1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/mempool.h> 38 #include <linux/hash.h> 39 #include <linux/compat.h> 40 41 #include <asm/kmap_types.h> 42 #include <asm/uaccess.h> 43 44 #if DEBUG > 1 45 #define dprintk printk 46 #else 47 #define dprintk(x...) do { ; } while (0) 48 #endif 49 50 /*------ sysctl variables----*/ 51 static DEFINE_SPINLOCK(aio_nr_lock); 52 unsigned long aio_nr; /* current system wide number of aio requests */ 53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 54 /*----end sysctl variables---*/ 55 56 static struct kmem_cache *kiocb_cachep; 57 static struct kmem_cache *kioctx_cachep; 58 59 static struct workqueue_struct *aio_wq; 60 61 /* Used for rare fput completion. */ 62 static void aio_fput_routine(struct work_struct *); 63 static DECLARE_WORK(fput_work, aio_fput_routine); 64 65 static DEFINE_SPINLOCK(fput_lock); 66 static LIST_HEAD(fput_head); 67 68 #define AIO_BATCH_HASH_BITS 3 /* allocated on-stack, so don't go crazy */ 69 #define AIO_BATCH_HASH_SIZE (1 << AIO_BATCH_HASH_BITS) 70 struct aio_batch_entry { 71 struct hlist_node list; 72 struct address_space *mapping; 73 }; 74 mempool_t *abe_pool; 75 76 static void aio_kick_handler(struct work_struct *); 77 static void aio_queue_work(struct kioctx *); 78 79 /* aio_setup 80 * Creates the slab caches used by the aio routines, panic on 81 * failure as this is done early during the boot sequence. 82 */ 83 static int __init aio_setup(void) 84 { 85 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 86 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 87 88 aio_wq = create_workqueue("aio"); 89 abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry)); 90 BUG_ON(!aio_wq || !abe_pool); 91 92 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 93 94 return 0; 95 } 96 __initcall(aio_setup); 97 98 static void aio_free_ring(struct kioctx *ctx) 99 { 100 struct aio_ring_info *info = &ctx->ring_info; 101 long i; 102 103 for (i=0; i<info->nr_pages; i++) 104 put_page(info->ring_pages[i]); 105 106 if (info->mmap_size) { 107 down_write(&ctx->mm->mmap_sem); 108 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 109 up_write(&ctx->mm->mmap_sem); 110 } 111 112 if (info->ring_pages && info->ring_pages != info->internal_pages) 113 kfree(info->ring_pages); 114 info->ring_pages = NULL; 115 info->nr = 0; 116 } 117 118 static int aio_setup_ring(struct kioctx *ctx) 119 { 120 struct aio_ring *ring; 121 struct aio_ring_info *info = &ctx->ring_info; 122 unsigned nr_events = ctx->max_reqs; 123 unsigned long size; 124 int nr_pages; 125 126 /* Compensate for the ring buffer's head/tail overlap entry */ 127 nr_events += 2; /* 1 is required, 2 for good luck */ 128 129 size = sizeof(struct aio_ring); 130 size += sizeof(struct io_event) * nr_events; 131 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 132 133 if (nr_pages < 0) 134 return -EINVAL; 135 136 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 137 138 info->nr = 0; 139 info->ring_pages = info->internal_pages; 140 if (nr_pages > AIO_RING_PAGES) { 141 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 142 if (!info->ring_pages) 143 return -ENOMEM; 144 } 145 146 info->mmap_size = nr_pages * PAGE_SIZE; 147 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 148 down_write(&ctx->mm->mmap_sem); 149 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 150 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 151 0); 152 if (IS_ERR((void *)info->mmap_base)) { 153 up_write(&ctx->mm->mmap_sem); 154 info->mmap_size = 0; 155 aio_free_ring(ctx); 156 return -EAGAIN; 157 } 158 159 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 160 info->nr_pages = get_user_pages(current, ctx->mm, 161 info->mmap_base, nr_pages, 162 1, 0, info->ring_pages, NULL); 163 up_write(&ctx->mm->mmap_sem); 164 165 if (unlikely(info->nr_pages != nr_pages)) { 166 aio_free_ring(ctx); 167 return -EAGAIN; 168 } 169 170 ctx->user_id = info->mmap_base; 171 172 info->nr = nr_events; /* trusted copy */ 173 174 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 175 ring->nr = nr_events; /* user copy */ 176 ring->id = ctx->user_id; 177 ring->head = ring->tail = 0; 178 ring->magic = AIO_RING_MAGIC; 179 ring->compat_features = AIO_RING_COMPAT_FEATURES; 180 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 181 ring->header_length = sizeof(struct aio_ring); 182 kunmap_atomic(ring, KM_USER0); 183 184 return 0; 185 } 186 187 188 /* aio_ring_event: returns a pointer to the event at the given index from 189 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 190 */ 191 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 192 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 193 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 194 195 #define aio_ring_event(info, nr, km) ({ \ 196 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 197 struct io_event *__event; \ 198 __event = kmap_atomic( \ 199 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 200 __event += pos % AIO_EVENTS_PER_PAGE; \ 201 __event; \ 202 }) 203 204 #define put_aio_ring_event(event, km) do { \ 205 struct io_event *__event = (event); \ 206 (void)__event; \ 207 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 208 } while(0) 209 210 static void ctx_rcu_free(struct rcu_head *head) 211 { 212 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 213 unsigned nr_events = ctx->max_reqs; 214 215 kmem_cache_free(kioctx_cachep, ctx); 216 217 if (nr_events) { 218 spin_lock(&aio_nr_lock); 219 BUG_ON(aio_nr - nr_events > aio_nr); 220 aio_nr -= nr_events; 221 spin_unlock(&aio_nr_lock); 222 } 223 } 224 225 /* __put_ioctx 226 * Called when the last user of an aio context has gone away, 227 * and the struct needs to be freed. 228 */ 229 static void __put_ioctx(struct kioctx *ctx) 230 { 231 BUG_ON(ctx->reqs_active); 232 233 cancel_delayed_work(&ctx->wq); 234 cancel_work_sync(&ctx->wq.work); 235 aio_free_ring(ctx); 236 mmdrop(ctx->mm); 237 ctx->mm = NULL; 238 pr_debug("__put_ioctx: freeing %p\n", ctx); 239 call_rcu(&ctx->rcu_head, ctx_rcu_free); 240 } 241 242 static inline void get_ioctx(struct kioctx *kioctx) 243 { 244 BUG_ON(atomic_read(&kioctx->users) <= 0); 245 atomic_inc(&kioctx->users); 246 } 247 248 static inline int try_get_ioctx(struct kioctx *kioctx) 249 { 250 return atomic_inc_not_zero(&kioctx->users); 251 } 252 253 static inline void put_ioctx(struct kioctx *kioctx) 254 { 255 BUG_ON(atomic_read(&kioctx->users) <= 0); 256 if (unlikely(atomic_dec_and_test(&kioctx->users))) 257 __put_ioctx(kioctx); 258 } 259 260 /* ioctx_alloc 261 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 262 */ 263 static struct kioctx *ioctx_alloc(unsigned nr_events) 264 { 265 struct mm_struct *mm; 266 struct kioctx *ctx; 267 int did_sync = 0; 268 269 /* Prevent overflows */ 270 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 271 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 272 pr_debug("ENOMEM: nr_events too high\n"); 273 return ERR_PTR(-EINVAL); 274 } 275 276 if ((unsigned long)nr_events > aio_max_nr) 277 return ERR_PTR(-EAGAIN); 278 279 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 280 if (!ctx) 281 return ERR_PTR(-ENOMEM); 282 283 ctx->max_reqs = nr_events; 284 mm = ctx->mm = current->mm; 285 atomic_inc(&mm->mm_count); 286 287 atomic_set(&ctx->users, 1); 288 spin_lock_init(&ctx->ctx_lock); 289 spin_lock_init(&ctx->ring_info.ring_lock); 290 init_waitqueue_head(&ctx->wait); 291 292 INIT_LIST_HEAD(&ctx->active_reqs); 293 INIT_LIST_HEAD(&ctx->run_list); 294 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 295 296 if (aio_setup_ring(ctx) < 0) 297 goto out_freectx; 298 299 /* limit the number of system wide aios */ 300 do { 301 spin_lock_bh(&aio_nr_lock); 302 if (aio_nr + nr_events > aio_max_nr || 303 aio_nr + nr_events < aio_nr) 304 ctx->max_reqs = 0; 305 else 306 aio_nr += ctx->max_reqs; 307 spin_unlock_bh(&aio_nr_lock); 308 if (ctx->max_reqs || did_sync) 309 break; 310 311 /* wait for rcu callbacks to have completed before giving up */ 312 synchronize_rcu(); 313 did_sync = 1; 314 ctx->max_reqs = nr_events; 315 } while (1); 316 317 if (ctx->max_reqs == 0) 318 goto out_cleanup; 319 320 /* now link into global list. */ 321 spin_lock(&mm->ioctx_lock); 322 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 323 spin_unlock(&mm->ioctx_lock); 324 325 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 326 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 327 return ctx; 328 329 out_cleanup: 330 __put_ioctx(ctx); 331 return ERR_PTR(-EAGAIN); 332 333 out_freectx: 334 mmdrop(mm); 335 kmem_cache_free(kioctx_cachep, ctx); 336 ctx = ERR_PTR(-ENOMEM); 337 338 dprintk("aio: error allocating ioctx %p\n", ctx); 339 return ctx; 340 } 341 342 /* aio_cancel_all 343 * Cancels all outstanding aio requests on an aio context. Used 344 * when the processes owning a context have all exited to encourage 345 * the rapid destruction of the kioctx. 346 */ 347 static void aio_cancel_all(struct kioctx *ctx) 348 { 349 int (*cancel)(struct kiocb *, struct io_event *); 350 struct io_event res; 351 spin_lock_irq(&ctx->ctx_lock); 352 ctx->dead = 1; 353 while (!list_empty(&ctx->active_reqs)) { 354 struct list_head *pos = ctx->active_reqs.next; 355 struct kiocb *iocb = list_kiocb(pos); 356 list_del_init(&iocb->ki_list); 357 cancel = iocb->ki_cancel; 358 kiocbSetCancelled(iocb); 359 if (cancel) { 360 iocb->ki_users++; 361 spin_unlock_irq(&ctx->ctx_lock); 362 cancel(iocb, &res); 363 spin_lock_irq(&ctx->ctx_lock); 364 } 365 } 366 spin_unlock_irq(&ctx->ctx_lock); 367 } 368 369 static void wait_for_all_aios(struct kioctx *ctx) 370 { 371 struct task_struct *tsk = current; 372 DECLARE_WAITQUEUE(wait, tsk); 373 374 spin_lock_irq(&ctx->ctx_lock); 375 if (!ctx->reqs_active) 376 goto out; 377 378 add_wait_queue(&ctx->wait, &wait); 379 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 380 while (ctx->reqs_active) { 381 spin_unlock_irq(&ctx->ctx_lock); 382 io_schedule(); 383 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 384 spin_lock_irq(&ctx->ctx_lock); 385 } 386 __set_task_state(tsk, TASK_RUNNING); 387 remove_wait_queue(&ctx->wait, &wait); 388 389 out: 390 spin_unlock_irq(&ctx->ctx_lock); 391 } 392 393 /* wait_on_sync_kiocb: 394 * Waits on the given sync kiocb to complete. 395 */ 396 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 397 { 398 while (iocb->ki_users) { 399 set_current_state(TASK_UNINTERRUPTIBLE); 400 if (!iocb->ki_users) 401 break; 402 io_schedule(); 403 } 404 __set_current_state(TASK_RUNNING); 405 return iocb->ki_user_data; 406 } 407 EXPORT_SYMBOL(wait_on_sync_kiocb); 408 409 /* exit_aio: called when the last user of mm goes away. At this point, 410 * there is no way for any new requests to be submited or any of the 411 * io_* syscalls to be called on the context. However, there may be 412 * outstanding requests which hold references to the context; as they 413 * go away, they will call put_ioctx and release any pinned memory 414 * associated with the request (held via struct page * references). 415 */ 416 void exit_aio(struct mm_struct *mm) 417 { 418 struct kioctx *ctx; 419 420 while (!hlist_empty(&mm->ioctx_list)) { 421 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 422 hlist_del_rcu(&ctx->list); 423 424 aio_cancel_all(ctx); 425 426 wait_for_all_aios(ctx); 427 /* 428 * Ensure we don't leave the ctx on the aio_wq 429 */ 430 cancel_work_sync(&ctx->wq.work); 431 432 if (1 != atomic_read(&ctx->users)) 433 printk(KERN_DEBUG 434 "exit_aio:ioctx still alive: %d %d %d\n", 435 atomic_read(&ctx->users), ctx->dead, 436 ctx->reqs_active); 437 put_ioctx(ctx); 438 } 439 } 440 441 /* aio_get_req 442 * Allocate a slot for an aio request. Increments the users count 443 * of the kioctx so that the kioctx stays around until all requests are 444 * complete. Returns NULL if no requests are free. 445 * 446 * Returns with kiocb->users set to 2. The io submit code path holds 447 * an extra reference while submitting the i/o. 448 * This prevents races between the aio code path referencing the 449 * req (after submitting it) and aio_complete() freeing the req. 450 */ 451 static struct kiocb *__aio_get_req(struct kioctx *ctx) 452 { 453 struct kiocb *req = NULL; 454 struct aio_ring *ring; 455 int okay = 0; 456 457 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 458 if (unlikely(!req)) 459 return NULL; 460 461 req->ki_flags = 0; 462 req->ki_users = 2; 463 req->ki_key = 0; 464 req->ki_ctx = ctx; 465 req->ki_cancel = NULL; 466 req->ki_retry = NULL; 467 req->ki_dtor = NULL; 468 req->private = NULL; 469 req->ki_iovec = NULL; 470 INIT_LIST_HEAD(&req->ki_run_list); 471 req->ki_eventfd = NULL; 472 473 /* Check if the completion queue has enough free space to 474 * accept an event from this io. 475 */ 476 spin_lock_irq(&ctx->ctx_lock); 477 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 478 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 479 list_add(&req->ki_list, &ctx->active_reqs); 480 ctx->reqs_active++; 481 okay = 1; 482 } 483 kunmap_atomic(ring, KM_USER0); 484 spin_unlock_irq(&ctx->ctx_lock); 485 486 if (!okay) { 487 kmem_cache_free(kiocb_cachep, req); 488 req = NULL; 489 } 490 491 return req; 492 } 493 494 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 495 { 496 struct kiocb *req; 497 /* Handle a potential starvation case -- should be exceedingly rare as 498 * requests will be stuck on fput_head only if the aio_fput_routine is 499 * delayed and the requests were the last user of the struct file. 500 */ 501 req = __aio_get_req(ctx); 502 if (unlikely(NULL == req)) { 503 aio_fput_routine(NULL); 504 req = __aio_get_req(ctx); 505 } 506 return req; 507 } 508 509 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 510 { 511 assert_spin_locked(&ctx->ctx_lock); 512 513 if (req->ki_eventfd != NULL) 514 eventfd_ctx_put(req->ki_eventfd); 515 if (req->ki_dtor) 516 req->ki_dtor(req); 517 if (req->ki_iovec != &req->ki_inline_vec) 518 kfree(req->ki_iovec); 519 kmem_cache_free(kiocb_cachep, req); 520 ctx->reqs_active--; 521 522 if (unlikely(!ctx->reqs_active && ctx->dead)) 523 wake_up(&ctx->wait); 524 } 525 526 static void aio_fput_routine(struct work_struct *data) 527 { 528 spin_lock_irq(&fput_lock); 529 while (likely(!list_empty(&fput_head))) { 530 struct kiocb *req = list_kiocb(fput_head.next); 531 struct kioctx *ctx = req->ki_ctx; 532 533 list_del(&req->ki_list); 534 spin_unlock_irq(&fput_lock); 535 536 /* Complete the fput(s) */ 537 if (req->ki_filp != NULL) 538 fput(req->ki_filp); 539 540 /* Link the iocb into the context's free list */ 541 spin_lock_irq(&ctx->ctx_lock); 542 really_put_req(ctx, req); 543 spin_unlock_irq(&ctx->ctx_lock); 544 545 put_ioctx(ctx); 546 spin_lock_irq(&fput_lock); 547 } 548 spin_unlock_irq(&fput_lock); 549 } 550 551 /* __aio_put_req 552 * Returns true if this put was the last user of the request. 553 */ 554 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 555 { 556 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 557 req, atomic_long_read(&req->ki_filp->f_count)); 558 559 assert_spin_locked(&ctx->ctx_lock); 560 561 req->ki_users--; 562 BUG_ON(req->ki_users < 0); 563 if (likely(req->ki_users)) 564 return 0; 565 list_del(&req->ki_list); /* remove from active_reqs */ 566 req->ki_cancel = NULL; 567 req->ki_retry = NULL; 568 569 /* 570 * Try to optimize the aio and eventfd file* puts, by avoiding to 571 * schedule work in case it is not final fput() time. In normal cases, 572 * we would not be holding the last reference to the file*, so 573 * this function will be executed w/out any aio kthread wakeup. 574 */ 575 if (unlikely(!fput_atomic(req->ki_filp))) { 576 get_ioctx(ctx); 577 spin_lock(&fput_lock); 578 list_add(&req->ki_list, &fput_head); 579 spin_unlock(&fput_lock); 580 queue_work(aio_wq, &fput_work); 581 } else { 582 req->ki_filp = NULL; 583 really_put_req(ctx, req); 584 } 585 return 1; 586 } 587 588 /* aio_put_req 589 * Returns true if this put was the last user of the kiocb, 590 * false if the request is still in use. 591 */ 592 int aio_put_req(struct kiocb *req) 593 { 594 struct kioctx *ctx = req->ki_ctx; 595 int ret; 596 spin_lock_irq(&ctx->ctx_lock); 597 ret = __aio_put_req(ctx, req); 598 spin_unlock_irq(&ctx->ctx_lock); 599 return ret; 600 } 601 EXPORT_SYMBOL(aio_put_req); 602 603 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 604 { 605 struct mm_struct *mm = current->mm; 606 struct kioctx *ctx, *ret = NULL; 607 struct hlist_node *n; 608 609 rcu_read_lock(); 610 611 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 612 /* 613 * RCU protects us against accessing freed memory but 614 * we have to be careful not to get a reference when the 615 * reference count already dropped to 0 (ctx->dead test 616 * is unreliable because of races). 617 */ 618 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 619 ret = ctx; 620 break; 621 } 622 } 623 624 rcu_read_unlock(); 625 return ret; 626 } 627 628 /* 629 * Queue up a kiocb to be retried. Assumes that the kiocb 630 * has already been marked as kicked, and places it on 631 * the retry run list for the corresponding ioctx, if it 632 * isn't already queued. Returns 1 if it actually queued 633 * the kiocb (to tell the caller to activate the work 634 * queue to process it), or 0, if it found that it was 635 * already queued. 636 */ 637 static inline int __queue_kicked_iocb(struct kiocb *iocb) 638 { 639 struct kioctx *ctx = iocb->ki_ctx; 640 641 assert_spin_locked(&ctx->ctx_lock); 642 643 if (list_empty(&iocb->ki_run_list)) { 644 list_add_tail(&iocb->ki_run_list, 645 &ctx->run_list); 646 return 1; 647 } 648 return 0; 649 } 650 651 /* aio_run_iocb 652 * This is the core aio execution routine. It is 653 * invoked both for initial i/o submission and 654 * subsequent retries via the aio_kick_handler. 655 * Expects to be invoked with iocb->ki_ctx->lock 656 * already held. The lock is released and reacquired 657 * as needed during processing. 658 * 659 * Calls the iocb retry method (already setup for the 660 * iocb on initial submission) for operation specific 661 * handling, but takes care of most of common retry 662 * execution details for a given iocb. The retry method 663 * needs to be non-blocking as far as possible, to avoid 664 * holding up other iocbs waiting to be serviced by the 665 * retry kernel thread. 666 * 667 * The trickier parts in this code have to do with 668 * ensuring that only one retry instance is in progress 669 * for a given iocb at any time. Providing that guarantee 670 * simplifies the coding of individual aio operations as 671 * it avoids various potential races. 672 */ 673 static ssize_t aio_run_iocb(struct kiocb *iocb) 674 { 675 struct kioctx *ctx = iocb->ki_ctx; 676 ssize_t (*retry)(struct kiocb *); 677 ssize_t ret; 678 679 if (!(retry = iocb->ki_retry)) { 680 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 681 return 0; 682 } 683 684 /* 685 * We don't want the next retry iteration for this 686 * operation to start until this one has returned and 687 * updated the iocb state. However, wait_queue functions 688 * can trigger a kick_iocb from interrupt context in the 689 * meantime, indicating that data is available for the next 690 * iteration. We want to remember that and enable the 691 * next retry iteration _after_ we are through with 692 * this one. 693 * 694 * So, in order to be able to register a "kick", but 695 * prevent it from being queued now, we clear the kick 696 * flag, but make the kick code *think* that the iocb is 697 * still on the run list until we are actually done. 698 * When we are done with this iteration, we check if 699 * the iocb was kicked in the meantime and if so, queue 700 * it up afresh. 701 */ 702 703 kiocbClearKicked(iocb); 704 705 /* 706 * This is so that aio_complete knows it doesn't need to 707 * pull the iocb off the run list (We can't just call 708 * INIT_LIST_HEAD because we don't want a kick_iocb to 709 * queue this on the run list yet) 710 */ 711 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 712 spin_unlock_irq(&ctx->ctx_lock); 713 714 /* Quit retrying if the i/o has been cancelled */ 715 if (kiocbIsCancelled(iocb)) { 716 ret = -EINTR; 717 aio_complete(iocb, ret, 0); 718 /* must not access the iocb after this */ 719 goto out; 720 } 721 722 /* 723 * Now we are all set to call the retry method in async 724 * context. 725 */ 726 ret = retry(iocb); 727 728 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 729 /* 730 * There's no easy way to restart the syscall since other AIO's 731 * may be already running. Just fail this IO with EINTR. 732 */ 733 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 734 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 735 ret = -EINTR; 736 aio_complete(iocb, ret, 0); 737 } 738 out: 739 spin_lock_irq(&ctx->ctx_lock); 740 741 if (-EIOCBRETRY == ret) { 742 /* 743 * OK, now that we are done with this iteration 744 * and know that there is more left to go, 745 * this is where we let go so that a subsequent 746 * "kick" can start the next iteration 747 */ 748 749 /* will make __queue_kicked_iocb succeed from here on */ 750 INIT_LIST_HEAD(&iocb->ki_run_list); 751 /* we must queue the next iteration ourselves, if it 752 * has already been kicked */ 753 if (kiocbIsKicked(iocb)) { 754 __queue_kicked_iocb(iocb); 755 756 /* 757 * __queue_kicked_iocb will always return 1 here, because 758 * iocb->ki_run_list is empty at this point so it should 759 * be safe to unconditionally queue the context into the 760 * work queue. 761 */ 762 aio_queue_work(ctx); 763 } 764 } 765 return ret; 766 } 767 768 /* 769 * __aio_run_iocbs: 770 * Process all pending retries queued on the ioctx 771 * run list. 772 * Assumes it is operating within the aio issuer's mm 773 * context. 774 */ 775 static int __aio_run_iocbs(struct kioctx *ctx) 776 { 777 struct kiocb *iocb; 778 struct list_head run_list; 779 780 assert_spin_locked(&ctx->ctx_lock); 781 782 list_replace_init(&ctx->run_list, &run_list); 783 while (!list_empty(&run_list)) { 784 iocb = list_entry(run_list.next, struct kiocb, 785 ki_run_list); 786 list_del(&iocb->ki_run_list); 787 /* 788 * Hold an extra reference while retrying i/o. 789 */ 790 iocb->ki_users++; /* grab extra reference */ 791 aio_run_iocb(iocb); 792 __aio_put_req(ctx, iocb); 793 } 794 if (!list_empty(&ctx->run_list)) 795 return 1; 796 return 0; 797 } 798 799 static void aio_queue_work(struct kioctx * ctx) 800 { 801 unsigned long timeout; 802 /* 803 * if someone is waiting, get the work started right 804 * away, otherwise, use a longer delay 805 */ 806 smp_mb(); 807 if (waitqueue_active(&ctx->wait)) 808 timeout = 1; 809 else 810 timeout = HZ/10; 811 queue_delayed_work(aio_wq, &ctx->wq, timeout); 812 } 813 814 /* 815 * aio_run_all_iocbs: 816 * Process all pending retries queued on the ioctx 817 * run list, and keep running them until the list 818 * stays empty. 819 * Assumes it is operating within the aio issuer's mm context. 820 */ 821 static inline void aio_run_all_iocbs(struct kioctx *ctx) 822 { 823 spin_lock_irq(&ctx->ctx_lock); 824 while (__aio_run_iocbs(ctx)) 825 ; 826 spin_unlock_irq(&ctx->ctx_lock); 827 } 828 829 /* 830 * aio_kick_handler: 831 * Work queue handler triggered to process pending 832 * retries on an ioctx. Takes on the aio issuer's 833 * mm context before running the iocbs, so that 834 * copy_xxx_user operates on the issuer's address 835 * space. 836 * Run on aiod's context. 837 */ 838 static void aio_kick_handler(struct work_struct *work) 839 { 840 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 841 mm_segment_t oldfs = get_fs(); 842 struct mm_struct *mm; 843 int requeue; 844 845 set_fs(USER_DS); 846 use_mm(ctx->mm); 847 spin_lock_irq(&ctx->ctx_lock); 848 requeue =__aio_run_iocbs(ctx); 849 mm = ctx->mm; 850 spin_unlock_irq(&ctx->ctx_lock); 851 unuse_mm(mm); 852 set_fs(oldfs); 853 /* 854 * we're in a worker thread already, don't use queue_delayed_work, 855 */ 856 if (requeue) 857 queue_delayed_work(aio_wq, &ctx->wq, 0); 858 } 859 860 861 /* 862 * Called by kick_iocb to queue the kiocb for retry 863 * and if required activate the aio work queue to process 864 * it 865 */ 866 static void try_queue_kicked_iocb(struct kiocb *iocb) 867 { 868 struct kioctx *ctx = iocb->ki_ctx; 869 unsigned long flags; 870 int run = 0; 871 872 spin_lock_irqsave(&ctx->ctx_lock, flags); 873 /* set this inside the lock so that we can't race with aio_run_iocb() 874 * testing it and putting the iocb on the run list under the lock */ 875 if (!kiocbTryKick(iocb)) 876 run = __queue_kicked_iocb(iocb); 877 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 878 if (run) 879 aio_queue_work(ctx); 880 } 881 882 /* 883 * kick_iocb: 884 * Called typically from a wait queue callback context 885 * to trigger a retry of the iocb. 886 * The retry is usually executed by aio workqueue 887 * threads (See aio_kick_handler). 888 */ 889 void kick_iocb(struct kiocb *iocb) 890 { 891 /* sync iocbs are easy: they can only ever be executing from a 892 * single context. */ 893 if (is_sync_kiocb(iocb)) { 894 kiocbSetKicked(iocb); 895 wake_up_process(iocb->ki_obj.tsk); 896 return; 897 } 898 899 try_queue_kicked_iocb(iocb); 900 } 901 EXPORT_SYMBOL(kick_iocb); 902 903 /* aio_complete 904 * Called when the io request on the given iocb is complete. 905 * Returns true if this is the last user of the request. The 906 * only other user of the request can be the cancellation code. 907 */ 908 int aio_complete(struct kiocb *iocb, long res, long res2) 909 { 910 struct kioctx *ctx = iocb->ki_ctx; 911 struct aio_ring_info *info; 912 struct aio_ring *ring; 913 struct io_event *event; 914 unsigned long flags; 915 unsigned long tail; 916 int ret; 917 918 /* 919 * Special case handling for sync iocbs: 920 * - events go directly into the iocb for fast handling 921 * - the sync task with the iocb in its stack holds the single iocb 922 * ref, no other paths have a way to get another ref 923 * - the sync task helpfully left a reference to itself in the iocb 924 */ 925 if (is_sync_kiocb(iocb)) { 926 BUG_ON(iocb->ki_users != 1); 927 iocb->ki_user_data = res; 928 iocb->ki_users = 0; 929 wake_up_process(iocb->ki_obj.tsk); 930 return 1; 931 } 932 933 info = &ctx->ring_info; 934 935 /* add a completion event to the ring buffer. 936 * must be done holding ctx->ctx_lock to prevent 937 * other code from messing with the tail 938 * pointer since we might be called from irq 939 * context. 940 */ 941 spin_lock_irqsave(&ctx->ctx_lock, flags); 942 943 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 944 list_del_init(&iocb->ki_run_list); 945 946 /* 947 * cancelled requests don't get events, userland was given one 948 * when the event got cancelled. 949 */ 950 if (kiocbIsCancelled(iocb)) 951 goto put_rq; 952 953 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 954 955 tail = info->tail; 956 event = aio_ring_event(info, tail, KM_IRQ0); 957 if (++tail >= info->nr) 958 tail = 0; 959 960 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 961 event->data = iocb->ki_user_data; 962 event->res = res; 963 event->res2 = res2; 964 965 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 966 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 967 res, res2); 968 969 /* after flagging the request as done, we 970 * must never even look at it again 971 */ 972 smp_wmb(); /* make event visible before updating tail */ 973 974 info->tail = tail; 975 ring->tail = tail; 976 977 put_aio_ring_event(event, KM_IRQ0); 978 kunmap_atomic(ring, KM_IRQ1); 979 980 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 981 982 /* 983 * Check if the user asked us to deliver the result through an 984 * eventfd. The eventfd_signal() function is safe to be called 985 * from IRQ context. 986 */ 987 if (iocb->ki_eventfd != NULL) 988 eventfd_signal(iocb->ki_eventfd, 1); 989 990 put_rq: 991 /* everything turned out well, dispose of the aiocb. */ 992 ret = __aio_put_req(ctx, iocb); 993 994 /* 995 * We have to order our ring_info tail store above and test 996 * of the wait list below outside the wait lock. This is 997 * like in wake_up_bit() where clearing a bit has to be 998 * ordered with the unlocked test. 999 */ 1000 smp_mb(); 1001 1002 if (waitqueue_active(&ctx->wait)) 1003 wake_up(&ctx->wait); 1004 1005 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1006 return ret; 1007 } 1008 EXPORT_SYMBOL(aio_complete); 1009 1010 /* aio_read_evt 1011 * Pull an event off of the ioctx's event ring. Returns the number of 1012 * events fetched (0 or 1 ;-) 1013 * FIXME: make this use cmpxchg. 1014 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1015 */ 1016 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1017 { 1018 struct aio_ring_info *info = &ioctx->ring_info; 1019 struct aio_ring *ring; 1020 unsigned long head; 1021 int ret = 0; 1022 1023 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1024 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1025 (unsigned long)ring->head, (unsigned long)ring->tail, 1026 (unsigned long)ring->nr); 1027 1028 if (ring->head == ring->tail) 1029 goto out; 1030 1031 spin_lock(&info->ring_lock); 1032 1033 head = ring->head % info->nr; 1034 if (head != ring->tail) { 1035 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1036 *ent = *evp; 1037 head = (head + 1) % info->nr; 1038 smp_mb(); /* finish reading the event before updatng the head */ 1039 ring->head = head; 1040 ret = 1; 1041 put_aio_ring_event(evp, KM_USER1); 1042 } 1043 spin_unlock(&info->ring_lock); 1044 1045 out: 1046 kunmap_atomic(ring, KM_USER0); 1047 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1048 (unsigned long)ring->head, (unsigned long)ring->tail); 1049 return ret; 1050 } 1051 1052 struct aio_timeout { 1053 struct timer_list timer; 1054 int timed_out; 1055 struct task_struct *p; 1056 }; 1057 1058 static void timeout_func(unsigned long data) 1059 { 1060 struct aio_timeout *to = (struct aio_timeout *)data; 1061 1062 to->timed_out = 1; 1063 wake_up_process(to->p); 1064 } 1065 1066 static inline void init_timeout(struct aio_timeout *to) 1067 { 1068 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1069 to->timed_out = 0; 1070 to->p = current; 1071 } 1072 1073 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1074 const struct timespec *ts) 1075 { 1076 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1077 if (time_after(to->timer.expires, jiffies)) 1078 add_timer(&to->timer); 1079 else 1080 to->timed_out = 1; 1081 } 1082 1083 static inline void clear_timeout(struct aio_timeout *to) 1084 { 1085 del_singleshot_timer_sync(&to->timer); 1086 } 1087 1088 static int read_events(struct kioctx *ctx, 1089 long min_nr, long nr, 1090 struct io_event __user *event, 1091 struct timespec __user *timeout) 1092 { 1093 long start_jiffies = jiffies; 1094 struct task_struct *tsk = current; 1095 DECLARE_WAITQUEUE(wait, tsk); 1096 int ret; 1097 int i = 0; 1098 struct io_event ent; 1099 struct aio_timeout to; 1100 int retry = 0; 1101 1102 /* needed to zero any padding within an entry (there shouldn't be 1103 * any, but C is fun! 1104 */ 1105 memset(&ent, 0, sizeof(ent)); 1106 retry: 1107 ret = 0; 1108 while (likely(i < nr)) { 1109 ret = aio_read_evt(ctx, &ent); 1110 if (unlikely(ret <= 0)) 1111 break; 1112 1113 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1114 ent.data, ent.obj, ent.res, ent.res2); 1115 1116 /* Could we split the check in two? */ 1117 ret = -EFAULT; 1118 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1119 dprintk("aio: lost an event due to EFAULT.\n"); 1120 break; 1121 } 1122 ret = 0; 1123 1124 /* Good, event copied to userland, update counts. */ 1125 event ++; 1126 i ++; 1127 } 1128 1129 if (min_nr <= i) 1130 return i; 1131 if (ret) 1132 return ret; 1133 1134 /* End fast path */ 1135 1136 /* racey check, but it gets redone */ 1137 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1138 retry = 1; 1139 aio_run_all_iocbs(ctx); 1140 goto retry; 1141 } 1142 1143 init_timeout(&to); 1144 if (timeout) { 1145 struct timespec ts; 1146 ret = -EFAULT; 1147 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1148 goto out; 1149 1150 set_timeout(start_jiffies, &to, &ts); 1151 } 1152 1153 while (likely(i < nr)) { 1154 add_wait_queue_exclusive(&ctx->wait, &wait); 1155 do { 1156 set_task_state(tsk, TASK_INTERRUPTIBLE); 1157 ret = aio_read_evt(ctx, &ent); 1158 if (ret) 1159 break; 1160 if (min_nr <= i) 1161 break; 1162 if (unlikely(ctx->dead)) { 1163 ret = -EINVAL; 1164 break; 1165 } 1166 if (to.timed_out) /* Only check after read evt */ 1167 break; 1168 /* Try to only show up in io wait if there are ops 1169 * in flight */ 1170 if (ctx->reqs_active) 1171 io_schedule(); 1172 else 1173 schedule(); 1174 if (signal_pending(tsk)) { 1175 ret = -EINTR; 1176 break; 1177 } 1178 /*ret = aio_read_evt(ctx, &ent);*/ 1179 } while (1) ; 1180 1181 set_task_state(tsk, TASK_RUNNING); 1182 remove_wait_queue(&ctx->wait, &wait); 1183 1184 if (unlikely(ret <= 0)) 1185 break; 1186 1187 ret = -EFAULT; 1188 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1189 dprintk("aio: lost an event due to EFAULT.\n"); 1190 break; 1191 } 1192 1193 /* Good, event copied to userland, update counts. */ 1194 event ++; 1195 i ++; 1196 } 1197 1198 if (timeout) 1199 clear_timeout(&to); 1200 out: 1201 destroy_timer_on_stack(&to.timer); 1202 return i ? i : ret; 1203 } 1204 1205 /* Take an ioctx and remove it from the list of ioctx's. Protects 1206 * against races with itself via ->dead. 1207 */ 1208 static void io_destroy(struct kioctx *ioctx) 1209 { 1210 struct mm_struct *mm = current->mm; 1211 int was_dead; 1212 1213 /* delete the entry from the list is someone else hasn't already */ 1214 spin_lock(&mm->ioctx_lock); 1215 was_dead = ioctx->dead; 1216 ioctx->dead = 1; 1217 hlist_del_rcu(&ioctx->list); 1218 spin_unlock(&mm->ioctx_lock); 1219 1220 dprintk("aio_release(%p)\n", ioctx); 1221 if (likely(!was_dead)) 1222 put_ioctx(ioctx); /* twice for the list */ 1223 1224 aio_cancel_all(ioctx); 1225 wait_for_all_aios(ioctx); 1226 1227 /* 1228 * Wake up any waiters. The setting of ctx->dead must be seen 1229 * by other CPUs at this point. Right now, we rely on the 1230 * locking done by the above calls to ensure this consistency. 1231 */ 1232 wake_up(&ioctx->wait); 1233 put_ioctx(ioctx); /* once for the lookup */ 1234 } 1235 1236 /* sys_io_setup: 1237 * Create an aio_context capable of receiving at least nr_events. 1238 * ctxp must not point to an aio_context that already exists, and 1239 * must be initialized to 0 prior to the call. On successful 1240 * creation of the aio_context, *ctxp is filled in with the resulting 1241 * handle. May fail with -EINVAL if *ctxp is not initialized, 1242 * if the specified nr_events exceeds internal limits. May fail 1243 * with -EAGAIN if the specified nr_events exceeds the user's limit 1244 * of available events. May fail with -ENOMEM if insufficient kernel 1245 * resources are available. May fail with -EFAULT if an invalid 1246 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1247 * implemented. 1248 */ 1249 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1250 { 1251 struct kioctx *ioctx = NULL; 1252 unsigned long ctx; 1253 long ret; 1254 1255 ret = get_user(ctx, ctxp); 1256 if (unlikely(ret)) 1257 goto out; 1258 1259 ret = -EINVAL; 1260 if (unlikely(ctx || nr_events == 0)) { 1261 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1262 ctx, nr_events); 1263 goto out; 1264 } 1265 1266 ioctx = ioctx_alloc(nr_events); 1267 ret = PTR_ERR(ioctx); 1268 if (!IS_ERR(ioctx)) { 1269 ret = put_user(ioctx->user_id, ctxp); 1270 if (!ret) 1271 return 0; 1272 1273 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1274 io_destroy(ioctx); 1275 } 1276 1277 out: 1278 return ret; 1279 } 1280 1281 /* sys_io_destroy: 1282 * Destroy the aio_context specified. May cancel any outstanding 1283 * AIOs and block on completion. Will fail with -ENOSYS if not 1284 * implemented. May fail with -EINVAL if the context pointed to 1285 * is invalid. 1286 */ 1287 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1288 { 1289 struct kioctx *ioctx = lookup_ioctx(ctx); 1290 if (likely(NULL != ioctx)) { 1291 io_destroy(ioctx); 1292 return 0; 1293 } 1294 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1295 return -EINVAL; 1296 } 1297 1298 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1299 { 1300 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1301 1302 BUG_ON(ret <= 0); 1303 1304 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1305 ssize_t this = min((ssize_t)iov->iov_len, ret); 1306 iov->iov_base += this; 1307 iov->iov_len -= this; 1308 iocb->ki_left -= this; 1309 ret -= this; 1310 if (iov->iov_len == 0) { 1311 iocb->ki_cur_seg++; 1312 iov++; 1313 } 1314 } 1315 1316 /* the caller should not have done more io than what fit in 1317 * the remaining iovecs */ 1318 BUG_ON(ret > 0 && iocb->ki_left == 0); 1319 } 1320 1321 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1322 { 1323 struct file *file = iocb->ki_filp; 1324 struct address_space *mapping = file->f_mapping; 1325 struct inode *inode = mapping->host; 1326 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1327 unsigned long, loff_t); 1328 ssize_t ret = 0; 1329 unsigned short opcode; 1330 1331 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1332 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1333 rw_op = file->f_op->aio_read; 1334 opcode = IOCB_CMD_PREADV; 1335 } else { 1336 rw_op = file->f_op->aio_write; 1337 opcode = IOCB_CMD_PWRITEV; 1338 } 1339 1340 /* This matches the pread()/pwrite() logic */ 1341 if (iocb->ki_pos < 0) 1342 return -EINVAL; 1343 1344 do { 1345 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1346 iocb->ki_nr_segs - iocb->ki_cur_seg, 1347 iocb->ki_pos); 1348 if (ret > 0) 1349 aio_advance_iovec(iocb, ret); 1350 1351 /* retry all partial writes. retry partial reads as long as its a 1352 * regular file. */ 1353 } while (ret > 0 && iocb->ki_left > 0 && 1354 (opcode == IOCB_CMD_PWRITEV || 1355 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1356 1357 /* This means we must have transferred all that we could */ 1358 /* No need to retry anymore */ 1359 if ((ret == 0) || (iocb->ki_left == 0)) 1360 ret = iocb->ki_nbytes - iocb->ki_left; 1361 1362 /* If we managed to write some out we return that, rather than 1363 * the eventual error. */ 1364 if (opcode == IOCB_CMD_PWRITEV 1365 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1366 && iocb->ki_nbytes - iocb->ki_left) 1367 ret = iocb->ki_nbytes - iocb->ki_left; 1368 1369 return ret; 1370 } 1371 1372 static ssize_t aio_fdsync(struct kiocb *iocb) 1373 { 1374 struct file *file = iocb->ki_filp; 1375 ssize_t ret = -EINVAL; 1376 1377 if (file->f_op->aio_fsync) 1378 ret = file->f_op->aio_fsync(iocb, 1); 1379 return ret; 1380 } 1381 1382 static ssize_t aio_fsync(struct kiocb *iocb) 1383 { 1384 struct file *file = iocb->ki_filp; 1385 ssize_t ret = -EINVAL; 1386 1387 if (file->f_op->aio_fsync) 1388 ret = file->f_op->aio_fsync(iocb, 0); 1389 return ret; 1390 } 1391 1392 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1393 { 1394 ssize_t ret; 1395 1396 #ifdef CONFIG_COMPAT 1397 if (compat) 1398 ret = compat_rw_copy_check_uvector(type, 1399 (struct compat_iovec __user *)kiocb->ki_buf, 1400 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1401 &kiocb->ki_iovec); 1402 else 1403 #endif 1404 ret = rw_copy_check_uvector(type, 1405 (struct iovec __user *)kiocb->ki_buf, 1406 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1407 &kiocb->ki_iovec); 1408 if (ret < 0) 1409 goto out; 1410 1411 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1412 kiocb->ki_cur_seg = 0; 1413 /* ki_nbytes/left now reflect bytes instead of segs */ 1414 kiocb->ki_nbytes = ret; 1415 kiocb->ki_left = ret; 1416 1417 ret = 0; 1418 out: 1419 return ret; 1420 } 1421 1422 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1423 { 1424 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1425 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1426 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1427 kiocb->ki_nr_segs = 1; 1428 kiocb->ki_cur_seg = 0; 1429 return 0; 1430 } 1431 1432 /* 1433 * aio_setup_iocb: 1434 * Performs the initial checks and aio retry method 1435 * setup for the kiocb at the time of io submission. 1436 */ 1437 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1438 { 1439 struct file *file = kiocb->ki_filp; 1440 ssize_t ret = 0; 1441 1442 switch (kiocb->ki_opcode) { 1443 case IOCB_CMD_PREAD: 1444 ret = -EBADF; 1445 if (unlikely(!(file->f_mode & FMODE_READ))) 1446 break; 1447 ret = -EFAULT; 1448 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1449 kiocb->ki_left))) 1450 break; 1451 ret = security_file_permission(file, MAY_READ); 1452 if (unlikely(ret)) 1453 break; 1454 ret = aio_setup_single_vector(kiocb); 1455 if (ret) 1456 break; 1457 ret = -EINVAL; 1458 if (file->f_op->aio_read) 1459 kiocb->ki_retry = aio_rw_vect_retry; 1460 break; 1461 case IOCB_CMD_PWRITE: 1462 ret = -EBADF; 1463 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1464 break; 1465 ret = -EFAULT; 1466 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1467 kiocb->ki_left))) 1468 break; 1469 ret = security_file_permission(file, MAY_WRITE); 1470 if (unlikely(ret)) 1471 break; 1472 ret = aio_setup_single_vector(kiocb); 1473 if (ret) 1474 break; 1475 ret = -EINVAL; 1476 if (file->f_op->aio_write) 1477 kiocb->ki_retry = aio_rw_vect_retry; 1478 break; 1479 case IOCB_CMD_PREADV: 1480 ret = -EBADF; 1481 if (unlikely(!(file->f_mode & FMODE_READ))) 1482 break; 1483 ret = security_file_permission(file, MAY_READ); 1484 if (unlikely(ret)) 1485 break; 1486 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1487 if (ret) 1488 break; 1489 ret = -EINVAL; 1490 if (file->f_op->aio_read) 1491 kiocb->ki_retry = aio_rw_vect_retry; 1492 break; 1493 case IOCB_CMD_PWRITEV: 1494 ret = -EBADF; 1495 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1496 break; 1497 ret = security_file_permission(file, MAY_WRITE); 1498 if (unlikely(ret)) 1499 break; 1500 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1501 if (ret) 1502 break; 1503 ret = -EINVAL; 1504 if (file->f_op->aio_write) 1505 kiocb->ki_retry = aio_rw_vect_retry; 1506 break; 1507 case IOCB_CMD_FDSYNC: 1508 ret = -EINVAL; 1509 if (file->f_op->aio_fsync) 1510 kiocb->ki_retry = aio_fdsync; 1511 break; 1512 case IOCB_CMD_FSYNC: 1513 ret = -EINVAL; 1514 if (file->f_op->aio_fsync) 1515 kiocb->ki_retry = aio_fsync; 1516 break; 1517 default: 1518 dprintk("EINVAL: io_submit: no operation provided\n"); 1519 ret = -EINVAL; 1520 } 1521 1522 if (!kiocb->ki_retry) 1523 return ret; 1524 1525 return 0; 1526 } 1527 1528 static void aio_batch_add(struct address_space *mapping, 1529 struct hlist_head *batch_hash) 1530 { 1531 struct aio_batch_entry *abe; 1532 struct hlist_node *pos; 1533 unsigned bucket; 1534 1535 bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS); 1536 hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) { 1537 if (abe->mapping == mapping) 1538 return; 1539 } 1540 1541 abe = mempool_alloc(abe_pool, GFP_KERNEL); 1542 1543 /* 1544 * we should be using igrab here, but 1545 * we don't want to hammer on the global 1546 * inode spinlock just to take an extra 1547 * reference on a file that we must already 1548 * have a reference to. 1549 * 1550 * When we're called, we always have a reference 1551 * on the file, so we must always have a reference 1552 * on the inode, so ihold() is safe here. 1553 */ 1554 ihold(mapping->host); 1555 abe->mapping = mapping; 1556 hlist_add_head(&abe->list, &batch_hash[bucket]); 1557 return; 1558 } 1559 1560 static void aio_batch_free(struct hlist_head *batch_hash) 1561 { 1562 struct aio_batch_entry *abe; 1563 struct hlist_node *pos, *n; 1564 int i; 1565 1566 for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) { 1567 hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) { 1568 blk_run_address_space(abe->mapping); 1569 iput(abe->mapping->host); 1570 hlist_del(&abe->list); 1571 mempool_free(abe, abe_pool); 1572 } 1573 } 1574 } 1575 1576 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1577 struct iocb *iocb, struct hlist_head *batch_hash, 1578 bool compat) 1579 { 1580 struct kiocb *req; 1581 struct file *file; 1582 ssize_t ret; 1583 1584 /* enforce forwards compatibility on users */ 1585 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1586 pr_debug("EINVAL: io_submit: reserve field set\n"); 1587 return -EINVAL; 1588 } 1589 1590 /* prevent overflows */ 1591 if (unlikely( 1592 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1593 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1594 ((ssize_t)iocb->aio_nbytes < 0) 1595 )) { 1596 pr_debug("EINVAL: io_submit: overflow check\n"); 1597 return -EINVAL; 1598 } 1599 1600 file = fget(iocb->aio_fildes); 1601 if (unlikely(!file)) 1602 return -EBADF; 1603 1604 req = aio_get_req(ctx); /* returns with 2 references to req */ 1605 if (unlikely(!req)) { 1606 fput(file); 1607 return -EAGAIN; 1608 } 1609 req->ki_filp = file; 1610 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1611 /* 1612 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1613 * instance of the file* now. The file descriptor must be 1614 * an eventfd() fd, and will be signaled for each completed 1615 * event using the eventfd_signal() function. 1616 */ 1617 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1618 if (IS_ERR(req->ki_eventfd)) { 1619 ret = PTR_ERR(req->ki_eventfd); 1620 req->ki_eventfd = NULL; 1621 goto out_put_req; 1622 } 1623 } 1624 1625 ret = put_user(req->ki_key, &user_iocb->aio_key); 1626 if (unlikely(ret)) { 1627 dprintk("EFAULT: aio_key\n"); 1628 goto out_put_req; 1629 } 1630 1631 req->ki_obj.user = user_iocb; 1632 req->ki_user_data = iocb->aio_data; 1633 req->ki_pos = iocb->aio_offset; 1634 1635 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1636 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1637 req->ki_opcode = iocb->aio_lio_opcode; 1638 1639 ret = aio_setup_iocb(req, compat); 1640 1641 if (ret) 1642 goto out_put_req; 1643 1644 spin_lock_irq(&ctx->ctx_lock); 1645 /* 1646 * We could have raced with io_destroy() and are currently holding a 1647 * reference to ctx which should be destroyed. We cannot submit IO 1648 * since ctx gets freed as soon as io_submit() puts its reference. The 1649 * check here is reliable: io_destroy() sets ctx->dead before waiting 1650 * for outstanding IO and the barrier between these two is realized by 1651 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1652 * increment ctx->reqs_active before checking for ctx->dead and the 1653 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1654 * don't see ctx->dead set here, io_destroy() waits for our IO to 1655 * finish. 1656 */ 1657 if (ctx->dead) { 1658 spin_unlock_irq(&ctx->ctx_lock); 1659 ret = -EINVAL; 1660 goto out_put_req; 1661 } 1662 aio_run_iocb(req); 1663 if (!list_empty(&ctx->run_list)) { 1664 /* drain the run list */ 1665 while (__aio_run_iocbs(ctx)) 1666 ; 1667 } 1668 spin_unlock_irq(&ctx->ctx_lock); 1669 if (req->ki_opcode == IOCB_CMD_PREAD || 1670 req->ki_opcode == IOCB_CMD_PREADV || 1671 req->ki_opcode == IOCB_CMD_PWRITE || 1672 req->ki_opcode == IOCB_CMD_PWRITEV) 1673 aio_batch_add(file->f_mapping, batch_hash); 1674 1675 aio_put_req(req); /* drop extra ref to req */ 1676 return 0; 1677 1678 out_put_req: 1679 aio_put_req(req); /* drop extra ref to req */ 1680 aio_put_req(req); /* drop i/o ref to req */ 1681 return ret; 1682 } 1683 1684 long do_io_submit(aio_context_t ctx_id, long nr, 1685 struct iocb __user *__user *iocbpp, bool compat) 1686 { 1687 struct kioctx *ctx; 1688 long ret = 0; 1689 int i; 1690 struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, }; 1691 1692 if (unlikely(nr < 0)) 1693 return -EINVAL; 1694 1695 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1696 nr = LONG_MAX/sizeof(*iocbpp); 1697 1698 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1699 return -EFAULT; 1700 1701 ctx = lookup_ioctx(ctx_id); 1702 if (unlikely(!ctx)) { 1703 pr_debug("EINVAL: io_submit: invalid context id\n"); 1704 return -EINVAL; 1705 } 1706 1707 /* 1708 * AKPM: should this return a partial result if some of the IOs were 1709 * successfully submitted? 1710 */ 1711 for (i=0; i<nr; i++) { 1712 struct iocb __user *user_iocb; 1713 struct iocb tmp; 1714 1715 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1716 ret = -EFAULT; 1717 break; 1718 } 1719 1720 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1721 ret = -EFAULT; 1722 break; 1723 } 1724 1725 ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat); 1726 if (ret) 1727 break; 1728 } 1729 aio_batch_free(batch_hash); 1730 1731 put_ioctx(ctx); 1732 return i ? i : ret; 1733 } 1734 1735 /* sys_io_submit: 1736 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1737 * the number of iocbs queued. May return -EINVAL if the aio_context 1738 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1739 * *iocbpp[0] is not properly initialized, if the operation specified 1740 * is invalid for the file descriptor in the iocb. May fail with 1741 * -EFAULT if any of the data structures point to invalid data. May 1742 * fail with -EBADF if the file descriptor specified in the first 1743 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1744 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1745 * fail with -ENOSYS if not implemented. 1746 */ 1747 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1748 struct iocb __user * __user *, iocbpp) 1749 { 1750 return do_io_submit(ctx_id, nr, iocbpp, 0); 1751 } 1752 1753 /* lookup_kiocb 1754 * Finds a given iocb for cancellation. 1755 */ 1756 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1757 u32 key) 1758 { 1759 struct list_head *pos; 1760 1761 assert_spin_locked(&ctx->ctx_lock); 1762 1763 /* TODO: use a hash or array, this sucks. */ 1764 list_for_each(pos, &ctx->active_reqs) { 1765 struct kiocb *kiocb = list_kiocb(pos); 1766 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1767 return kiocb; 1768 } 1769 return NULL; 1770 } 1771 1772 /* sys_io_cancel: 1773 * Attempts to cancel an iocb previously passed to io_submit. If 1774 * the operation is successfully cancelled, the resulting event is 1775 * copied into the memory pointed to by result without being placed 1776 * into the completion queue and 0 is returned. May fail with 1777 * -EFAULT if any of the data structures pointed to are invalid. 1778 * May fail with -EINVAL if aio_context specified by ctx_id is 1779 * invalid. May fail with -EAGAIN if the iocb specified was not 1780 * cancelled. Will fail with -ENOSYS if not implemented. 1781 */ 1782 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1783 struct io_event __user *, result) 1784 { 1785 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1786 struct kioctx *ctx; 1787 struct kiocb *kiocb; 1788 u32 key; 1789 int ret; 1790 1791 ret = get_user(key, &iocb->aio_key); 1792 if (unlikely(ret)) 1793 return -EFAULT; 1794 1795 ctx = lookup_ioctx(ctx_id); 1796 if (unlikely(!ctx)) 1797 return -EINVAL; 1798 1799 spin_lock_irq(&ctx->ctx_lock); 1800 ret = -EAGAIN; 1801 kiocb = lookup_kiocb(ctx, iocb, key); 1802 if (kiocb && kiocb->ki_cancel) { 1803 cancel = kiocb->ki_cancel; 1804 kiocb->ki_users ++; 1805 kiocbSetCancelled(kiocb); 1806 } else 1807 cancel = NULL; 1808 spin_unlock_irq(&ctx->ctx_lock); 1809 1810 if (NULL != cancel) { 1811 struct io_event tmp; 1812 pr_debug("calling cancel\n"); 1813 memset(&tmp, 0, sizeof(tmp)); 1814 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1815 tmp.data = kiocb->ki_user_data; 1816 ret = cancel(kiocb, &tmp); 1817 if (!ret) { 1818 /* Cancellation succeeded -- copy the result 1819 * into the user's buffer. 1820 */ 1821 if (copy_to_user(result, &tmp, sizeof(tmp))) 1822 ret = -EFAULT; 1823 } 1824 } else 1825 ret = -EINVAL; 1826 1827 put_ioctx(ctx); 1828 1829 return ret; 1830 } 1831 1832 /* io_getevents: 1833 * Attempts to read at least min_nr events and up to nr events from 1834 * the completion queue for the aio_context specified by ctx_id. If 1835 * it succeeds, the number of read events is returned. May fail with 1836 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1837 * out of range, if timeout is out of range. May fail with -EFAULT 1838 * if any of the memory specified is invalid. May return 0 or 1839 * < min_nr if the timeout specified by timeout has elapsed 1840 * before sufficient events are available, where timeout == NULL 1841 * specifies an infinite timeout. Note that the timeout pointed to by 1842 * timeout is relative and will be updated if not NULL and the 1843 * operation blocks. Will fail with -ENOSYS if not implemented. 1844 */ 1845 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1846 long, min_nr, 1847 long, nr, 1848 struct io_event __user *, events, 1849 struct timespec __user *, timeout) 1850 { 1851 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1852 long ret = -EINVAL; 1853 1854 if (likely(ioctx)) { 1855 if (likely(min_nr <= nr && min_nr >= 0)) 1856 ret = read_events(ioctx, min_nr, nr, events, timeout); 1857 put_ioctx(ioctx); 1858 } 1859 1860 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1861 return ret; 1862 } 1863