xref: /openbmc/linux/fs/aio.c (revision 4d765e48c5edb2090b82e97680b2d1ddf6d18c31)
1  /*
2   *	An async IO implementation for Linux
3   *	Written by Benjamin LaHaise <bcrl@kvack.org>
4   *
5   *	Implements an efficient asynchronous io interface.
6   *
7   *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8   *
9   *	See ../COPYING for licensing terms.
10   */
11  #define pr_fmt(fmt) "%s: " fmt, __func__
12  
13  #include <linux/kernel.h>
14  #include <linux/init.h>
15  #include <linux/errno.h>
16  #include <linux/time.h>
17  #include <linux/aio_abi.h>
18  #include <linux/export.h>
19  #include <linux/syscalls.h>
20  #include <linux/backing-dev.h>
21  #include <linux/uio.h>
22  
23  #include <linux/sched.h>
24  #include <linux/fs.h>
25  #include <linux/file.h>
26  #include <linux/mm.h>
27  #include <linux/mman.h>
28  #include <linux/mmu_context.h>
29  #include <linux/percpu.h>
30  #include <linux/slab.h>
31  #include <linux/timer.h>
32  #include <linux/aio.h>
33  #include <linux/highmem.h>
34  #include <linux/workqueue.h>
35  #include <linux/security.h>
36  #include <linux/eventfd.h>
37  #include <linux/blkdev.h>
38  #include <linux/compat.h>
39  #include <linux/migrate.h>
40  #include <linux/ramfs.h>
41  #include <linux/percpu-refcount.h>
42  #include <linux/mount.h>
43  
44  #include <asm/kmap_types.h>
45  #include <asm/uaccess.h>
46  
47  #include "internal.h"
48  
49  #define AIO_RING_MAGIC			0xa10a10a1
50  #define AIO_RING_COMPAT_FEATURES	1
51  #define AIO_RING_INCOMPAT_FEATURES	0
52  struct aio_ring {
53  	unsigned	id;	/* kernel internal index number */
54  	unsigned	nr;	/* number of io_events */
55  	unsigned	head;	/* Written to by userland or under ring_lock
56  				 * mutex by aio_read_events_ring(). */
57  	unsigned	tail;
58  
59  	unsigned	magic;
60  	unsigned	compat_features;
61  	unsigned	incompat_features;
62  	unsigned	header_length;	/* size of aio_ring */
63  
64  
65  	struct io_event		io_events[0];
66  }; /* 128 bytes + ring size */
67  
68  #define AIO_RING_PAGES	8
69  
70  struct kioctx_table {
71  	struct rcu_head	rcu;
72  	unsigned	nr;
73  	struct kioctx	*table[];
74  };
75  
76  struct kioctx_cpu {
77  	unsigned		reqs_available;
78  };
79  
80  struct kioctx {
81  	struct percpu_ref	users;
82  	atomic_t		dead;
83  
84  	struct percpu_ref	reqs;
85  
86  	unsigned long		user_id;
87  
88  	struct __percpu kioctx_cpu *cpu;
89  
90  	/*
91  	 * For percpu reqs_available, number of slots we move to/from global
92  	 * counter at a time:
93  	 */
94  	unsigned		req_batch;
95  	/*
96  	 * This is what userspace passed to io_setup(), it's not used for
97  	 * anything but counting against the global max_reqs quota.
98  	 *
99  	 * The real limit is nr_events - 1, which will be larger (see
100  	 * aio_setup_ring())
101  	 */
102  	unsigned		max_reqs;
103  
104  	/* Size of ringbuffer, in units of struct io_event */
105  	unsigned		nr_events;
106  
107  	unsigned long		mmap_base;
108  	unsigned long		mmap_size;
109  
110  	struct page		**ring_pages;
111  	long			nr_pages;
112  
113  	struct work_struct	free_work;
114  
115  	/*
116  	 * signals when all in-flight requests are done
117  	 */
118  	struct completion *requests_done;
119  
120  	struct {
121  		/*
122  		 * This counts the number of available slots in the ringbuffer,
123  		 * so we avoid overflowing it: it's decremented (if positive)
124  		 * when allocating a kiocb and incremented when the resulting
125  		 * io_event is pulled off the ringbuffer.
126  		 *
127  		 * We batch accesses to it with a percpu version.
128  		 */
129  		atomic_t	reqs_available;
130  	} ____cacheline_aligned_in_smp;
131  
132  	struct {
133  		spinlock_t	ctx_lock;
134  		struct list_head active_reqs;	/* used for cancellation */
135  	} ____cacheline_aligned_in_smp;
136  
137  	struct {
138  		struct mutex	ring_lock;
139  		wait_queue_head_t wait;
140  	} ____cacheline_aligned_in_smp;
141  
142  	struct {
143  		unsigned	tail;
144  		unsigned	completed_events;
145  		spinlock_t	completion_lock;
146  	} ____cacheline_aligned_in_smp;
147  
148  	struct page		*internal_pages[AIO_RING_PAGES];
149  	struct file		*aio_ring_file;
150  
151  	unsigned		id;
152  };
153  
154  /*------ sysctl variables----*/
155  static DEFINE_SPINLOCK(aio_nr_lock);
156  unsigned long aio_nr;		/* current system wide number of aio requests */
157  unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158  /*----end sysctl variables---*/
159  
160  static struct kmem_cache	*kiocb_cachep;
161  static struct kmem_cache	*kioctx_cachep;
162  
163  static struct vfsmount *aio_mnt;
164  
165  static const struct file_operations aio_ring_fops;
166  static const struct address_space_operations aio_ctx_aops;
167  
168  static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
169  {
170  	struct qstr this = QSTR_INIT("[aio]", 5);
171  	struct file *file;
172  	struct path path;
173  	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
174  	if (IS_ERR(inode))
175  		return ERR_CAST(inode);
176  
177  	inode->i_mapping->a_ops = &aio_ctx_aops;
178  	inode->i_mapping->private_data = ctx;
179  	inode->i_size = PAGE_SIZE * nr_pages;
180  
181  	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
182  	if (!path.dentry) {
183  		iput(inode);
184  		return ERR_PTR(-ENOMEM);
185  	}
186  	path.mnt = mntget(aio_mnt);
187  
188  	d_instantiate(path.dentry, inode);
189  	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
190  	if (IS_ERR(file)) {
191  		path_put(&path);
192  		return file;
193  	}
194  
195  	file->f_flags = O_RDWR;
196  	return file;
197  }
198  
199  static struct dentry *aio_mount(struct file_system_type *fs_type,
200  				int flags, const char *dev_name, void *data)
201  {
202  	static const struct dentry_operations ops = {
203  		.d_dname	= simple_dname,
204  	};
205  	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
206  }
207  
208  /* aio_setup
209   *	Creates the slab caches used by the aio routines, panic on
210   *	failure as this is done early during the boot sequence.
211   */
212  static int __init aio_setup(void)
213  {
214  	static struct file_system_type aio_fs = {
215  		.name		= "aio",
216  		.mount		= aio_mount,
217  		.kill_sb	= kill_anon_super,
218  	};
219  	aio_mnt = kern_mount(&aio_fs);
220  	if (IS_ERR(aio_mnt))
221  		panic("Failed to create aio fs mount.");
222  
223  	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
224  	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
225  
226  	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
227  
228  	return 0;
229  }
230  __initcall(aio_setup);
231  
232  static void put_aio_ring_file(struct kioctx *ctx)
233  {
234  	struct file *aio_ring_file = ctx->aio_ring_file;
235  	if (aio_ring_file) {
236  		truncate_setsize(aio_ring_file->f_inode, 0);
237  
238  		/* Prevent further access to the kioctx from migratepages */
239  		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
240  		aio_ring_file->f_inode->i_mapping->private_data = NULL;
241  		ctx->aio_ring_file = NULL;
242  		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
243  
244  		fput(aio_ring_file);
245  	}
246  }
247  
248  static void aio_free_ring(struct kioctx *ctx)
249  {
250  	int i;
251  
252  	/* Disconnect the kiotx from the ring file.  This prevents future
253  	 * accesses to the kioctx from page migration.
254  	 */
255  	put_aio_ring_file(ctx);
256  
257  	for (i = 0; i < ctx->nr_pages; i++) {
258  		struct page *page;
259  		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
260  				page_count(ctx->ring_pages[i]));
261  		page = ctx->ring_pages[i];
262  		if (!page)
263  			continue;
264  		ctx->ring_pages[i] = NULL;
265  		put_page(page);
266  	}
267  
268  	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
269  		kfree(ctx->ring_pages);
270  		ctx->ring_pages = NULL;
271  	}
272  }
273  
274  static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
275  {
276  	vma->vm_ops = &generic_file_vm_ops;
277  	return 0;
278  }
279  
280  static const struct file_operations aio_ring_fops = {
281  	.mmap = aio_ring_mmap,
282  };
283  
284  static int aio_set_page_dirty(struct page *page)
285  {
286  	return 0;
287  }
288  
289  #if IS_ENABLED(CONFIG_MIGRATION)
290  static int aio_migratepage(struct address_space *mapping, struct page *new,
291  			struct page *old, enum migrate_mode mode)
292  {
293  	struct kioctx *ctx;
294  	unsigned long flags;
295  	pgoff_t idx;
296  	int rc;
297  
298  	rc = 0;
299  
300  	/* mapping->private_lock here protects against the kioctx teardown.  */
301  	spin_lock(&mapping->private_lock);
302  	ctx = mapping->private_data;
303  	if (!ctx) {
304  		rc = -EINVAL;
305  		goto out;
306  	}
307  
308  	/* The ring_lock mutex.  The prevents aio_read_events() from writing
309  	 * to the ring's head, and prevents page migration from mucking in
310  	 * a partially initialized kiotx.
311  	 */
312  	if (!mutex_trylock(&ctx->ring_lock)) {
313  		rc = -EAGAIN;
314  		goto out;
315  	}
316  
317  	idx = old->index;
318  	if (idx < (pgoff_t)ctx->nr_pages) {
319  		/* Make sure the old page hasn't already been changed */
320  		if (ctx->ring_pages[idx] != old)
321  			rc = -EAGAIN;
322  	} else
323  		rc = -EINVAL;
324  
325  	if (rc != 0)
326  		goto out_unlock;
327  
328  	/* Writeback must be complete */
329  	BUG_ON(PageWriteback(old));
330  	get_page(new);
331  
332  	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
333  	if (rc != MIGRATEPAGE_SUCCESS) {
334  		put_page(new);
335  		goto out_unlock;
336  	}
337  
338  	/* Take completion_lock to prevent other writes to the ring buffer
339  	 * while the old page is copied to the new.  This prevents new
340  	 * events from being lost.
341  	 */
342  	spin_lock_irqsave(&ctx->completion_lock, flags);
343  	migrate_page_copy(new, old);
344  	BUG_ON(ctx->ring_pages[idx] != old);
345  	ctx->ring_pages[idx] = new;
346  	spin_unlock_irqrestore(&ctx->completion_lock, flags);
347  
348  	/* The old page is no longer accessible. */
349  	put_page(old);
350  
351  out_unlock:
352  	mutex_unlock(&ctx->ring_lock);
353  out:
354  	spin_unlock(&mapping->private_lock);
355  	return rc;
356  }
357  #endif
358  
359  static const struct address_space_operations aio_ctx_aops = {
360  	.set_page_dirty = aio_set_page_dirty,
361  #if IS_ENABLED(CONFIG_MIGRATION)
362  	.migratepage	= aio_migratepage,
363  #endif
364  };
365  
366  static int aio_setup_ring(struct kioctx *ctx)
367  {
368  	struct aio_ring *ring;
369  	unsigned nr_events = ctx->max_reqs;
370  	struct mm_struct *mm = current->mm;
371  	unsigned long size, unused;
372  	int nr_pages;
373  	int i;
374  	struct file *file;
375  
376  	/* Compensate for the ring buffer's head/tail overlap entry */
377  	nr_events += 2;	/* 1 is required, 2 for good luck */
378  
379  	size = sizeof(struct aio_ring);
380  	size += sizeof(struct io_event) * nr_events;
381  
382  	nr_pages = PFN_UP(size);
383  	if (nr_pages < 0)
384  		return -EINVAL;
385  
386  	file = aio_private_file(ctx, nr_pages);
387  	if (IS_ERR(file)) {
388  		ctx->aio_ring_file = NULL;
389  		return -ENOMEM;
390  	}
391  
392  	ctx->aio_ring_file = file;
393  	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
394  			/ sizeof(struct io_event);
395  
396  	ctx->ring_pages = ctx->internal_pages;
397  	if (nr_pages > AIO_RING_PAGES) {
398  		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
399  					  GFP_KERNEL);
400  		if (!ctx->ring_pages) {
401  			put_aio_ring_file(ctx);
402  			return -ENOMEM;
403  		}
404  	}
405  
406  	for (i = 0; i < nr_pages; i++) {
407  		struct page *page;
408  		page = find_or_create_page(file->f_inode->i_mapping,
409  					   i, GFP_HIGHUSER | __GFP_ZERO);
410  		if (!page)
411  			break;
412  		pr_debug("pid(%d) page[%d]->count=%d\n",
413  			 current->pid, i, page_count(page));
414  		SetPageUptodate(page);
415  		SetPageDirty(page);
416  		unlock_page(page);
417  
418  		ctx->ring_pages[i] = page;
419  	}
420  	ctx->nr_pages = i;
421  
422  	if (unlikely(i != nr_pages)) {
423  		aio_free_ring(ctx);
424  		return -ENOMEM;
425  	}
426  
427  	ctx->mmap_size = nr_pages * PAGE_SIZE;
428  	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
429  
430  	down_write(&mm->mmap_sem);
431  	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
432  				       PROT_READ | PROT_WRITE,
433  				       MAP_SHARED, 0, &unused);
434  	up_write(&mm->mmap_sem);
435  	if (IS_ERR((void *)ctx->mmap_base)) {
436  		ctx->mmap_size = 0;
437  		aio_free_ring(ctx);
438  		return -ENOMEM;
439  	}
440  
441  	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
442  
443  	ctx->user_id = ctx->mmap_base;
444  	ctx->nr_events = nr_events; /* trusted copy */
445  
446  	ring = kmap_atomic(ctx->ring_pages[0]);
447  	ring->nr = nr_events;	/* user copy */
448  	ring->id = ~0U;
449  	ring->head = ring->tail = 0;
450  	ring->magic = AIO_RING_MAGIC;
451  	ring->compat_features = AIO_RING_COMPAT_FEATURES;
452  	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
453  	ring->header_length = sizeof(struct aio_ring);
454  	kunmap_atomic(ring);
455  	flush_dcache_page(ctx->ring_pages[0]);
456  
457  	return 0;
458  }
459  
460  #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
461  #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
462  #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
463  
464  void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
465  {
466  	struct kioctx *ctx = req->ki_ctx;
467  	unsigned long flags;
468  
469  	spin_lock_irqsave(&ctx->ctx_lock, flags);
470  
471  	if (!req->ki_list.next)
472  		list_add(&req->ki_list, &ctx->active_reqs);
473  
474  	req->ki_cancel = cancel;
475  
476  	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
477  }
478  EXPORT_SYMBOL(kiocb_set_cancel_fn);
479  
480  static int kiocb_cancel(struct kiocb *kiocb)
481  {
482  	kiocb_cancel_fn *old, *cancel;
483  
484  	/*
485  	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
486  	 * actually has a cancel function, hence the cmpxchg()
487  	 */
488  
489  	cancel = ACCESS_ONCE(kiocb->ki_cancel);
490  	do {
491  		if (!cancel || cancel == KIOCB_CANCELLED)
492  			return -EINVAL;
493  
494  		old = cancel;
495  		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
496  	} while (cancel != old);
497  
498  	return cancel(kiocb);
499  }
500  
501  static void free_ioctx(struct work_struct *work)
502  {
503  	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
504  
505  	pr_debug("freeing %p\n", ctx);
506  
507  	aio_free_ring(ctx);
508  	free_percpu(ctx->cpu);
509  	percpu_ref_exit(&ctx->reqs);
510  	percpu_ref_exit(&ctx->users);
511  	kmem_cache_free(kioctx_cachep, ctx);
512  }
513  
514  static void free_ioctx_reqs(struct percpu_ref *ref)
515  {
516  	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
517  
518  	/* At this point we know that there are no any in-flight requests */
519  	if (ctx->requests_done)
520  		complete(ctx->requests_done);
521  
522  	INIT_WORK(&ctx->free_work, free_ioctx);
523  	schedule_work(&ctx->free_work);
524  }
525  
526  /*
527   * When this function runs, the kioctx has been removed from the "hash table"
528   * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
529   * now it's safe to cancel any that need to be.
530   */
531  static void free_ioctx_users(struct percpu_ref *ref)
532  {
533  	struct kioctx *ctx = container_of(ref, struct kioctx, users);
534  	struct kiocb *req;
535  
536  	spin_lock_irq(&ctx->ctx_lock);
537  
538  	while (!list_empty(&ctx->active_reqs)) {
539  		req = list_first_entry(&ctx->active_reqs,
540  				       struct kiocb, ki_list);
541  
542  		list_del_init(&req->ki_list);
543  		kiocb_cancel(req);
544  	}
545  
546  	spin_unlock_irq(&ctx->ctx_lock);
547  
548  	percpu_ref_kill(&ctx->reqs);
549  	percpu_ref_put(&ctx->reqs);
550  }
551  
552  static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
553  {
554  	unsigned i, new_nr;
555  	struct kioctx_table *table, *old;
556  	struct aio_ring *ring;
557  
558  	spin_lock(&mm->ioctx_lock);
559  	table = rcu_dereference_raw(mm->ioctx_table);
560  
561  	while (1) {
562  		if (table)
563  			for (i = 0; i < table->nr; i++)
564  				if (!table->table[i]) {
565  					ctx->id = i;
566  					table->table[i] = ctx;
567  					spin_unlock(&mm->ioctx_lock);
568  
569  					/* While kioctx setup is in progress,
570  					 * we are protected from page migration
571  					 * changes ring_pages by ->ring_lock.
572  					 */
573  					ring = kmap_atomic(ctx->ring_pages[0]);
574  					ring->id = ctx->id;
575  					kunmap_atomic(ring);
576  					return 0;
577  				}
578  
579  		new_nr = (table ? table->nr : 1) * 4;
580  		spin_unlock(&mm->ioctx_lock);
581  
582  		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
583  				new_nr, GFP_KERNEL);
584  		if (!table)
585  			return -ENOMEM;
586  
587  		table->nr = new_nr;
588  
589  		spin_lock(&mm->ioctx_lock);
590  		old = rcu_dereference_raw(mm->ioctx_table);
591  
592  		if (!old) {
593  			rcu_assign_pointer(mm->ioctx_table, table);
594  		} else if (table->nr > old->nr) {
595  			memcpy(table->table, old->table,
596  			       old->nr * sizeof(struct kioctx *));
597  
598  			rcu_assign_pointer(mm->ioctx_table, table);
599  			kfree_rcu(old, rcu);
600  		} else {
601  			kfree(table);
602  			table = old;
603  		}
604  	}
605  }
606  
607  static void aio_nr_sub(unsigned nr)
608  {
609  	spin_lock(&aio_nr_lock);
610  	if (WARN_ON(aio_nr - nr > aio_nr))
611  		aio_nr = 0;
612  	else
613  		aio_nr -= nr;
614  	spin_unlock(&aio_nr_lock);
615  }
616  
617  /* ioctx_alloc
618   *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
619   */
620  static struct kioctx *ioctx_alloc(unsigned nr_events)
621  {
622  	struct mm_struct *mm = current->mm;
623  	struct kioctx *ctx;
624  	int err = -ENOMEM;
625  
626  	/*
627  	 * We keep track of the number of available ringbuffer slots, to prevent
628  	 * overflow (reqs_available), and we also use percpu counters for this.
629  	 *
630  	 * So since up to half the slots might be on other cpu's percpu counters
631  	 * and unavailable, double nr_events so userspace sees what they
632  	 * expected: additionally, we move req_batch slots to/from percpu
633  	 * counters at a time, so make sure that isn't 0:
634  	 */
635  	nr_events = max(nr_events, num_possible_cpus() * 4);
636  	nr_events *= 2;
637  
638  	/* Prevent overflows */
639  	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
640  	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
641  		pr_debug("ENOMEM: nr_events too high\n");
642  		return ERR_PTR(-EINVAL);
643  	}
644  
645  	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
646  		return ERR_PTR(-EAGAIN);
647  
648  	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
649  	if (!ctx)
650  		return ERR_PTR(-ENOMEM);
651  
652  	ctx->max_reqs = nr_events;
653  
654  	spin_lock_init(&ctx->ctx_lock);
655  	spin_lock_init(&ctx->completion_lock);
656  	mutex_init(&ctx->ring_lock);
657  	/* Protect against page migration throughout kiotx setup by keeping
658  	 * the ring_lock mutex held until setup is complete. */
659  	mutex_lock(&ctx->ring_lock);
660  	init_waitqueue_head(&ctx->wait);
661  
662  	INIT_LIST_HEAD(&ctx->active_reqs);
663  
664  	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
665  		goto err;
666  
667  	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
668  		goto err;
669  
670  	ctx->cpu = alloc_percpu(struct kioctx_cpu);
671  	if (!ctx->cpu)
672  		goto err;
673  
674  	err = aio_setup_ring(ctx);
675  	if (err < 0)
676  		goto err;
677  
678  	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
679  	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
680  	if (ctx->req_batch < 1)
681  		ctx->req_batch = 1;
682  
683  	/* limit the number of system wide aios */
684  	spin_lock(&aio_nr_lock);
685  	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
686  	    aio_nr + nr_events < aio_nr) {
687  		spin_unlock(&aio_nr_lock);
688  		err = -EAGAIN;
689  		goto err_ctx;
690  	}
691  	aio_nr += ctx->max_reqs;
692  	spin_unlock(&aio_nr_lock);
693  
694  	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
695  	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
696  
697  	err = ioctx_add_table(ctx, mm);
698  	if (err)
699  		goto err_cleanup;
700  
701  	/* Release the ring_lock mutex now that all setup is complete. */
702  	mutex_unlock(&ctx->ring_lock);
703  
704  	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
705  		 ctx, ctx->user_id, mm, ctx->nr_events);
706  	return ctx;
707  
708  err_cleanup:
709  	aio_nr_sub(ctx->max_reqs);
710  err_ctx:
711  	aio_free_ring(ctx);
712  err:
713  	mutex_unlock(&ctx->ring_lock);
714  	free_percpu(ctx->cpu);
715  	percpu_ref_exit(&ctx->reqs);
716  	percpu_ref_exit(&ctx->users);
717  	kmem_cache_free(kioctx_cachep, ctx);
718  	pr_debug("error allocating ioctx %d\n", err);
719  	return ERR_PTR(err);
720  }
721  
722  /* kill_ioctx
723   *	Cancels all outstanding aio requests on an aio context.  Used
724   *	when the processes owning a context have all exited to encourage
725   *	the rapid destruction of the kioctx.
726   */
727  static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
728  		struct completion *requests_done)
729  {
730  	struct kioctx_table *table;
731  
732  	if (atomic_xchg(&ctx->dead, 1))
733  		return -EINVAL;
734  
735  
736  	spin_lock(&mm->ioctx_lock);
737  	table = rcu_dereference_raw(mm->ioctx_table);
738  	WARN_ON(ctx != table->table[ctx->id]);
739  	table->table[ctx->id] = NULL;
740  	spin_unlock(&mm->ioctx_lock);
741  
742  	/* percpu_ref_kill() will do the necessary call_rcu() */
743  	wake_up_all(&ctx->wait);
744  
745  	/*
746  	 * It'd be more correct to do this in free_ioctx(), after all
747  	 * the outstanding kiocbs have finished - but by then io_destroy
748  	 * has already returned, so io_setup() could potentially return
749  	 * -EAGAIN with no ioctxs actually in use (as far as userspace
750  	 *  could tell).
751  	 */
752  	aio_nr_sub(ctx->max_reqs);
753  
754  	if (ctx->mmap_size)
755  		vm_munmap(ctx->mmap_base, ctx->mmap_size);
756  
757  	ctx->requests_done = requests_done;
758  	percpu_ref_kill(&ctx->users);
759  	return 0;
760  }
761  
762  /* wait_on_sync_kiocb:
763   *	Waits on the given sync kiocb to complete.
764   */
765  ssize_t wait_on_sync_kiocb(struct kiocb *req)
766  {
767  	while (!req->ki_ctx) {
768  		set_current_state(TASK_UNINTERRUPTIBLE);
769  		if (req->ki_ctx)
770  			break;
771  		io_schedule();
772  	}
773  	__set_current_state(TASK_RUNNING);
774  	return req->ki_user_data;
775  }
776  EXPORT_SYMBOL(wait_on_sync_kiocb);
777  
778  /*
779   * exit_aio: called when the last user of mm goes away.  At this point, there is
780   * no way for any new requests to be submited or any of the io_* syscalls to be
781   * called on the context.
782   *
783   * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
784   * them.
785   */
786  void exit_aio(struct mm_struct *mm)
787  {
788  	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
789  	int i;
790  
791  	if (!table)
792  		return;
793  
794  	for (i = 0; i < table->nr; ++i) {
795  		struct kioctx *ctx = table->table[i];
796  		struct completion requests_done =
797  			COMPLETION_INITIALIZER_ONSTACK(requests_done);
798  
799  		if (!ctx)
800  			continue;
801  		/*
802  		 * We don't need to bother with munmap() here - exit_mmap(mm)
803  		 * is coming and it'll unmap everything. And we simply can't,
804  		 * this is not necessarily our ->mm.
805  		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
806  		 * that it needs to unmap the area, just set it to 0.
807  		 */
808  		ctx->mmap_size = 0;
809  		kill_ioctx(mm, ctx, &requests_done);
810  
811  		/* Wait until all IO for the context are done. */
812  		wait_for_completion(&requests_done);
813  	}
814  
815  	RCU_INIT_POINTER(mm->ioctx_table, NULL);
816  	kfree(table);
817  }
818  
819  static void put_reqs_available(struct kioctx *ctx, unsigned nr)
820  {
821  	struct kioctx_cpu *kcpu;
822  	unsigned long flags;
823  
824  	local_irq_save(flags);
825  	kcpu = this_cpu_ptr(ctx->cpu);
826  	kcpu->reqs_available += nr;
827  
828  	while (kcpu->reqs_available >= ctx->req_batch * 2) {
829  		kcpu->reqs_available -= ctx->req_batch;
830  		atomic_add(ctx->req_batch, &ctx->reqs_available);
831  	}
832  
833  	local_irq_restore(flags);
834  }
835  
836  static bool get_reqs_available(struct kioctx *ctx)
837  {
838  	struct kioctx_cpu *kcpu;
839  	bool ret = false;
840  	unsigned long flags;
841  
842  	local_irq_save(flags);
843  	kcpu = this_cpu_ptr(ctx->cpu);
844  	if (!kcpu->reqs_available) {
845  		int old, avail = atomic_read(&ctx->reqs_available);
846  
847  		do {
848  			if (avail < ctx->req_batch)
849  				goto out;
850  
851  			old = avail;
852  			avail = atomic_cmpxchg(&ctx->reqs_available,
853  					       avail, avail - ctx->req_batch);
854  		} while (avail != old);
855  
856  		kcpu->reqs_available += ctx->req_batch;
857  	}
858  
859  	ret = true;
860  	kcpu->reqs_available--;
861  out:
862  	local_irq_restore(flags);
863  	return ret;
864  }
865  
866  /* refill_reqs_available
867   *	Updates the reqs_available reference counts used for tracking the
868   *	number of free slots in the completion ring.  This can be called
869   *	from aio_complete() (to optimistically update reqs_available) or
870   *	from aio_get_req() (the we're out of events case).  It must be
871   *	called holding ctx->completion_lock.
872   */
873  static void refill_reqs_available(struct kioctx *ctx, unsigned head,
874                                    unsigned tail)
875  {
876  	unsigned events_in_ring, completed;
877  
878  	/* Clamp head since userland can write to it. */
879  	head %= ctx->nr_events;
880  	if (head <= tail)
881  		events_in_ring = tail - head;
882  	else
883  		events_in_ring = ctx->nr_events - (head - tail);
884  
885  	completed = ctx->completed_events;
886  	if (events_in_ring < completed)
887  		completed -= events_in_ring;
888  	else
889  		completed = 0;
890  
891  	if (!completed)
892  		return;
893  
894  	ctx->completed_events -= completed;
895  	put_reqs_available(ctx, completed);
896  }
897  
898  /* user_refill_reqs_available
899   *	Called to refill reqs_available when aio_get_req() encounters an
900   *	out of space in the completion ring.
901   */
902  static void user_refill_reqs_available(struct kioctx *ctx)
903  {
904  	spin_lock_irq(&ctx->completion_lock);
905  	if (ctx->completed_events) {
906  		struct aio_ring *ring;
907  		unsigned head;
908  
909  		/* Access of ring->head may race with aio_read_events_ring()
910  		 * here, but that's okay since whether we read the old version
911  		 * or the new version, and either will be valid.  The important
912  		 * part is that head cannot pass tail since we prevent
913  		 * aio_complete() from updating tail by holding
914  		 * ctx->completion_lock.  Even if head is invalid, the check
915  		 * against ctx->completed_events below will make sure we do the
916  		 * safe/right thing.
917  		 */
918  		ring = kmap_atomic(ctx->ring_pages[0]);
919  		head = ring->head;
920  		kunmap_atomic(ring);
921  
922  		refill_reqs_available(ctx, head, ctx->tail);
923  	}
924  
925  	spin_unlock_irq(&ctx->completion_lock);
926  }
927  
928  /* aio_get_req
929   *	Allocate a slot for an aio request.
930   * Returns NULL if no requests are free.
931   */
932  static inline struct kiocb *aio_get_req(struct kioctx *ctx)
933  {
934  	struct kiocb *req;
935  
936  	if (!get_reqs_available(ctx)) {
937  		user_refill_reqs_available(ctx);
938  		if (!get_reqs_available(ctx))
939  			return NULL;
940  	}
941  
942  	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
943  	if (unlikely(!req))
944  		goto out_put;
945  
946  	percpu_ref_get(&ctx->reqs);
947  
948  	req->ki_ctx = ctx;
949  	return req;
950  out_put:
951  	put_reqs_available(ctx, 1);
952  	return NULL;
953  }
954  
955  static void kiocb_free(struct kiocb *req)
956  {
957  	if (req->ki_filp)
958  		fput(req->ki_filp);
959  	if (req->ki_eventfd != NULL)
960  		eventfd_ctx_put(req->ki_eventfd);
961  	kmem_cache_free(kiocb_cachep, req);
962  }
963  
964  static struct kioctx *lookup_ioctx(unsigned long ctx_id)
965  {
966  	struct aio_ring __user *ring  = (void __user *)ctx_id;
967  	struct mm_struct *mm = current->mm;
968  	struct kioctx *ctx, *ret = NULL;
969  	struct kioctx_table *table;
970  	unsigned id;
971  
972  	if (get_user(id, &ring->id))
973  		return NULL;
974  
975  	rcu_read_lock();
976  	table = rcu_dereference(mm->ioctx_table);
977  
978  	if (!table || id >= table->nr)
979  		goto out;
980  
981  	ctx = table->table[id];
982  	if (ctx && ctx->user_id == ctx_id) {
983  		percpu_ref_get(&ctx->users);
984  		ret = ctx;
985  	}
986  out:
987  	rcu_read_unlock();
988  	return ret;
989  }
990  
991  /* aio_complete
992   *	Called when the io request on the given iocb is complete.
993   */
994  void aio_complete(struct kiocb *iocb, long res, long res2)
995  {
996  	struct kioctx	*ctx = iocb->ki_ctx;
997  	struct aio_ring	*ring;
998  	struct io_event	*ev_page, *event;
999  	unsigned tail, pos, head;
1000  	unsigned long	flags;
1001  
1002  	/*
1003  	 * Special case handling for sync iocbs:
1004  	 *  - events go directly into the iocb for fast handling
1005  	 *  - the sync task with the iocb in its stack holds the single iocb
1006  	 *    ref, no other paths have a way to get another ref
1007  	 *  - the sync task helpfully left a reference to itself in the iocb
1008  	 */
1009  	if (is_sync_kiocb(iocb)) {
1010  		iocb->ki_user_data = res;
1011  		smp_wmb();
1012  		iocb->ki_ctx = ERR_PTR(-EXDEV);
1013  		wake_up_process(iocb->ki_obj.tsk);
1014  		return;
1015  	}
1016  
1017  	if (iocb->ki_list.next) {
1018  		unsigned long flags;
1019  
1020  		spin_lock_irqsave(&ctx->ctx_lock, flags);
1021  		list_del(&iocb->ki_list);
1022  		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1023  	}
1024  
1025  	/*
1026  	 * Add a completion event to the ring buffer. Must be done holding
1027  	 * ctx->completion_lock to prevent other code from messing with the tail
1028  	 * pointer since we might be called from irq context.
1029  	 */
1030  	spin_lock_irqsave(&ctx->completion_lock, flags);
1031  
1032  	tail = ctx->tail;
1033  	pos = tail + AIO_EVENTS_OFFSET;
1034  
1035  	if (++tail >= ctx->nr_events)
1036  		tail = 0;
1037  
1038  	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1039  	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1040  
1041  	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1042  	event->data = iocb->ki_user_data;
1043  	event->res = res;
1044  	event->res2 = res2;
1045  
1046  	kunmap_atomic(ev_page);
1047  	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1048  
1049  	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1050  		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1051  		 res, res2);
1052  
1053  	/* after flagging the request as done, we
1054  	 * must never even look at it again
1055  	 */
1056  	smp_wmb();	/* make event visible before updating tail */
1057  
1058  	ctx->tail = tail;
1059  
1060  	ring = kmap_atomic(ctx->ring_pages[0]);
1061  	head = ring->head;
1062  	ring->tail = tail;
1063  	kunmap_atomic(ring);
1064  	flush_dcache_page(ctx->ring_pages[0]);
1065  
1066  	ctx->completed_events++;
1067  	if (ctx->completed_events > 1)
1068  		refill_reqs_available(ctx, head, tail);
1069  	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1070  
1071  	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1072  
1073  	/*
1074  	 * Check if the user asked us to deliver the result through an
1075  	 * eventfd. The eventfd_signal() function is safe to be called
1076  	 * from IRQ context.
1077  	 */
1078  	if (iocb->ki_eventfd != NULL)
1079  		eventfd_signal(iocb->ki_eventfd, 1);
1080  
1081  	/* everything turned out well, dispose of the aiocb. */
1082  	kiocb_free(iocb);
1083  
1084  	/*
1085  	 * We have to order our ring_info tail store above and test
1086  	 * of the wait list below outside the wait lock.  This is
1087  	 * like in wake_up_bit() where clearing a bit has to be
1088  	 * ordered with the unlocked test.
1089  	 */
1090  	smp_mb();
1091  
1092  	if (waitqueue_active(&ctx->wait))
1093  		wake_up(&ctx->wait);
1094  
1095  	percpu_ref_put(&ctx->reqs);
1096  }
1097  EXPORT_SYMBOL(aio_complete);
1098  
1099  /* aio_read_events_ring
1100   *	Pull an event off of the ioctx's event ring.  Returns the number of
1101   *	events fetched
1102   */
1103  static long aio_read_events_ring(struct kioctx *ctx,
1104  				 struct io_event __user *event, long nr)
1105  {
1106  	struct aio_ring *ring;
1107  	unsigned head, tail, pos;
1108  	long ret = 0;
1109  	int copy_ret;
1110  
1111  	mutex_lock(&ctx->ring_lock);
1112  
1113  	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1114  	ring = kmap_atomic(ctx->ring_pages[0]);
1115  	head = ring->head;
1116  	tail = ring->tail;
1117  	kunmap_atomic(ring);
1118  
1119  	/*
1120  	 * Ensure that once we've read the current tail pointer, that
1121  	 * we also see the events that were stored up to the tail.
1122  	 */
1123  	smp_rmb();
1124  
1125  	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1126  
1127  	if (head == tail)
1128  		goto out;
1129  
1130  	head %= ctx->nr_events;
1131  	tail %= ctx->nr_events;
1132  
1133  	while (ret < nr) {
1134  		long avail;
1135  		struct io_event *ev;
1136  		struct page *page;
1137  
1138  		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1139  		if (head == tail)
1140  			break;
1141  
1142  		avail = min(avail, nr - ret);
1143  		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1144  			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1145  
1146  		pos = head + AIO_EVENTS_OFFSET;
1147  		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1148  		pos %= AIO_EVENTS_PER_PAGE;
1149  
1150  		ev = kmap(page);
1151  		copy_ret = copy_to_user(event + ret, ev + pos,
1152  					sizeof(*ev) * avail);
1153  		kunmap(page);
1154  
1155  		if (unlikely(copy_ret)) {
1156  			ret = -EFAULT;
1157  			goto out;
1158  		}
1159  
1160  		ret += avail;
1161  		head += avail;
1162  		head %= ctx->nr_events;
1163  	}
1164  
1165  	ring = kmap_atomic(ctx->ring_pages[0]);
1166  	ring->head = head;
1167  	kunmap_atomic(ring);
1168  	flush_dcache_page(ctx->ring_pages[0]);
1169  
1170  	pr_debug("%li  h%u t%u\n", ret, head, tail);
1171  out:
1172  	mutex_unlock(&ctx->ring_lock);
1173  
1174  	return ret;
1175  }
1176  
1177  static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1178  			    struct io_event __user *event, long *i)
1179  {
1180  	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1181  
1182  	if (ret > 0)
1183  		*i += ret;
1184  
1185  	if (unlikely(atomic_read(&ctx->dead)))
1186  		ret = -EINVAL;
1187  
1188  	if (!*i)
1189  		*i = ret;
1190  
1191  	return ret < 0 || *i >= min_nr;
1192  }
1193  
1194  static long read_events(struct kioctx *ctx, long min_nr, long nr,
1195  			struct io_event __user *event,
1196  			struct timespec __user *timeout)
1197  {
1198  	ktime_t until = { .tv64 = KTIME_MAX };
1199  	long ret = 0;
1200  
1201  	if (timeout) {
1202  		struct timespec	ts;
1203  
1204  		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1205  			return -EFAULT;
1206  
1207  		until = timespec_to_ktime(ts);
1208  	}
1209  
1210  	/*
1211  	 * Note that aio_read_events() is being called as the conditional - i.e.
1212  	 * we're calling it after prepare_to_wait() has set task state to
1213  	 * TASK_INTERRUPTIBLE.
1214  	 *
1215  	 * But aio_read_events() can block, and if it blocks it's going to flip
1216  	 * the task state back to TASK_RUNNING.
1217  	 *
1218  	 * This should be ok, provided it doesn't flip the state back to
1219  	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1220  	 * will only happen if the mutex_lock() call blocks, and we then find
1221  	 * the ringbuffer empty. So in practice we should be ok, but it's
1222  	 * something to be aware of when touching this code.
1223  	 */
1224  	wait_event_interruptible_hrtimeout(ctx->wait,
1225  			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1226  
1227  	if (!ret && signal_pending(current))
1228  		ret = -EINTR;
1229  
1230  	return ret;
1231  }
1232  
1233  /* sys_io_setup:
1234   *	Create an aio_context capable of receiving at least nr_events.
1235   *	ctxp must not point to an aio_context that already exists, and
1236   *	must be initialized to 0 prior to the call.  On successful
1237   *	creation of the aio_context, *ctxp is filled in with the resulting
1238   *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1239   *	if the specified nr_events exceeds internal limits.  May fail
1240   *	with -EAGAIN if the specified nr_events exceeds the user's limit
1241   *	of available events.  May fail with -ENOMEM if insufficient kernel
1242   *	resources are available.  May fail with -EFAULT if an invalid
1243   *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1244   *	implemented.
1245   */
1246  SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1247  {
1248  	struct kioctx *ioctx = NULL;
1249  	unsigned long ctx;
1250  	long ret;
1251  
1252  	ret = get_user(ctx, ctxp);
1253  	if (unlikely(ret))
1254  		goto out;
1255  
1256  	ret = -EINVAL;
1257  	if (unlikely(ctx || nr_events == 0)) {
1258  		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1259  		         ctx, nr_events);
1260  		goto out;
1261  	}
1262  
1263  	ioctx = ioctx_alloc(nr_events);
1264  	ret = PTR_ERR(ioctx);
1265  	if (!IS_ERR(ioctx)) {
1266  		ret = put_user(ioctx->user_id, ctxp);
1267  		if (ret)
1268  			kill_ioctx(current->mm, ioctx, NULL);
1269  		percpu_ref_put(&ioctx->users);
1270  	}
1271  
1272  out:
1273  	return ret;
1274  }
1275  
1276  /* sys_io_destroy:
1277   *	Destroy the aio_context specified.  May cancel any outstanding
1278   *	AIOs and block on completion.  Will fail with -ENOSYS if not
1279   *	implemented.  May fail with -EINVAL if the context pointed to
1280   *	is invalid.
1281   */
1282  SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1283  {
1284  	struct kioctx *ioctx = lookup_ioctx(ctx);
1285  	if (likely(NULL != ioctx)) {
1286  		struct completion requests_done =
1287  			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1288  		int ret;
1289  
1290  		/* Pass requests_done to kill_ioctx() where it can be set
1291  		 * in a thread-safe way. If we try to set it here then we have
1292  		 * a race condition if two io_destroy() called simultaneously.
1293  		 */
1294  		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1295  		percpu_ref_put(&ioctx->users);
1296  
1297  		/* Wait until all IO for the context are done. Otherwise kernel
1298  		 * keep using user-space buffers even if user thinks the context
1299  		 * is destroyed.
1300  		 */
1301  		if (!ret)
1302  			wait_for_completion(&requests_done);
1303  
1304  		return ret;
1305  	}
1306  	pr_debug("EINVAL: io_destroy: invalid context id\n");
1307  	return -EINVAL;
1308  }
1309  
1310  typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1311  			    unsigned long, loff_t);
1312  typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1313  
1314  static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1315  				     int rw, char __user *buf,
1316  				     unsigned long *nr_segs,
1317  				     struct iovec **iovec,
1318  				     bool compat)
1319  {
1320  	ssize_t ret;
1321  
1322  	*nr_segs = kiocb->ki_nbytes;
1323  
1324  #ifdef CONFIG_COMPAT
1325  	if (compat)
1326  		ret = compat_rw_copy_check_uvector(rw,
1327  				(struct compat_iovec __user *)buf,
1328  				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1329  	else
1330  #endif
1331  		ret = rw_copy_check_uvector(rw,
1332  				(struct iovec __user *)buf,
1333  				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1334  	if (ret < 0)
1335  		return ret;
1336  
1337  	/* ki_nbytes now reflect bytes instead of segs */
1338  	kiocb->ki_nbytes = ret;
1339  	return 0;
1340  }
1341  
1342  static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1343  				       int rw, char __user *buf,
1344  				       unsigned long *nr_segs,
1345  				       struct iovec *iovec)
1346  {
1347  	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1348  		return -EFAULT;
1349  
1350  	iovec->iov_base = buf;
1351  	iovec->iov_len = kiocb->ki_nbytes;
1352  	*nr_segs = 1;
1353  	return 0;
1354  }
1355  
1356  /*
1357   * aio_run_iocb:
1358   *	Performs the initial checks and io submission.
1359   */
1360  static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1361  			    char __user *buf, bool compat)
1362  {
1363  	struct file *file = req->ki_filp;
1364  	ssize_t ret;
1365  	unsigned long nr_segs;
1366  	int rw;
1367  	fmode_t mode;
1368  	aio_rw_op *rw_op;
1369  	rw_iter_op *iter_op;
1370  	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1371  	struct iov_iter iter;
1372  
1373  	switch (opcode) {
1374  	case IOCB_CMD_PREAD:
1375  	case IOCB_CMD_PREADV:
1376  		mode	= FMODE_READ;
1377  		rw	= READ;
1378  		rw_op	= file->f_op->aio_read;
1379  		iter_op	= file->f_op->read_iter;
1380  		goto rw_common;
1381  
1382  	case IOCB_CMD_PWRITE:
1383  	case IOCB_CMD_PWRITEV:
1384  		mode	= FMODE_WRITE;
1385  		rw	= WRITE;
1386  		rw_op	= file->f_op->aio_write;
1387  		iter_op	= file->f_op->write_iter;
1388  		goto rw_common;
1389  rw_common:
1390  		if (unlikely(!(file->f_mode & mode)))
1391  			return -EBADF;
1392  
1393  		if (!rw_op && !iter_op)
1394  			return -EINVAL;
1395  
1396  		ret = (opcode == IOCB_CMD_PREADV ||
1397  		       opcode == IOCB_CMD_PWRITEV)
1398  			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1399  						&iovec, compat)
1400  			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1401  						  iovec);
1402  		if (!ret)
1403  			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1404  		if (ret < 0) {
1405  			if (iovec != inline_vecs)
1406  				kfree(iovec);
1407  			return ret;
1408  		}
1409  
1410  		req->ki_nbytes = ret;
1411  
1412  		/* XXX: move/kill - rw_verify_area()? */
1413  		/* This matches the pread()/pwrite() logic */
1414  		if (req->ki_pos < 0) {
1415  			ret = -EINVAL;
1416  			break;
1417  		}
1418  
1419  		if (rw == WRITE)
1420  			file_start_write(file);
1421  
1422  		if (iter_op) {
1423  			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1424  			ret = iter_op(req, &iter);
1425  		} else {
1426  			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1427  		}
1428  
1429  		if (rw == WRITE)
1430  			file_end_write(file);
1431  		break;
1432  
1433  	case IOCB_CMD_FDSYNC:
1434  		if (!file->f_op->aio_fsync)
1435  			return -EINVAL;
1436  
1437  		ret = file->f_op->aio_fsync(req, 1);
1438  		break;
1439  
1440  	case IOCB_CMD_FSYNC:
1441  		if (!file->f_op->aio_fsync)
1442  			return -EINVAL;
1443  
1444  		ret = file->f_op->aio_fsync(req, 0);
1445  		break;
1446  
1447  	default:
1448  		pr_debug("EINVAL: no operation provided\n");
1449  		return -EINVAL;
1450  	}
1451  
1452  	if (iovec != inline_vecs)
1453  		kfree(iovec);
1454  
1455  	if (ret != -EIOCBQUEUED) {
1456  		/*
1457  		 * There's no easy way to restart the syscall since other AIO's
1458  		 * may be already running. Just fail this IO with EINTR.
1459  		 */
1460  		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1461  			     ret == -ERESTARTNOHAND ||
1462  			     ret == -ERESTART_RESTARTBLOCK))
1463  			ret = -EINTR;
1464  		aio_complete(req, ret, 0);
1465  	}
1466  
1467  	return 0;
1468  }
1469  
1470  static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1471  			 struct iocb *iocb, bool compat)
1472  {
1473  	struct kiocb *req;
1474  	ssize_t ret;
1475  
1476  	/* enforce forwards compatibility on users */
1477  	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1478  		pr_debug("EINVAL: reserve field set\n");
1479  		return -EINVAL;
1480  	}
1481  
1482  	/* prevent overflows */
1483  	if (unlikely(
1484  	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1485  	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1486  	    ((ssize_t)iocb->aio_nbytes < 0)
1487  	   )) {
1488  		pr_debug("EINVAL: io_submit: overflow check\n");
1489  		return -EINVAL;
1490  	}
1491  
1492  	req = aio_get_req(ctx);
1493  	if (unlikely(!req))
1494  		return -EAGAIN;
1495  
1496  	req->ki_filp = fget(iocb->aio_fildes);
1497  	if (unlikely(!req->ki_filp)) {
1498  		ret = -EBADF;
1499  		goto out_put_req;
1500  	}
1501  
1502  	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1503  		/*
1504  		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1505  		 * instance of the file* now. The file descriptor must be
1506  		 * an eventfd() fd, and will be signaled for each completed
1507  		 * event using the eventfd_signal() function.
1508  		 */
1509  		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1510  		if (IS_ERR(req->ki_eventfd)) {
1511  			ret = PTR_ERR(req->ki_eventfd);
1512  			req->ki_eventfd = NULL;
1513  			goto out_put_req;
1514  		}
1515  	}
1516  
1517  	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1518  	if (unlikely(ret)) {
1519  		pr_debug("EFAULT: aio_key\n");
1520  		goto out_put_req;
1521  	}
1522  
1523  	req->ki_obj.user = user_iocb;
1524  	req->ki_user_data = iocb->aio_data;
1525  	req->ki_pos = iocb->aio_offset;
1526  	req->ki_nbytes = iocb->aio_nbytes;
1527  
1528  	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1529  			   (char __user *)(unsigned long)iocb->aio_buf,
1530  			   compat);
1531  	if (ret)
1532  		goto out_put_req;
1533  
1534  	return 0;
1535  out_put_req:
1536  	put_reqs_available(ctx, 1);
1537  	percpu_ref_put(&ctx->reqs);
1538  	kiocb_free(req);
1539  	return ret;
1540  }
1541  
1542  long do_io_submit(aio_context_t ctx_id, long nr,
1543  		  struct iocb __user *__user *iocbpp, bool compat)
1544  {
1545  	struct kioctx *ctx;
1546  	long ret = 0;
1547  	int i = 0;
1548  	struct blk_plug plug;
1549  
1550  	if (unlikely(nr < 0))
1551  		return -EINVAL;
1552  
1553  	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1554  		nr = LONG_MAX/sizeof(*iocbpp);
1555  
1556  	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1557  		return -EFAULT;
1558  
1559  	ctx = lookup_ioctx(ctx_id);
1560  	if (unlikely(!ctx)) {
1561  		pr_debug("EINVAL: invalid context id\n");
1562  		return -EINVAL;
1563  	}
1564  
1565  	blk_start_plug(&plug);
1566  
1567  	/*
1568  	 * AKPM: should this return a partial result if some of the IOs were
1569  	 * successfully submitted?
1570  	 */
1571  	for (i=0; i<nr; i++) {
1572  		struct iocb __user *user_iocb;
1573  		struct iocb tmp;
1574  
1575  		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1576  			ret = -EFAULT;
1577  			break;
1578  		}
1579  
1580  		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1581  			ret = -EFAULT;
1582  			break;
1583  		}
1584  
1585  		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1586  		if (ret)
1587  			break;
1588  	}
1589  	blk_finish_plug(&plug);
1590  
1591  	percpu_ref_put(&ctx->users);
1592  	return i ? i : ret;
1593  }
1594  
1595  /* sys_io_submit:
1596   *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1597   *	the number of iocbs queued.  May return -EINVAL if the aio_context
1598   *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1599   *	*iocbpp[0] is not properly initialized, if the operation specified
1600   *	is invalid for the file descriptor in the iocb.  May fail with
1601   *	-EFAULT if any of the data structures point to invalid data.  May
1602   *	fail with -EBADF if the file descriptor specified in the first
1603   *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1604   *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1605   *	fail with -ENOSYS if not implemented.
1606   */
1607  SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1608  		struct iocb __user * __user *, iocbpp)
1609  {
1610  	return do_io_submit(ctx_id, nr, iocbpp, 0);
1611  }
1612  
1613  /* lookup_kiocb
1614   *	Finds a given iocb for cancellation.
1615   */
1616  static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1617  				  u32 key)
1618  {
1619  	struct list_head *pos;
1620  
1621  	assert_spin_locked(&ctx->ctx_lock);
1622  
1623  	if (key != KIOCB_KEY)
1624  		return NULL;
1625  
1626  	/* TODO: use a hash or array, this sucks. */
1627  	list_for_each(pos, &ctx->active_reqs) {
1628  		struct kiocb *kiocb = list_kiocb(pos);
1629  		if (kiocb->ki_obj.user == iocb)
1630  			return kiocb;
1631  	}
1632  	return NULL;
1633  }
1634  
1635  /* sys_io_cancel:
1636   *	Attempts to cancel an iocb previously passed to io_submit.  If
1637   *	the operation is successfully cancelled, the resulting event is
1638   *	copied into the memory pointed to by result without being placed
1639   *	into the completion queue and 0 is returned.  May fail with
1640   *	-EFAULT if any of the data structures pointed to are invalid.
1641   *	May fail with -EINVAL if aio_context specified by ctx_id is
1642   *	invalid.  May fail with -EAGAIN if the iocb specified was not
1643   *	cancelled.  Will fail with -ENOSYS if not implemented.
1644   */
1645  SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1646  		struct io_event __user *, result)
1647  {
1648  	struct kioctx *ctx;
1649  	struct kiocb *kiocb;
1650  	u32 key;
1651  	int ret;
1652  
1653  	ret = get_user(key, &iocb->aio_key);
1654  	if (unlikely(ret))
1655  		return -EFAULT;
1656  
1657  	ctx = lookup_ioctx(ctx_id);
1658  	if (unlikely(!ctx))
1659  		return -EINVAL;
1660  
1661  	spin_lock_irq(&ctx->ctx_lock);
1662  
1663  	kiocb = lookup_kiocb(ctx, iocb, key);
1664  	if (kiocb)
1665  		ret = kiocb_cancel(kiocb);
1666  	else
1667  		ret = -EINVAL;
1668  
1669  	spin_unlock_irq(&ctx->ctx_lock);
1670  
1671  	if (!ret) {
1672  		/*
1673  		 * The result argument is no longer used - the io_event is
1674  		 * always delivered via the ring buffer. -EINPROGRESS indicates
1675  		 * cancellation is progress:
1676  		 */
1677  		ret = -EINPROGRESS;
1678  	}
1679  
1680  	percpu_ref_put(&ctx->users);
1681  
1682  	return ret;
1683  }
1684  
1685  /* io_getevents:
1686   *	Attempts to read at least min_nr events and up to nr events from
1687   *	the completion queue for the aio_context specified by ctx_id. If
1688   *	it succeeds, the number of read events is returned. May fail with
1689   *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1690   *	out of range, if timeout is out of range.  May fail with -EFAULT
1691   *	if any of the memory specified is invalid.  May return 0 or
1692   *	< min_nr if the timeout specified by timeout has elapsed
1693   *	before sufficient events are available, where timeout == NULL
1694   *	specifies an infinite timeout. Note that the timeout pointed to by
1695   *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1696   */
1697  SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1698  		long, min_nr,
1699  		long, nr,
1700  		struct io_event __user *, events,
1701  		struct timespec __user *, timeout)
1702  {
1703  	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1704  	long ret = -EINVAL;
1705  
1706  	if (likely(ioctx)) {
1707  		if (likely(min_nr <= nr && min_nr >= 0))
1708  			ret = read_events(ioctx, min_nr, nr, events, timeout);
1709  		percpu_ref_put(&ioctx->users);
1710  	}
1711  	return ret;
1712  }
1713