 * a race condition if two io_destroy() called simultaneously.
1213 		 */
1214 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1215 		percpu_ref_put(&ioctx->users);
1216 
1217 		/* Wait until all IO for the context are done. Otherwise kernel
1218 		 * keep using user-space buffers even if user thinks the context
1219 		 * is destroyed.
1220 		 */
1221 		if (!ret)
1222 			wait_for_completion(&requests_done);
1223 
1224 		return ret;
1225 	}
1226 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1227 	return -EINVAL;
1228 }
1229 
1230 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1231 			    unsigned long, loff_t);
1232 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1233 
1234 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1235 				     int rw, char __user *buf,
1236 				     unsigned long *nr_segs,
1237 				     struct iovec **iovec,
1238 				     bool compat)
1239 {
1240 	ssize_t ret;
1241 
1242 	*nr_segs = kiocb->ki_nbytes;
1243 
1244 #ifdef CONFIG_COMPAT
1245 	if (compat)
1246 		ret = compat_rw_copy_check_uvector(rw,
1247 				(struct compat_iovec __user *)buf,
1248 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1249 	else
1250 #endif
1251 		ret = rw_copy_check_uvector(rw,
1252 				(struct iovec __user *)buf,
1253 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1254 	if (ret < 0)
1255 		return ret;
1256 
1257 	/* ki_nbytes now reflect bytes instead of segs */
1258 	kiocb->ki_nbytes = ret;
1259 	return 0;
1260 }
1261 
1262 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1263 				       int rw, char __user *buf,
1264 				       unsigned long *nr_segs,
1265 				       struct iovec *iovec)
1266 {
1267 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1268 		return -EFAULT;
1269 
1270 	iovec->iov_base = buf;
1271 	iovec->iov_len = kiocb->ki_nbytes;
1272 	*nr_segs = 1;
1273 	return 0;
1274 }
1275 
1276 /*
1277  * aio_run_iocb:
1278  *	Performs the initial checks and io submission.
1279  */
1280 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1281 			    char __user *buf, bool compat)
1282 {
1283 	struct file *file = req->ki_filp;
1284 	ssize_t ret;
1285 	unsigned long nr_segs;
1286 	int rw;
1287 	fmode_t mode;
1288 	aio_rw_op *rw_op;
1289 	rw_iter_op *iter_op;
1290 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1291 	struct iov_iter iter;
1292 
1293 	switch (opcode) {
1294 	case IOCB_CMD_PREAD:
1295 	case IOCB_CMD_PREADV:
1296 		mode	= FMODE_READ;
1297 		rw	= READ;
1298 		rw_op	= file->f_op->aio_read;
1299 		iter_op	= file->f_op->read_iter;
1300 		goto rw_common;
1301 
1302 	case IOCB_CMD_PWRITE:
1303 	case IOCB_CMD_PWRITEV:
1304 		mode	= FMODE_WRITE;
1305 		rw	= WRITE;
1306 		rw_op	= file->f_op->aio_write;
1307 		iter_op	= file->f_op->write_iter;
1308 		goto rw_common;
1309 rw_common:
1310 		if (unlikely(!(file->f_mode & mode)))
1311 			return -EBADF;
1312 
1313 		if (!rw_op && !iter_op)
1314 			return -EINVAL;
1315 
1316 		ret = (opcode == IOCB_CMD_PREADV ||
1317 		       opcode == IOCB_CMD_PWRITEV)
1318 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1319 						&iovec, compat)
1320 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1321 						  iovec);
1322 		if (!ret)
1323 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1324 		if (ret < 0) {
1325 			if (iovec != inline_vecs)
1326 				kfree(iovec);
1327 			return ret;
1328 		}
1329 
1330 		req->ki_nbytes = ret;
1331 
1332 		/* XXX: move/kill - rw_verify_area()? */
1333 		/* This matches the pread()/pwrite() logic */
1334 		if (req->ki_pos < 0) {
1335 			ret = -EINVAL;
1336 			break;
1337 		}
1338 
1339 		if (rw == WRITE)
1340 			file_start_write(file);
1341 
1342 		if (iter_op) {
1343 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1344 			ret = iter_op(req, &iter);
1345 		} else {
1346 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1347 		}
1348 
1349 		if (rw == WRITE)
1350 			file_end_write(file);
1351 		break;
1352 
1353 	case IOCB_CMD_FDSYNC:
1354 		if (!file->f_op->aio_fsync)
1355 			return -EINVAL;
1356 
1357 		ret = file->f_op->aio_fsync(req, 1);
1358 		break;
1359 
1360 	case IOCB_CMD_FSYNC:
1361 		if (!file->f_op->aio_fsync)
1362 			return -EINVAL;
1363 
1364 		ret = file->f_op->aio_fsync(req, 0);
1365 		break;
1366 
1367 	default:
1368 		pr_debug("EINVAL: no operation provided\n");
1369 		return -EINVAL;
1370 	}
1371 
1372 	if (iovec != inline_vecs)
1373 		kfree(iovec);
1374 
1375 	if (ret != -EIOCBQUEUED) {
1376 		/*
1377 		 * There's no easy way to restart the syscall since other AIO's
1378 		 * may be already running. Just fail this IO with EINTR.
1379 		 */
1380 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1381 			     ret == -ERESTARTNOHAND ||
1382 			     ret == -ERESTART_RESTARTBLOCK))
1383 			ret = -EINTR;
1384 		aio_complete(req, ret, 0);
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1391 			 struct iocb *iocb, bool compat)
1392 {
1393 	struct kiocb *req;
1394 	ssize_t ret;
1395 
1396 	/* enforce forwards compatibility on users */
1397 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1398 		pr_debug("EINVAL: reserve field set\n");
1399 		return -EINVAL;
1400 	}
1401 
1402 	/* prevent overflows */
1403 	if (unlikely(
1404 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1405 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1406 	    ((ssize_t)iocb->aio_nbytes < 0)
1407 	   )) {
1408 		pr_debug("EINVAL: io_submit: overflow check\n");
1409 		return -EINVAL;
1410 	}
1411 
1412 	req = aio_get_req(ctx);
1413 	if (unlikely(!req))
1414 		return -EAGAIN;
1415 
1416 	req->ki_filp = fget(iocb->aio_fildes);
1417 	if (unlikely(!req->ki_filp)) {
1418 		ret = -EBADF;
1419 		goto out_put_req;
1420 	}
1421 
1422 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1423 		/*
1424 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1425 		 * instance of the file* now. The file descriptor must be
1426 		 * an eventfd() fd, and will be signaled for each completed
1427 		 * event using the eventfd_signal() function.
1428 		 */
1429 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1430 		if (IS_ERR(req->ki_eventfd)) {
1431 			ret = PTR_ERR(req->ki_eventfd);
1432 			req->ki_eventfd = NULL;
1433 			goto out_put_req;
1434 		}
1435 	}
1436 
1437 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1438 	if (unlikely(ret)) {
1439 		pr_debug("EFAULT: aio_key\n");
1440 		goto out_put_req;
1441 	}
1442 
1443 	req->ki_obj.user = user_iocb;
1444 	req->ki_user_data = iocb->aio_data;
1445 	req->ki_pos = iocb->aio_offset;
1446 	req->ki_nbytes = iocb->aio_nbytes;
1447 
1448 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1449 			   (char __user *)(unsigned long)iocb->aio_buf,
1450 			   compat);
1451 	if (ret)
1452 		goto out_put_req;
1453 
1454 	return 0;
1455 out_put_req:
1456 	put_reqs_available(ctx, 1);
1457 	percpu_ref_put(&ctx->reqs);
1458 	kiocb_free(req);
1459 	return ret;
1460 }
1461 
1462 long do_io_submit(aio_context_t ctx_id, long nr,
1463 		  struct iocb __user *__user *iocbpp, bool compat)
1464 {
1465 	struct kioctx *ctx;
1466 	long ret = 0;
1467 	int i = 0;
1468 	struct blk_plug plug;
1469 
1470 	if (unlikely(nr < 0))
1471 		return -EINVAL;
1472 
1473 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1474 		nr = LONG_MAX/sizeof(*iocbpp);
1475 
1476 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1477 		return -EFAULT;
1478 
1479 	ctx = lookup_ioctx(ctx_id);
1480 	if (unlikely(!ctx)) {
1481 		pr_debug("EINVAL: invalid context id\n");
1482 		return -EINVAL;
1483 	}
1484 
1485 	blk_start_plug(&plug);
1486 
1487 	/*
1488 	 * AKPM: should this return a partial result if some of the IOs were
1489 	 * successfully submitted?
1490 	 */
1491 	for (i=0; i<nr; i++) {
1492 		struct iocb __user *user_iocb;
1493 		struct iocb tmp;
1494 
1495 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1496 			ret = -EFAULT;
1497 			break;
1498 		}
1499 
1500 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1501 			ret = -EFAULT;
1502 			break;
1503 		}
1504 
1505 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1506 		if (ret)
1507 			break;
1508 	}
1509 	blk_finish_plug(&plug);
1510 
1511 	percpu_ref_put(&ctx->users);
1512 	return i ? i : ret;
1513 }
1514 
1515 /* sys_io_submit:
1516  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1517  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1518  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1519  *	*iocbpp[0] is not properly initialized, if the operation specified
1520  *	is invalid for the file descriptor in the iocb.  May fail with
1521  *	-EFAULT if any of the data structures point to invalid data.  May
1522  *	fail with -EBADF if the file descriptor specified in the first
1523  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1524  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1525  *	fail with -ENOSYS if not implemented.
1526  */
1527 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1528 		struct iocb __user * __user *, iocbpp)
1529 {
1530 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1531 }
1532 
1533 /* lookup_kiocb
1534  *	Finds a given iocb for cancellation.
1535  */
1536 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1537 				  u32 key)
1538 {
1539 	struct list_head *pos;
1540 
1541 	assert_spin_locked(&ctx->ctx_lock);
1542 
1543 	if (key != KIOCB_KEY)
1544 		return NULL;
1545 
1546 	/* TODO: use a hash or array, this sucks. */
1547 	list_for_each(pos, &ctx->active_reqs) {
1548 		struct kiocb *kiocb = list_kiocb(pos);
1549 		if (kiocb->ki_obj.user == iocb)
1550 			return kiocb;
1551 	}
1552 	return NULL;
1553 }
1554 
1555 /* sys_io_cancel:
1556  *	Attempts to cancel an iocb previously passed to io_submit.  If
1557  *	the operation is successfully cancelled, the resulting event is
1558  *	copied into the memory pointed to by result without being placed
1559  *	into the completion queue and 0 is returned.  May fail with
1560  *	-EFAULT if any of the data structures pointed to are invalid.
1561  *	May fail with -EINVAL if aio_context specified by ctx_id is
1562  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1563  *	cancelled.  Will fail with -ENOSYS if not implemented.
1564  */
1565 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1566 		struct io_event __user *, result)
1567 {
1568 	struct kioctx *ctx;
1569 	struct kiocb *kiocb;
1570 	u32 key;
1571 	int ret;
1572 
1573 	ret = get_user(key, &iocb->aio_key);
1574 	if (unlikely(ret))
1575 		return -EFAULT;
1576 
1577 	ctx = lookup_ioctx(ctx_id);
1578 	if (unlikely(!ctx))
1579 		return -EINVAL;
1580 
1581 	spin_lock_irq(&ctx->ctx_lock);
1582 
1583 	kiocb = lookup_kiocb(ctx, iocb, key);
1584 	if (kiocb)
1585 		ret = kiocb_cancel(kiocb);
1586 	else
1587 		ret = -EINVAL;
1588 
1589 	spin_unlock_irq(&ctx->ctx_lock);
1590 
1591 	if (!ret) {
1592 		/*
1593 		 * The result argument is no longer used - the io_event is
1594 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1595 		 * cancellation is progress:
1596 		 */
1597 		ret = -EINPROGRESS;
1598 	}
1599 
1600 	percpu_ref_put(&ctx->users);
1601 
1602 	return ret;
1603 }
1604 
1605 /* io_getevents:
1606  *	Attempts to read at least min_nr events and up to nr events from
1607  *	the completion queue for the aio_context specified by ctx_id. If
1608  *	it succeeds, the number of read events is returned. May fail with
1609  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1610  *	out of range, if timeout is out of range.  May fail with -EFAULT
1611  *	if any of the memory specified is invalid.  May return 0 or
1612  *	< min_nr if the timeout specified by timeout has elapsed
1613  *	before sufficient events are available, where timeout == NULL
1614  *	specifies an infinite timeout. Note that the timeout pointed to by
1615  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1616  */
1617 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1618 		long, min_nr,
1619 		long, nr,
1620 		struct io_event __user *, events,
1621 		struct timespec __user *, timeout)
1622 {
1623 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1624 	long ret = -EINVAL;
1625 
1626 	if (likely(ioctx)) {
1627 		if (likely(min_nr <= nr && min_nr >= 0))
1628 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1629 		percpu_ref_put(&ioctx->users);
1630 	}
1631 	return ret;
1632 }
1633