xref: /openbmc/linux/fs/aio.c (revision 4800cd83)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
40 
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
43 
44 #if DEBUG > 1
45 #define dprintk		printk
46 #else
47 #define dprintk(x...)	do { ; } while (0)
48 #endif
49 
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock);
52 unsigned long aio_nr;		/* current system wide number of aio requests */
53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
55 
56 static struct kmem_cache	*kiocb_cachep;
57 static struct kmem_cache	*kioctx_cachep;
58 
59 static struct workqueue_struct *aio_wq;
60 
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct *);
63 static DECLARE_WORK(fput_work, aio_fput_routine);
64 
65 static DEFINE_SPINLOCK(fput_lock);
66 static LIST_HEAD(fput_head);
67 
68 #define AIO_BATCH_HASH_BITS	3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE	(1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry {
71 	struct hlist_node list;
72 	struct address_space *mapping;
73 };
74 mempool_t *abe_pool;
75 
76 static void aio_kick_handler(struct work_struct *);
77 static void aio_queue_work(struct kioctx *);
78 
79 /* aio_setup
80  *	Creates the slab caches used by the aio routines, panic on
81  *	failure as this is done early during the boot sequence.
82  */
83 static int __init aio_setup(void)
84 {
85 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
87 
88 	aio_wq = create_workqueue("aio");
89 	abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90 	BUG_ON(!aio_wq || !abe_pool);
91 
92 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
93 
94 	return 0;
95 }
96 __initcall(aio_setup);
97 
98 static void aio_free_ring(struct kioctx *ctx)
99 {
100 	struct aio_ring_info *info = &ctx->ring_info;
101 	long i;
102 
103 	for (i=0; i<info->nr_pages; i++)
104 		put_page(info->ring_pages[i]);
105 
106 	if (info->mmap_size) {
107 		down_write(&ctx->mm->mmap_sem);
108 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109 		up_write(&ctx->mm->mmap_sem);
110 	}
111 
112 	if (info->ring_pages && info->ring_pages != info->internal_pages)
113 		kfree(info->ring_pages);
114 	info->ring_pages = NULL;
115 	info->nr = 0;
116 }
117 
118 static int aio_setup_ring(struct kioctx *ctx)
119 {
120 	struct aio_ring *ring;
121 	struct aio_ring_info *info = &ctx->ring_info;
122 	unsigned nr_events = ctx->max_reqs;
123 	unsigned long size;
124 	int nr_pages;
125 
126 	/* Compensate for the ring buffer's head/tail overlap entry */
127 	nr_events += 2;	/* 1 is required, 2 for good luck */
128 
129 	size = sizeof(struct aio_ring);
130 	size += sizeof(struct io_event) * nr_events;
131 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
132 
133 	if (nr_pages < 0)
134 		return -EINVAL;
135 
136 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
137 
138 	info->nr = 0;
139 	info->ring_pages = info->internal_pages;
140 	if (nr_pages > AIO_RING_PAGES) {
141 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142 		if (!info->ring_pages)
143 			return -ENOMEM;
144 	}
145 
146 	info->mmap_size = nr_pages * PAGE_SIZE;
147 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148 	down_write(&ctx->mm->mmap_sem);
149 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
151 				  0);
152 	if (IS_ERR((void *)info->mmap_base)) {
153 		up_write(&ctx->mm->mmap_sem);
154 		info->mmap_size = 0;
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160 	info->nr_pages = get_user_pages(current, ctx->mm,
161 					info->mmap_base, nr_pages,
162 					1, 0, info->ring_pages, NULL);
163 	up_write(&ctx->mm->mmap_sem);
164 
165 	if (unlikely(info->nr_pages != nr_pages)) {
166 		aio_free_ring(ctx);
167 		return -EAGAIN;
168 	}
169 
170 	ctx->user_id = info->mmap_base;
171 
172 	info->nr = nr_events;		/* trusted copy */
173 
174 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175 	ring->nr = nr_events;	/* user copy */
176 	ring->id = ctx->user_id;
177 	ring->head = ring->tail = 0;
178 	ring->magic = AIO_RING_MAGIC;
179 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
180 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181 	ring->header_length = sizeof(struct aio_ring);
182 	kunmap_atomic(ring, KM_USER0);
183 
184 	return 0;
185 }
186 
187 
188 /* aio_ring_event: returns a pointer to the event at the given index from
189  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
190  */
191 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
194 
195 #define aio_ring_event(info, nr, km) ({					\
196 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
197 	struct io_event *__event;					\
198 	__event = kmap_atomic(						\
199 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 	__event += pos % AIO_EVENTS_PER_PAGE;				\
201 	__event;							\
202 })
203 
204 #define put_aio_ring_event(event, km) do {	\
205 	struct io_event *__event = (event);	\
206 	(void)__event;				\
207 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208 } while(0)
209 
210 static void ctx_rcu_free(struct rcu_head *head)
211 {
212 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213 	unsigned nr_events = ctx->max_reqs;
214 
215 	kmem_cache_free(kioctx_cachep, ctx);
216 
217 	if (nr_events) {
218 		spin_lock(&aio_nr_lock);
219 		BUG_ON(aio_nr - nr_events > aio_nr);
220 		aio_nr -= nr_events;
221 		spin_unlock(&aio_nr_lock);
222 	}
223 }
224 
225 /* __put_ioctx
226  *	Called when the last user of an aio context has gone away,
227  *	and the struct needs to be freed.
228  */
229 static void __put_ioctx(struct kioctx *ctx)
230 {
231 	BUG_ON(ctx->reqs_active);
232 
233 	cancel_delayed_work(&ctx->wq);
234 	cancel_work_sync(&ctx->wq.work);
235 	aio_free_ring(ctx);
236 	mmdrop(ctx->mm);
237 	ctx->mm = NULL;
238 	pr_debug("__put_ioctx: freeing %p\n", ctx);
239 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
240 }
241 
242 static inline void get_ioctx(struct kioctx *kioctx)
243 {
244 	BUG_ON(atomic_read(&kioctx->users) <= 0);
245 	atomic_inc(&kioctx->users);
246 }
247 
248 static inline int try_get_ioctx(struct kioctx *kioctx)
249 {
250 	return atomic_inc_not_zero(&kioctx->users);
251 }
252 
253 static inline void put_ioctx(struct kioctx *kioctx)
254 {
255 	BUG_ON(atomic_read(&kioctx->users) <= 0);
256 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
257 		__put_ioctx(kioctx);
258 }
259 
260 /* ioctx_alloc
261  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
262  */
263 static struct kioctx *ioctx_alloc(unsigned nr_events)
264 {
265 	struct mm_struct *mm;
266 	struct kioctx *ctx;
267 	int did_sync = 0;
268 
269 	/* Prevent overflows */
270 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
271 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
272 		pr_debug("ENOMEM: nr_events too high\n");
273 		return ERR_PTR(-EINVAL);
274 	}
275 
276 	if ((unsigned long)nr_events > aio_max_nr)
277 		return ERR_PTR(-EAGAIN);
278 
279 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
280 	if (!ctx)
281 		return ERR_PTR(-ENOMEM);
282 
283 	ctx->max_reqs = nr_events;
284 	mm = ctx->mm = current->mm;
285 	atomic_inc(&mm->mm_count);
286 
287 	atomic_set(&ctx->users, 1);
288 	spin_lock_init(&ctx->ctx_lock);
289 	spin_lock_init(&ctx->ring_info.ring_lock);
290 	init_waitqueue_head(&ctx->wait);
291 
292 	INIT_LIST_HEAD(&ctx->active_reqs);
293 	INIT_LIST_HEAD(&ctx->run_list);
294 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
295 
296 	if (aio_setup_ring(ctx) < 0)
297 		goto out_freectx;
298 
299 	/* limit the number of system wide aios */
300 	do {
301 		spin_lock_bh(&aio_nr_lock);
302 		if (aio_nr + nr_events > aio_max_nr ||
303 		    aio_nr + nr_events < aio_nr)
304 			ctx->max_reqs = 0;
305 		else
306 			aio_nr += ctx->max_reqs;
307 		spin_unlock_bh(&aio_nr_lock);
308 		if (ctx->max_reqs || did_sync)
309 			break;
310 
311 		/* wait for rcu callbacks to have completed before giving up */
312 		synchronize_rcu();
313 		did_sync = 1;
314 		ctx->max_reqs = nr_events;
315 	} while (1);
316 
317 	if (ctx->max_reqs == 0)
318 		goto out_cleanup;
319 
320 	/* now link into global list. */
321 	spin_lock(&mm->ioctx_lock);
322 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
323 	spin_unlock(&mm->ioctx_lock);
324 
325 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
326 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
327 	return ctx;
328 
329 out_cleanup:
330 	__put_ioctx(ctx);
331 	return ERR_PTR(-EAGAIN);
332 
333 out_freectx:
334 	mmdrop(mm);
335 	kmem_cache_free(kioctx_cachep, ctx);
336 	ctx = ERR_PTR(-ENOMEM);
337 
338 	dprintk("aio: error allocating ioctx %p\n", ctx);
339 	return ctx;
340 }
341 
342 /* aio_cancel_all
343  *	Cancels all outstanding aio requests on an aio context.  Used
344  *	when the processes owning a context have all exited to encourage
345  *	the rapid destruction of the kioctx.
346  */
347 static void aio_cancel_all(struct kioctx *ctx)
348 {
349 	int (*cancel)(struct kiocb *, struct io_event *);
350 	struct io_event res;
351 	spin_lock_irq(&ctx->ctx_lock);
352 	ctx->dead = 1;
353 	while (!list_empty(&ctx->active_reqs)) {
354 		struct list_head *pos = ctx->active_reqs.next;
355 		struct kiocb *iocb = list_kiocb(pos);
356 		list_del_init(&iocb->ki_list);
357 		cancel = iocb->ki_cancel;
358 		kiocbSetCancelled(iocb);
359 		if (cancel) {
360 			iocb->ki_users++;
361 			spin_unlock_irq(&ctx->ctx_lock);
362 			cancel(iocb, &res);
363 			spin_lock_irq(&ctx->ctx_lock);
364 		}
365 	}
366 	spin_unlock_irq(&ctx->ctx_lock);
367 }
368 
369 static void wait_for_all_aios(struct kioctx *ctx)
370 {
371 	struct task_struct *tsk = current;
372 	DECLARE_WAITQUEUE(wait, tsk);
373 
374 	spin_lock_irq(&ctx->ctx_lock);
375 	if (!ctx->reqs_active)
376 		goto out;
377 
378 	add_wait_queue(&ctx->wait, &wait);
379 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
380 	while (ctx->reqs_active) {
381 		spin_unlock_irq(&ctx->ctx_lock);
382 		io_schedule();
383 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
384 		spin_lock_irq(&ctx->ctx_lock);
385 	}
386 	__set_task_state(tsk, TASK_RUNNING);
387 	remove_wait_queue(&ctx->wait, &wait);
388 
389 out:
390 	spin_unlock_irq(&ctx->ctx_lock);
391 }
392 
393 /* wait_on_sync_kiocb:
394  *	Waits on the given sync kiocb to complete.
395  */
396 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
397 {
398 	while (iocb->ki_users) {
399 		set_current_state(TASK_UNINTERRUPTIBLE);
400 		if (!iocb->ki_users)
401 			break;
402 		io_schedule();
403 	}
404 	__set_current_state(TASK_RUNNING);
405 	return iocb->ki_user_data;
406 }
407 EXPORT_SYMBOL(wait_on_sync_kiocb);
408 
409 /* exit_aio: called when the last user of mm goes away.  At this point,
410  * there is no way for any new requests to be submited or any of the
411  * io_* syscalls to be called on the context.  However, there may be
412  * outstanding requests which hold references to the context; as they
413  * go away, they will call put_ioctx and release any pinned memory
414  * associated with the request (held via struct page * references).
415  */
416 void exit_aio(struct mm_struct *mm)
417 {
418 	struct kioctx *ctx;
419 
420 	while (!hlist_empty(&mm->ioctx_list)) {
421 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
422 		hlist_del_rcu(&ctx->list);
423 
424 		aio_cancel_all(ctx);
425 
426 		wait_for_all_aios(ctx);
427 		/*
428 		 * Ensure we don't leave the ctx on the aio_wq
429 		 */
430 		cancel_work_sync(&ctx->wq.work);
431 
432 		if (1 != atomic_read(&ctx->users))
433 			printk(KERN_DEBUG
434 				"exit_aio:ioctx still alive: %d %d %d\n",
435 				atomic_read(&ctx->users), ctx->dead,
436 				ctx->reqs_active);
437 		put_ioctx(ctx);
438 	}
439 }
440 
441 /* aio_get_req
442  *	Allocate a slot for an aio request.  Increments the users count
443  * of the kioctx so that the kioctx stays around until all requests are
444  * complete.  Returns NULL if no requests are free.
445  *
446  * Returns with kiocb->users set to 2.  The io submit code path holds
447  * an extra reference while submitting the i/o.
448  * This prevents races between the aio code path referencing the
449  * req (after submitting it) and aio_complete() freeing the req.
450  */
451 static struct kiocb *__aio_get_req(struct kioctx *ctx)
452 {
453 	struct kiocb *req = NULL;
454 	struct aio_ring *ring;
455 	int okay = 0;
456 
457 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
458 	if (unlikely(!req))
459 		return NULL;
460 
461 	req->ki_flags = 0;
462 	req->ki_users = 2;
463 	req->ki_key = 0;
464 	req->ki_ctx = ctx;
465 	req->ki_cancel = NULL;
466 	req->ki_retry = NULL;
467 	req->ki_dtor = NULL;
468 	req->private = NULL;
469 	req->ki_iovec = NULL;
470 	INIT_LIST_HEAD(&req->ki_run_list);
471 	req->ki_eventfd = NULL;
472 
473 	/* Check if the completion queue has enough free space to
474 	 * accept an event from this io.
475 	 */
476 	spin_lock_irq(&ctx->ctx_lock);
477 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
478 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
479 		list_add(&req->ki_list, &ctx->active_reqs);
480 		ctx->reqs_active++;
481 		okay = 1;
482 	}
483 	kunmap_atomic(ring, KM_USER0);
484 	spin_unlock_irq(&ctx->ctx_lock);
485 
486 	if (!okay) {
487 		kmem_cache_free(kiocb_cachep, req);
488 		req = NULL;
489 	}
490 
491 	return req;
492 }
493 
494 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
495 {
496 	struct kiocb *req;
497 	/* Handle a potential starvation case -- should be exceedingly rare as
498 	 * requests will be stuck on fput_head only if the aio_fput_routine is
499 	 * delayed and the requests were the last user of the struct file.
500 	 */
501 	req = __aio_get_req(ctx);
502 	if (unlikely(NULL == req)) {
503 		aio_fput_routine(NULL);
504 		req = __aio_get_req(ctx);
505 	}
506 	return req;
507 }
508 
509 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
510 {
511 	assert_spin_locked(&ctx->ctx_lock);
512 
513 	if (req->ki_eventfd != NULL)
514 		eventfd_ctx_put(req->ki_eventfd);
515 	if (req->ki_dtor)
516 		req->ki_dtor(req);
517 	if (req->ki_iovec != &req->ki_inline_vec)
518 		kfree(req->ki_iovec);
519 	kmem_cache_free(kiocb_cachep, req);
520 	ctx->reqs_active--;
521 
522 	if (unlikely(!ctx->reqs_active && ctx->dead))
523 		wake_up(&ctx->wait);
524 }
525 
526 static void aio_fput_routine(struct work_struct *data)
527 {
528 	spin_lock_irq(&fput_lock);
529 	while (likely(!list_empty(&fput_head))) {
530 		struct kiocb *req = list_kiocb(fput_head.next);
531 		struct kioctx *ctx = req->ki_ctx;
532 
533 		list_del(&req->ki_list);
534 		spin_unlock_irq(&fput_lock);
535 
536 		/* Complete the fput(s) */
537 		if (req->ki_filp != NULL)
538 			fput(req->ki_filp);
539 
540 		/* Link the iocb into the context's free list */
541 		spin_lock_irq(&ctx->ctx_lock);
542 		really_put_req(ctx, req);
543 		spin_unlock_irq(&ctx->ctx_lock);
544 
545 		put_ioctx(ctx);
546 		spin_lock_irq(&fput_lock);
547 	}
548 	spin_unlock_irq(&fput_lock);
549 }
550 
551 /* __aio_put_req
552  *	Returns true if this put was the last user of the request.
553  */
554 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
555 {
556 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
557 		req, atomic_long_read(&req->ki_filp->f_count));
558 
559 	assert_spin_locked(&ctx->ctx_lock);
560 
561 	req->ki_users--;
562 	BUG_ON(req->ki_users < 0);
563 	if (likely(req->ki_users))
564 		return 0;
565 	list_del(&req->ki_list);		/* remove from active_reqs */
566 	req->ki_cancel = NULL;
567 	req->ki_retry = NULL;
568 
569 	/*
570 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
571 	 * schedule work in case it is not final fput() time. In normal cases,
572 	 * we would not be holding the last reference to the file*, so
573 	 * this function will be executed w/out any aio kthread wakeup.
574 	 */
575 	if (unlikely(!fput_atomic(req->ki_filp))) {
576 		get_ioctx(ctx);
577 		spin_lock(&fput_lock);
578 		list_add(&req->ki_list, &fput_head);
579 		spin_unlock(&fput_lock);
580 		queue_work(aio_wq, &fput_work);
581 	} else {
582 		req->ki_filp = NULL;
583 		really_put_req(ctx, req);
584 	}
585 	return 1;
586 }
587 
588 /* aio_put_req
589  *	Returns true if this put was the last user of the kiocb,
590  *	false if the request is still in use.
591  */
592 int aio_put_req(struct kiocb *req)
593 {
594 	struct kioctx *ctx = req->ki_ctx;
595 	int ret;
596 	spin_lock_irq(&ctx->ctx_lock);
597 	ret = __aio_put_req(ctx, req);
598 	spin_unlock_irq(&ctx->ctx_lock);
599 	return ret;
600 }
601 EXPORT_SYMBOL(aio_put_req);
602 
603 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
604 {
605 	struct mm_struct *mm = current->mm;
606 	struct kioctx *ctx, *ret = NULL;
607 	struct hlist_node *n;
608 
609 	rcu_read_lock();
610 
611 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
612 		/*
613 		 * RCU protects us against accessing freed memory but
614 		 * we have to be careful not to get a reference when the
615 		 * reference count already dropped to 0 (ctx->dead test
616 		 * is unreliable because of races).
617 		 */
618 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
619 			ret = ctx;
620 			break;
621 		}
622 	}
623 
624 	rcu_read_unlock();
625 	return ret;
626 }
627 
628 /*
629  * Queue up a kiocb to be retried. Assumes that the kiocb
630  * has already been marked as kicked, and places it on
631  * the retry run list for the corresponding ioctx, if it
632  * isn't already queued. Returns 1 if it actually queued
633  * the kiocb (to tell the caller to activate the work
634  * queue to process it), or 0, if it found that it was
635  * already queued.
636  */
637 static inline int __queue_kicked_iocb(struct kiocb *iocb)
638 {
639 	struct kioctx *ctx = iocb->ki_ctx;
640 
641 	assert_spin_locked(&ctx->ctx_lock);
642 
643 	if (list_empty(&iocb->ki_run_list)) {
644 		list_add_tail(&iocb->ki_run_list,
645 			&ctx->run_list);
646 		return 1;
647 	}
648 	return 0;
649 }
650 
651 /* aio_run_iocb
652  *	This is the core aio execution routine. It is
653  *	invoked both for initial i/o submission and
654  *	subsequent retries via the aio_kick_handler.
655  *	Expects to be invoked with iocb->ki_ctx->lock
656  *	already held. The lock is released and reacquired
657  *	as needed during processing.
658  *
659  * Calls the iocb retry method (already setup for the
660  * iocb on initial submission) for operation specific
661  * handling, but takes care of most of common retry
662  * execution details for a given iocb. The retry method
663  * needs to be non-blocking as far as possible, to avoid
664  * holding up other iocbs waiting to be serviced by the
665  * retry kernel thread.
666  *
667  * The trickier parts in this code have to do with
668  * ensuring that only one retry instance is in progress
669  * for a given iocb at any time. Providing that guarantee
670  * simplifies the coding of individual aio operations as
671  * it avoids various potential races.
672  */
673 static ssize_t aio_run_iocb(struct kiocb *iocb)
674 {
675 	struct kioctx	*ctx = iocb->ki_ctx;
676 	ssize_t (*retry)(struct kiocb *);
677 	ssize_t ret;
678 
679 	if (!(retry = iocb->ki_retry)) {
680 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
681 		return 0;
682 	}
683 
684 	/*
685 	 * We don't want the next retry iteration for this
686 	 * operation to start until this one has returned and
687 	 * updated the iocb state. However, wait_queue functions
688 	 * can trigger a kick_iocb from interrupt context in the
689 	 * meantime, indicating that data is available for the next
690 	 * iteration. We want to remember that and enable the
691 	 * next retry iteration _after_ we are through with
692 	 * this one.
693 	 *
694 	 * So, in order to be able to register a "kick", but
695 	 * prevent it from being queued now, we clear the kick
696 	 * flag, but make the kick code *think* that the iocb is
697 	 * still on the run list until we are actually done.
698 	 * When we are done with this iteration, we check if
699 	 * the iocb was kicked in the meantime and if so, queue
700 	 * it up afresh.
701 	 */
702 
703 	kiocbClearKicked(iocb);
704 
705 	/*
706 	 * This is so that aio_complete knows it doesn't need to
707 	 * pull the iocb off the run list (We can't just call
708 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
709 	 * queue this on the run list yet)
710 	 */
711 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
712 	spin_unlock_irq(&ctx->ctx_lock);
713 
714 	/* Quit retrying if the i/o has been cancelled */
715 	if (kiocbIsCancelled(iocb)) {
716 		ret = -EINTR;
717 		aio_complete(iocb, ret, 0);
718 		/* must not access the iocb after this */
719 		goto out;
720 	}
721 
722 	/*
723 	 * Now we are all set to call the retry method in async
724 	 * context.
725 	 */
726 	ret = retry(iocb);
727 
728 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
729 		/*
730 		 * There's no easy way to restart the syscall since other AIO's
731 		 * may be already running. Just fail this IO with EINTR.
732 		 */
733 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
734 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
735 			ret = -EINTR;
736 		aio_complete(iocb, ret, 0);
737 	}
738 out:
739 	spin_lock_irq(&ctx->ctx_lock);
740 
741 	if (-EIOCBRETRY == ret) {
742 		/*
743 		 * OK, now that we are done with this iteration
744 		 * and know that there is more left to go,
745 		 * this is where we let go so that a subsequent
746 		 * "kick" can start the next iteration
747 		 */
748 
749 		/* will make __queue_kicked_iocb succeed from here on */
750 		INIT_LIST_HEAD(&iocb->ki_run_list);
751 		/* we must queue the next iteration ourselves, if it
752 		 * has already been kicked */
753 		if (kiocbIsKicked(iocb)) {
754 			__queue_kicked_iocb(iocb);
755 
756 			/*
757 			 * __queue_kicked_iocb will always return 1 here, because
758 			 * iocb->ki_run_list is empty at this point so it should
759 			 * be safe to unconditionally queue the context into the
760 			 * work queue.
761 			 */
762 			aio_queue_work(ctx);
763 		}
764 	}
765 	return ret;
766 }
767 
768 /*
769  * __aio_run_iocbs:
770  * 	Process all pending retries queued on the ioctx
771  * 	run list.
772  * Assumes it is operating within the aio issuer's mm
773  * context.
774  */
775 static int __aio_run_iocbs(struct kioctx *ctx)
776 {
777 	struct kiocb *iocb;
778 	struct list_head run_list;
779 
780 	assert_spin_locked(&ctx->ctx_lock);
781 
782 	list_replace_init(&ctx->run_list, &run_list);
783 	while (!list_empty(&run_list)) {
784 		iocb = list_entry(run_list.next, struct kiocb,
785 			ki_run_list);
786 		list_del(&iocb->ki_run_list);
787 		/*
788 		 * Hold an extra reference while retrying i/o.
789 		 */
790 		iocb->ki_users++;       /* grab extra reference */
791 		aio_run_iocb(iocb);
792 		__aio_put_req(ctx, iocb);
793  	}
794 	if (!list_empty(&ctx->run_list))
795 		return 1;
796 	return 0;
797 }
798 
799 static void aio_queue_work(struct kioctx * ctx)
800 {
801 	unsigned long timeout;
802 	/*
803 	 * if someone is waiting, get the work started right
804 	 * away, otherwise, use a longer delay
805 	 */
806 	smp_mb();
807 	if (waitqueue_active(&ctx->wait))
808 		timeout = 1;
809 	else
810 		timeout = HZ/10;
811 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
812 }
813 
814 /*
815  * aio_run_all_iocbs:
816  *	Process all pending retries queued on the ioctx
817  *	run list, and keep running them until the list
818  *	stays empty.
819  * Assumes it is operating within the aio issuer's mm context.
820  */
821 static inline void aio_run_all_iocbs(struct kioctx *ctx)
822 {
823 	spin_lock_irq(&ctx->ctx_lock);
824 	while (__aio_run_iocbs(ctx))
825 		;
826 	spin_unlock_irq(&ctx->ctx_lock);
827 }
828 
829 /*
830  * aio_kick_handler:
831  * 	Work queue handler triggered to process pending
832  * 	retries on an ioctx. Takes on the aio issuer's
833  *	mm context before running the iocbs, so that
834  *	copy_xxx_user operates on the issuer's address
835  *      space.
836  * Run on aiod's context.
837  */
838 static void aio_kick_handler(struct work_struct *work)
839 {
840 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
841 	mm_segment_t oldfs = get_fs();
842 	struct mm_struct *mm;
843 	int requeue;
844 
845 	set_fs(USER_DS);
846 	use_mm(ctx->mm);
847 	spin_lock_irq(&ctx->ctx_lock);
848 	requeue =__aio_run_iocbs(ctx);
849 	mm = ctx->mm;
850 	spin_unlock_irq(&ctx->ctx_lock);
851  	unuse_mm(mm);
852 	set_fs(oldfs);
853 	/*
854 	 * we're in a worker thread already, don't use queue_delayed_work,
855 	 */
856 	if (requeue)
857 		queue_delayed_work(aio_wq, &ctx->wq, 0);
858 }
859 
860 
861 /*
862  * Called by kick_iocb to queue the kiocb for retry
863  * and if required activate the aio work queue to process
864  * it
865  */
866 static void try_queue_kicked_iocb(struct kiocb *iocb)
867 {
868  	struct kioctx	*ctx = iocb->ki_ctx;
869 	unsigned long flags;
870 	int run = 0;
871 
872 	spin_lock_irqsave(&ctx->ctx_lock, flags);
873 	/* set this inside the lock so that we can't race with aio_run_iocb()
874 	 * testing it and putting the iocb on the run list under the lock */
875 	if (!kiocbTryKick(iocb))
876 		run = __queue_kicked_iocb(iocb);
877 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
878 	if (run)
879 		aio_queue_work(ctx);
880 }
881 
882 /*
883  * kick_iocb:
884  *      Called typically from a wait queue callback context
885  *      to trigger a retry of the iocb.
886  *      The retry is usually executed by aio workqueue
887  *      threads (See aio_kick_handler).
888  */
889 void kick_iocb(struct kiocb *iocb)
890 {
891 	/* sync iocbs are easy: they can only ever be executing from a
892 	 * single context. */
893 	if (is_sync_kiocb(iocb)) {
894 		kiocbSetKicked(iocb);
895 	        wake_up_process(iocb->ki_obj.tsk);
896 		return;
897 	}
898 
899 	try_queue_kicked_iocb(iocb);
900 }
901 EXPORT_SYMBOL(kick_iocb);
902 
903 /* aio_complete
904  *	Called when the io request on the given iocb is complete.
905  *	Returns true if this is the last user of the request.  The
906  *	only other user of the request can be the cancellation code.
907  */
908 int aio_complete(struct kiocb *iocb, long res, long res2)
909 {
910 	struct kioctx	*ctx = iocb->ki_ctx;
911 	struct aio_ring_info	*info;
912 	struct aio_ring	*ring;
913 	struct io_event	*event;
914 	unsigned long	flags;
915 	unsigned long	tail;
916 	int		ret;
917 
918 	/*
919 	 * Special case handling for sync iocbs:
920 	 *  - events go directly into the iocb for fast handling
921 	 *  - the sync task with the iocb in its stack holds the single iocb
922 	 *    ref, no other paths have a way to get another ref
923 	 *  - the sync task helpfully left a reference to itself in the iocb
924 	 */
925 	if (is_sync_kiocb(iocb)) {
926 		BUG_ON(iocb->ki_users != 1);
927 		iocb->ki_user_data = res;
928 		iocb->ki_users = 0;
929 		wake_up_process(iocb->ki_obj.tsk);
930 		return 1;
931 	}
932 
933 	info = &ctx->ring_info;
934 
935 	/* add a completion event to the ring buffer.
936 	 * must be done holding ctx->ctx_lock to prevent
937 	 * other code from messing with the tail
938 	 * pointer since we might be called from irq
939 	 * context.
940 	 */
941 	spin_lock_irqsave(&ctx->ctx_lock, flags);
942 
943 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
944 		list_del_init(&iocb->ki_run_list);
945 
946 	/*
947 	 * cancelled requests don't get events, userland was given one
948 	 * when the event got cancelled.
949 	 */
950 	if (kiocbIsCancelled(iocb))
951 		goto put_rq;
952 
953 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
954 
955 	tail = info->tail;
956 	event = aio_ring_event(info, tail, KM_IRQ0);
957 	if (++tail >= info->nr)
958 		tail = 0;
959 
960 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
961 	event->data = iocb->ki_user_data;
962 	event->res = res;
963 	event->res2 = res2;
964 
965 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
966 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
967 		res, res2);
968 
969 	/* after flagging the request as done, we
970 	 * must never even look at it again
971 	 */
972 	smp_wmb();	/* make event visible before updating tail */
973 
974 	info->tail = tail;
975 	ring->tail = tail;
976 
977 	put_aio_ring_event(event, KM_IRQ0);
978 	kunmap_atomic(ring, KM_IRQ1);
979 
980 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
981 
982 	/*
983 	 * Check if the user asked us to deliver the result through an
984 	 * eventfd. The eventfd_signal() function is safe to be called
985 	 * from IRQ context.
986 	 */
987 	if (iocb->ki_eventfd != NULL)
988 		eventfd_signal(iocb->ki_eventfd, 1);
989 
990 put_rq:
991 	/* everything turned out well, dispose of the aiocb. */
992 	ret = __aio_put_req(ctx, iocb);
993 
994 	/*
995 	 * We have to order our ring_info tail store above and test
996 	 * of the wait list below outside the wait lock.  This is
997 	 * like in wake_up_bit() where clearing a bit has to be
998 	 * ordered with the unlocked test.
999 	 */
1000 	smp_mb();
1001 
1002 	if (waitqueue_active(&ctx->wait))
1003 		wake_up(&ctx->wait);
1004 
1005 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1006 	return ret;
1007 }
1008 EXPORT_SYMBOL(aio_complete);
1009 
1010 /* aio_read_evt
1011  *	Pull an event off of the ioctx's event ring.  Returns the number of
1012  *	events fetched (0 or 1 ;-)
1013  *	FIXME: make this use cmpxchg.
1014  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1015  */
1016 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1017 {
1018 	struct aio_ring_info *info = &ioctx->ring_info;
1019 	struct aio_ring *ring;
1020 	unsigned long head;
1021 	int ret = 0;
1022 
1023 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1024 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1025 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1026 		 (unsigned long)ring->nr);
1027 
1028 	if (ring->head == ring->tail)
1029 		goto out;
1030 
1031 	spin_lock(&info->ring_lock);
1032 
1033 	head = ring->head % info->nr;
1034 	if (head != ring->tail) {
1035 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1036 		*ent = *evp;
1037 		head = (head + 1) % info->nr;
1038 		smp_mb(); /* finish reading the event before updatng the head */
1039 		ring->head = head;
1040 		ret = 1;
1041 		put_aio_ring_event(evp, KM_USER1);
1042 	}
1043 	spin_unlock(&info->ring_lock);
1044 
1045 out:
1046 	kunmap_atomic(ring, KM_USER0);
1047 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1048 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1049 	return ret;
1050 }
1051 
1052 struct aio_timeout {
1053 	struct timer_list	timer;
1054 	int			timed_out;
1055 	struct task_struct	*p;
1056 };
1057 
1058 static void timeout_func(unsigned long data)
1059 {
1060 	struct aio_timeout *to = (struct aio_timeout *)data;
1061 
1062 	to->timed_out = 1;
1063 	wake_up_process(to->p);
1064 }
1065 
1066 static inline void init_timeout(struct aio_timeout *to)
1067 {
1068 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1069 	to->timed_out = 0;
1070 	to->p = current;
1071 }
1072 
1073 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1074 			       const struct timespec *ts)
1075 {
1076 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1077 	if (time_after(to->timer.expires, jiffies))
1078 		add_timer(&to->timer);
1079 	else
1080 		to->timed_out = 1;
1081 }
1082 
1083 static inline void clear_timeout(struct aio_timeout *to)
1084 {
1085 	del_singleshot_timer_sync(&to->timer);
1086 }
1087 
1088 static int read_events(struct kioctx *ctx,
1089 			long min_nr, long nr,
1090 			struct io_event __user *event,
1091 			struct timespec __user *timeout)
1092 {
1093 	long			start_jiffies = jiffies;
1094 	struct task_struct	*tsk = current;
1095 	DECLARE_WAITQUEUE(wait, tsk);
1096 	int			ret;
1097 	int			i = 0;
1098 	struct io_event		ent;
1099 	struct aio_timeout	to;
1100 	int			retry = 0;
1101 
1102 	/* needed to zero any padding within an entry (there shouldn't be
1103 	 * any, but C is fun!
1104 	 */
1105 	memset(&ent, 0, sizeof(ent));
1106 retry:
1107 	ret = 0;
1108 	while (likely(i < nr)) {
1109 		ret = aio_read_evt(ctx, &ent);
1110 		if (unlikely(ret <= 0))
1111 			break;
1112 
1113 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1114 			ent.data, ent.obj, ent.res, ent.res2);
1115 
1116 		/* Could we split the check in two? */
1117 		ret = -EFAULT;
1118 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1119 			dprintk("aio: lost an event due to EFAULT.\n");
1120 			break;
1121 		}
1122 		ret = 0;
1123 
1124 		/* Good, event copied to userland, update counts. */
1125 		event ++;
1126 		i ++;
1127 	}
1128 
1129 	if (min_nr <= i)
1130 		return i;
1131 	if (ret)
1132 		return ret;
1133 
1134 	/* End fast path */
1135 
1136 	/* racey check, but it gets redone */
1137 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1138 		retry = 1;
1139 		aio_run_all_iocbs(ctx);
1140 		goto retry;
1141 	}
1142 
1143 	init_timeout(&to);
1144 	if (timeout) {
1145 		struct timespec	ts;
1146 		ret = -EFAULT;
1147 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1148 			goto out;
1149 
1150 		set_timeout(start_jiffies, &to, &ts);
1151 	}
1152 
1153 	while (likely(i < nr)) {
1154 		add_wait_queue_exclusive(&ctx->wait, &wait);
1155 		do {
1156 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1157 			ret = aio_read_evt(ctx, &ent);
1158 			if (ret)
1159 				break;
1160 			if (min_nr <= i)
1161 				break;
1162 			if (unlikely(ctx->dead)) {
1163 				ret = -EINVAL;
1164 				break;
1165 			}
1166 			if (to.timed_out)	/* Only check after read evt */
1167 				break;
1168 			/* Try to only show up in io wait if there are ops
1169 			 *  in flight */
1170 			if (ctx->reqs_active)
1171 				io_schedule();
1172 			else
1173 				schedule();
1174 			if (signal_pending(tsk)) {
1175 				ret = -EINTR;
1176 				break;
1177 			}
1178 			/*ret = aio_read_evt(ctx, &ent);*/
1179 		} while (1) ;
1180 
1181 		set_task_state(tsk, TASK_RUNNING);
1182 		remove_wait_queue(&ctx->wait, &wait);
1183 
1184 		if (unlikely(ret <= 0))
1185 			break;
1186 
1187 		ret = -EFAULT;
1188 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1189 			dprintk("aio: lost an event due to EFAULT.\n");
1190 			break;
1191 		}
1192 
1193 		/* Good, event copied to userland, update counts. */
1194 		event ++;
1195 		i ++;
1196 	}
1197 
1198 	if (timeout)
1199 		clear_timeout(&to);
1200 out:
1201 	destroy_timer_on_stack(&to.timer);
1202 	return i ? i : ret;
1203 }
1204 
1205 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1206  * against races with itself via ->dead.
1207  */
1208 static void io_destroy(struct kioctx *ioctx)
1209 {
1210 	struct mm_struct *mm = current->mm;
1211 	int was_dead;
1212 
1213 	/* delete the entry from the list is someone else hasn't already */
1214 	spin_lock(&mm->ioctx_lock);
1215 	was_dead = ioctx->dead;
1216 	ioctx->dead = 1;
1217 	hlist_del_rcu(&ioctx->list);
1218 	spin_unlock(&mm->ioctx_lock);
1219 
1220 	dprintk("aio_release(%p)\n", ioctx);
1221 	if (likely(!was_dead))
1222 		put_ioctx(ioctx);	/* twice for the list */
1223 
1224 	aio_cancel_all(ioctx);
1225 	wait_for_all_aios(ioctx);
1226 
1227 	/*
1228 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1229 	 * by other CPUs at this point.  Right now, we rely on the
1230 	 * locking done by the above calls to ensure this consistency.
1231 	 */
1232 	wake_up(&ioctx->wait);
1233 	put_ioctx(ioctx);	/* once for the lookup */
1234 }
1235 
1236 /* sys_io_setup:
1237  *	Create an aio_context capable of receiving at least nr_events.
1238  *	ctxp must not point to an aio_context that already exists, and
1239  *	must be initialized to 0 prior to the call.  On successful
1240  *	creation of the aio_context, *ctxp is filled in with the resulting
1241  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1242  *	if the specified nr_events exceeds internal limits.  May fail
1243  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1244  *	of available events.  May fail with -ENOMEM if insufficient kernel
1245  *	resources are available.  May fail with -EFAULT if an invalid
1246  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1247  *	implemented.
1248  */
1249 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1250 {
1251 	struct kioctx *ioctx = NULL;
1252 	unsigned long ctx;
1253 	long ret;
1254 
1255 	ret = get_user(ctx, ctxp);
1256 	if (unlikely(ret))
1257 		goto out;
1258 
1259 	ret = -EINVAL;
1260 	if (unlikely(ctx || nr_events == 0)) {
1261 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1262 		         ctx, nr_events);
1263 		goto out;
1264 	}
1265 
1266 	ioctx = ioctx_alloc(nr_events);
1267 	ret = PTR_ERR(ioctx);
1268 	if (!IS_ERR(ioctx)) {
1269 		ret = put_user(ioctx->user_id, ctxp);
1270 		if (!ret)
1271 			return 0;
1272 
1273 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1274 		io_destroy(ioctx);
1275 	}
1276 
1277 out:
1278 	return ret;
1279 }
1280 
1281 /* sys_io_destroy:
1282  *	Destroy the aio_context specified.  May cancel any outstanding
1283  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1284  *	implemented.  May fail with -EINVAL if the context pointed to
1285  *	is invalid.
1286  */
1287 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1288 {
1289 	struct kioctx *ioctx = lookup_ioctx(ctx);
1290 	if (likely(NULL != ioctx)) {
1291 		io_destroy(ioctx);
1292 		return 0;
1293 	}
1294 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1295 	return -EINVAL;
1296 }
1297 
1298 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1299 {
1300 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1301 
1302 	BUG_ON(ret <= 0);
1303 
1304 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1305 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1306 		iov->iov_base += this;
1307 		iov->iov_len -= this;
1308 		iocb->ki_left -= this;
1309 		ret -= this;
1310 		if (iov->iov_len == 0) {
1311 			iocb->ki_cur_seg++;
1312 			iov++;
1313 		}
1314 	}
1315 
1316 	/* the caller should not have done more io than what fit in
1317 	 * the remaining iovecs */
1318 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1319 }
1320 
1321 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1322 {
1323 	struct file *file = iocb->ki_filp;
1324 	struct address_space *mapping = file->f_mapping;
1325 	struct inode *inode = mapping->host;
1326 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1327 			 unsigned long, loff_t);
1328 	ssize_t ret = 0;
1329 	unsigned short opcode;
1330 
1331 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1332 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1333 		rw_op = file->f_op->aio_read;
1334 		opcode = IOCB_CMD_PREADV;
1335 	} else {
1336 		rw_op = file->f_op->aio_write;
1337 		opcode = IOCB_CMD_PWRITEV;
1338 	}
1339 
1340 	/* This matches the pread()/pwrite() logic */
1341 	if (iocb->ki_pos < 0)
1342 		return -EINVAL;
1343 
1344 	do {
1345 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1346 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1347 			    iocb->ki_pos);
1348 		if (ret > 0)
1349 			aio_advance_iovec(iocb, ret);
1350 
1351 	/* retry all partial writes.  retry partial reads as long as its a
1352 	 * regular file. */
1353 	} while (ret > 0 && iocb->ki_left > 0 &&
1354 		 (opcode == IOCB_CMD_PWRITEV ||
1355 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1356 
1357 	/* This means we must have transferred all that we could */
1358 	/* No need to retry anymore */
1359 	if ((ret == 0) || (iocb->ki_left == 0))
1360 		ret = iocb->ki_nbytes - iocb->ki_left;
1361 
1362 	/* If we managed to write some out we return that, rather than
1363 	 * the eventual error. */
1364 	if (opcode == IOCB_CMD_PWRITEV
1365 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1366 	    && iocb->ki_nbytes - iocb->ki_left)
1367 		ret = iocb->ki_nbytes - iocb->ki_left;
1368 
1369 	return ret;
1370 }
1371 
1372 static ssize_t aio_fdsync(struct kiocb *iocb)
1373 {
1374 	struct file *file = iocb->ki_filp;
1375 	ssize_t ret = -EINVAL;
1376 
1377 	if (file->f_op->aio_fsync)
1378 		ret = file->f_op->aio_fsync(iocb, 1);
1379 	return ret;
1380 }
1381 
1382 static ssize_t aio_fsync(struct kiocb *iocb)
1383 {
1384 	struct file *file = iocb->ki_filp;
1385 	ssize_t ret = -EINVAL;
1386 
1387 	if (file->f_op->aio_fsync)
1388 		ret = file->f_op->aio_fsync(iocb, 0);
1389 	return ret;
1390 }
1391 
1392 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1393 {
1394 	ssize_t ret;
1395 
1396 #ifdef CONFIG_COMPAT
1397 	if (compat)
1398 		ret = compat_rw_copy_check_uvector(type,
1399 				(struct compat_iovec __user *)kiocb->ki_buf,
1400 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1401 				&kiocb->ki_iovec);
1402 	else
1403 #endif
1404 		ret = rw_copy_check_uvector(type,
1405 				(struct iovec __user *)kiocb->ki_buf,
1406 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1407 				&kiocb->ki_iovec);
1408 	if (ret < 0)
1409 		goto out;
1410 
1411 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1412 	kiocb->ki_cur_seg = 0;
1413 	/* ki_nbytes/left now reflect bytes instead of segs */
1414 	kiocb->ki_nbytes = ret;
1415 	kiocb->ki_left = ret;
1416 
1417 	ret = 0;
1418 out:
1419 	return ret;
1420 }
1421 
1422 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1423 {
1424 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1425 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1426 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1427 	kiocb->ki_nr_segs = 1;
1428 	kiocb->ki_cur_seg = 0;
1429 	return 0;
1430 }
1431 
1432 /*
1433  * aio_setup_iocb:
1434  *	Performs the initial checks and aio retry method
1435  *	setup for the kiocb at the time of io submission.
1436  */
1437 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1438 {
1439 	struct file *file = kiocb->ki_filp;
1440 	ssize_t ret = 0;
1441 
1442 	switch (kiocb->ki_opcode) {
1443 	case IOCB_CMD_PREAD:
1444 		ret = -EBADF;
1445 		if (unlikely(!(file->f_mode & FMODE_READ)))
1446 			break;
1447 		ret = -EFAULT;
1448 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1449 			kiocb->ki_left)))
1450 			break;
1451 		ret = security_file_permission(file, MAY_READ);
1452 		if (unlikely(ret))
1453 			break;
1454 		ret = aio_setup_single_vector(kiocb);
1455 		if (ret)
1456 			break;
1457 		ret = -EINVAL;
1458 		if (file->f_op->aio_read)
1459 			kiocb->ki_retry = aio_rw_vect_retry;
1460 		break;
1461 	case IOCB_CMD_PWRITE:
1462 		ret = -EBADF;
1463 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1464 			break;
1465 		ret = -EFAULT;
1466 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1467 			kiocb->ki_left)))
1468 			break;
1469 		ret = security_file_permission(file, MAY_WRITE);
1470 		if (unlikely(ret))
1471 			break;
1472 		ret = aio_setup_single_vector(kiocb);
1473 		if (ret)
1474 			break;
1475 		ret = -EINVAL;
1476 		if (file->f_op->aio_write)
1477 			kiocb->ki_retry = aio_rw_vect_retry;
1478 		break;
1479 	case IOCB_CMD_PREADV:
1480 		ret = -EBADF;
1481 		if (unlikely(!(file->f_mode & FMODE_READ)))
1482 			break;
1483 		ret = security_file_permission(file, MAY_READ);
1484 		if (unlikely(ret))
1485 			break;
1486 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1487 		if (ret)
1488 			break;
1489 		ret = -EINVAL;
1490 		if (file->f_op->aio_read)
1491 			kiocb->ki_retry = aio_rw_vect_retry;
1492 		break;
1493 	case IOCB_CMD_PWRITEV:
1494 		ret = -EBADF;
1495 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1496 			break;
1497 		ret = security_file_permission(file, MAY_WRITE);
1498 		if (unlikely(ret))
1499 			break;
1500 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1501 		if (ret)
1502 			break;
1503 		ret = -EINVAL;
1504 		if (file->f_op->aio_write)
1505 			kiocb->ki_retry = aio_rw_vect_retry;
1506 		break;
1507 	case IOCB_CMD_FDSYNC:
1508 		ret = -EINVAL;
1509 		if (file->f_op->aio_fsync)
1510 			kiocb->ki_retry = aio_fdsync;
1511 		break;
1512 	case IOCB_CMD_FSYNC:
1513 		ret = -EINVAL;
1514 		if (file->f_op->aio_fsync)
1515 			kiocb->ki_retry = aio_fsync;
1516 		break;
1517 	default:
1518 		dprintk("EINVAL: io_submit: no operation provided\n");
1519 		ret = -EINVAL;
1520 	}
1521 
1522 	if (!kiocb->ki_retry)
1523 		return ret;
1524 
1525 	return 0;
1526 }
1527 
1528 static void aio_batch_add(struct address_space *mapping,
1529 			  struct hlist_head *batch_hash)
1530 {
1531 	struct aio_batch_entry *abe;
1532 	struct hlist_node *pos;
1533 	unsigned bucket;
1534 
1535 	bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1536 	hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1537 		if (abe->mapping == mapping)
1538 			return;
1539 	}
1540 
1541 	abe = mempool_alloc(abe_pool, GFP_KERNEL);
1542 
1543 	/*
1544 	 * we should be using igrab here, but
1545 	 * we don't want to hammer on the global
1546 	 * inode spinlock just to take an extra
1547 	 * reference on a file that we must already
1548 	 * have a reference to.
1549 	 *
1550 	 * When we're called, we always have a reference
1551 	 * on the file, so we must always have a reference
1552 	 * on the inode, so ihold() is safe here.
1553 	 */
1554 	ihold(mapping->host);
1555 	abe->mapping = mapping;
1556 	hlist_add_head(&abe->list, &batch_hash[bucket]);
1557 	return;
1558 }
1559 
1560 static void aio_batch_free(struct hlist_head *batch_hash)
1561 {
1562 	struct aio_batch_entry *abe;
1563 	struct hlist_node *pos, *n;
1564 	int i;
1565 
1566 	for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1567 		hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1568 			blk_run_address_space(abe->mapping);
1569 			iput(abe->mapping->host);
1570 			hlist_del(&abe->list);
1571 			mempool_free(abe, abe_pool);
1572 		}
1573 	}
1574 }
1575 
1576 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1577 			 struct iocb *iocb, struct hlist_head *batch_hash,
1578 			 bool compat)
1579 {
1580 	struct kiocb *req;
1581 	struct file *file;
1582 	ssize_t ret;
1583 
1584 	/* enforce forwards compatibility on users */
1585 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1586 		pr_debug("EINVAL: io_submit: reserve field set\n");
1587 		return -EINVAL;
1588 	}
1589 
1590 	/* prevent overflows */
1591 	if (unlikely(
1592 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1593 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1594 	    ((ssize_t)iocb->aio_nbytes < 0)
1595 	   )) {
1596 		pr_debug("EINVAL: io_submit: overflow check\n");
1597 		return -EINVAL;
1598 	}
1599 
1600 	file = fget(iocb->aio_fildes);
1601 	if (unlikely(!file))
1602 		return -EBADF;
1603 
1604 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1605 	if (unlikely(!req)) {
1606 		fput(file);
1607 		return -EAGAIN;
1608 	}
1609 	req->ki_filp = file;
1610 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1611 		/*
1612 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1613 		 * instance of the file* now. The file descriptor must be
1614 		 * an eventfd() fd, and will be signaled for each completed
1615 		 * event using the eventfd_signal() function.
1616 		 */
1617 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1618 		if (IS_ERR(req->ki_eventfd)) {
1619 			ret = PTR_ERR(req->ki_eventfd);
1620 			req->ki_eventfd = NULL;
1621 			goto out_put_req;
1622 		}
1623 	}
1624 
1625 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1626 	if (unlikely(ret)) {
1627 		dprintk("EFAULT: aio_key\n");
1628 		goto out_put_req;
1629 	}
1630 
1631 	req->ki_obj.user = user_iocb;
1632 	req->ki_user_data = iocb->aio_data;
1633 	req->ki_pos = iocb->aio_offset;
1634 
1635 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1636 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1637 	req->ki_opcode = iocb->aio_lio_opcode;
1638 
1639 	ret = aio_setup_iocb(req, compat);
1640 
1641 	if (ret)
1642 		goto out_put_req;
1643 
1644 	spin_lock_irq(&ctx->ctx_lock);
1645 	/*
1646 	 * We could have raced with io_destroy() and are currently holding a
1647 	 * reference to ctx which should be destroyed. We cannot submit IO
1648 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1649 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1650 	 * for outstanding IO and the barrier between these two is realized by
1651 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1652 	 * increment ctx->reqs_active before checking for ctx->dead and the
1653 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1654 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1655 	 * finish.
1656 	 */
1657 	if (ctx->dead) {
1658 		spin_unlock_irq(&ctx->ctx_lock);
1659 		ret = -EINVAL;
1660 		goto out_put_req;
1661 	}
1662 	aio_run_iocb(req);
1663 	if (!list_empty(&ctx->run_list)) {
1664 		/* drain the run list */
1665 		while (__aio_run_iocbs(ctx))
1666 			;
1667 	}
1668 	spin_unlock_irq(&ctx->ctx_lock);
1669 	if (req->ki_opcode == IOCB_CMD_PREAD ||
1670 	    req->ki_opcode == IOCB_CMD_PREADV ||
1671 	    req->ki_opcode == IOCB_CMD_PWRITE ||
1672 	    req->ki_opcode == IOCB_CMD_PWRITEV)
1673 		aio_batch_add(file->f_mapping, batch_hash);
1674 
1675 	aio_put_req(req);	/* drop extra ref to req */
1676 	return 0;
1677 
1678 out_put_req:
1679 	aio_put_req(req);	/* drop extra ref to req */
1680 	aio_put_req(req);	/* drop i/o ref to req */
1681 	return ret;
1682 }
1683 
1684 long do_io_submit(aio_context_t ctx_id, long nr,
1685 		  struct iocb __user *__user *iocbpp, bool compat)
1686 {
1687 	struct kioctx *ctx;
1688 	long ret = 0;
1689 	int i;
1690 	struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1691 
1692 	if (unlikely(nr < 0))
1693 		return -EINVAL;
1694 
1695 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1696 		nr = LONG_MAX/sizeof(*iocbpp);
1697 
1698 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1699 		return -EFAULT;
1700 
1701 	ctx = lookup_ioctx(ctx_id);
1702 	if (unlikely(!ctx)) {
1703 		pr_debug("EINVAL: io_submit: invalid context id\n");
1704 		return -EINVAL;
1705 	}
1706 
1707 	/*
1708 	 * AKPM: should this return a partial result if some of the IOs were
1709 	 * successfully submitted?
1710 	 */
1711 	for (i=0; i<nr; i++) {
1712 		struct iocb __user *user_iocb;
1713 		struct iocb tmp;
1714 
1715 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1716 			ret = -EFAULT;
1717 			break;
1718 		}
1719 
1720 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1721 			ret = -EFAULT;
1722 			break;
1723 		}
1724 
1725 		ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1726 		if (ret)
1727 			break;
1728 	}
1729 	aio_batch_free(batch_hash);
1730 
1731 	put_ioctx(ctx);
1732 	return i ? i : ret;
1733 }
1734 
1735 /* sys_io_submit:
1736  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1737  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1738  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1739  *	*iocbpp[0] is not properly initialized, if the operation specified
1740  *	is invalid for the file descriptor in the iocb.  May fail with
1741  *	-EFAULT if any of the data structures point to invalid data.  May
1742  *	fail with -EBADF if the file descriptor specified in the first
1743  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1744  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1745  *	fail with -ENOSYS if not implemented.
1746  */
1747 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1748 		struct iocb __user * __user *, iocbpp)
1749 {
1750 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1751 }
1752 
1753 /* lookup_kiocb
1754  *	Finds a given iocb for cancellation.
1755  */
1756 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1757 				  u32 key)
1758 {
1759 	struct list_head *pos;
1760 
1761 	assert_spin_locked(&ctx->ctx_lock);
1762 
1763 	/* TODO: use a hash or array, this sucks. */
1764 	list_for_each(pos, &ctx->active_reqs) {
1765 		struct kiocb *kiocb = list_kiocb(pos);
1766 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1767 			return kiocb;
1768 	}
1769 	return NULL;
1770 }
1771 
1772 /* sys_io_cancel:
1773  *	Attempts to cancel an iocb previously passed to io_submit.  If
1774  *	the operation is successfully cancelled, the resulting event is
1775  *	copied into the memory pointed to by result without being placed
1776  *	into the completion queue and 0 is returned.  May fail with
1777  *	-EFAULT if any of the data structures pointed to are invalid.
1778  *	May fail with -EINVAL if aio_context specified by ctx_id is
1779  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1780  *	cancelled.  Will fail with -ENOSYS if not implemented.
1781  */
1782 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1783 		struct io_event __user *, result)
1784 {
1785 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1786 	struct kioctx *ctx;
1787 	struct kiocb *kiocb;
1788 	u32 key;
1789 	int ret;
1790 
1791 	ret = get_user(key, &iocb->aio_key);
1792 	if (unlikely(ret))
1793 		return -EFAULT;
1794 
1795 	ctx = lookup_ioctx(ctx_id);
1796 	if (unlikely(!ctx))
1797 		return -EINVAL;
1798 
1799 	spin_lock_irq(&ctx->ctx_lock);
1800 	ret = -EAGAIN;
1801 	kiocb = lookup_kiocb(ctx, iocb, key);
1802 	if (kiocb && kiocb->ki_cancel) {
1803 		cancel = kiocb->ki_cancel;
1804 		kiocb->ki_users ++;
1805 		kiocbSetCancelled(kiocb);
1806 	} else
1807 		cancel = NULL;
1808 	spin_unlock_irq(&ctx->ctx_lock);
1809 
1810 	if (NULL != cancel) {
1811 		struct io_event tmp;
1812 		pr_debug("calling cancel\n");
1813 		memset(&tmp, 0, sizeof(tmp));
1814 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1815 		tmp.data = kiocb->ki_user_data;
1816 		ret = cancel(kiocb, &tmp);
1817 		if (!ret) {
1818 			/* Cancellation succeeded -- copy the result
1819 			 * into the user's buffer.
1820 			 */
1821 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1822 				ret = -EFAULT;
1823 		}
1824 	} else
1825 		ret = -EINVAL;
1826 
1827 	put_ioctx(ctx);
1828 
1829 	return ret;
1830 }
1831 
1832 /* io_getevents:
1833  *	Attempts to read at least min_nr events and up to nr events from
1834  *	the completion queue for the aio_context specified by ctx_id. If
1835  *	it succeeds, the number of read events is returned. May fail with
1836  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1837  *	out of range, if timeout is out of range.  May fail with -EFAULT
1838  *	if any of the memory specified is invalid.  May return 0 or
1839  *	< min_nr if the timeout specified by timeout has elapsed
1840  *	before sufficient events are available, where timeout == NULL
1841  *	specifies an infinite timeout. Note that the timeout pointed to by
1842  *	timeout is relative and will be updated if not NULL and the
1843  *	operation blocks. Will fail with -ENOSYS if not implemented.
1844  */
1845 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1846 		long, min_nr,
1847 		long, nr,
1848 		struct io_event __user *, events,
1849 		struct timespec __user *, timeout)
1850 {
1851 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1852 	long ret = -EINVAL;
1853 
1854 	if (likely(ioctx)) {
1855 		if (likely(min_nr <= nr && min_nr >= 0))
1856 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1857 		put_ioctx(ioctx);
1858 	}
1859 
1860 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1861 	return ret;
1862 }
1863