1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 /* 116 * signals when all in-flight requests are done 117 */ 118 struct completion *requests_done; 119 120 struct { 121 /* 122 * This counts the number of available slots in the ringbuffer, 123 * so we avoid overflowing it: it's decremented (if positive) 124 * when allocating a kiocb and incremented when the resulting 125 * io_event is pulled off the ringbuffer. 126 * 127 * We batch accesses to it with a percpu version. 128 */ 129 atomic_t reqs_available; 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 spinlock_t ctx_lock; 134 struct list_head active_reqs; /* used for cancellation */ 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 struct mutex ring_lock; 139 wait_queue_head_t wait; 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 unsigned tail; 144 unsigned completed_events; 145 spinlock_t completion_lock; 146 } ____cacheline_aligned_in_smp; 147 148 struct page *internal_pages[AIO_RING_PAGES]; 149 struct file *aio_ring_file; 150 151 unsigned id; 152 }; 153 154 /*------ sysctl variables----*/ 155 static DEFINE_SPINLOCK(aio_nr_lock); 156 unsigned long aio_nr; /* current system wide number of aio requests */ 157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 158 /*----end sysctl variables---*/ 159 160 static struct kmem_cache *kiocb_cachep; 161 static struct kmem_cache *kioctx_cachep; 162 163 static struct vfsmount *aio_mnt; 164 165 static const struct file_operations aio_ring_fops; 166 static const struct address_space_operations aio_ctx_aops; 167 168 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 169 { 170 struct qstr this = QSTR_INIT("[aio]", 5); 171 struct file *file; 172 struct path path; 173 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 174 if (IS_ERR(inode)) 175 return ERR_CAST(inode); 176 177 inode->i_mapping->a_ops = &aio_ctx_aops; 178 inode->i_mapping->private_data = ctx; 179 inode->i_size = PAGE_SIZE * nr_pages; 180 181 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 182 if (!path.dentry) { 183 iput(inode); 184 return ERR_PTR(-ENOMEM); 185 } 186 path.mnt = mntget(aio_mnt); 187 188 d_instantiate(path.dentry, inode); 189 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 190 if (IS_ERR(file)) { 191 path_put(&path); 192 return file; 193 } 194 195 file->f_flags = O_RDWR; 196 return file; 197 } 198 199 static struct dentry *aio_mount(struct file_system_type *fs_type, 200 int flags, const char *dev_name, void *data) 201 { 202 static const struct dentry_operations ops = { 203 .d_dname = simple_dname, 204 }; 205 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); 206 } 207 208 /* aio_setup 209 * Creates the slab caches used by the aio routines, panic on 210 * failure as this is done early during the boot sequence. 211 */ 212 static int __init aio_setup(void) 213 { 214 static struct file_system_type aio_fs = { 215 .name = "aio", 216 .mount = aio_mount, 217 .kill_sb = kill_anon_super, 218 }; 219 aio_mnt = kern_mount(&aio_fs); 220 if (IS_ERR(aio_mnt)) 221 panic("Failed to create aio fs mount."); 222 223 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 224 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 225 226 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 227 228 return 0; 229 } 230 __initcall(aio_setup); 231 232 static void put_aio_ring_file(struct kioctx *ctx) 233 { 234 struct file *aio_ring_file = ctx->aio_ring_file; 235 if (aio_ring_file) { 236 truncate_setsize(aio_ring_file->f_inode, 0); 237 238 /* Prevent further access to the kioctx from migratepages */ 239 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 240 aio_ring_file->f_inode->i_mapping->private_data = NULL; 241 ctx->aio_ring_file = NULL; 242 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 243 244 fput(aio_ring_file); 245 } 246 } 247 248 static void aio_free_ring(struct kioctx *ctx) 249 { 250 int i; 251 252 /* Disconnect the kiotx from the ring file. This prevents future 253 * accesses to the kioctx from page migration. 254 */ 255 put_aio_ring_file(ctx); 256 257 for (i = 0; i < ctx->nr_pages; i++) { 258 struct page *page; 259 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 260 page_count(ctx->ring_pages[i])); 261 page = ctx->ring_pages[i]; 262 if (!page) 263 continue; 264 ctx->ring_pages[i] = NULL; 265 put_page(page); 266 } 267 268 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 269 kfree(ctx->ring_pages); 270 ctx->ring_pages = NULL; 271 } 272 } 273 274 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 275 { 276 vma->vm_ops = &generic_file_vm_ops; 277 return 0; 278 } 279 280 static const struct file_operations aio_ring_fops = { 281 .mmap = aio_ring_mmap, 282 }; 283 284 static int aio_set_page_dirty(struct page *page) 285 { 286 return 0; 287 } 288 289 #if IS_ENABLED(CONFIG_MIGRATION) 290 static int aio_migratepage(struct address_space *mapping, struct page *new, 291 struct page *old, enum migrate_mode mode) 292 { 293 struct kioctx *ctx; 294 unsigned long flags; 295 pgoff_t idx; 296 int rc; 297 298 rc = 0; 299 300 /* mapping->private_lock here protects against the kioctx teardown. */ 301 spin_lock(&mapping->private_lock); 302 ctx = mapping->private_data; 303 if (!ctx) { 304 rc = -EINVAL; 305 goto out; 306 } 307 308 /* The ring_lock mutex. The prevents aio_read_events() from writing 309 * to the ring's head, and prevents page migration from mucking in 310 * a partially initialized kiotx. 311 */ 312 if (!mutex_trylock(&ctx->ring_lock)) { 313 rc = -EAGAIN; 314 goto out; 315 } 316 317 idx = old->index; 318 if (idx < (pgoff_t)ctx->nr_pages) { 319 /* Make sure the old page hasn't already been changed */ 320 if (ctx->ring_pages[idx] != old) 321 rc = -EAGAIN; 322 } else 323 rc = -EINVAL; 324 325 if (rc != 0) 326 goto out_unlock; 327 328 /* Writeback must be complete */ 329 BUG_ON(PageWriteback(old)); 330 get_page(new); 331 332 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 333 if (rc != MIGRATEPAGE_SUCCESS) { 334 put_page(new); 335 goto out_unlock; 336 } 337 338 /* Take completion_lock to prevent other writes to the ring buffer 339 * while the old page is copied to the new. This prevents new 340 * events from being lost. 341 */ 342 spin_lock_irqsave(&ctx->completion_lock, flags); 343 migrate_page_copy(new, old); 344 BUG_ON(ctx->ring_pages[idx] != old); 345 ctx->ring_pages[idx] = new; 346 spin_unlock_irqrestore(&ctx->completion_lock, flags); 347 348 /* The old page is no longer accessible. */ 349 put_page(old); 350 351 out_unlock: 352 mutex_unlock(&ctx->ring_lock); 353 out: 354 spin_unlock(&mapping->private_lock); 355 return rc; 356 } 357 #endif 358 359 static const struct address_space_operations aio_ctx_aops = { 360 .set_page_dirty = aio_set_page_dirty, 361 #if IS_ENABLED(CONFIG_MIGRATION) 362 .migratepage = aio_migratepage, 363 #endif 364 }; 365 366 static int aio_setup_ring(struct kioctx *ctx) 367 { 368 struct aio_ring *ring; 369 unsigned nr_events = ctx->max_reqs; 370 struct mm_struct *mm = current->mm; 371 unsigned long size, unused; 372 int nr_pages; 373 int i; 374 struct file *file; 375 376 /* Compensate for the ring buffer's head/tail overlap entry */ 377 nr_events += 2; /* 1 is required, 2 for good luck */ 378 379 size = sizeof(struct aio_ring); 380 size += sizeof(struct io_event) * nr_events; 381 382 nr_pages = PFN_UP(size); 383 if (nr_pages < 0) 384 return -EINVAL; 385 386 file = aio_private_file(ctx, nr_pages); 387 if (IS_ERR(file)) { 388 ctx->aio_ring_file = NULL; 389 return -ENOMEM; 390 } 391 392 ctx->aio_ring_file = file; 393 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 394 / sizeof(struct io_event); 395 396 ctx->ring_pages = ctx->internal_pages; 397 if (nr_pages > AIO_RING_PAGES) { 398 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 399 GFP_KERNEL); 400 if (!ctx->ring_pages) { 401 put_aio_ring_file(ctx); 402 return -ENOMEM; 403 } 404 } 405 406 for (i = 0; i < nr_pages; i++) { 407 struct page *page; 408 page = find_or_create_page(file->f_inode->i_mapping, 409 i, GFP_HIGHUSER | __GFP_ZERO); 410 if (!page) 411 break; 412 pr_debug("pid(%d) page[%d]->count=%d\n", 413 current->pid, i, page_count(page)); 414 SetPageUptodate(page); 415 SetPageDirty(page); 416 unlock_page(page); 417 418 ctx->ring_pages[i] = page; 419 } 420 ctx->nr_pages = i; 421 422 if (unlikely(i != nr_pages)) { 423 aio_free_ring(ctx); 424 return -ENOMEM; 425 } 426 427 ctx->mmap_size = nr_pages * PAGE_SIZE; 428 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 429 430 down_write(&mm->mmap_sem); 431 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 432 PROT_READ | PROT_WRITE, 433 MAP_SHARED, 0, &unused); 434 up_write(&mm->mmap_sem); 435 if (IS_ERR((void *)ctx->mmap_base)) { 436 ctx->mmap_size = 0; 437 aio_free_ring(ctx); 438 return -ENOMEM; 439 } 440 441 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 442 443 ctx->user_id = ctx->mmap_base; 444 ctx->nr_events = nr_events; /* trusted copy */ 445 446 ring = kmap_atomic(ctx->ring_pages[0]); 447 ring->nr = nr_events; /* user copy */ 448 ring->id = ~0U; 449 ring->head = ring->tail = 0; 450 ring->magic = AIO_RING_MAGIC; 451 ring->compat_features = AIO_RING_COMPAT_FEATURES; 452 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 453 ring->header_length = sizeof(struct aio_ring); 454 kunmap_atomic(ring); 455 flush_dcache_page(ctx->ring_pages[0]); 456 457 return 0; 458 } 459 460 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 461 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 462 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 463 464 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 465 { 466 struct kioctx *ctx = req->ki_ctx; 467 unsigned long flags; 468 469 spin_lock_irqsave(&ctx->ctx_lock, flags); 470 471 if (!req->ki_list.next) 472 list_add(&req->ki_list, &ctx->active_reqs); 473 474 req->ki_cancel = cancel; 475 476 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 477 } 478 EXPORT_SYMBOL(kiocb_set_cancel_fn); 479 480 static int kiocb_cancel(struct kiocb *kiocb) 481 { 482 kiocb_cancel_fn *old, *cancel; 483 484 /* 485 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 486 * actually has a cancel function, hence the cmpxchg() 487 */ 488 489 cancel = ACCESS_ONCE(kiocb->ki_cancel); 490 do { 491 if (!cancel || cancel == KIOCB_CANCELLED) 492 return -EINVAL; 493 494 old = cancel; 495 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 496 } while (cancel != old); 497 498 return cancel(kiocb); 499 } 500 501 static void free_ioctx(struct work_struct *work) 502 { 503 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 504 505 pr_debug("freeing %p\n", ctx); 506 507 aio_free_ring(ctx); 508 free_percpu(ctx->cpu); 509 percpu_ref_exit(&ctx->reqs); 510 percpu_ref_exit(&ctx->users); 511 kmem_cache_free(kioctx_cachep, ctx); 512 } 513 514 static void free_ioctx_reqs(struct percpu_ref *ref) 515 { 516 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 517 518 /* At this point we know that there are no any in-flight requests */ 519 if (ctx->requests_done) 520 complete(ctx->requests_done); 521 522 INIT_WORK(&ctx->free_work, free_ioctx); 523 schedule_work(&ctx->free_work); 524 } 525 526 /* 527 * When this function runs, the kioctx has been removed from the "hash table" 528 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 529 * now it's safe to cancel any that need to be. 530 */ 531 static void free_ioctx_users(struct percpu_ref *ref) 532 { 533 struct kioctx *ctx = container_of(ref, struct kioctx, users); 534 struct kiocb *req; 535 536 spin_lock_irq(&ctx->ctx_lock); 537 538 while (!list_empty(&ctx->active_reqs)) { 539 req = list_first_entry(&ctx->active_reqs, 540 struct kiocb, ki_list); 541 542 list_del_init(&req->ki_list); 543 kiocb_cancel(req); 544 } 545 546 spin_unlock_irq(&ctx->ctx_lock); 547 548 percpu_ref_kill(&ctx->reqs); 549 percpu_ref_put(&ctx->reqs); 550 } 551 552 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 553 { 554 unsigned i, new_nr; 555 struct kioctx_table *table, *old; 556 struct aio_ring *ring; 557 558 spin_lock(&mm->ioctx_lock); 559 table = rcu_dereference_raw(mm->ioctx_table); 560 561 while (1) { 562 if (table) 563 for (i = 0; i < table->nr; i++) 564 if (!table->table[i]) { 565 ctx->id = i; 566 table->table[i] = ctx; 567 spin_unlock(&mm->ioctx_lock); 568 569 /* While kioctx setup is in progress, 570 * we are protected from page migration 571 * changes ring_pages by ->ring_lock. 572 */ 573 ring = kmap_atomic(ctx->ring_pages[0]); 574 ring->id = ctx->id; 575 kunmap_atomic(ring); 576 return 0; 577 } 578 579 new_nr = (table ? table->nr : 1) * 4; 580 spin_unlock(&mm->ioctx_lock); 581 582 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 583 new_nr, GFP_KERNEL); 584 if (!table) 585 return -ENOMEM; 586 587 table->nr = new_nr; 588 589 spin_lock(&mm->ioctx_lock); 590 old = rcu_dereference_raw(mm->ioctx_table); 591 592 if (!old) { 593 rcu_assign_pointer(mm->ioctx_table, table); 594 } else if (table->nr > old->nr) { 595 memcpy(table->table, old->table, 596 old->nr * sizeof(struct kioctx *)); 597 598 rcu_assign_pointer(mm->ioctx_table, table); 599 kfree_rcu(old, rcu); 600 } else { 601 kfree(table); 602 table = old; 603 } 604 } 605 } 606 607 static void aio_nr_sub(unsigned nr) 608 { 609 spin_lock(&aio_nr_lock); 610 if (WARN_ON(aio_nr - nr > aio_nr)) 611 aio_nr = 0; 612 else 613 aio_nr -= nr; 614 spin_unlock(&aio_nr_lock); 615 } 616 617 /* ioctx_alloc 618 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 619 */ 620 static struct kioctx *ioctx_alloc(unsigned nr_events) 621 { 622 struct mm_struct *mm = current->mm; 623 struct kioctx *ctx; 624 int err = -ENOMEM; 625 626 /* 627 * We keep track of the number of available ringbuffer slots, to prevent 628 * overflow (reqs_available), and we also use percpu counters for this. 629 * 630 * So since up to half the slots might be on other cpu's percpu counters 631 * and unavailable, double nr_events so userspace sees what they 632 * expected: additionally, we move req_batch slots to/from percpu 633 * counters at a time, so make sure that isn't 0: 634 */ 635 nr_events = max(nr_events, num_possible_cpus() * 4); 636 nr_events *= 2; 637 638 /* Prevent overflows */ 639 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 640 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 641 pr_debug("ENOMEM: nr_events too high\n"); 642 return ERR_PTR(-EINVAL); 643 } 644 645 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 646 return ERR_PTR(-EAGAIN); 647 648 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 649 if (!ctx) 650 return ERR_PTR(-ENOMEM); 651 652 ctx->max_reqs = nr_events; 653 654 spin_lock_init(&ctx->ctx_lock); 655 spin_lock_init(&ctx->completion_lock); 656 mutex_init(&ctx->ring_lock); 657 /* Protect against page migration throughout kiotx setup by keeping 658 * the ring_lock mutex held until setup is complete. */ 659 mutex_lock(&ctx->ring_lock); 660 init_waitqueue_head(&ctx->wait); 661 662 INIT_LIST_HEAD(&ctx->active_reqs); 663 664 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 665 goto err; 666 667 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 668 goto err; 669 670 ctx->cpu = alloc_percpu(struct kioctx_cpu); 671 if (!ctx->cpu) 672 goto err; 673 674 err = aio_setup_ring(ctx); 675 if (err < 0) 676 goto err; 677 678 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 679 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 680 if (ctx->req_batch < 1) 681 ctx->req_batch = 1; 682 683 /* limit the number of system wide aios */ 684 spin_lock(&aio_nr_lock); 685 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 686 aio_nr + nr_events < aio_nr) { 687 spin_unlock(&aio_nr_lock); 688 err = -EAGAIN; 689 goto err_ctx; 690 } 691 aio_nr += ctx->max_reqs; 692 spin_unlock(&aio_nr_lock); 693 694 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 695 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 696 697 err = ioctx_add_table(ctx, mm); 698 if (err) 699 goto err_cleanup; 700 701 /* Release the ring_lock mutex now that all setup is complete. */ 702 mutex_unlock(&ctx->ring_lock); 703 704 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 705 ctx, ctx->user_id, mm, ctx->nr_events); 706 return ctx; 707 708 err_cleanup: 709 aio_nr_sub(ctx->max_reqs); 710 err_ctx: 711 aio_free_ring(ctx); 712 err: 713 mutex_unlock(&ctx->ring_lock); 714 free_percpu(ctx->cpu); 715 percpu_ref_exit(&ctx->reqs); 716 percpu_ref_exit(&ctx->users); 717 kmem_cache_free(kioctx_cachep, ctx); 718 pr_debug("error allocating ioctx %d\n", err); 719 return ERR_PTR(err); 720 } 721 722 /* kill_ioctx 723 * Cancels all outstanding aio requests on an aio context. Used 724 * when the processes owning a context have all exited to encourage 725 * the rapid destruction of the kioctx. 726 */ 727 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 728 struct completion *requests_done) 729 { 730 struct kioctx_table *table; 731 732 if (atomic_xchg(&ctx->dead, 1)) 733 return -EINVAL; 734 735 736 spin_lock(&mm->ioctx_lock); 737 table = rcu_dereference_raw(mm->ioctx_table); 738 WARN_ON(ctx != table->table[ctx->id]); 739 table->table[ctx->id] = NULL; 740 spin_unlock(&mm->ioctx_lock); 741 742 /* percpu_ref_kill() will do the necessary call_rcu() */ 743 wake_up_all(&ctx->wait); 744 745 /* 746 * It'd be more correct to do this in free_ioctx(), after all 747 * the outstanding kiocbs have finished - but by then io_destroy 748 * has already returned, so io_setup() could potentially return 749 * -EAGAIN with no ioctxs actually in use (as far as userspace 750 * could tell). 751 */ 752 aio_nr_sub(ctx->max_reqs); 753 754 if (ctx->mmap_size) 755 vm_munmap(ctx->mmap_base, ctx->mmap_size); 756 757 ctx->requests_done = requests_done; 758 percpu_ref_kill(&ctx->users); 759 return 0; 760 } 761 762 /* wait_on_sync_kiocb: 763 * Waits on the given sync kiocb to complete. 764 */ 765 ssize_t wait_on_sync_kiocb(struct kiocb *req) 766 { 767 while (!req->ki_ctx) { 768 set_current_state(TASK_UNINTERRUPTIBLE); 769 if (req->ki_ctx) 770 break; 771 io_schedule(); 772 } 773 __set_current_state(TASK_RUNNING); 774 return req->ki_user_data; 775 } 776 EXPORT_SYMBOL(wait_on_sync_kiocb); 777 778 /* 779 * exit_aio: called when the last user of mm goes away. At this point, there is 780 * no way for any new requests to be submited or any of the io_* syscalls to be 781 * called on the context. 782 * 783 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 784 * them. 785 */ 786 void exit_aio(struct mm_struct *mm) 787 { 788 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 789 int i; 790 791 if (!table) 792 return; 793 794 for (i = 0; i < table->nr; ++i) { 795 struct kioctx *ctx = table->table[i]; 796 struct completion requests_done = 797 COMPLETION_INITIALIZER_ONSTACK(requests_done); 798 799 if (!ctx) 800 continue; 801 /* 802 * We don't need to bother with munmap() here - exit_mmap(mm) 803 * is coming and it'll unmap everything. And we simply can't, 804 * this is not necessarily our ->mm. 805 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 806 * that it needs to unmap the area, just set it to 0. 807 */ 808 ctx->mmap_size = 0; 809 kill_ioctx(mm, ctx, &requests_done); 810 811 /* Wait until all IO for the context are done. */ 812 wait_for_completion(&requests_done); 813 } 814 815 RCU_INIT_POINTER(mm->ioctx_table, NULL); 816 kfree(table); 817 } 818 819 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 820 { 821 struct kioctx_cpu *kcpu; 822 unsigned long flags; 823 824 local_irq_save(flags); 825 kcpu = this_cpu_ptr(ctx->cpu); 826 kcpu->reqs_available += nr; 827 828 while (kcpu->reqs_available >= ctx->req_batch * 2) { 829 kcpu->reqs_available -= ctx->req_batch; 830 atomic_add(ctx->req_batch, &ctx->reqs_available); 831 } 832 833 local_irq_restore(flags); 834 } 835 836 static bool get_reqs_available(struct kioctx *ctx) 837 { 838 struct kioctx_cpu *kcpu; 839 bool ret = false; 840 unsigned long flags; 841 842 local_irq_save(flags); 843 kcpu = this_cpu_ptr(ctx->cpu); 844 if (!kcpu->reqs_available) { 845 int old, avail = atomic_read(&ctx->reqs_available); 846 847 do { 848 if (avail < ctx->req_batch) 849 goto out; 850 851 old = avail; 852 avail = atomic_cmpxchg(&ctx->reqs_available, 853 avail, avail - ctx->req_batch); 854 } while (avail != old); 855 856 kcpu->reqs_available += ctx->req_batch; 857 } 858 859 ret = true; 860 kcpu->reqs_available--; 861 out: 862 local_irq_restore(flags); 863 return ret; 864 } 865 866 /* refill_reqs_available 867 * Updates the reqs_available reference counts used for tracking the 868 * number of free slots in the completion ring. This can be called 869 * from aio_complete() (to optimistically update reqs_available) or 870 * from aio_get_req() (the we're out of events case). It must be 871 * called holding ctx->completion_lock. 872 */ 873 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 874 unsigned tail) 875 { 876 unsigned events_in_ring, completed; 877 878 /* Clamp head since userland can write to it. */ 879 head %= ctx->nr_events; 880 if (head <= tail) 881 events_in_ring = tail - head; 882 else 883 events_in_ring = ctx->nr_events - (head - tail); 884 885 completed = ctx->completed_events; 886 if (events_in_ring < completed) 887 completed -= events_in_ring; 888 else 889 completed = 0; 890 891 if (!completed) 892 return; 893 894 ctx->completed_events -= completed; 895 put_reqs_available(ctx, completed); 896 } 897 898 /* user_refill_reqs_available 899 * Called to refill reqs_available when aio_get_req() encounters an 900 * out of space in the completion ring. 901 */ 902 static void user_refill_reqs_available(struct kioctx *ctx) 903 { 904 spin_lock_irq(&ctx->completion_lock); 905 if (ctx->completed_events) { 906 struct aio_ring *ring; 907 unsigned head; 908 909 /* Access of ring->head may race with aio_read_events_ring() 910 * here, but that's okay since whether we read the old version 911 * or the new version, and either will be valid. The important 912 * part is that head cannot pass tail since we prevent 913 * aio_complete() from updating tail by holding 914 * ctx->completion_lock. Even if head is invalid, the check 915 * against ctx->completed_events below will make sure we do the 916 * safe/right thing. 917 */ 918 ring = kmap_atomic(ctx->ring_pages[0]); 919 head = ring->head; 920 kunmap_atomic(ring); 921 922 refill_reqs_available(ctx, head, ctx->tail); 923 } 924 925 spin_unlock_irq(&ctx->completion_lock); 926 } 927 928 /* aio_get_req 929 * Allocate a slot for an aio request. 930 * Returns NULL if no requests are free. 931 */ 932 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 933 { 934 struct kiocb *req; 935 936 if (!get_reqs_available(ctx)) { 937 user_refill_reqs_available(ctx); 938 if (!get_reqs_available(ctx)) 939 return NULL; 940 } 941 942 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 943 if (unlikely(!req)) 944 goto out_put; 945 946 percpu_ref_get(&ctx->reqs); 947 948 req->ki_ctx = ctx; 949 return req; 950 out_put: 951 put_reqs_available(ctx, 1); 952 return NULL; 953 } 954 955 static void kiocb_free(struct kiocb *req) 956 { 957 if (req->ki_filp) 958 fput(req->ki_filp); 959 if (req->ki_eventfd != NULL) 960 eventfd_ctx_put(req->ki_eventfd); 961 kmem_cache_free(kiocb_cachep, req); 962 } 963 964 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 965 { 966 struct aio_ring __user *ring = (void __user *)ctx_id; 967 struct mm_struct *mm = current->mm; 968 struct kioctx *ctx, *ret = NULL; 969 struct kioctx_table *table; 970 unsigned id; 971 972 if (get_user(id, &ring->id)) 973 return NULL; 974 975 rcu_read_lock(); 976 table = rcu_dereference(mm->ioctx_table); 977 978 if (!table || id >= table->nr) 979 goto out; 980 981 ctx = table->table[id]; 982 if (ctx && ctx->user_id == ctx_id) { 983 percpu_ref_get(&ctx->users); 984 ret = ctx; 985 } 986 out: 987 rcu_read_unlock(); 988 return ret; 989 } 990 991 /* aio_complete 992 * Called when the io request on the given iocb is complete. 993 */ 994 void aio_complete(struct kiocb *iocb, long res, long res2) 995 { 996 struct kioctx *ctx = iocb->ki_ctx; 997 struct aio_ring *ring; 998 struct io_event *ev_page, *event; 999 unsigned tail, pos, head; 1000 unsigned long flags; 1001 1002 /* 1003 * Special case handling for sync iocbs: 1004 * - events go directly into the iocb for fast handling 1005 * - the sync task with the iocb in its stack holds the single iocb 1006 * ref, no other paths have a way to get another ref 1007 * - the sync task helpfully left a reference to itself in the iocb 1008 */ 1009 if (is_sync_kiocb(iocb)) { 1010 iocb->ki_user_data = res; 1011 smp_wmb(); 1012 iocb->ki_ctx = ERR_PTR(-EXDEV); 1013 wake_up_process(iocb->ki_obj.tsk); 1014 return; 1015 } 1016 1017 if (iocb->ki_list.next) { 1018 unsigned long flags; 1019 1020 spin_lock_irqsave(&ctx->ctx_lock, flags); 1021 list_del(&iocb->ki_list); 1022 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1023 } 1024 1025 /* 1026 * Add a completion event to the ring buffer. Must be done holding 1027 * ctx->completion_lock to prevent other code from messing with the tail 1028 * pointer since we might be called from irq context. 1029 */ 1030 spin_lock_irqsave(&ctx->completion_lock, flags); 1031 1032 tail = ctx->tail; 1033 pos = tail + AIO_EVENTS_OFFSET; 1034 1035 if (++tail >= ctx->nr_events) 1036 tail = 0; 1037 1038 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1039 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1040 1041 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 1042 event->data = iocb->ki_user_data; 1043 event->res = res; 1044 event->res2 = res2; 1045 1046 kunmap_atomic(ev_page); 1047 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1048 1049 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1050 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1051 res, res2); 1052 1053 /* after flagging the request as done, we 1054 * must never even look at it again 1055 */ 1056 smp_wmb(); /* make event visible before updating tail */ 1057 1058 ctx->tail = tail; 1059 1060 ring = kmap_atomic(ctx->ring_pages[0]); 1061 head = ring->head; 1062 ring->tail = tail; 1063 kunmap_atomic(ring); 1064 flush_dcache_page(ctx->ring_pages[0]); 1065 1066 ctx->completed_events++; 1067 if (ctx->completed_events > 1) 1068 refill_reqs_available(ctx, head, tail); 1069 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1070 1071 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1072 1073 /* 1074 * Check if the user asked us to deliver the result through an 1075 * eventfd. The eventfd_signal() function is safe to be called 1076 * from IRQ context. 1077 */ 1078 if (iocb->ki_eventfd != NULL) 1079 eventfd_signal(iocb->ki_eventfd, 1); 1080 1081 /* everything turned out well, dispose of the aiocb. */ 1082 kiocb_free(iocb); 1083 1084 /* 1085 * We have to order our ring_info tail store above and test 1086 * of the wait list below outside the wait lock. This is 1087 * like in wake_up_bit() where clearing a bit has to be 1088 * ordered with the unlocked test. 1089 */ 1090 smp_mb(); 1091 1092 if (waitqueue_active(&ctx->wait)) 1093 wake_up(&ctx->wait); 1094 1095 percpu_ref_put(&ctx->reqs); 1096 } 1097 EXPORT_SYMBOL(aio_complete); 1098 1099 /* aio_read_events_ring 1100 * Pull an event off of the ioctx's event ring. Returns the number of 1101 * events fetched 1102 */ 1103 static long aio_read_events_ring(struct kioctx *ctx, 1104 struct io_event __user *event, long nr) 1105 { 1106 struct aio_ring *ring; 1107 unsigned head, tail, pos; 1108 long ret = 0; 1109 int copy_ret; 1110 1111 mutex_lock(&ctx->ring_lock); 1112 1113 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1114 ring = kmap_atomic(ctx->ring_pages[0]); 1115 head = ring->head; 1116 tail = ring->tail; 1117 kunmap_atomic(ring); 1118 1119 /* 1120 * Ensure that once we've read the current tail pointer, that 1121 * we also see the events that were stored up to the tail. 1122 */ 1123 smp_rmb(); 1124 1125 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1126 1127 if (head == tail) 1128 goto out; 1129 1130 head %= ctx->nr_events; 1131 tail %= ctx->nr_events; 1132 1133 while (ret < nr) { 1134 long avail; 1135 struct io_event *ev; 1136 struct page *page; 1137 1138 avail = (head <= tail ? tail : ctx->nr_events) - head; 1139 if (head == tail) 1140 break; 1141 1142 avail = min(avail, nr - ret); 1143 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1144 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1145 1146 pos = head + AIO_EVENTS_OFFSET; 1147 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1148 pos %= AIO_EVENTS_PER_PAGE; 1149 1150 ev = kmap(page); 1151 copy_ret = copy_to_user(event + ret, ev + pos, 1152 sizeof(*ev) * avail); 1153 kunmap(page); 1154 1155 if (unlikely(copy_ret)) { 1156 ret = -EFAULT; 1157 goto out; 1158 } 1159 1160 ret += avail; 1161 head += avail; 1162 head %= ctx->nr_events; 1163 } 1164 1165 ring = kmap_atomic(ctx->ring_pages[0]); 1166 ring->head = head; 1167 kunmap_atomic(ring); 1168 flush_dcache_page(ctx->ring_pages[0]); 1169 1170 pr_debug("%li h%u t%u\n", ret, head, tail); 1171 out: 1172 mutex_unlock(&ctx->ring_lock); 1173 1174 return ret; 1175 } 1176 1177 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1178 struct io_event __user *event, long *i) 1179 { 1180 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1181 1182 if (ret > 0) 1183 *i += ret; 1184 1185 if (unlikely(atomic_read(&ctx->dead))) 1186 ret = -EINVAL; 1187 1188 if (!*i) 1189 *i = ret; 1190 1191 return ret < 0 || *i >= min_nr; 1192 } 1193 1194 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1195 struct io_event __user *event, 1196 struct timespec __user *timeout) 1197 { 1198 ktime_t until = { .tv64 = KTIME_MAX }; 1199 long ret = 0; 1200 1201 if (timeout) { 1202 struct timespec ts; 1203 1204 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1205 return -EFAULT; 1206 1207 until = timespec_to_ktime(ts); 1208 } 1209 1210 /* 1211 * Note that aio_read_events() is being called as the conditional - i.e. 1212 * we're calling it after prepare_to_wait() has set task state to 1213 * TASK_INTERRUPTIBLE. 1214 * 1215 * But aio_read_events() can block, and if it blocks it's going to flip 1216 * the task state back to TASK_RUNNING. 1217 * 1218 * This should be ok, provided it doesn't flip the state back to 1219 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1220 * will only happen if the mutex_lock() call blocks, and we then find 1221 * the ringbuffer empty. So in practice we should be ok, but it's 1222 * something to be aware of when touching this code. 1223 */ 1224 wait_event_interruptible_hrtimeout(ctx->wait, 1225 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1226 1227 if (!ret && signal_pending(current)) 1228 ret = -EINTR; 1229 1230 return ret; 1231 } 1232 1233 /* sys_io_setup: 1234 * Create an aio_context capable of receiving at least nr_events. 1235 * ctxp must not point to an aio_context that already exists, and 1236 * must be initialized to 0 prior to the call. On successful 1237 * creation of the aio_context, *ctxp is filled in with the resulting 1238 * handle. May fail with -EINVAL if *ctxp is not initialized, 1239 * if the specified nr_events exceeds internal limits. May fail 1240 * with -EAGAIN if the specified nr_events exceeds the user's limit 1241 * of available events. May fail with -ENOMEM if insufficient kernel 1242 * resources are available. May fail with -EFAULT if an invalid 1243 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1244 * implemented. 1245 */ 1246 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1247 { 1248 struct kioctx *ioctx = NULL; 1249 unsigned long ctx; 1250 long ret; 1251 1252 ret = get_user(ctx, ctxp); 1253 if (unlikely(ret)) 1254 goto out; 1255 1256 ret = -EINVAL; 1257 if (unlikely(ctx || nr_events == 0)) { 1258 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1259 ctx, nr_events); 1260 goto out; 1261 } 1262 1263 ioctx = ioctx_alloc(nr_events); 1264 ret = PTR_ERR(ioctx); 1265 if (!IS_ERR(ioctx)) { 1266 ret = put_user(ioctx->user_id, ctxp); 1267 if (ret) 1268 kill_ioctx(current->mm, ioctx, NULL); 1269 percpu_ref_put(&ioctx->users); 1270 } 1271 1272 out: 1273 return ret; 1274 } 1275 1276 /* sys_io_destroy: 1277 * Destroy the aio_context specified. May cancel any outstanding 1278 * AIOs and block on completion. Will fail with -ENOSYS if not 1279 * implemented. May fail with -EINVAL if the context pointed to 1280 * is invalid. 1281 */ 1282 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1283 { 1284 struct kioctx *ioctx = lookup_ioctx(ctx); 1285 if (likely(NULL != ioctx)) { 1286 struct completion requests_done = 1287 COMPLETION_INITIALIZER_ONSTACK(requests_done); 1288 int ret; 1289 1290 /* Pass requests_done to kill_ioctx() where it can be set 1291 * in a thread-safe way. If we try to set it here then we have 1292 * a race condition if two io_destroy() called simultaneously. 1293 */ 1294 ret = kill_ioctx(current->mm, ioctx, &requests_done); 1295 percpu_ref_put(&ioctx->users); 1296 1297 /* Wait until all IO for the context are done. Otherwise kernel 1298 * keep using user-space buffers even if user thinks the context 1299 * is destroyed. 1300 */ 1301 if (!ret) 1302 wait_for_completion(&requests_done); 1303 1304 return ret; 1305 } 1306 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1307 return -EINVAL; 1308 } 1309 1310 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1311 unsigned long, loff_t); 1312 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1313 1314 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1315 int rw, char __user *buf, 1316 unsigned long *nr_segs, 1317 struct iovec **iovec, 1318 bool compat) 1319 { 1320 ssize_t ret; 1321 1322 *nr_segs = kiocb->ki_nbytes; 1323 1324 #ifdef CONFIG_COMPAT 1325 if (compat) 1326 ret = compat_rw_copy_check_uvector(rw, 1327 (struct compat_iovec __user *)buf, 1328 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1329 else 1330 #endif 1331 ret = rw_copy_check_uvector(rw, 1332 (struct iovec __user *)buf, 1333 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1334 if (ret < 0) 1335 return ret; 1336 1337 /* ki_nbytes now reflect bytes instead of segs */ 1338 kiocb->ki_nbytes = ret; 1339 return 0; 1340 } 1341 1342 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1343 int rw, char __user *buf, 1344 unsigned long *nr_segs, 1345 struct iovec *iovec) 1346 { 1347 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1348 return -EFAULT; 1349 1350 iovec->iov_base = buf; 1351 iovec->iov_len = kiocb->ki_nbytes; 1352 *nr_segs = 1; 1353 return 0; 1354 } 1355 1356 /* 1357 * aio_run_iocb: 1358 * Performs the initial checks and io submission. 1359 */ 1360 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1361 char __user *buf, bool compat) 1362 { 1363 struct file *file = req->ki_filp; 1364 ssize_t ret; 1365 unsigned long nr_segs; 1366 int rw; 1367 fmode_t mode; 1368 aio_rw_op *rw_op; 1369 rw_iter_op *iter_op; 1370 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1371 struct iov_iter iter; 1372 1373 switch (opcode) { 1374 case IOCB_CMD_PREAD: 1375 case IOCB_CMD_PREADV: 1376 mode = FMODE_READ; 1377 rw = READ; 1378 rw_op = file->f_op->aio_read; 1379 iter_op = file->f_op->read_iter; 1380 goto rw_common; 1381 1382 case IOCB_CMD_PWRITE: 1383 case IOCB_CMD_PWRITEV: 1384 mode = FMODE_WRITE; 1385 rw = WRITE; 1386 rw_op = file->f_op->aio_write; 1387 iter_op = file->f_op->write_iter; 1388 goto rw_common; 1389 rw_common: 1390 if (unlikely(!(file->f_mode & mode))) 1391 return -EBADF; 1392 1393 if (!rw_op && !iter_op) 1394 return -EINVAL; 1395 1396 ret = (opcode == IOCB_CMD_PREADV || 1397 opcode == IOCB_CMD_PWRITEV) 1398 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1399 &iovec, compat) 1400 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1401 iovec); 1402 if (!ret) 1403 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1404 if (ret < 0) { 1405 if (iovec != inline_vecs) 1406 kfree(iovec); 1407 return ret; 1408 } 1409 1410 req->ki_nbytes = ret; 1411 1412 /* XXX: move/kill - rw_verify_area()? */ 1413 /* This matches the pread()/pwrite() logic */ 1414 if (req->ki_pos < 0) { 1415 ret = -EINVAL; 1416 break; 1417 } 1418 1419 if (rw == WRITE) 1420 file_start_write(file); 1421 1422 if (iter_op) { 1423 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes); 1424 ret = iter_op(req, &iter); 1425 } else { 1426 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1427 } 1428 1429 if (rw == WRITE) 1430 file_end_write(file); 1431 break; 1432 1433 case IOCB_CMD_FDSYNC: 1434 if (!file->f_op->aio_fsync) 1435 return -EINVAL; 1436 1437 ret = file->f_op->aio_fsync(req, 1); 1438 break; 1439 1440 case IOCB_CMD_FSYNC: 1441 if (!file->f_op->aio_fsync) 1442 return -EINVAL; 1443 1444 ret = file->f_op->aio_fsync(req, 0); 1445 break; 1446 1447 default: 1448 pr_debug("EINVAL: no operation provided\n"); 1449 return -EINVAL; 1450 } 1451 1452 if (iovec != inline_vecs) 1453 kfree(iovec); 1454 1455 if (ret != -EIOCBQUEUED) { 1456 /* 1457 * There's no easy way to restart the syscall since other AIO's 1458 * may be already running. Just fail this IO with EINTR. 1459 */ 1460 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1461 ret == -ERESTARTNOHAND || 1462 ret == -ERESTART_RESTARTBLOCK)) 1463 ret = -EINTR; 1464 aio_complete(req, ret, 0); 1465 } 1466 1467 return 0; 1468 } 1469 1470 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1471 struct iocb *iocb, bool compat) 1472 { 1473 struct kiocb *req; 1474 ssize_t ret; 1475 1476 /* enforce forwards compatibility on users */ 1477 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1478 pr_debug("EINVAL: reserve field set\n"); 1479 return -EINVAL; 1480 } 1481 1482 /* prevent overflows */ 1483 if (unlikely( 1484 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1485 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1486 ((ssize_t)iocb->aio_nbytes < 0) 1487 )) { 1488 pr_debug("EINVAL: io_submit: overflow check\n"); 1489 return -EINVAL; 1490 } 1491 1492 req = aio_get_req(ctx); 1493 if (unlikely(!req)) 1494 return -EAGAIN; 1495 1496 req->ki_filp = fget(iocb->aio_fildes); 1497 if (unlikely(!req->ki_filp)) { 1498 ret = -EBADF; 1499 goto out_put_req; 1500 } 1501 1502 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1503 /* 1504 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1505 * instance of the file* now. The file descriptor must be 1506 * an eventfd() fd, and will be signaled for each completed 1507 * event using the eventfd_signal() function. 1508 */ 1509 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1510 if (IS_ERR(req->ki_eventfd)) { 1511 ret = PTR_ERR(req->ki_eventfd); 1512 req->ki_eventfd = NULL; 1513 goto out_put_req; 1514 } 1515 } 1516 1517 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1518 if (unlikely(ret)) { 1519 pr_debug("EFAULT: aio_key\n"); 1520 goto out_put_req; 1521 } 1522 1523 req->ki_obj.user = user_iocb; 1524 req->ki_user_data = iocb->aio_data; 1525 req->ki_pos = iocb->aio_offset; 1526 req->ki_nbytes = iocb->aio_nbytes; 1527 1528 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1529 (char __user *)(unsigned long)iocb->aio_buf, 1530 compat); 1531 if (ret) 1532 goto out_put_req; 1533 1534 return 0; 1535 out_put_req: 1536 put_reqs_available(ctx, 1); 1537 percpu_ref_put(&ctx->reqs); 1538 kiocb_free(req); 1539 return ret; 1540 } 1541 1542 long do_io_submit(aio_context_t ctx_id, long nr, 1543 struct iocb __user *__user *iocbpp, bool compat) 1544 { 1545 struct kioctx *ctx; 1546 long ret = 0; 1547 int i = 0; 1548 struct blk_plug plug; 1549 1550 if (unlikely(nr < 0)) 1551 return -EINVAL; 1552 1553 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1554 nr = LONG_MAX/sizeof(*iocbpp); 1555 1556 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1557 return -EFAULT; 1558 1559 ctx = lookup_ioctx(ctx_id); 1560 if (unlikely(!ctx)) { 1561 pr_debug("EINVAL: invalid context id\n"); 1562 return -EINVAL; 1563 } 1564 1565 blk_start_plug(&plug); 1566 1567 /* 1568 * AKPM: should this return a partial result if some of the IOs were 1569 * successfully submitted? 1570 */ 1571 for (i=0; i<nr; i++) { 1572 struct iocb __user *user_iocb; 1573 struct iocb tmp; 1574 1575 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1576 ret = -EFAULT; 1577 break; 1578 } 1579 1580 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1581 ret = -EFAULT; 1582 break; 1583 } 1584 1585 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1586 if (ret) 1587 break; 1588 } 1589 blk_finish_plug(&plug); 1590 1591 percpu_ref_put(&ctx->users); 1592 return i ? i : ret; 1593 } 1594 1595 /* sys_io_submit: 1596 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1597 * the number of iocbs queued. May return -EINVAL if the aio_context 1598 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1599 * *iocbpp[0] is not properly initialized, if the operation specified 1600 * is invalid for the file descriptor in the iocb. May fail with 1601 * -EFAULT if any of the data structures point to invalid data. May 1602 * fail with -EBADF if the file descriptor specified in the first 1603 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1604 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1605 * fail with -ENOSYS if not implemented. 1606 */ 1607 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1608 struct iocb __user * __user *, iocbpp) 1609 { 1610 return do_io_submit(ctx_id, nr, iocbpp, 0); 1611 } 1612 1613 /* lookup_kiocb 1614 * Finds a given iocb for cancellation. 1615 */ 1616 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1617 u32 key) 1618 { 1619 struct list_head *pos; 1620 1621 assert_spin_locked(&ctx->ctx_lock); 1622 1623 if (key != KIOCB_KEY) 1624 return NULL; 1625 1626 /* TODO: use a hash or array, this sucks. */ 1627 list_for_each(pos, &ctx->active_reqs) { 1628 struct kiocb *kiocb = list_kiocb(pos); 1629 if (kiocb->ki_obj.user == iocb) 1630 return kiocb; 1631 } 1632 return NULL; 1633 } 1634 1635 /* sys_io_cancel: 1636 * Attempts to cancel an iocb previously passed to io_submit. If 1637 * the operation is successfully cancelled, the resulting event is 1638 * copied into the memory pointed to by result without being placed 1639 * into the completion queue and 0 is returned. May fail with 1640 * -EFAULT if any of the data structures pointed to are invalid. 1641 * May fail with -EINVAL if aio_context specified by ctx_id is 1642 * invalid. May fail with -EAGAIN if the iocb specified was not 1643 * cancelled. Will fail with -ENOSYS if not implemented. 1644 */ 1645 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1646 struct io_event __user *, result) 1647 { 1648 struct kioctx *ctx; 1649 struct kiocb *kiocb; 1650 u32 key; 1651 int ret; 1652 1653 ret = get_user(key, &iocb->aio_key); 1654 if (unlikely(ret)) 1655 return -EFAULT; 1656 1657 ctx = lookup_ioctx(ctx_id); 1658 if (unlikely(!ctx)) 1659 return -EINVAL; 1660 1661 spin_lock_irq(&ctx->ctx_lock); 1662 1663 kiocb = lookup_kiocb(ctx, iocb, key); 1664 if (kiocb) 1665 ret = kiocb_cancel(kiocb); 1666 else 1667 ret = -EINVAL; 1668 1669 spin_unlock_irq(&ctx->ctx_lock); 1670 1671 if (!ret) { 1672 /* 1673 * The result argument is no longer used - the io_event is 1674 * always delivered via the ring buffer. -EINPROGRESS indicates 1675 * cancellation is progress: 1676 */ 1677 ret = -EINPROGRESS; 1678 } 1679 1680 percpu_ref_put(&ctx->users); 1681 1682 return ret; 1683 } 1684 1685 /* io_getevents: 1686 * Attempts to read at least min_nr events and up to nr events from 1687 * the completion queue for the aio_context specified by ctx_id. If 1688 * it succeeds, the number of read events is returned. May fail with 1689 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1690 * out of range, if timeout is out of range. May fail with -EFAULT 1691 * if any of the memory specified is invalid. May return 0 or 1692 * < min_nr if the timeout specified by timeout has elapsed 1693 * before sufficient events are available, where timeout == NULL 1694 * specifies an infinite timeout. Note that the timeout pointed to by 1695 * timeout is relative. Will fail with -ENOSYS if not implemented. 1696 */ 1697 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1698 long, min_nr, 1699 long, nr, 1700 struct io_event __user *, events, 1701 struct timespec __user *, timeout) 1702 { 1703 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1704 long ret = -EINVAL; 1705 1706 if (likely(ioctx)) { 1707 if (likely(min_nr <= nr && min_nr >= 0)) 1708 ret = read_events(ioctx, min_nr, nr, events, timeout); 1709 percpu_ref_put(&ioctx->users); 1710 } 1711 return ret; 1712 } 1713