xref: /openbmc/linux/fs/aio.c (revision 4949009e)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		unsigned	completed_events;
145 		spinlock_t	completion_lock;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct page		*internal_pages[AIO_RING_PAGES];
149 	struct file		*aio_ring_file;
150 
151 	unsigned		id;
152 };
153 
154 /*------ sysctl variables----*/
155 static DEFINE_SPINLOCK(aio_nr_lock);
156 unsigned long aio_nr;		/* current system wide number of aio requests */
157 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
158 /*----end sysctl variables---*/
159 
160 static struct kmem_cache	*kiocb_cachep;
161 static struct kmem_cache	*kioctx_cachep;
162 
163 static struct vfsmount *aio_mnt;
164 
165 static const struct file_operations aio_ring_fops;
166 static const struct address_space_operations aio_ctx_aops;
167 
168 /* Backing dev info for aio fs.
169  * -no dirty page accounting or writeback happens
170  */
171 static struct backing_dev_info aio_fs_backing_dev_info = {
172 	.name           = "aiofs",
173 	.state          = 0,
174 	.capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_MAP_COPY,
175 };
176 
177 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
178 {
179 	struct qstr this = QSTR_INIT("[aio]", 5);
180 	struct file *file;
181 	struct path path;
182 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
183 	if (IS_ERR(inode))
184 		return ERR_CAST(inode);
185 
186 	inode->i_mapping->a_ops = &aio_ctx_aops;
187 	inode->i_mapping->private_data = ctx;
188 	inode->i_mapping->backing_dev_info = &aio_fs_backing_dev_info;
189 	inode->i_size = PAGE_SIZE * nr_pages;
190 
191 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
192 	if (!path.dentry) {
193 		iput(inode);
194 		return ERR_PTR(-ENOMEM);
195 	}
196 	path.mnt = mntget(aio_mnt);
197 
198 	d_instantiate(path.dentry, inode);
199 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
200 	if (IS_ERR(file)) {
201 		path_put(&path);
202 		return file;
203 	}
204 
205 	file->f_flags = O_RDWR;
206 	return file;
207 }
208 
209 static struct dentry *aio_mount(struct file_system_type *fs_type,
210 				int flags, const char *dev_name, void *data)
211 {
212 	static const struct dentry_operations ops = {
213 		.d_dname	= simple_dname,
214 	};
215 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
216 }
217 
218 /* aio_setup
219  *	Creates the slab caches used by the aio routines, panic on
220  *	failure as this is done early during the boot sequence.
221  */
222 static int __init aio_setup(void)
223 {
224 	static struct file_system_type aio_fs = {
225 		.name		= "aio",
226 		.mount		= aio_mount,
227 		.kill_sb	= kill_anon_super,
228 	};
229 	aio_mnt = kern_mount(&aio_fs);
230 	if (IS_ERR(aio_mnt))
231 		panic("Failed to create aio fs mount.");
232 
233 	if (bdi_init(&aio_fs_backing_dev_info))
234 		panic("Failed to init aio fs backing dev info.");
235 
236 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
237 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
238 
239 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
240 
241 	return 0;
242 }
243 __initcall(aio_setup);
244 
245 static void put_aio_ring_file(struct kioctx *ctx)
246 {
247 	struct file *aio_ring_file = ctx->aio_ring_file;
248 	if (aio_ring_file) {
249 		truncate_setsize(aio_ring_file->f_inode, 0);
250 
251 		/* Prevent further access to the kioctx from migratepages */
252 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
253 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
254 		ctx->aio_ring_file = NULL;
255 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
256 
257 		fput(aio_ring_file);
258 	}
259 }
260 
261 static void aio_free_ring(struct kioctx *ctx)
262 {
263 	int i;
264 
265 	/* Disconnect the kiotx from the ring file.  This prevents future
266 	 * accesses to the kioctx from page migration.
267 	 */
268 	put_aio_ring_file(ctx);
269 
270 	for (i = 0; i < ctx->nr_pages; i++) {
271 		struct page *page;
272 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
273 				page_count(ctx->ring_pages[i]));
274 		page = ctx->ring_pages[i];
275 		if (!page)
276 			continue;
277 		ctx->ring_pages[i] = NULL;
278 		put_page(page);
279 	}
280 
281 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
282 		kfree(ctx->ring_pages);
283 		ctx->ring_pages = NULL;
284 	}
285 }
286 
287 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
288 {
289 	vma->vm_flags |= VM_DONTEXPAND;
290 	vma->vm_ops = &generic_file_vm_ops;
291 	return 0;
292 }
293 
294 static void aio_ring_remap(struct file *file, struct vm_area_struct *vma)
295 {
296 	struct mm_struct *mm = vma->vm_mm;
297 	struct kioctx_table *table;
298 	int i;
299 
300 	spin_lock(&mm->ioctx_lock);
301 	rcu_read_lock();
302 	table = rcu_dereference(mm->ioctx_table);
303 	for (i = 0; i < table->nr; i++) {
304 		struct kioctx *ctx;
305 
306 		ctx = table->table[i];
307 		if (ctx && ctx->aio_ring_file == file) {
308 			ctx->user_id = ctx->mmap_base = vma->vm_start;
309 			break;
310 		}
311 	}
312 
313 	rcu_read_unlock();
314 	spin_unlock(&mm->ioctx_lock);
315 }
316 
317 static const struct file_operations aio_ring_fops = {
318 	.mmap = aio_ring_mmap,
319 	.mremap = aio_ring_remap,
320 };
321 
322 #if IS_ENABLED(CONFIG_MIGRATION)
323 static int aio_migratepage(struct address_space *mapping, struct page *new,
324 			struct page *old, enum migrate_mode mode)
325 {
326 	struct kioctx *ctx;
327 	unsigned long flags;
328 	pgoff_t idx;
329 	int rc;
330 
331 	rc = 0;
332 
333 	/* mapping->private_lock here protects against the kioctx teardown.  */
334 	spin_lock(&mapping->private_lock);
335 	ctx = mapping->private_data;
336 	if (!ctx) {
337 		rc = -EINVAL;
338 		goto out;
339 	}
340 
341 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
342 	 * to the ring's head, and prevents page migration from mucking in
343 	 * a partially initialized kiotx.
344 	 */
345 	if (!mutex_trylock(&ctx->ring_lock)) {
346 		rc = -EAGAIN;
347 		goto out;
348 	}
349 
350 	idx = old->index;
351 	if (idx < (pgoff_t)ctx->nr_pages) {
352 		/* Make sure the old page hasn't already been changed */
353 		if (ctx->ring_pages[idx] != old)
354 			rc = -EAGAIN;
355 	} else
356 		rc = -EINVAL;
357 
358 	if (rc != 0)
359 		goto out_unlock;
360 
361 	/* Writeback must be complete */
362 	BUG_ON(PageWriteback(old));
363 	get_page(new);
364 
365 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
366 	if (rc != MIGRATEPAGE_SUCCESS) {
367 		put_page(new);
368 		goto out_unlock;
369 	}
370 
371 	/* Take completion_lock to prevent other writes to the ring buffer
372 	 * while the old page is copied to the new.  This prevents new
373 	 * events from being lost.
374 	 */
375 	spin_lock_irqsave(&ctx->completion_lock, flags);
376 	migrate_page_copy(new, old);
377 	BUG_ON(ctx->ring_pages[idx] != old);
378 	ctx->ring_pages[idx] = new;
379 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
380 
381 	/* The old page is no longer accessible. */
382 	put_page(old);
383 
384 out_unlock:
385 	mutex_unlock(&ctx->ring_lock);
386 out:
387 	spin_unlock(&mapping->private_lock);
388 	return rc;
389 }
390 #endif
391 
392 static const struct address_space_operations aio_ctx_aops = {
393 	.set_page_dirty = __set_page_dirty_no_writeback,
394 #if IS_ENABLED(CONFIG_MIGRATION)
395 	.migratepage	= aio_migratepage,
396 #endif
397 };
398 
399 static int aio_setup_ring(struct kioctx *ctx)
400 {
401 	struct aio_ring *ring;
402 	unsigned nr_events = ctx->max_reqs;
403 	struct mm_struct *mm = current->mm;
404 	unsigned long size, unused;
405 	int nr_pages;
406 	int i;
407 	struct file *file;
408 
409 	/* Compensate for the ring buffer's head/tail overlap entry */
410 	nr_events += 2;	/* 1 is required, 2 for good luck */
411 
412 	size = sizeof(struct aio_ring);
413 	size += sizeof(struct io_event) * nr_events;
414 
415 	nr_pages = PFN_UP(size);
416 	if (nr_pages < 0)
417 		return -EINVAL;
418 
419 	file = aio_private_file(ctx, nr_pages);
420 	if (IS_ERR(file)) {
421 		ctx->aio_ring_file = NULL;
422 		return -ENOMEM;
423 	}
424 
425 	ctx->aio_ring_file = file;
426 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
427 			/ sizeof(struct io_event);
428 
429 	ctx->ring_pages = ctx->internal_pages;
430 	if (nr_pages > AIO_RING_PAGES) {
431 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
432 					  GFP_KERNEL);
433 		if (!ctx->ring_pages) {
434 			put_aio_ring_file(ctx);
435 			return -ENOMEM;
436 		}
437 	}
438 
439 	for (i = 0; i < nr_pages; i++) {
440 		struct page *page;
441 		page = find_or_create_page(file->f_inode->i_mapping,
442 					   i, GFP_HIGHUSER | __GFP_ZERO);
443 		if (!page)
444 			break;
445 		pr_debug("pid(%d) page[%d]->count=%d\n",
446 			 current->pid, i, page_count(page));
447 		SetPageUptodate(page);
448 		unlock_page(page);
449 
450 		ctx->ring_pages[i] = page;
451 	}
452 	ctx->nr_pages = i;
453 
454 	if (unlikely(i != nr_pages)) {
455 		aio_free_ring(ctx);
456 		return -ENOMEM;
457 	}
458 
459 	ctx->mmap_size = nr_pages * PAGE_SIZE;
460 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
461 
462 	down_write(&mm->mmap_sem);
463 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
464 				       PROT_READ | PROT_WRITE,
465 				       MAP_SHARED, 0, &unused);
466 	up_write(&mm->mmap_sem);
467 	if (IS_ERR((void *)ctx->mmap_base)) {
468 		ctx->mmap_size = 0;
469 		aio_free_ring(ctx);
470 		return -ENOMEM;
471 	}
472 
473 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
474 
475 	ctx->user_id = ctx->mmap_base;
476 	ctx->nr_events = nr_events; /* trusted copy */
477 
478 	ring = kmap_atomic(ctx->ring_pages[0]);
479 	ring->nr = nr_events;	/* user copy */
480 	ring->id = ~0U;
481 	ring->head = ring->tail = 0;
482 	ring->magic = AIO_RING_MAGIC;
483 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
484 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
485 	ring->header_length = sizeof(struct aio_ring);
486 	kunmap_atomic(ring);
487 	flush_dcache_page(ctx->ring_pages[0]);
488 
489 	return 0;
490 }
491 
492 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
493 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
494 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
495 
496 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
497 {
498 	struct kioctx *ctx = req->ki_ctx;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&ctx->ctx_lock, flags);
502 
503 	if (!req->ki_list.next)
504 		list_add(&req->ki_list, &ctx->active_reqs);
505 
506 	req->ki_cancel = cancel;
507 
508 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
509 }
510 EXPORT_SYMBOL(kiocb_set_cancel_fn);
511 
512 static int kiocb_cancel(struct kiocb *kiocb)
513 {
514 	kiocb_cancel_fn *old, *cancel;
515 
516 	/*
517 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
518 	 * actually has a cancel function, hence the cmpxchg()
519 	 */
520 
521 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
522 	do {
523 		if (!cancel || cancel == KIOCB_CANCELLED)
524 			return -EINVAL;
525 
526 		old = cancel;
527 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
528 	} while (cancel != old);
529 
530 	return cancel(kiocb);
531 }
532 
533 static void free_ioctx(struct work_struct *work)
534 {
535 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
536 
537 	pr_debug("freeing %p\n", ctx);
538 
539 	aio_free_ring(ctx);
540 	free_percpu(ctx->cpu);
541 	percpu_ref_exit(&ctx->reqs);
542 	percpu_ref_exit(&ctx->users);
543 	kmem_cache_free(kioctx_cachep, ctx);
544 }
545 
546 static void free_ioctx_reqs(struct percpu_ref *ref)
547 {
548 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
549 
550 	/* At this point we know that there are no any in-flight requests */
551 	if (ctx->requests_done)
552 		complete(ctx->requests_done);
553 
554 	INIT_WORK(&ctx->free_work, free_ioctx);
555 	schedule_work(&ctx->free_work);
556 }
557 
558 /*
559  * When this function runs, the kioctx has been removed from the "hash table"
560  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
561  * now it's safe to cancel any that need to be.
562  */
563 static void free_ioctx_users(struct percpu_ref *ref)
564 {
565 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
566 	struct kiocb *req;
567 
568 	spin_lock_irq(&ctx->ctx_lock);
569 
570 	while (!list_empty(&ctx->active_reqs)) {
571 		req = list_first_entry(&ctx->active_reqs,
572 				       struct kiocb, ki_list);
573 
574 		list_del_init(&req->ki_list);
575 		kiocb_cancel(req);
576 	}
577 
578 	spin_unlock_irq(&ctx->ctx_lock);
579 
580 	percpu_ref_kill(&ctx->reqs);
581 	percpu_ref_put(&ctx->reqs);
582 }
583 
584 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
585 {
586 	unsigned i, new_nr;
587 	struct kioctx_table *table, *old;
588 	struct aio_ring *ring;
589 
590 	spin_lock(&mm->ioctx_lock);
591 	table = rcu_dereference_raw(mm->ioctx_table);
592 
593 	while (1) {
594 		if (table)
595 			for (i = 0; i < table->nr; i++)
596 				if (!table->table[i]) {
597 					ctx->id = i;
598 					table->table[i] = ctx;
599 					spin_unlock(&mm->ioctx_lock);
600 
601 					/* While kioctx setup is in progress,
602 					 * we are protected from page migration
603 					 * changes ring_pages by ->ring_lock.
604 					 */
605 					ring = kmap_atomic(ctx->ring_pages[0]);
606 					ring->id = ctx->id;
607 					kunmap_atomic(ring);
608 					return 0;
609 				}
610 
611 		new_nr = (table ? table->nr : 1) * 4;
612 		spin_unlock(&mm->ioctx_lock);
613 
614 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
615 				new_nr, GFP_KERNEL);
616 		if (!table)
617 			return -ENOMEM;
618 
619 		table->nr = new_nr;
620 
621 		spin_lock(&mm->ioctx_lock);
622 		old = rcu_dereference_raw(mm->ioctx_table);
623 
624 		if (!old) {
625 			rcu_assign_pointer(mm->ioctx_table, table);
626 		} else if (table->nr > old->nr) {
627 			memcpy(table->table, old->table,
628 			       old->nr * sizeof(struct kioctx *));
629 
630 			rcu_assign_pointer(mm->ioctx_table, table);
631 			kfree_rcu(old, rcu);
632 		} else {
633 			kfree(table);
634 			table = old;
635 		}
636 	}
637 }
638 
639 static void aio_nr_sub(unsigned nr)
640 {
641 	spin_lock(&aio_nr_lock);
642 	if (WARN_ON(aio_nr - nr > aio_nr))
643 		aio_nr = 0;
644 	else
645 		aio_nr -= nr;
646 	spin_unlock(&aio_nr_lock);
647 }
648 
649 /* ioctx_alloc
650  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
651  */
652 static struct kioctx *ioctx_alloc(unsigned nr_events)
653 {
654 	struct mm_struct *mm = current->mm;
655 	struct kioctx *ctx;
656 	int err = -ENOMEM;
657 
658 	/*
659 	 * We keep track of the number of available ringbuffer slots, to prevent
660 	 * overflow (reqs_available), and we also use percpu counters for this.
661 	 *
662 	 * So since up to half the slots might be on other cpu's percpu counters
663 	 * and unavailable, double nr_events so userspace sees what they
664 	 * expected: additionally, we move req_batch slots to/from percpu
665 	 * counters at a time, so make sure that isn't 0:
666 	 */
667 	nr_events = max(nr_events, num_possible_cpus() * 4);
668 	nr_events *= 2;
669 
670 	/* Prevent overflows */
671 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
672 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
673 		pr_debug("ENOMEM: nr_events too high\n");
674 		return ERR_PTR(-EINVAL);
675 	}
676 
677 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
678 		return ERR_PTR(-EAGAIN);
679 
680 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
681 	if (!ctx)
682 		return ERR_PTR(-ENOMEM);
683 
684 	ctx->max_reqs = nr_events;
685 
686 	spin_lock_init(&ctx->ctx_lock);
687 	spin_lock_init(&ctx->completion_lock);
688 	mutex_init(&ctx->ring_lock);
689 	/* Protect against page migration throughout kiotx setup by keeping
690 	 * the ring_lock mutex held until setup is complete. */
691 	mutex_lock(&ctx->ring_lock);
692 	init_waitqueue_head(&ctx->wait);
693 
694 	INIT_LIST_HEAD(&ctx->active_reqs);
695 
696 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
697 		goto err;
698 
699 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
700 		goto err;
701 
702 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
703 	if (!ctx->cpu)
704 		goto err;
705 
706 	err = aio_setup_ring(ctx);
707 	if (err < 0)
708 		goto err;
709 
710 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
711 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
712 	if (ctx->req_batch < 1)
713 		ctx->req_batch = 1;
714 
715 	/* limit the number of system wide aios */
716 	spin_lock(&aio_nr_lock);
717 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
718 	    aio_nr + nr_events < aio_nr) {
719 		spin_unlock(&aio_nr_lock);
720 		err = -EAGAIN;
721 		goto err_ctx;
722 	}
723 	aio_nr += ctx->max_reqs;
724 	spin_unlock(&aio_nr_lock);
725 
726 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
727 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
728 
729 	err = ioctx_add_table(ctx, mm);
730 	if (err)
731 		goto err_cleanup;
732 
733 	/* Release the ring_lock mutex now that all setup is complete. */
734 	mutex_unlock(&ctx->ring_lock);
735 
736 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
737 		 ctx, ctx->user_id, mm, ctx->nr_events);
738 	return ctx;
739 
740 err_cleanup:
741 	aio_nr_sub(ctx->max_reqs);
742 err_ctx:
743 	aio_free_ring(ctx);
744 err:
745 	mutex_unlock(&ctx->ring_lock);
746 	free_percpu(ctx->cpu);
747 	percpu_ref_exit(&ctx->reqs);
748 	percpu_ref_exit(&ctx->users);
749 	kmem_cache_free(kioctx_cachep, ctx);
750 	pr_debug("error allocating ioctx %d\n", err);
751 	return ERR_PTR(err);
752 }
753 
754 /* kill_ioctx
755  *	Cancels all outstanding aio requests on an aio context.  Used
756  *	when the processes owning a context have all exited to encourage
757  *	the rapid destruction of the kioctx.
758  */
759 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
760 		struct completion *requests_done)
761 {
762 	struct kioctx_table *table;
763 
764 	if (atomic_xchg(&ctx->dead, 1))
765 		return -EINVAL;
766 
767 
768 	spin_lock(&mm->ioctx_lock);
769 	table = rcu_dereference_raw(mm->ioctx_table);
770 	WARN_ON(ctx != table->table[ctx->id]);
771 	table->table[ctx->id] = NULL;
772 	spin_unlock(&mm->ioctx_lock);
773 
774 	/* percpu_ref_kill() will do the necessary call_rcu() */
775 	wake_up_all(&ctx->wait);
776 
777 	/*
778 	 * It'd be more correct to do this in free_ioctx(), after all
779 	 * the outstanding kiocbs have finished - but by then io_destroy
780 	 * has already returned, so io_setup() could potentially return
781 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
782 	 *  could tell).
783 	 */
784 	aio_nr_sub(ctx->max_reqs);
785 
786 	if (ctx->mmap_size)
787 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
788 
789 	ctx->requests_done = requests_done;
790 	percpu_ref_kill(&ctx->users);
791 	return 0;
792 }
793 
794 /* wait_on_sync_kiocb:
795  *	Waits on the given sync kiocb to complete.
796  */
797 ssize_t wait_on_sync_kiocb(struct kiocb *req)
798 {
799 	while (!req->ki_ctx) {
800 		set_current_state(TASK_UNINTERRUPTIBLE);
801 		if (req->ki_ctx)
802 			break;
803 		io_schedule();
804 	}
805 	__set_current_state(TASK_RUNNING);
806 	return req->ki_user_data;
807 }
808 EXPORT_SYMBOL(wait_on_sync_kiocb);
809 
810 /*
811  * exit_aio: called when the last user of mm goes away.  At this point, there is
812  * no way for any new requests to be submited or any of the io_* syscalls to be
813  * called on the context.
814  *
815  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
816  * them.
817  */
818 void exit_aio(struct mm_struct *mm)
819 {
820 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
821 	int i;
822 
823 	if (!table)
824 		return;
825 
826 	for (i = 0; i < table->nr; ++i) {
827 		struct kioctx *ctx = table->table[i];
828 		struct completion requests_done =
829 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
830 
831 		if (!ctx)
832 			continue;
833 		/*
834 		 * We don't need to bother with munmap() here - exit_mmap(mm)
835 		 * is coming and it'll unmap everything. And we simply can't,
836 		 * this is not necessarily our ->mm.
837 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
838 		 * that it needs to unmap the area, just set it to 0.
839 		 */
840 		ctx->mmap_size = 0;
841 		kill_ioctx(mm, ctx, &requests_done);
842 
843 		/* Wait until all IO for the context are done. */
844 		wait_for_completion(&requests_done);
845 	}
846 
847 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
848 	kfree(table);
849 }
850 
851 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
852 {
853 	struct kioctx_cpu *kcpu;
854 	unsigned long flags;
855 
856 	local_irq_save(flags);
857 	kcpu = this_cpu_ptr(ctx->cpu);
858 	kcpu->reqs_available += nr;
859 
860 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
861 		kcpu->reqs_available -= ctx->req_batch;
862 		atomic_add(ctx->req_batch, &ctx->reqs_available);
863 	}
864 
865 	local_irq_restore(flags);
866 }
867 
868 static bool get_reqs_available(struct kioctx *ctx)
869 {
870 	struct kioctx_cpu *kcpu;
871 	bool ret = false;
872 	unsigned long flags;
873 
874 	local_irq_save(flags);
875 	kcpu = this_cpu_ptr(ctx->cpu);
876 	if (!kcpu->reqs_available) {
877 		int old, avail = atomic_read(&ctx->reqs_available);
878 
879 		do {
880 			if (avail < ctx->req_batch)
881 				goto out;
882 
883 			old = avail;
884 			avail = atomic_cmpxchg(&ctx->reqs_available,
885 					       avail, avail - ctx->req_batch);
886 		} while (avail != old);
887 
888 		kcpu->reqs_available += ctx->req_batch;
889 	}
890 
891 	ret = true;
892 	kcpu->reqs_available--;
893 out:
894 	local_irq_restore(flags);
895 	return ret;
896 }
897 
898 /* refill_reqs_available
899  *	Updates the reqs_available reference counts used for tracking the
900  *	number of free slots in the completion ring.  This can be called
901  *	from aio_complete() (to optimistically update reqs_available) or
902  *	from aio_get_req() (the we're out of events case).  It must be
903  *	called holding ctx->completion_lock.
904  */
905 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
906                                   unsigned tail)
907 {
908 	unsigned events_in_ring, completed;
909 
910 	/* Clamp head since userland can write to it. */
911 	head %= ctx->nr_events;
912 	if (head <= tail)
913 		events_in_ring = tail - head;
914 	else
915 		events_in_ring = ctx->nr_events - (head - tail);
916 
917 	completed = ctx->completed_events;
918 	if (events_in_ring < completed)
919 		completed -= events_in_ring;
920 	else
921 		completed = 0;
922 
923 	if (!completed)
924 		return;
925 
926 	ctx->completed_events -= completed;
927 	put_reqs_available(ctx, completed);
928 }
929 
930 /* user_refill_reqs_available
931  *	Called to refill reqs_available when aio_get_req() encounters an
932  *	out of space in the completion ring.
933  */
934 static void user_refill_reqs_available(struct kioctx *ctx)
935 {
936 	spin_lock_irq(&ctx->completion_lock);
937 	if (ctx->completed_events) {
938 		struct aio_ring *ring;
939 		unsigned head;
940 
941 		/* Access of ring->head may race with aio_read_events_ring()
942 		 * here, but that's okay since whether we read the old version
943 		 * or the new version, and either will be valid.  The important
944 		 * part is that head cannot pass tail since we prevent
945 		 * aio_complete() from updating tail by holding
946 		 * ctx->completion_lock.  Even if head is invalid, the check
947 		 * against ctx->completed_events below will make sure we do the
948 		 * safe/right thing.
949 		 */
950 		ring = kmap_atomic(ctx->ring_pages[0]);
951 		head = ring->head;
952 		kunmap_atomic(ring);
953 
954 		refill_reqs_available(ctx, head, ctx->tail);
955 	}
956 
957 	spin_unlock_irq(&ctx->completion_lock);
958 }
959 
960 /* aio_get_req
961  *	Allocate a slot for an aio request.
962  * Returns NULL if no requests are free.
963  */
964 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
965 {
966 	struct kiocb *req;
967 
968 	if (!get_reqs_available(ctx)) {
969 		user_refill_reqs_available(ctx);
970 		if (!get_reqs_available(ctx))
971 			return NULL;
972 	}
973 
974 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
975 	if (unlikely(!req))
976 		goto out_put;
977 
978 	percpu_ref_get(&ctx->reqs);
979 
980 	req->ki_ctx = ctx;
981 	return req;
982 out_put:
983 	put_reqs_available(ctx, 1);
984 	return NULL;
985 }
986 
987 static void kiocb_free(struct kiocb *req)
988 {
989 	if (req->ki_filp)
990 		fput(req->ki_filp);
991 	if (req->ki_eventfd != NULL)
992 		eventfd_ctx_put(req->ki_eventfd);
993 	kmem_cache_free(kiocb_cachep, req);
994 }
995 
996 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
997 {
998 	struct aio_ring __user *ring  = (void __user *)ctx_id;
999 	struct mm_struct *mm = current->mm;
1000 	struct kioctx *ctx, *ret = NULL;
1001 	struct kioctx_table *table;
1002 	unsigned id;
1003 
1004 	if (get_user(id, &ring->id))
1005 		return NULL;
1006 
1007 	rcu_read_lock();
1008 	table = rcu_dereference(mm->ioctx_table);
1009 
1010 	if (!table || id >= table->nr)
1011 		goto out;
1012 
1013 	ctx = table->table[id];
1014 	if (ctx && ctx->user_id == ctx_id) {
1015 		percpu_ref_get(&ctx->users);
1016 		ret = ctx;
1017 	}
1018 out:
1019 	rcu_read_unlock();
1020 	return ret;
1021 }
1022 
1023 /* aio_complete
1024  *	Called when the io request on the given iocb is complete.
1025  */
1026 void aio_complete(struct kiocb *iocb, long res, long res2)
1027 {
1028 	struct kioctx	*ctx = iocb->ki_ctx;
1029 	struct aio_ring	*ring;
1030 	struct io_event	*ev_page, *event;
1031 	unsigned tail, pos, head;
1032 	unsigned long	flags;
1033 
1034 	/*
1035 	 * Special case handling for sync iocbs:
1036 	 *  - events go directly into the iocb for fast handling
1037 	 *  - the sync task with the iocb in its stack holds the single iocb
1038 	 *    ref, no other paths have a way to get another ref
1039 	 *  - the sync task helpfully left a reference to itself in the iocb
1040 	 */
1041 	if (is_sync_kiocb(iocb)) {
1042 		iocb->ki_user_data = res;
1043 		smp_wmb();
1044 		iocb->ki_ctx = ERR_PTR(-EXDEV);
1045 		wake_up_process(iocb->ki_obj.tsk);
1046 		return;
1047 	}
1048 
1049 	if (iocb->ki_list.next) {
1050 		unsigned long flags;
1051 
1052 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1053 		list_del(&iocb->ki_list);
1054 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1055 	}
1056 
1057 	/*
1058 	 * Add a completion event to the ring buffer. Must be done holding
1059 	 * ctx->completion_lock to prevent other code from messing with the tail
1060 	 * pointer since we might be called from irq context.
1061 	 */
1062 	spin_lock_irqsave(&ctx->completion_lock, flags);
1063 
1064 	tail = ctx->tail;
1065 	pos = tail + AIO_EVENTS_OFFSET;
1066 
1067 	if (++tail >= ctx->nr_events)
1068 		tail = 0;
1069 
1070 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1071 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1072 
1073 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1074 	event->data = iocb->ki_user_data;
1075 	event->res = res;
1076 	event->res2 = res2;
1077 
1078 	kunmap_atomic(ev_page);
1079 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1080 
1081 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1082 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1083 		 res, res2);
1084 
1085 	/* after flagging the request as done, we
1086 	 * must never even look at it again
1087 	 */
1088 	smp_wmb();	/* make event visible before updating tail */
1089 
1090 	ctx->tail = tail;
1091 
1092 	ring = kmap_atomic(ctx->ring_pages[0]);
1093 	head = ring->head;
1094 	ring->tail = tail;
1095 	kunmap_atomic(ring);
1096 	flush_dcache_page(ctx->ring_pages[0]);
1097 
1098 	ctx->completed_events++;
1099 	if (ctx->completed_events > 1)
1100 		refill_reqs_available(ctx, head, tail);
1101 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1102 
1103 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1104 
1105 	/*
1106 	 * Check if the user asked us to deliver the result through an
1107 	 * eventfd. The eventfd_signal() function is safe to be called
1108 	 * from IRQ context.
1109 	 */
1110 	if (iocb->ki_eventfd != NULL)
1111 		eventfd_signal(iocb->ki_eventfd, 1);
1112 
1113 	/* everything turned out well, dispose of the aiocb. */
1114 	kiocb_free(iocb);
1115 
1116 	/*
1117 	 * We have to order our ring_info tail store above and test
1118 	 * of the wait list below outside the wait lock.  This is
1119 	 * like in wake_up_bit() where clearing a bit has to be
1120 	 * ordered with the unlocked test.
1121 	 */
1122 	smp_mb();
1123 
1124 	if (waitqueue_active(&ctx->wait))
1125 		wake_up(&ctx->wait);
1126 
1127 	percpu_ref_put(&ctx->reqs);
1128 }
1129 EXPORT_SYMBOL(aio_complete);
1130 
1131 /* aio_read_events_ring
1132  *	Pull an event off of the ioctx's event ring.  Returns the number of
1133  *	events fetched
1134  */
1135 static long aio_read_events_ring(struct kioctx *ctx,
1136 				 struct io_event __user *event, long nr)
1137 {
1138 	struct aio_ring *ring;
1139 	unsigned head, tail, pos;
1140 	long ret = 0;
1141 	int copy_ret;
1142 
1143 	/*
1144 	 * The mutex can block and wake us up and that will cause
1145 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1146 	 * and repeat. This should be rare enough that it doesn't cause
1147 	 * peformance issues. See the comment in read_events() for more detail.
1148 	 */
1149 	sched_annotate_sleep();
1150 	mutex_lock(&ctx->ring_lock);
1151 
1152 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1153 	ring = kmap_atomic(ctx->ring_pages[0]);
1154 	head = ring->head;
1155 	tail = ring->tail;
1156 	kunmap_atomic(ring);
1157 
1158 	/*
1159 	 * Ensure that once we've read the current tail pointer, that
1160 	 * we also see the events that were stored up to the tail.
1161 	 */
1162 	smp_rmb();
1163 
1164 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1165 
1166 	if (head == tail)
1167 		goto out;
1168 
1169 	head %= ctx->nr_events;
1170 	tail %= ctx->nr_events;
1171 
1172 	while (ret < nr) {
1173 		long avail;
1174 		struct io_event *ev;
1175 		struct page *page;
1176 
1177 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1178 		if (head == tail)
1179 			break;
1180 
1181 		avail = min(avail, nr - ret);
1182 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1183 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1184 
1185 		pos = head + AIO_EVENTS_OFFSET;
1186 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1187 		pos %= AIO_EVENTS_PER_PAGE;
1188 
1189 		ev = kmap(page);
1190 		copy_ret = copy_to_user(event + ret, ev + pos,
1191 					sizeof(*ev) * avail);
1192 		kunmap(page);
1193 
1194 		if (unlikely(copy_ret)) {
1195 			ret = -EFAULT;
1196 			goto out;
1197 		}
1198 
1199 		ret += avail;
1200 		head += avail;
1201 		head %= ctx->nr_events;
1202 	}
1203 
1204 	ring = kmap_atomic(ctx->ring_pages[0]);
1205 	ring->head = head;
1206 	kunmap_atomic(ring);
1207 	flush_dcache_page(ctx->ring_pages[0]);
1208 
1209 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1210 out:
1211 	mutex_unlock(&ctx->ring_lock);
1212 
1213 	return ret;
1214 }
1215 
1216 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1217 			    struct io_event __user *event, long *i)
1218 {
1219 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1220 
1221 	if (ret > 0)
1222 		*i += ret;
1223 
1224 	if (unlikely(atomic_read(&ctx->dead)))
1225 		ret = -EINVAL;
1226 
1227 	if (!*i)
1228 		*i = ret;
1229 
1230 	return ret < 0 || *i >= min_nr;
1231 }
1232 
1233 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1234 			struct io_event __user *event,
1235 			struct timespec __user *timeout)
1236 {
1237 	ktime_t until = { .tv64 = KTIME_MAX };
1238 	long ret = 0;
1239 
1240 	if (timeout) {
1241 		struct timespec	ts;
1242 
1243 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1244 			return -EFAULT;
1245 
1246 		until = timespec_to_ktime(ts);
1247 	}
1248 
1249 	/*
1250 	 * Note that aio_read_events() is being called as the conditional - i.e.
1251 	 * we're calling it after prepare_to_wait() has set task state to
1252 	 * TASK_INTERRUPTIBLE.
1253 	 *
1254 	 * But aio_read_events() can block, and if it blocks it's going to flip
1255 	 * the task state back to TASK_RUNNING.
1256 	 *
1257 	 * This should be ok, provided it doesn't flip the state back to
1258 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1259 	 * will only happen if the mutex_lock() call blocks, and we then find
1260 	 * the ringbuffer empty. So in practice we should be ok, but it's
1261 	 * something to be aware of when touching this code.
1262 	 */
1263 	if (until.tv64 == 0)
1264 		aio_read_events(ctx, min_nr, nr, event, &ret);
1265 	else
1266 		wait_event_interruptible_hrtimeout(ctx->wait,
1267 				aio_read_events(ctx, min_nr, nr, event, &ret),
1268 				until);
1269 
1270 	if (!ret && signal_pending(current))
1271 		ret = -EINTR;
1272 
1273 	return ret;
1274 }
1275 
1276 /* sys_io_setup:
1277  *	Create an aio_context capable of receiving at least nr_events.
1278  *	ctxp must not point to an aio_context that already exists, and
1279  *	must be initialized to 0 prior to the call.  On successful
1280  *	creation of the aio_context, *ctxp is filled in with the resulting
1281  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1282  *	if the specified nr_events exceeds internal limits.  May fail
1283  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1284  *	of available events.  May fail with -ENOMEM if insufficient kernel
1285  *	resources are available.  May fail with -EFAULT if an invalid
1286  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1287  *	implemented.
1288  */
1289 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1290 {
1291 	struct kioctx *ioctx = NULL;
1292 	unsigned long ctx;
1293 	long ret;
1294 
1295 	ret = get_user(ctx, ctxp);
1296 	if (unlikely(ret))
1297 		goto out;
1298 
1299 	ret = -EINVAL;
1300 	if (unlikely(ctx || nr_events == 0)) {
1301 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1302 		         ctx, nr_events);
1303 		goto out;
1304 	}
1305 
1306 	ioctx = ioctx_alloc(nr_events);
1307 	ret = PTR_ERR(ioctx);
1308 	if (!IS_ERR(ioctx)) {
1309 		ret = put_user(ioctx->user_id, ctxp);
1310 		if (ret)
1311 			kill_ioctx(current->mm, ioctx, NULL);
1312 		percpu_ref_put(&ioctx->users);
1313 	}
1314 
1315 out:
1316 	return ret;
1317 }
1318 
1319 /* sys_io_destroy:
1320  *	Destroy the aio_context specified.  May cancel any outstanding
1321  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1322  *	implemented.  May fail with -EINVAL if the context pointed to
1323  *	is invalid.
1324  */
1325 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1326 {
1327 	struct kioctx *ioctx = lookup_ioctx(ctx);
1328 	if (likely(NULL != ioctx)) {
1329 		struct completion requests_done =
1330 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1331 		int ret;
1332 
1333 		/* Pass requests_done to kill_ioctx() where it can be set
1334 		 * in a thread-safe way. If we try to set it here then we have
1335 		 * a race condition if two io_destroy() called simultaneously.
1336 		 */
1337 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1338 		percpu_ref_put(&ioctx->users);
1339 
1340 		/* Wait until all IO for the context are done. Otherwise kernel
1341 		 * keep using user-space buffers even if user thinks the context
1342 		 * is destroyed.
1343 		 */
1344 		if (!ret)
1345 			wait_for_completion(&requests_done);
1346 
1347 		return ret;
1348 	}
1349 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1350 	return -EINVAL;
1351 }
1352 
1353 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1354 			    unsigned long, loff_t);
1355 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1356 
1357 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1358 				     int rw, char __user *buf,
1359 				     unsigned long *nr_segs,
1360 				     struct iovec **iovec,
1361 				     bool compat)
1362 {
1363 	ssize_t ret;
1364 
1365 	*nr_segs = kiocb->ki_nbytes;
1366 
1367 #ifdef CONFIG_COMPAT
1368 	if (compat)
1369 		ret = compat_rw_copy_check_uvector(rw,
1370 				(struct compat_iovec __user *)buf,
1371 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1372 	else
1373 #endif
1374 		ret = rw_copy_check_uvector(rw,
1375 				(struct iovec __user *)buf,
1376 				*nr_segs, UIO_FASTIOV, *iovec, iovec);
1377 	if (ret < 0)
1378 		return ret;
1379 
1380 	/* ki_nbytes now reflect bytes instead of segs */
1381 	kiocb->ki_nbytes = ret;
1382 	return 0;
1383 }
1384 
1385 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1386 				       int rw, char __user *buf,
1387 				       unsigned long *nr_segs,
1388 				       struct iovec *iovec)
1389 {
1390 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1391 		return -EFAULT;
1392 
1393 	iovec->iov_base = buf;
1394 	iovec->iov_len = kiocb->ki_nbytes;
1395 	*nr_segs = 1;
1396 	return 0;
1397 }
1398 
1399 /*
1400  * aio_run_iocb:
1401  *	Performs the initial checks and io submission.
1402  */
1403 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1404 			    char __user *buf, bool compat)
1405 {
1406 	struct file *file = req->ki_filp;
1407 	ssize_t ret;
1408 	unsigned long nr_segs;
1409 	int rw;
1410 	fmode_t mode;
1411 	aio_rw_op *rw_op;
1412 	rw_iter_op *iter_op;
1413 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1414 	struct iov_iter iter;
1415 
1416 	switch (opcode) {
1417 	case IOCB_CMD_PREAD:
1418 	case IOCB_CMD_PREADV:
1419 		mode	= FMODE_READ;
1420 		rw	= READ;
1421 		rw_op	= file->f_op->aio_read;
1422 		iter_op	= file->f_op->read_iter;
1423 		goto rw_common;
1424 
1425 	case IOCB_CMD_PWRITE:
1426 	case IOCB_CMD_PWRITEV:
1427 		mode	= FMODE_WRITE;
1428 		rw	= WRITE;
1429 		rw_op	= file->f_op->aio_write;
1430 		iter_op	= file->f_op->write_iter;
1431 		goto rw_common;
1432 rw_common:
1433 		if (unlikely(!(file->f_mode & mode)))
1434 			return -EBADF;
1435 
1436 		if (!rw_op && !iter_op)
1437 			return -EINVAL;
1438 
1439 		ret = (opcode == IOCB_CMD_PREADV ||
1440 		       opcode == IOCB_CMD_PWRITEV)
1441 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1442 						&iovec, compat)
1443 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1444 						  iovec);
1445 		if (!ret)
1446 			ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1447 		if (ret < 0) {
1448 			if (iovec != inline_vecs)
1449 				kfree(iovec);
1450 			return ret;
1451 		}
1452 
1453 		req->ki_nbytes = ret;
1454 
1455 		/* XXX: move/kill - rw_verify_area()? */
1456 		/* This matches the pread()/pwrite() logic */
1457 		if (req->ki_pos < 0) {
1458 			ret = -EINVAL;
1459 			break;
1460 		}
1461 
1462 		if (rw == WRITE)
1463 			file_start_write(file);
1464 
1465 		if (iter_op) {
1466 			iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes);
1467 			ret = iter_op(req, &iter);
1468 		} else {
1469 			ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1470 		}
1471 
1472 		if (rw == WRITE)
1473 			file_end_write(file);
1474 		break;
1475 
1476 	case IOCB_CMD_FDSYNC:
1477 		if (!file->f_op->aio_fsync)
1478 			return -EINVAL;
1479 
1480 		ret = file->f_op->aio_fsync(req, 1);
1481 		break;
1482 
1483 	case IOCB_CMD_FSYNC:
1484 		if (!file->f_op->aio_fsync)
1485 			return -EINVAL;
1486 
1487 		ret = file->f_op->aio_fsync(req, 0);
1488 		break;
1489 
1490 	default:
1491 		pr_debug("EINVAL: no operation provided\n");
1492 		return -EINVAL;
1493 	}
1494 
1495 	if (iovec != inline_vecs)
1496 		kfree(iovec);
1497 
1498 	if (ret != -EIOCBQUEUED) {
1499 		/*
1500 		 * There's no easy way to restart the syscall since other AIO's
1501 		 * may be already running. Just fail this IO with EINTR.
1502 		 */
1503 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1504 			     ret == -ERESTARTNOHAND ||
1505 			     ret == -ERESTART_RESTARTBLOCK))
1506 			ret = -EINTR;
1507 		aio_complete(req, ret, 0);
1508 	}
1509 
1510 	return 0;
1511 }
1512 
1513 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1514 			 struct iocb *iocb, bool compat)
1515 {
1516 	struct kiocb *req;
1517 	ssize_t ret;
1518 
1519 	/* enforce forwards compatibility on users */
1520 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1521 		pr_debug("EINVAL: reserve field set\n");
1522 		return -EINVAL;
1523 	}
1524 
1525 	/* prevent overflows */
1526 	if (unlikely(
1527 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1528 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1529 	    ((ssize_t)iocb->aio_nbytes < 0)
1530 	   )) {
1531 		pr_debug("EINVAL: io_submit: overflow check\n");
1532 		return -EINVAL;
1533 	}
1534 
1535 	req = aio_get_req(ctx);
1536 	if (unlikely(!req))
1537 		return -EAGAIN;
1538 
1539 	req->ki_filp = fget(iocb->aio_fildes);
1540 	if (unlikely(!req->ki_filp)) {
1541 		ret = -EBADF;
1542 		goto out_put_req;
1543 	}
1544 
1545 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1546 		/*
1547 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1548 		 * instance of the file* now. The file descriptor must be
1549 		 * an eventfd() fd, and will be signaled for each completed
1550 		 * event using the eventfd_signal() function.
1551 		 */
1552 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1553 		if (IS_ERR(req->ki_eventfd)) {
1554 			ret = PTR_ERR(req->ki_eventfd);
1555 			req->ki_eventfd = NULL;
1556 			goto out_put_req;
1557 		}
1558 	}
1559 
1560 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1561 	if (unlikely(ret)) {
1562 		pr_debug("EFAULT: aio_key\n");
1563 		goto out_put_req;
1564 	}
1565 
1566 	req->ki_obj.user = user_iocb;
1567 	req->ki_user_data = iocb->aio_data;
1568 	req->ki_pos = iocb->aio_offset;
1569 	req->ki_nbytes = iocb->aio_nbytes;
1570 
1571 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1572 			   (char __user *)(unsigned long)iocb->aio_buf,
1573 			   compat);
1574 	if (ret)
1575 		goto out_put_req;
1576 
1577 	return 0;
1578 out_put_req:
1579 	put_reqs_available(ctx, 1);
1580 	percpu_ref_put(&ctx->reqs);
1581 	kiocb_free(req);
1582 	return ret;
1583 }
1584 
1585 long do_io_submit(aio_context_t ctx_id, long nr,
1586 		  struct iocb __user *__user *iocbpp, bool compat)
1587 {
1588 	struct kioctx *ctx;
1589 	long ret = 0;
1590 	int i = 0;
1591 	struct blk_plug plug;
1592 
1593 	if (unlikely(nr < 0))
1594 		return -EINVAL;
1595 
1596 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1597 		nr = LONG_MAX/sizeof(*iocbpp);
1598 
1599 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1600 		return -EFAULT;
1601 
1602 	ctx = lookup_ioctx(ctx_id);
1603 	if (unlikely(!ctx)) {
1604 		pr_debug("EINVAL: invalid context id\n");
1605 		return -EINVAL;
1606 	}
1607 
1608 	blk_start_plug(&plug);
1609 
1610 	/*
1611 	 * AKPM: should this return a partial result if some of the IOs were
1612 	 * successfully submitted?
1613 	 */
1614 	for (i=0; i<nr; i++) {
1615 		struct iocb __user *user_iocb;
1616 		struct iocb tmp;
1617 
1618 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1619 			ret = -EFAULT;
1620 			break;
1621 		}
1622 
1623 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1624 			ret = -EFAULT;
1625 			break;
1626 		}
1627 
1628 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1629 		if (ret)
1630 			break;
1631 	}
1632 	blk_finish_plug(&plug);
1633 
1634 	percpu_ref_put(&ctx->users);
1635 	return i ? i : ret;
1636 }
1637 
1638 /* sys_io_submit:
1639  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1640  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1641  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1642  *	*iocbpp[0] is not properly initialized, if the operation specified
1643  *	is invalid for the file descriptor in the iocb.  May fail with
1644  *	-EFAULT if any of the data structures point to invalid data.  May
1645  *	fail with -EBADF if the file descriptor specified in the first
1646  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1647  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1648  *	fail with -ENOSYS if not implemented.
1649  */
1650 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1651 		struct iocb __user * __user *, iocbpp)
1652 {
1653 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1654 }
1655 
1656 /* lookup_kiocb
1657  *	Finds a given iocb for cancellation.
1658  */
1659 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1660 				  u32 key)
1661 {
1662 	struct list_head *pos;
1663 
1664 	assert_spin_locked(&ctx->ctx_lock);
1665 
1666 	if (key != KIOCB_KEY)
1667 		return NULL;
1668 
1669 	/* TODO: use a hash or array, this sucks. */
1670 	list_for_each(pos, &ctx->active_reqs) {
1671 		struct kiocb *kiocb = list_kiocb(pos);
1672 		if (kiocb->ki_obj.user == iocb)
1673 			return kiocb;
1674 	}
1675 	return NULL;
1676 }
1677 
1678 /* sys_io_cancel:
1679  *	Attempts to cancel an iocb previously passed to io_submit.  If
1680  *	the operation is successfully cancelled, the resulting event is
1681  *	copied into the memory pointed to by result without being placed
1682  *	into the completion queue and 0 is returned.  May fail with
1683  *	-EFAULT if any of the data structures pointed to are invalid.
1684  *	May fail with -EINVAL if aio_context specified by ctx_id is
1685  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1686  *	cancelled.  Will fail with -ENOSYS if not implemented.
1687  */
1688 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1689 		struct io_event __user *, result)
1690 {
1691 	struct kioctx *ctx;
1692 	struct kiocb *kiocb;
1693 	u32 key;
1694 	int ret;
1695 
1696 	ret = get_user(key, &iocb->aio_key);
1697 	if (unlikely(ret))
1698 		return -EFAULT;
1699 
1700 	ctx = lookup_ioctx(ctx_id);
1701 	if (unlikely(!ctx))
1702 		return -EINVAL;
1703 
1704 	spin_lock_irq(&ctx->ctx_lock);
1705 
1706 	kiocb = lookup_kiocb(ctx, iocb, key);
1707 	if (kiocb)
1708 		ret = kiocb_cancel(kiocb);
1709 	else
1710 		ret = -EINVAL;
1711 
1712 	spin_unlock_irq(&ctx->ctx_lock);
1713 
1714 	if (!ret) {
1715 		/*
1716 		 * The result argument is no longer used - the io_event is
1717 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1718 		 * cancellation is progress:
1719 		 */
1720 		ret = -EINPROGRESS;
1721 	}
1722 
1723 	percpu_ref_put(&ctx->users);
1724 
1725 	return ret;
1726 }
1727 
1728 /* io_getevents:
1729  *	Attempts to read at least min_nr events and up to nr events from
1730  *	the completion queue for the aio_context specified by ctx_id. If
1731  *	it succeeds, the number of read events is returned. May fail with
1732  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1733  *	out of range, if timeout is out of range.  May fail with -EFAULT
1734  *	if any of the memory specified is invalid.  May return 0 or
1735  *	< min_nr if the timeout specified by timeout has elapsed
1736  *	before sufficient events are available, where timeout == NULL
1737  *	specifies an infinite timeout. Note that the timeout pointed to by
1738  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1739  */
1740 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1741 		long, min_nr,
1742 		long, nr,
1743 		struct io_event __user *, events,
1744 		struct timespec __user *, timeout)
1745 {
1746 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1747 	long ret = -EINVAL;
1748 
1749 	if (likely(ioctx)) {
1750 		if (likely(min_nr <= nr && min_nr >= 0))
1751 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1752 		percpu_ref_put(&ioctx->users);
1753 	}
1754 	return ret;
1755 }
1756