1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #if DEBUG > 1 43 #define dprintk printk 44 #else 45 #define dprintk(x...) do { ; } while (0) 46 #endif 47 48 /*------ sysctl variables----*/ 49 static DEFINE_SPINLOCK(aio_nr_lock); 50 unsigned long aio_nr; /* current system wide number of aio requests */ 51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 52 /*----end sysctl variables---*/ 53 54 static struct kmem_cache *kiocb_cachep; 55 static struct kmem_cache *kioctx_cachep; 56 57 static struct workqueue_struct *aio_wq; 58 59 /* Used for rare fput completion. */ 60 static void aio_fput_routine(struct work_struct *); 61 static DECLARE_WORK(fput_work, aio_fput_routine); 62 63 static DEFINE_SPINLOCK(fput_lock); 64 static LIST_HEAD(fput_head); 65 66 static void aio_kick_handler(struct work_struct *); 67 static void aio_queue_work(struct kioctx *); 68 69 /* aio_setup 70 * Creates the slab caches used by the aio routines, panic on 71 * failure as this is done early during the boot sequence. 72 */ 73 static int __init aio_setup(void) 74 { 75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 77 78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ 79 BUG_ON(!aio_wq); 80 81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 82 83 return 0; 84 } 85 __initcall(aio_setup); 86 87 static void aio_free_ring(struct kioctx *ctx) 88 { 89 struct aio_ring_info *info = &ctx->ring_info; 90 long i; 91 92 for (i=0; i<info->nr_pages; i++) 93 put_page(info->ring_pages[i]); 94 95 if (info->mmap_size) { 96 down_write(&ctx->mm->mmap_sem); 97 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 98 up_write(&ctx->mm->mmap_sem); 99 } 100 101 if (info->ring_pages && info->ring_pages != info->internal_pages) 102 kfree(info->ring_pages); 103 info->ring_pages = NULL; 104 info->nr = 0; 105 } 106 107 static int aio_setup_ring(struct kioctx *ctx) 108 { 109 struct aio_ring *ring; 110 struct aio_ring_info *info = &ctx->ring_info; 111 unsigned nr_events = ctx->max_reqs; 112 unsigned long size; 113 int nr_pages; 114 115 /* Compensate for the ring buffer's head/tail overlap entry */ 116 nr_events += 2; /* 1 is required, 2 for good luck */ 117 118 size = sizeof(struct aio_ring); 119 size += sizeof(struct io_event) * nr_events; 120 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 121 122 if (nr_pages < 0) 123 return -EINVAL; 124 125 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 126 127 info->nr = 0; 128 info->ring_pages = info->internal_pages; 129 if (nr_pages > AIO_RING_PAGES) { 130 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 131 if (!info->ring_pages) 132 return -ENOMEM; 133 } 134 135 info->mmap_size = nr_pages * PAGE_SIZE; 136 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 137 down_write(&ctx->mm->mmap_sem); 138 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 139 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 140 0); 141 if (IS_ERR((void *)info->mmap_base)) { 142 up_write(&ctx->mm->mmap_sem); 143 info->mmap_size = 0; 144 aio_free_ring(ctx); 145 return -EAGAIN; 146 } 147 148 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 149 info->nr_pages = get_user_pages(current, ctx->mm, 150 info->mmap_base, nr_pages, 151 1, 0, info->ring_pages, NULL); 152 up_write(&ctx->mm->mmap_sem); 153 154 if (unlikely(info->nr_pages != nr_pages)) { 155 aio_free_ring(ctx); 156 return -EAGAIN; 157 } 158 159 ctx->user_id = info->mmap_base; 160 161 info->nr = nr_events; /* trusted copy */ 162 163 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 164 ring->nr = nr_events; /* user copy */ 165 ring->id = ctx->user_id; 166 ring->head = ring->tail = 0; 167 ring->magic = AIO_RING_MAGIC; 168 ring->compat_features = AIO_RING_COMPAT_FEATURES; 169 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 170 ring->header_length = sizeof(struct aio_ring); 171 kunmap_atomic(ring, KM_USER0); 172 173 return 0; 174 } 175 176 177 /* aio_ring_event: returns a pointer to the event at the given index from 178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 179 */ 180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 183 184 #define aio_ring_event(info, nr, km) ({ \ 185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 186 struct io_event *__event; \ 187 __event = kmap_atomic( \ 188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 189 __event += pos % AIO_EVENTS_PER_PAGE; \ 190 __event; \ 191 }) 192 193 #define put_aio_ring_event(event, km) do { \ 194 struct io_event *__event = (event); \ 195 (void)__event; \ 196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 197 } while(0) 198 199 static void ctx_rcu_free(struct rcu_head *head) 200 { 201 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 202 unsigned nr_events = ctx->max_reqs; 203 204 kmem_cache_free(kioctx_cachep, ctx); 205 206 if (nr_events) { 207 spin_lock(&aio_nr_lock); 208 BUG_ON(aio_nr - nr_events > aio_nr); 209 aio_nr -= nr_events; 210 spin_unlock(&aio_nr_lock); 211 } 212 } 213 214 /* __put_ioctx 215 * Called when the last user of an aio context has gone away, 216 * and the struct needs to be freed. 217 */ 218 static void __put_ioctx(struct kioctx *ctx) 219 { 220 BUG_ON(ctx->reqs_active); 221 222 cancel_delayed_work(&ctx->wq); 223 cancel_work_sync(&ctx->wq.work); 224 aio_free_ring(ctx); 225 mmdrop(ctx->mm); 226 ctx->mm = NULL; 227 pr_debug("__put_ioctx: freeing %p\n", ctx); 228 call_rcu(&ctx->rcu_head, ctx_rcu_free); 229 } 230 231 static inline void get_ioctx(struct kioctx *kioctx) 232 { 233 BUG_ON(atomic_read(&kioctx->users) <= 0); 234 atomic_inc(&kioctx->users); 235 } 236 237 static inline int try_get_ioctx(struct kioctx *kioctx) 238 { 239 return atomic_inc_not_zero(&kioctx->users); 240 } 241 242 static inline void put_ioctx(struct kioctx *kioctx) 243 { 244 BUG_ON(atomic_read(&kioctx->users) <= 0); 245 if (unlikely(atomic_dec_and_test(&kioctx->users))) 246 __put_ioctx(kioctx); 247 } 248 249 /* ioctx_alloc 250 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 251 */ 252 static struct kioctx *ioctx_alloc(unsigned nr_events) 253 { 254 struct mm_struct *mm; 255 struct kioctx *ctx; 256 int did_sync = 0; 257 258 /* Prevent overflows */ 259 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 260 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 261 pr_debug("ENOMEM: nr_events too high\n"); 262 return ERR_PTR(-EINVAL); 263 } 264 265 if ((unsigned long)nr_events > aio_max_nr) 266 return ERR_PTR(-EAGAIN); 267 268 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 269 if (!ctx) 270 return ERR_PTR(-ENOMEM); 271 272 ctx->max_reqs = nr_events; 273 mm = ctx->mm = current->mm; 274 atomic_inc(&mm->mm_count); 275 276 atomic_set(&ctx->users, 1); 277 spin_lock_init(&ctx->ctx_lock); 278 spin_lock_init(&ctx->ring_info.ring_lock); 279 init_waitqueue_head(&ctx->wait); 280 281 INIT_LIST_HEAD(&ctx->active_reqs); 282 INIT_LIST_HEAD(&ctx->run_list); 283 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 284 285 if (aio_setup_ring(ctx) < 0) 286 goto out_freectx; 287 288 /* limit the number of system wide aios */ 289 do { 290 spin_lock_bh(&aio_nr_lock); 291 if (aio_nr + nr_events > aio_max_nr || 292 aio_nr + nr_events < aio_nr) 293 ctx->max_reqs = 0; 294 else 295 aio_nr += ctx->max_reqs; 296 spin_unlock_bh(&aio_nr_lock); 297 if (ctx->max_reqs || did_sync) 298 break; 299 300 /* wait for rcu callbacks to have completed before giving up */ 301 synchronize_rcu(); 302 did_sync = 1; 303 ctx->max_reqs = nr_events; 304 } while (1); 305 306 if (ctx->max_reqs == 0) 307 goto out_cleanup; 308 309 /* now link into global list. */ 310 spin_lock(&mm->ioctx_lock); 311 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 312 spin_unlock(&mm->ioctx_lock); 313 314 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 315 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 316 return ctx; 317 318 out_cleanup: 319 __put_ioctx(ctx); 320 return ERR_PTR(-EAGAIN); 321 322 out_freectx: 323 mmdrop(mm); 324 kmem_cache_free(kioctx_cachep, ctx); 325 ctx = ERR_PTR(-ENOMEM); 326 327 dprintk("aio: error allocating ioctx %p\n", ctx); 328 return ctx; 329 } 330 331 /* aio_cancel_all 332 * Cancels all outstanding aio requests on an aio context. Used 333 * when the processes owning a context have all exited to encourage 334 * the rapid destruction of the kioctx. 335 */ 336 static void aio_cancel_all(struct kioctx *ctx) 337 { 338 int (*cancel)(struct kiocb *, struct io_event *); 339 struct io_event res; 340 spin_lock_irq(&ctx->ctx_lock); 341 ctx->dead = 1; 342 while (!list_empty(&ctx->active_reqs)) { 343 struct list_head *pos = ctx->active_reqs.next; 344 struct kiocb *iocb = list_kiocb(pos); 345 list_del_init(&iocb->ki_list); 346 cancel = iocb->ki_cancel; 347 kiocbSetCancelled(iocb); 348 if (cancel) { 349 iocb->ki_users++; 350 spin_unlock_irq(&ctx->ctx_lock); 351 cancel(iocb, &res); 352 spin_lock_irq(&ctx->ctx_lock); 353 } 354 } 355 spin_unlock_irq(&ctx->ctx_lock); 356 } 357 358 static void wait_for_all_aios(struct kioctx *ctx) 359 { 360 struct task_struct *tsk = current; 361 DECLARE_WAITQUEUE(wait, tsk); 362 363 spin_lock_irq(&ctx->ctx_lock); 364 if (!ctx->reqs_active) 365 goto out; 366 367 add_wait_queue(&ctx->wait, &wait); 368 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 369 while (ctx->reqs_active) { 370 spin_unlock_irq(&ctx->ctx_lock); 371 io_schedule(); 372 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 373 spin_lock_irq(&ctx->ctx_lock); 374 } 375 __set_task_state(tsk, TASK_RUNNING); 376 remove_wait_queue(&ctx->wait, &wait); 377 378 out: 379 spin_unlock_irq(&ctx->ctx_lock); 380 } 381 382 /* wait_on_sync_kiocb: 383 * Waits on the given sync kiocb to complete. 384 */ 385 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 386 { 387 while (iocb->ki_users) { 388 set_current_state(TASK_UNINTERRUPTIBLE); 389 if (!iocb->ki_users) 390 break; 391 io_schedule(); 392 } 393 __set_current_state(TASK_RUNNING); 394 return iocb->ki_user_data; 395 } 396 EXPORT_SYMBOL(wait_on_sync_kiocb); 397 398 /* exit_aio: called when the last user of mm goes away. At this point, 399 * there is no way for any new requests to be submited or any of the 400 * io_* syscalls to be called on the context. However, there may be 401 * outstanding requests which hold references to the context; as they 402 * go away, they will call put_ioctx and release any pinned memory 403 * associated with the request (held via struct page * references). 404 */ 405 void exit_aio(struct mm_struct *mm) 406 { 407 struct kioctx *ctx; 408 409 while (!hlist_empty(&mm->ioctx_list)) { 410 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 411 hlist_del_rcu(&ctx->list); 412 413 aio_cancel_all(ctx); 414 415 wait_for_all_aios(ctx); 416 /* 417 * Ensure we don't leave the ctx on the aio_wq 418 */ 419 cancel_work_sync(&ctx->wq.work); 420 421 if (1 != atomic_read(&ctx->users)) 422 printk(KERN_DEBUG 423 "exit_aio:ioctx still alive: %d %d %d\n", 424 atomic_read(&ctx->users), ctx->dead, 425 ctx->reqs_active); 426 put_ioctx(ctx); 427 } 428 } 429 430 /* aio_get_req 431 * Allocate a slot for an aio request. Increments the users count 432 * of the kioctx so that the kioctx stays around until all requests are 433 * complete. Returns NULL if no requests are free. 434 * 435 * Returns with kiocb->users set to 2. The io submit code path holds 436 * an extra reference while submitting the i/o. 437 * This prevents races between the aio code path referencing the 438 * req (after submitting it) and aio_complete() freeing the req. 439 */ 440 static struct kiocb *__aio_get_req(struct kioctx *ctx) 441 { 442 struct kiocb *req = NULL; 443 struct aio_ring *ring; 444 int okay = 0; 445 446 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 447 if (unlikely(!req)) 448 return NULL; 449 450 req->ki_flags = 0; 451 req->ki_users = 2; 452 req->ki_key = 0; 453 req->ki_ctx = ctx; 454 req->ki_cancel = NULL; 455 req->ki_retry = NULL; 456 req->ki_dtor = NULL; 457 req->private = NULL; 458 req->ki_iovec = NULL; 459 INIT_LIST_HEAD(&req->ki_run_list); 460 req->ki_eventfd = NULL; 461 462 /* Check if the completion queue has enough free space to 463 * accept an event from this io. 464 */ 465 spin_lock_irq(&ctx->ctx_lock); 466 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 467 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 468 list_add(&req->ki_list, &ctx->active_reqs); 469 ctx->reqs_active++; 470 okay = 1; 471 } 472 kunmap_atomic(ring, KM_USER0); 473 spin_unlock_irq(&ctx->ctx_lock); 474 475 if (!okay) { 476 kmem_cache_free(kiocb_cachep, req); 477 req = NULL; 478 } 479 480 return req; 481 } 482 483 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 484 { 485 struct kiocb *req; 486 /* Handle a potential starvation case -- should be exceedingly rare as 487 * requests will be stuck on fput_head only if the aio_fput_routine is 488 * delayed and the requests were the last user of the struct file. 489 */ 490 req = __aio_get_req(ctx); 491 if (unlikely(NULL == req)) { 492 aio_fput_routine(NULL); 493 req = __aio_get_req(ctx); 494 } 495 return req; 496 } 497 498 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 499 { 500 assert_spin_locked(&ctx->ctx_lock); 501 502 if (req->ki_eventfd != NULL) 503 eventfd_ctx_put(req->ki_eventfd); 504 if (req->ki_dtor) 505 req->ki_dtor(req); 506 if (req->ki_iovec != &req->ki_inline_vec) 507 kfree(req->ki_iovec); 508 kmem_cache_free(kiocb_cachep, req); 509 ctx->reqs_active--; 510 511 if (unlikely(!ctx->reqs_active && ctx->dead)) 512 wake_up_all(&ctx->wait); 513 } 514 515 static void aio_fput_routine(struct work_struct *data) 516 { 517 spin_lock_irq(&fput_lock); 518 while (likely(!list_empty(&fput_head))) { 519 struct kiocb *req = list_kiocb(fput_head.next); 520 struct kioctx *ctx = req->ki_ctx; 521 522 list_del(&req->ki_list); 523 spin_unlock_irq(&fput_lock); 524 525 /* Complete the fput(s) */ 526 if (req->ki_filp != NULL) 527 fput(req->ki_filp); 528 529 /* Link the iocb into the context's free list */ 530 spin_lock_irq(&ctx->ctx_lock); 531 really_put_req(ctx, req); 532 spin_unlock_irq(&ctx->ctx_lock); 533 534 put_ioctx(ctx); 535 spin_lock_irq(&fput_lock); 536 } 537 spin_unlock_irq(&fput_lock); 538 } 539 540 /* __aio_put_req 541 * Returns true if this put was the last user of the request. 542 */ 543 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 544 { 545 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 546 req, atomic_long_read(&req->ki_filp->f_count)); 547 548 assert_spin_locked(&ctx->ctx_lock); 549 550 req->ki_users--; 551 BUG_ON(req->ki_users < 0); 552 if (likely(req->ki_users)) 553 return 0; 554 list_del(&req->ki_list); /* remove from active_reqs */ 555 req->ki_cancel = NULL; 556 req->ki_retry = NULL; 557 558 /* 559 * Try to optimize the aio and eventfd file* puts, by avoiding to 560 * schedule work in case it is not final fput() time. In normal cases, 561 * we would not be holding the last reference to the file*, so 562 * this function will be executed w/out any aio kthread wakeup. 563 */ 564 if (unlikely(!fput_atomic(req->ki_filp))) { 565 get_ioctx(ctx); 566 spin_lock(&fput_lock); 567 list_add(&req->ki_list, &fput_head); 568 spin_unlock(&fput_lock); 569 schedule_work(&fput_work); 570 } else { 571 req->ki_filp = NULL; 572 really_put_req(ctx, req); 573 } 574 return 1; 575 } 576 577 /* aio_put_req 578 * Returns true if this put was the last user of the kiocb, 579 * false if the request is still in use. 580 */ 581 int aio_put_req(struct kiocb *req) 582 { 583 struct kioctx *ctx = req->ki_ctx; 584 int ret; 585 spin_lock_irq(&ctx->ctx_lock); 586 ret = __aio_put_req(ctx, req); 587 spin_unlock_irq(&ctx->ctx_lock); 588 return ret; 589 } 590 EXPORT_SYMBOL(aio_put_req); 591 592 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 593 { 594 struct mm_struct *mm = current->mm; 595 struct kioctx *ctx, *ret = NULL; 596 struct hlist_node *n; 597 598 rcu_read_lock(); 599 600 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 601 /* 602 * RCU protects us against accessing freed memory but 603 * we have to be careful not to get a reference when the 604 * reference count already dropped to 0 (ctx->dead test 605 * is unreliable because of races). 606 */ 607 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 608 ret = ctx; 609 break; 610 } 611 } 612 613 rcu_read_unlock(); 614 return ret; 615 } 616 617 /* 618 * Queue up a kiocb to be retried. Assumes that the kiocb 619 * has already been marked as kicked, and places it on 620 * the retry run list for the corresponding ioctx, if it 621 * isn't already queued. Returns 1 if it actually queued 622 * the kiocb (to tell the caller to activate the work 623 * queue to process it), or 0, if it found that it was 624 * already queued. 625 */ 626 static inline int __queue_kicked_iocb(struct kiocb *iocb) 627 { 628 struct kioctx *ctx = iocb->ki_ctx; 629 630 assert_spin_locked(&ctx->ctx_lock); 631 632 if (list_empty(&iocb->ki_run_list)) { 633 list_add_tail(&iocb->ki_run_list, 634 &ctx->run_list); 635 return 1; 636 } 637 return 0; 638 } 639 640 /* aio_run_iocb 641 * This is the core aio execution routine. It is 642 * invoked both for initial i/o submission and 643 * subsequent retries via the aio_kick_handler. 644 * Expects to be invoked with iocb->ki_ctx->lock 645 * already held. The lock is released and reacquired 646 * as needed during processing. 647 * 648 * Calls the iocb retry method (already setup for the 649 * iocb on initial submission) for operation specific 650 * handling, but takes care of most of common retry 651 * execution details for a given iocb. The retry method 652 * needs to be non-blocking as far as possible, to avoid 653 * holding up other iocbs waiting to be serviced by the 654 * retry kernel thread. 655 * 656 * The trickier parts in this code have to do with 657 * ensuring that only one retry instance is in progress 658 * for a given iocb at any time. Providing that guarantee 659 * simplifies the coding of individual aio operations as 660 * it avoids various potential races. 661 */ 662 static ssize_t aio_run_iocb(struct kiocb *iocb) 663 { 664 struct kioctx *ctx = iocb->ki_ctx; 665 ssize_t (*retry)(struct kiocb *); 666 ssize_t ret; 667 668 if (!(retry = iocb->ki_retry)) { 669 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 670 return 0; 671 } 672 673 /* 674 * We don't want the next retry iteration for this 675 * operation to start until this one has returned and 676 * updated the iocb state. However, wait_queue functions 677 * can trigger a kick_iocb from interrupt context in the 678 * meantime, indicating that data is available for the next 679 * iteration. We want to remember that and enable the 680 * next retry iteration _after_ we are through with 681 * this one. 682 * 683 * So, in order to be able to register a "kick", but 684 * prevent it from being queued now, we clear the kick 685 * flag, but make the kick code *think* that the iocb is 686 * still on the run list until we are actually done. 687 * When we are done with this iteration, we check if 688 * the iocb was kicked in the meantime and if so, queue 689 * it up afresh. 690 */ 691 692 kiocbClearKicked(iocb); 693 694 /* 695 * This is so that aio_complete knows it doesn't need to 696 * pull the iocb off the run list (We can't just call 697 * INIT_LIST_HEAD because we don't want a kick_iocb to 698 * queue this on the run list yet) 699 */ 700 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 701 spin_unlock_irq(&ctx->ctx_lock); 702 703 /* Quit retrying if the i/o has been cancelled */ 704 if (kiocbIsCancelled(iocb)) { 705 ret = -EINTR; 706 aio_complete(iocb, ret, 0); 707 /* must not access the iocb after this */ 708 goto out; 709 } 710 711 /* 712 * Now we are all set to call the retry method in async 713 * context. 714 */ 715 ret = retry(iocb); 716 717 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 718 /* 719 * There's no easy way to restart the syscall since other AIO's 720 * may be already running. Just fail this IO with EINTR. 721 */ 722 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 723 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 724 ret = -EINTR; 725 aio_complete(iocb, ret, 0); 726 } 727 out: 728 spin_lock_irq(&ctx->ctx_lock); 729 730 if (-EIOCBRETRY == ret) { 731 /* 732 * OK, now that we are done with this iteration 733 * and know that there is more left to go, 734 * this is where we let go so that a subsequent 735 * "kick" can start the next iteration 736 */ 737 738 /* will make __queue_kicked_iocb succeed from here on */ 739 INIT_LIST_HEAD(&iocb->ki_run_list); 740 /* we must queue the next iteration ourselves, if it 741 * has already been kicked */ 742 if (kiocbIsKicked(iocb)) { 743 __queue_kicked_iocb(iocb); 744 745 /* 746 * __queue_kicked_iocb will always return 1 here, because 747 * iocb->ki_run_list is empty at this point so it should 748 * be safe to unconditionally queue the context into the 749 * work queue. 750 */ 751 aio_queue_work(ctx); 752 } 753 } 754 return ret; 755 } 756 757 /* 758 * __aio_run_iocbs: 759 * Process all pending retries queued on the ioctx 760 * run list. 761 * Assumes it is operating within the aio issuer's mm 762 * context. 763 */ 764 static int __aio_run_iocbs(struct kioctx *ctx) 765 { 766 struct kiocb *iocb; 767 struct list_head run_list; 768 769 assert_spin_locked(&ctx->ctx_lock); 770 771 list_replace_init(&ctx->run_list, &run_list); 772 while (!list_empty(&run_list)) { 773 iocb = list_entry(run_list.next, struct kiocb, 774 ki_run_list); 775 list_del(&iocb->ki_run_list); 776 /* 777 * Hold an extra reference while retrying i/o. 778 */ 779 iocb->ki_users++; /* grab extra reference */ 780 aio_run_iocb(iocb); 781 __aio_put_req(ctx, iocb); 782 } 783 if (!list_empty(&ctx->run_list)) 784 return 1; 785 return 0; 786 } 787 788 static void aio_queue_work(struct kioctx * ctx) 789 { 790 unsigned long timeout; 791 /* 792 * if someone is waiting, get the work started right 793 * away, otherwise, use a longer delay 794 */ 795 smp_mb(); 796 if (waitqueue_active(&ctx->wait)) 797 timeout = 1; 798 else 799 timeout = HZ/10; 800 queue_delayed_work(aio_wq, &ctx->wq, timeout); 801 } 802 803 /* 804 * aio_run_all_iocbs: 805 * Process all pending retries queued on the ioctx 806 * run list, and keep running them until the list 807 * stays empty. 808 * Assumes it is operating within the aio issuer's mm context. 809 */ 810 static inline void aio_run_all_iocbs(struct kioctx *ctx) 811 { 812 spin_lock_irq(&ctx->ctx_lock); 813 while (__aio_run_iocbs(ctx)) 814 ; 815 spin_unlock_irq(&ctx->ctx_lock); 816 } 817 818 /* 819 * aio_kick_handler: 820 * Work queue handler triggered to process pending 821 * retries on an ioctx. Takes on the aio issuer's 822 * mm context before running the iocbs, so that 823 * copy_xxx_user operates on the issuer's address 824 * space. 825 * Run on aiod's context. 826 */ 827 static void aio_kick_handler(struct work_struct *work) 828 { 829 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 830 mm_segment_t oldfs = get_fs(); 831 struct mm_struct *mm; 832 int requeue; 833 834 set_fs(USER_DS); 835 use_mm(ctx->mm); 836 spin_lock_irq(&ctx->ctx_lock); 837 requeue =__aio_run_iocbs(ctx); 838 mm = ctx->mm; 839 spin_unlock_irq(&ctx->ctx_lock); 840 unuse_mm(mm); 841 set_fs(oldfs); 842 /* 843 * we're in a worker thread already, don't use queue_delayed_work, 844 */ 845 if (requeue) 846 queue_delayed_work(aio_wq, &ctx->wq, 0); 847 } 848 849 850 /* 851 * Called by kick_iocb to queue the kiocb for retry 852 * and if required activate the aio work queue to process 853 * it 854 */ 855 static void try_queue_kicked_iocb(struct kiocb *iocb) 856 { 857 struct kioctx *ctx = iocb->ki_ctx; 858 unsigned long flags; 859 int run = 0; 860 861 spin_lock_irqsave(&ctx->ctx_lock, flags); 862 /* set this inside the lock so that we can't race with aio_run_iocb() 863 * testing it and putting the iocb on the run list under the lock */ 864 if (!kiocbTryKick(iocb)) 865 run = __queue_kicked_iocb(iocb); 866 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 867 if (run) 868 aio_queue_work(ctx); 869 } 870 871 /* 872 * kick_iocb: 873 * Called typically from a wait queue callback context 874 * to trigger a retry of the iocb. 875 * The retry is usually executed by aio workqueue 876 * threads (See aio_kick_handler). 877 */ 878 void kick_iocb(struct kiocb *iocb) 879 { 880 /* sync iocbs are easy: they can only ever be executing from a 881 * single context. */ 882 if (is_sync_kiocb(iocb)) { 883 kiocbSetKicked(iocb); 884 wake_up_process(iocb->ki_obj.tsk); 885 return; 886 } 887 888 try_queue_kicked_iocb(iocb); 889 } 890 EXPORT_SYMBOL(kick_iocb); 891 892 /* aio_complete 893 * Called when the io request on the given iocb is complete. 894 * Returns true if this is the last user of the request. The 895 * only other user of the request can be the cancellation code. 896 */ 897 int aio_complete(struct kiocb *iocb, long res, long res2) 898 { 899 struct kioctx *ctx = iocb->ki_ctx; 900 struct aio_ring_info *info; 901 struct aio_ring *ring; 902 struct io_event *event; 903 unsigned long flags; 904 unsigned long tail; 905 int ret; 906 907 /* 908 * Special case handling for sync iocbs: 909 * - events go directly into the iocb for fast handling 910 * - the sync task with the iocb in its stack holds the single iocb 911 * ref, no other paths have a way to get another ref 912 * - the sync task helpfully left a reference to itself in the iocb 913 */ 914 if (is_sync_kiocb(iocb)) { 915 BUG_ON(iocb->ki_users != 1); 916 iocb->ki_user_data = res; 917 iocb->ki_users = 0; 918 wake_up_process(iocb->ki_obj.tsk); 919 return 1; 920 } 921 922 info = &ctx->ring_info; 923 924 /* add a completion event to the ring buffer. 925 * must be done holding ctx->ctx_lock to prevent 926 * other code from messing with the tail 927 * pointer since we might be called from irq 928 * context. 929 */ 930 spin_lock_irqsave(&ctx->ctx_lock, flags); 931 932 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 933 list_del_init(&iocb->ki_run_list); 934 935 /* 936 * cancelled requests don't get events, userland was given one 937 * when the event got cancelled. 938 */ 939 if (kiocbIsCancelled(iocb)) 940 goto put_rq; 941 942 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 943 944 tail = info->tail; 945 event = aio_ring_event(info, tail, KM_IRQ0); 946 if (++tail >= info->nr) 947 tail = 0; 948 949 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 950 event->data = iocb->ki_user_data; 951 event->res = res; 952 event->res2 = res2; 953 954 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 955 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 956 res, res2); 957 958 /* after flagging the request as done, we 959 * must never even look at it again 960 */ 961 smp_wmb(); /* make event visible before updating tail */ 962 963 info->tail = tail; 964 ring->tail = tail; 965 966 put_aio_ring_event(event, KM_IRQ0); 967 kunmap_atomic(ring, KM_IRQ1); 968 969 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 970 971 /* 972 * Check if the user asked us to deliver the result through an 973 * eventfd. The eventfd_signal() function is safe to be called 974 * from IRQ context. 975 */ 976 if (iocb->ki_eventfd != NULL) 977 eventfd_signal(iocb->ki_eventfd, 1); 978 979 put_rq: 980 /* everything turned out well, dispose of the aiocb. */ 981 ret = __aio_put_req(ctx, iocb); 982 983 /* 984 * We have to order our ring_info tail store above and test 985 * of the wait list below outside the wait lock. This is 986 * like in wake_up_bit() where clearing a bit has to be 987 * ordered with the unlocked test. 988 */ 989 smp_mb(); 990 991 if (waitqueue_active(&ctx->wait)) 992 wake_up(&ctx->wait); 993 994 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 995 return ret; 996 } 997 EXPORT_SYMBOL(aio_complete); 998 999 /* aio_read_evt 1000 * Pull an event off of the ioctx's event ring. Returns the number of 1001 * events fetched (0 or 1 ;-) 1002 * FIXME: make this use cmpxchg. 1003 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1004 */ 1005 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1006 { 1007 struct aio_ring_info *info = &ioctx->ring_info; 1008 struct aio_ring *ring; 1009 unsigned long head; 1010 int ret = 0; 1011 1012 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1013 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1014 (unsigned long)ring->head, (unsigned long)ring->tail, 1015 (unsigned long)ring->nr); 1016 1017 if (ring->head == ring->tail) 1018 goto out; 1019 1020 spin_lock(&info->ring_lock); 1021 1022 head = ring->head % info->nr; 1023 if (head != ring->tail) { 1024 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1025 *ent = *evp; 1026 head = (head + 1) % info->nr; 1027 smp_mb(); /* finish reading the event before updatng the head */ 1028 ring->head = head; 1029 ret = 1; 1030 put_aio_ring_event(evp, KM_USER1); 1031 } 1032 spin_unlock(&info->ring_lock); 1033 1034 out: 1035 kunmap_atomic(ring, KM_USER0); 1036 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1037 (unsigned long)ring->head, (unsigned long)ring->tail); 1038 return ret; 1039 } 1040 1041 struct aio_timeout { 1042 struct timer_list timer; 1043 int timed_out; 1044 struct task_struct *p; 1045 }; 1046 1047 static void timeout_func(unsigned long data) 1048 { 1049 struct aio_timeout *to = (struct aio_timeout *)data; 1050 1051 to->timed_out = 1; 1052 wake_up_process(to->p); 1053 } 1054 1055 static inline void init_timeout(struct aio_timeout *to) 1056 { 1057 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1058 to->timed_out = 0; 1059 to->p = current; 1060 } 1061 1062 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1063 const struct timespec *ts) 1064 { 1065 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1066 if (time_after(to->timer.expires, jiffies)) 1067 add_timer(&to->timer); 1068 else 1069 to->timed_out = 1; 1070 } 1071 1072 static inline void clear_timeout(struct aio_timeout *to) 1073 { 1074 del_singleshot_timer_sync(&to->timer); 1075 } 1076 1077 static int read_events(struct kioctx *ctx, 1078 long min_nr, long nr, 1079 struct io_event __user *event, 1080 struct timespec __user *timeout) 1081 { 1082 long start_jiffies = jiffies; 1083 struct task_struct *tsk = current; 1084 DECLARE_WAITQUEUE(wait, tsk); 1085 int ret; 1086 int i = 0; 1087 struct io_event ent; 1088 struct aio_timeout to; 1089 int retry = 0; 1090 1091 /* needed to zero any padding within an entry (there shouldn't be 1092 * any, but C is fun! 1093 */ 1094 memset(&ent, 0, sizeof(ent)); 1095 retry: 1096 ret = 0; 1097 while (likely(i < nr)) { 1098 ret = aio_read_evt(ctx, &ent); 1099 if (unlikely(ret <= 0)) 1100 break; 1101 1102 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1103 ent.data, ent.obj, ent.res, ent.res2); 1104 1105 /* Could we split the check in two? */ 1106 ret = -EFAULT; 1107 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1108 dprintk("aio: lost an event due to EFAULT.\n"); 1109 break; 1110 } 1111 ret = 0; 1112 1113 /* Good, event copied to userland, update counts. */ 1114 event ++; 1115 i ++; 1116 } 1117 1118 if (min_nr <= i) 1119 return i; 1120 if (ret) 1121 return ret; 1122 1123 /* End fast path */ 1124 1125 /* racey check, but it gets redone */ 1126 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1127 retry = 1; 1128 aio_run_all_iocbs(ctx); 1129 goto retry; 1130 } 1131 1132 init_timeout(&to); 1133 if (timeout) { 1134 struct timespec ts; 1135 ret = -EFAULT; 1136 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1137 goto out; 1138 1139 set_timeout(start_jiffies, &to, &ts); 1140 } 1141 1142 while (likely(i < nr)) { 1143 add_wait_queue_exclusive(&ctx->wait, &wait); 1144 do { 1145 set_task_state(tsk, TASK_INTERRUPTIBLE); 1146 ret = aio_read_evt(ctx, &ent); 1147 if (ret) 1148 break; 1149 if (min_nr <= i) 1150 break; 1151 if (unlikely(ctx->dead)) { 1152 ret = -EINVAL; 1153 break; 1154 } 1155 if (to.timed_out) /* Only check after read evt */ 1156 break; 1157 /* Try to only show up in io wait if there are ops 1158 * in flight */ 1159 if (ctx->reqs_active) 1160 io_schedule(); 1161 else 1162 schedule(); 1163 if (signal_pending(tsk)) { 1164 ret = -EINTR; 1165 break; 1166 } 1167 /*ret = aio_read_evt(ctx, &ent);*/ 1168 } while (1) ; 1169 1170 set_task_state(tsk, TASK_RUNNING); 1171 remove_wait_queue(&ctx->wait, &wait); 1172 1173 if (unlikely(ret <= 0)) 1174 break; 1175 1176 ret = -EFAULT; 1177 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1178 dprintk("aio: lost an event due to EFAULT.\n"); 1179 break; 1180 } 1181 1182 /* Good, event copied to userland, update counts. */ 1183 event ++; 1184 i ++; 1185 } 1186 1187 if (timeout) 1188 clear_timeout(&to); 1189 out: 1190 destroy_timer_on_stack(&to.timer); 1191 return i ? i : ret; 1192 } 1193 1194 /* Take an ioctx and remove it from the list of ioctx's. Protects 1195 * against races with itself via ->dead. 1196 */ 1197 static void io_destroy(struct kioctx *ioctx) 1198 { 1199 struct mm_struct *mm = current->mm; 1200 int was_dead; 1201 1202 /* delete the entry from the list is someone else hasn't already */ 1203 spin_lock(&mm->ioctx_lock); 1204 was_dead = ioctx->dead; 1205 ioctx->dead = 1; 1206 hlist_del_rcu(&ioctx->list); 1207 spin_unlock(&mm->ioctx_lock); 1208 1209 dprintk("aio_release(%p)\n", ioctx); 1210 if (likely(!was_dead)) 1211 put_ioctx(ioctx); /* twice for the list */ 1212 1213 aio_cancel_all(ioctx); 1214 wait_for_all_aios(ioctx); 1215 1216 /* 1217 * Wake up any waiters. The setting of ctx->dead must be seen 1218 * by other CPUs at this point. Right now, we rely on the 1219 * locking done by the above calls to ensure this consistency. 1220 */ 1221 wake_up_all(&ioctx->wait); 1222 put_ioctx(ioctx); /* once for the lookup */ 1223 } 1224 1225 /* sys_io_setup: 1226 * Create an aio_context capable of receiving at least nr_events. 1227 * ctxp must not point to an aio_context that already exists, and 1228 * must be initialized to 0 prior to the call. On successful 1229 * creation of the aio_context, *ctxp is filled in with the resulting 1230 * handle. May fail with -EINVAL if *ctxp is not initialized, 1231 * if the specified nr_events exceeds internal limits. May fail 1232 * with -EAGAIN if the specified nr_events exceeds the user's limit 1233 * of available events. May fail with -ENOMEM if insufficient kernel 1234 * resources are available. May fail with -EFAULT if an invalid 1235 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1236 * implemented. 1237 */ 1238 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1239 { 1240 struct kioctx *ioctx = NULL; 1241 unsigned long ctx; 1242 long ret; 1243 1244 ret = get_user(ctx, ctxp); 1245 if (unlikely(ret)) 1246 goto out; 1247 1248 ret = -EINVAL; 1249 if (unlikely(ctx || nr_events == 0)) { 1250 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1251 ctx, nr_events); 1252 goto out; 1253 } 1254 1255 ioctx = ioctx_alloc(nr_events); 1256 ret = PTR_ERR(ioctx); 1257 if (!IS_ERR(ioctx)) { 1258 ret = put_user(ioctx->user_id, ctxp); 1259 if (!ret) 1260 return 0; 1261 1262 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1263 io_destroy(ioctx); 1264 } 1265 1266 out: 1267 return ret; 1268 } 1269 1270 /* sys_io_destroy: 1271 * Destroy the aio_context specified. May cancel any outstanding 1272 * AIOs and block on completion. Will fail with -ENOSYS if not 1273 * implemented. May fail with -EINVAL if the context pointed to 1274 * is invalid. 1275 */ 1276 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1277 { 1278 struct kioctx *ioctx = lookup_ioctx(ctx); 1279 if (likely(NULL != ioctx)) { 1280 io_destroy(ioctx); 1281 return 0; 1282 } 1283 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1284 return -EINVAL; 1285 } 1286 1287 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1288 { 1289 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1290 1291 BUG_ON(ret <= 0); 1292 1293 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1294 ssize_t this = min((ssize_t)iov->iov_len, ret); 1295 iov->iov_base += this; 1296 iov->iov_len -= this; 1297 iocb->ki_left -= this; 1298 ret -= this; 1299 if (iov->iov_len == 0) { 1300 iocb->ki_cur_seg++; 1301 iov++; 1302 } 1303 } 1304 1305 /* the caller should not have done more io than what fit in 1306 * the remaining iovecs */ 1307 BUG_ON(ret > 0 && iocb->ki_left == 0); 1308 } 1309 1310 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1311 { 1312 struct file *file = iocb->ki_filp; 1313 struct address_space *mapping = file->f_mapping; 1314 struct inode *inode = mapping->host; 1315 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1316 unsigned long, loff_t); 1317 ssize_t ret = 0; 1318 unsigned short opcode; 1319 1320 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1321 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1322 rw_op = file->f_op->aio_read; 1323 opcode = IOCB_CMD_PREADV; 1324 } else { 1325 rw_op = file->f_op->aio_write; 1326 opcode = IOCB_CMD_PWRITEV; 1327 } 1328 1329 /* This matches the pread()/pwrite() logic */ 1330 if (iocb->ki_pos < 0) 1331 return -EINVAL; 1332 1333 do { 1334 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1335 iocb->ki_nr_segs - iocb->ki_cur_seg, 1336 iocb->ki_pos); 1337 if (ret > 0) 1338 aio_advance_iovec(iocb, ret); 1339 1340 /* retry all partial writes. retry partial reads as long as its a 1341 * regular file. */ 1342 } while (ret > 0 && iocb->ki_left > 0 && 1343 (opcode == IOCB_CMD_PWRITEV || 1344 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1345 1346 /* This means we must have transferred all that we could */ 1347 /* No need to retry anymore */ 1348 if ((ret == 0) || (iocb->ki_left == 0)) 1349 ret = iocb->ki_nbytes - iocb->ki_left; 1350 1351 /* If we managed to write some out we return that, rather than 1352 * the eventual error. */ 1353 if (opcode == IOCB_CMD_PWRITEV 1354 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1355 && iocb->ki_nbytes - iocb->ki_left) 1356 ret = iocb->ki_nbytes - iocb->ki_left; 1357 1358 return ret; 1359 } 1360 1361 static ssize_t aio_fdsync(struct kiocb *iocb) 1362 { 1363 struct file *file = iocb->ki_filp; 1364 ssize_t ret = -EINVAL; 1365 1366 if (file->f_op->aio_fsync) 1367 ret = file->f_op->aio_fsync(iocb, 1); 1368 return ret; 1369 } 1370 1371 static ssize_t aio_fsync(struct kiocb *iocb) 1372 { 1373 struct file *file = iocb->ki_filp; 1374 ssize_t ret = -EINVAL; 1375 1376 if (file->f_op->aio_fsync) 1377 ret = file->f_op->aio_fsync(iocb, 0); 1378 return ret; 1379 } 1380 1381 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1382 { 1383 ssize_t ret; 1384 1385 #ifdef CONFIG_COMPAT 1386 if (compat) 1387 ret = compat_rw_copy_check_uvector(type, 1388 (struct compat_iovec __user *)kiocb->ki_buf, 1389 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1390 &kiocb->ki_iovec); 1391 else 1392 #endif 1393 ret = rw_copy_check_uvector(type, 1394 (struct iovec __user *)kiocb->ki_buf, 1395 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1396 &kiocb->ki_iovec); 1397 if (ret < 0) 1398 goto out; 1399 1400 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1401 kiocb->ki_cur_seg = 0; 1402 /* ki_nbytes/left now reflect bytes instead of segs */ 1403 kiocb->ki_nbytes = ret; 1404 kiocb->ki_left = ret; 1405 1406 ret = 0; 1407 out: 1408 return ret; 1409 } 1410 1411 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1412 { 1413 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1414 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1415 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1416 kiocb->ki_nr_segs = 1; 1417 kiocb->ki_cur_seg = 0; 1418 return 0; 1419 } 1420 1421 /* 1422 * aio_setup_iocb: 1423 * Performs the initial checks and aio retry method 1424 * setup for the kiocb at the time of io submission. 1425 */ 1426 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1427 { 1428 struct file *file = kiocb->ki_filp; 1429 ssize_t ret = 0; 1430 1431 switch (kiocb->ki_opcode) { 1432 case IOCB_CMD_PREAD: 1433 ret = -EBADF; 1434 if (unlikely(!(file->f_mode & FMODE_READ))) 1435 break; 1436 ret = -EFAULT; 1437 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1438 kiocb->ki_left))) 1439 break; 1440 ret = security_file_permission(file, MAY_READ); 1441 if (unlikely(ret)) 1442 break; 1443 ret = aio_setup_single_vector(kiocb); 1444 if (ret) 1445 break; 1446 ret = -EINVAL; 1447 if (file->f_op->aio_read) 1448 kiocb->ki_retry = aio_rw_vect_retry; 1449 break; 1450 case IOCB_CMD_PWRITE: 1451 ret = -EBADF; 1452 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1453 break; 1454 ret = -EFAULT; 1455 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1456 kiocb->ki_left))) 1457 break; 1458 ret = security_file_permission(file, MAY_WRITE); 1459 if (unlikely(ret)) 1460 break; 1461 ret = aio_setup_single_vector(kiocb); 1462 if (ret) 1463 break; 1464 ret = -EINVAL; 1465 if (file->f_op->aio_write) 1466 kiocb->ki_retry = aio_rw_vect_retry; 1467 break; 1468 case IOCB_CMD_PREADV: 1469 ret = -EBADF; 1470 if (unlikely(!(file->f_mode & FMODE_READ))) 1471 break; 1472 ret = security_file_permission(file, MAY_READ); 1473 if (unlikely(ret)) 1474 break; 1475 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1476 if (ret) 1477 break; 1478 ret = -EINVAL; 1479 if (file->f_op->aio_read) 1480 kiocb->ki_retry = aio_rw_vect_retry; 1481 break; 1482 case IOCB_CMD_PWRITEV: 1483 ret = -EBADF; 1484 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1485 break; 1486 ret = security_file_permission(file, MAY_WRITE); 1487 if (unlikely(ret)) 1488 break; 1489 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1490 if (ret) 1491 break; 1492 ret = -EINVAL; 1493 if (file->f_op->aio_write) 1494 kiocb->ki_retry = aio_rw_vect_retry; 1495 break; 1496 case IOCB_CMD_FDSYNC: 1497 ret = -EINVAL; 1498 if (file->f_op->aio_fsync) 1499 kiocb->ki_retry = aio_fdsync; 1500 break; 1501 case IOCB_CMD_FSYNC: 1502 ret = -EINVAL; 1503 if (file->f_op->aio_fsync) 1504 kiocb->ki_retry = aio_fsync; 1505 break; 1506 default: 1507 dprintk("EINVAL: io_submit: no operation provided\n"); 1508 ret = -EINVAL; 1509 } 1510 1511 if (!kiocb->ki_retry) 1512 return ret; 1513 1514 return 0; 1515 } 1516 1517 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1518 struct iocb *iocb, bool compat) 1519 { 1520 struct kiocb *req; 1521 struct file *file; 1522 ssize_t ret; 1523 1524 /* enforce forwards compatibility on users */ 1525 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1526 pr_debug("EINVAL: io_submit: reserve field set\n"); 1527 return -EINVAL; 1528 } 1529 1530 /* prevent overflows */ 1531 if (unlikely( 1532 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1533 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1534 ((ssize_t)iocb->aio_nbytes < 0) 1535 )) { 1536 pr_debug("EINVAL: io_submit: overflow check\n"); 1537 return -EINVAL; 1538 } 1539 1540 file = fget(iocb->aio_fildes); 1541 if (unlikely(!file)) 1542 return -EBADF; 1543 1544 req = aio_get_req(ctx); /* returns with 2 references to req */ 1545 if (unlikely(!req)) { 1546 fput(file); 1547 return -EAGAIN; 1548 } 1549 req->ki_filp = file; 1550 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1551 /* 1552 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1553 * instance of the file* now. The file descriptor must be 1554 * an eventfd() fd, and will be signaled for each completed 1555 * event using the eventfd_signal() function. 1556 */ 1557 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1558 if (IS_ERR(req->ki_eventfd)) { 1559 ret = PTR_ERR(req->ki_eventfd); 1560 req->ki_eventfd = NULL; 1561 goto out_put_req; 1562 } 1563 } 1564 1565 ret = put_user(req->ki_key, &user_iocb->aio_key); 1566 if (unlikely(ret)) { 1567 dprintk("EFAULT: aio_key\n"); 1568 goto out_put_req; 1569 } 1570 1571 req->ki_obj.user = user_iocb; 1572 req->ki_user_data = iocb->aio_data; 1573 req->ki_pos = iocb->aio_offset; 1574 1575 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1576 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1577 req->ki_opcode = iocb->aio_lio_opcode; 1578 1579 ret = aio_setup_iocb(req, compat); 1580 1581 if (ret) 1582 goto out_put_req; 1583 1584 spin_lock_irq(&ctx->ctx_lock); 1585 /* 1586 * We could have raced with io_destroy() and are currently holding a 1587 * reference to ctx which should be destroyed. We cannot submit IO 1588 * since ctx gets freed as soon as io_submit() puts its reference. The 1589 * check here is reliable: io_destroy() sets ctx->dead before waiting 1590 * for outstanding IO and the barrier between these two is realized by 1591 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1592 * increment ctx->reqs_active before checking for ctx->dead and the 1593 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1594 * don't see ctx->dead set here, io_destroy() waits for our IO to 1595 * finish. 1596 */ 1597 if (ctx->dead) { 1598 spin_unlock_irq(&ctx->ctx_lock); 1599 ret = -EINVAL; 1600 goto out_put_req; 1601 } 1602 aio_run_iocb(req); 1603 if (!list_empty(&ctx->run_list)) { 1604 /* drain the run list */ 1605 while (__aio_run_iocbs(ctx)) 1606 ; 1607 } 1608 spin_unlock_irq(&ctx->ctx_lock); 1609 1610 aio_put_req(req); /* drop extra ref to req */ 1611 return 0; 1612 1613 out_put_req: 1614 aio_put_req(req); /* drop extra ref to req */ 1615 aio_put_req(req); /* drop i/o ref to req */ 1616 return ret; 1617 } 1618 1619 long do_io_submit(aio_context_t ctx_id, long nr, 1620 struct iocb __user *__user *iocbpp, bool compat) 1621 { 1622 struct kioctx *ctx; 1623 long ret = 0; 1624 int i; 1625 struct blk_plug plug; 1626 1627 if (unlikely(nr < 0)) 1628 return -EINVAL; 1629 1630 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1631 nr = LONG_MAX/sizeof(*iocbpp); 1632 1633 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1634 return -EFAULT; 1635 1636 ctx = lookup_ioctx(ctx_id); 1637 if (unlikely(!ctx)) { 1638 pr_debug("EINVAL: io_submit: invalid context id\n"); 1639 return -EINVAL; 1640 } 1641 1642 blk_start_plug(&plug); 1643 1644 /* 1645 * AKPM: should this return a partial result if some of the IOs were 1646 * successfully submitted? 1647 */ 1648 for (i=0; i<nr; i++) { 1649 struct iocb __user *user_iocb; 1650 struct iocb tmp; 1651 1652 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1653 ret = -EFAULT; 1654 break; 1655 } 1656 1657 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1658 ret = -EFAULT; 1659 break; 1660 } 1661 1662 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1663 if (ret) 1664 break; 1665 } 1666 blk_finish_plug(&plug); 1667 1668 put_ioctx(ctx); 1669 return i ? i : ret; 1670 } 1671 1672 /* sys_io_submit: 1673 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1674 * the number of iocbs queued. May return -EINVAL if the aio_context 1675 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1676 * *iocbpp[0] is not properly initialized, if the operation specified 1677 * is invalid for the file descriptor in the iocb. May fail with 1678 * -EFAULT if any of the data structures point to invalid data. May 1679 * fail with -EBADF if the file descriptor specified in the first 1680 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1681 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1682 * fail with -ENOSYS if not implemented. 1683 */ 1684 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1685 struct iocb __user * __user *, iocbpp) 1686 { 1687 return do_io_submit(ctx_id, nr, iocbpp, 0); 1688 } 1689 1690 /* lookup_kiocb 1691 * Finds a given iocb for cancellation. 1692 */ 1693 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1694 u32 key) 1695 { 1696 struct list_head *pos; 1697 1698 assert_spin_locked(&ctx->ctx_lock); 1699 1700 /* TODO: use a hash or array, this sucks. */ 1701 list_for_each(pos, &ctx->active_reqs) { 1702 struct kiocb *kiocb = list_kiocb(pos); 1703 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1704 return kiocb; 1705 } 1706 return NULL; 1707 } 1708 1709 /* sys_io_cancel: 1710 * Attempts to cancel an iocb previously passed to io_submit. If 1711 * the operation is successfully cancelled, the resulting event is 1712 * copied into the memory pointed to by result without being placed 1713 * into the completion queue and 0 is returned. May fail with 1714 * -EFAULT if any of the data structures pointed to are invalid. 1715 * May fail with -EINVAL if aio_context specified by ctx_id is 1716 * invalid. May fail with -EAGAIN if the iocb specified was not 1717 * cancelled. Will fail with -ENOSYS if not implemented. 1718 */ 1719 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1720 struct io_event __user *, result) 1721 { 1722 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1723 struct kioctx *ctx; 1724 struct kiocb *kiocb; 1725 u32 key; 1726 int ret; 1727 1728 ret = get_user(key, &iocb->aio_key); 1729 if (unlikely(ret)) 1730 return -EFAULT; 1731 1732 ctx = lookup_ioctx(ctx_id); 1733 if (unlikely(!ctx)) 1734 return -EINVAL; 1735 1736 spin_lock_irq(&ctx->ctx_lock); 1737 ret = -EAGAIN; 1738 kiocb = lookup_kiocb(ctx, iocb, key); 1739 if (kiocb && kiocb->ki_cancel) { 1740 cancel = kiocb->ki_cancel; 1741 kiocb->ki_users ++; 1742 kiocbSetCancelled(kiocb); 1743 } else 1744 cancel = NULL; 1745 spin_unlock_irq(&ctx->ctx_lock); 1746 1747 if (NULL != cancel) { 1748 struct io_event tmp; 1749 pr_debug("calling cancel\n"); 1750 memset(&tmp, 0, sizeof(tmp)); 1751 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1752 tmp.data = kiocb->ki_user_data; 1753 ret = cancel(kiocb, &tmp); 1754 if (!ret) { 1755 /* Cancellation succeeded -- copy the result 1756 * into the user's buffer. 1757 */ 1758 if (copy_to_user(result, &tmp, sizeof(tmp))) 1759 ret = -EFAULT; 1760 } 1761 } else 1762 ret = -EINVAL; 1763 1764 put_ioctx(ctx); 1765 1766 return ret; 1767 } 1768 1769 /* io_getevents: 1770 * Attempts to read at least min_nr events and up to nr events from 1771 * the completion queue for the aio_context specified by ctx_id. If 1772 * it succeeds, the number of read events is returned. May fail with 1773 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1774 * out of range, if timeout is out of range. May fail with -EFAULT 1775 * if any of the memory specified is invalid. May return 0 or 1776 * < min_nr if the timeout specified by timeout has elapsed 1777 * before sufficient events are available, where timeout == NULL 1778 * specifies an infinite timeout. Note that the timeout pointed to by 1779 * timeout is relative and will be updated if not NULL and the 1780 * operation blocks. Will fail with -ENOSYS if not implemented. 1781 */ 1782 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1783 long, min_nr, 1784 long, nr, 1785 struct io_event __user *, events, 1786 struct timespec __user *, timeout) 1787 { 1788 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1789 long ret = -EINVAL; 1790 1791 if (likely(ioctx)) { 1792 if (likely(min_nr <= nr && min_nr >= 0)) 1793 ret = read_events(ioctx, min_nr, nr, events, timeout); 1794 put_ioctx(ioctx); 1795 } 1796 1797 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1798 return ret; 1799 } 1800