1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/aio.h> 30 #include <linux/highmem.h> 31 #include <linux/workqueue.h> 32 #include <linux/security.h> 33 #include <linux/eventfd.h> 34 35 #include <asm/kmap_types.h> 36 #include <asm/uaccess.h> 37 #include <asm/mmu_context.h> 38 39 #if DEBUG > 1 40 #define dprintk printk 41 #else 42 #define dprintk(x...) do { ; } while (0) 43 #endif 44 45 /*------ sysctl variables----*/ 46 static DEFINE_SPINLOCK(aio_nr_lock); 47 unsigned long aio_nr; /* current system wide number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static struct kmem_cache *kiocb_cachep; 52 static struct kmem_cache *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(struct work_struct *); 58 static DECLARE_WORK(fput_work, aio_fput_routine); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 static LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(struct work_struct *); 64 static void aio_queue_work(struct kioctx *); 65 66 /* aio_setup 67 * Creates the slab caches used by the aio routines, panic on 68 * failure as this is done early during the boot sequence. 69 */ 70 static int __init aio_setup(void) 71 { 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 } 129 130 info->mmap_size = nr_pages * PAGE_SIZE; 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 132 down_write(&ctx->mm->mmap_sem); 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 135 0); 136 if (IS_ERR((void *)info->mmap_base)) { 137 up_write(&ctx->mm->mmap_sem); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 195 /* __put_ioctx 196 * Called when the last user of an aio context has gone away, 197 * and the struct needs to be freed. 198 */ 199 static void __put_ioctx(struct kioctx *ctx) 200 { 201 unsigned nr_events = ctx->max_reqs; 202 203 BUG_ON(ctx->reqs_active); 204 205 cancel_delayed_work(&ctx->wq); 206 cancel_work_sync(&ctx->wq.work); 207 aio_free_ring(ctx); 208 mmdrop(ctx->mm); 209 ctx->mm = NULL; 210 pr_debug("__put_ioctx: freeing %p\n", ctx); 211 kmem_cache_free(kioctx_cachep, ctx); 212 213 if (nr_events) { 214 spin_lock(&aio_nr_lock); 215 BUG_ON(aio_nr - nr_events > aio_nr); 216 aio_nr -= nr_events; 217 spin_unlock(&aio_nr_lock); 218 } 219 } 220 221 #define get_ioctx(kioctx) do { \ 222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 223 atomic_inc(&(kioctx)->users); \ 224 } while (0) 225 #define put_ioctx(kioctx) do { \ 226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 228 __put_ioctx(kioctx); \ 229 } while (0) 230 231 /* ioctx_alloc 232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 233 */ 234 static struct kioctx *ioctx_alloc(unsigned nr_events) 235 { 236 struct mm_struct *mm; 237 struct kioctx *ctx; 238 239 /* Prevent overflows */ 240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 242 pr_debug("ENOMEM: nr_events too high\n"); 243 return ERR_PTR(-EINVAL); 244 } 245 246 if ((unsigned long)nr_events > aio_max_nr) 247 return ERR_PTR(-EAGAIN); 248 249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 250 if (!ctx) 251 return ERR_PTR(-ENOMEM); 252 253 ctx->max_reqs = nr_events; 254 mm = ctx->mm = current->mm; 255 atomic_inc(&mm->mm_count); 256 257 atomic_set(&ctx->users, 1); 258 spin_lock_init(&ctx->ctx_lock); 259 spin_lock_init(&ctx->ring_info.ring_lock); 260 init_waitqueue_head(&ctx->wait); 261 262 INIT_LIST_HEAD(&ctx->active_reqs); 263 INIT_LIST_HEAD(&ctx->run_list); 264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 265 266 if (aio_setup_ring(ctx) < 0) 267 goto out_freectx; 268 269 /* limit the number of system wide aios */ 270 spin_lock(&aio_nr_lock); 271 if (aio_nr + ctx->max_reqs > aio_max_nr || 272 aio_nr + ctx->max_reqs < aio_nr) 273 ctx->max_reqs = 0; 274 else 275 aio_nr += ctx->max_reqs; 276 spin_unlock(&aio_nr_lock); 277 if (ctx->max_reqs == 0) 278 goto out_cleanup; 279 280 /* now link into global list. */ 281 write_lock(&mm->ioctx_list_lock); 282 ctx->next = mm->ioctx_list; 283 mm->ioctx_list = ctx; 284 write_unlock(&mm->ioctx_list_lock); 285 286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 288 return ctx; 289 290 out_cleanup: 291 __put_ioctx(ctx); 292 return ERR_PTR(-EAGAIN); 293 294 out_freectx: 295 mmdrop(mm); 296 kmem_cache_free(kioctx_cachep, ctx); 297 ctx = ERR_PTR(-ENOMEM); 298 299 dprintk("aio: error allocating ioctx %p\n", ctx); 300 return ctx; 301 } 302 303 /* aio_cancel_all 304 * Cancels all outstanding aio requests on an aio context. Used 305 * when the processes owning a context have all exited to encourage 306 * the rapid destruction of the kioctx. 307 */ 308 static void aio_cancel_all(struct kioctx *ctx) 309 { 310 int (*cancel)(struct kiocb *, struct io_event *); 311 struct io_event res; 312 spin_lock_irq(&ctx->ctx_lock); 313 ctx->dead = 1; 314 while (!list_empty(&ctx->active_reqs)) { 315 struct list_head *pos = ctx->active_reqs.next; 316 struct kiocb *iocb = list_kiocb(pos); 317 list_del_init(&iocb->ki_list); 318 cancel = iocb->ki_cancel; 319 kiocbSetCancelled(iocb); 320 if (cancel) { 321 iocb->ki_users++; 322 spin_unlock_irq(&ctx->ctx_lock); 323 cancel(iocb, &res); 324 spin_lock_irq(&ctx->ctx_lock); 325 } 326 } 327 spin_unlock_irq(&ctx->ctx_lock); 328 } 329 330 static void wait_for_all_aios(struct kioctx *ctx) 331 { 332 struct task_struct *tsk = current; 333 DECLARE_WAITQUEUE(wait, tsk); 334 335 spin_lock_irq(&ctx->ctx_lock); 336 if (!ctx->reqs_active) 337 goto out; 338 339 add_wait_queue(&ctx->wait, &wait); 340 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 341 while (ctx->reqs_active) { 342 spin_unlock_irq(&ctx->ctx_lock); 343 io_schedule(); 344 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 345 spin_lock_irq(&ctx->ctx_lock); 346 } 347 __set_task_state(tsk, TASK_RUNNING); 348 remove_wait_queue(&ctx->wait, &wait); 349 350 out: 351 spin_unlock_irq(&ctx->ctx_lock); 352 } 353 354 /* wait_on_sync_kiocb: 355 * Waits on the given sync kiocb to complete. 356 */ 357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 358 { 359 while (iocb->ki_users) { 360 set_current_state(TASK_UNINTERRUPTIBLE); 361 if (!iocb->ki_users) 362 break; 363 io_schedule(); 364 } 365 __set_current_state(TASK_RUNNING); 366 return iocb->ki_user_data; 367 } 368 369 /* exit_aio: called when the last user of mm goes away. At this point, 370 * there is no way for any new requests to be submited or any of the 371 * io_* syscalls to be called on the context. However, there may be 372 * outstanding requests which hold references to the context; as they 373 * go away, they will call put_ioctx and release any pinned memory 374 * associated with the request (held via struct page * references). 375 */ 376 void exit_aio(struct mm_struct *mm) 377 { 378 struct kioctx *ctx = mm->ioctx_list; 379 mm->ioctx_list = NULL; 380 while (ctx) { 381 struct kioctx *next = ctx->next; 382 ctx->next = NULL; 383 aio_cancel_all(ctx); 384 385 wait_for_all_aios(ctx); 386 /* 387 * Ensure we don't leave the ctx on the aio_wq 388 */ 389 cancel_work_sync(&ctx->wq.work); 390 391 if (1 != atomic_read(&ctx->users)) 392 printk(KERN_DEBUG 393 "exit_aio:ioctx still alive: %d %d %d\n", 394 atomic_read(&ctx->users), ctx->dead, 395 ctx->reqs_active); 396 put_ioctx(ctx); 397 ctx = next; 398 } 399 } 400 401 /* aio_get_req 402 * Allocate a slot for an aio request. Increments the users count 403 * of the kioctx so that the kioctx stays around until all requests are 404 * complete. Returns NULL if no requests are free. 405 * 406 * Returns with kiocb->users set to 2. The io submit code path holds 407 * an extra reference while submitting the i/o. 408 * This prevents races between the aio code path referencing the 409 * req (after submitting it) and aio_complete() freeing the req. 410 */ 411 static struct kiocb *__aio_get_req(struct kioctx *ctx) 412 { 413 struct kiocb *req = NULL; 414 struct aio_ring *ring; 415 int okay = 0; 416 417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 418 if (unlikely(!req)) 419 return NULL; 420 421 req->ki_flags = 0; 422 req->ki_users = 2; 423 req->ki_key = 0; 424 req->ki_ctx = ctx; 425 req->ki_cancel = NULL; 426 req->ki_retry = NULL; 427 req->ki_dtor = NULL; 428 req->private = NULL; 429 req->ki_iovec = NULL; 430 INIT_LIST_HEAD(&req->ki_run_list); 431 req->ki_eventfd = ERR_PTR(-EINVAL); 432 433 /* Check if the completion queue has enough free space to 434 * accept an event from this io. 435 */ 436 spin_lock_irq(&ctx->ctx_lock); 437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 439 list_add(&req->ki_list, &ctx->active_reqs); 440 ctx->reqs_active++; 441 okay = 1; 442 } 443 kunmap_atomic(ring, KM_USER0); 444 spin_unlock_irq(&ctx->ctx_lock); 445 446 if (!okay) { 447 kmem_cache_free(kiocb_cachep, req); 448 req = NULL; 449 } 450 451 return req; 452 } 453 454 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 455 { 456 struct kiocb *req; 457 /* Handle a potential starvation case -- should be exceedingly rare as 458 * requests will be stuck on fput_head only if the aio_fput_routine is 459 * delayed and the requests were the last user of the struct file. 460 */ 461 req = __aio_get_req(ctx); 462 if (unlikely(NULL == req)) { 463 aio_fput_routine(NULL); 464 req = __aio_get_req(ctx); 465 } 466 return req; 467 } 468 469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 470 { 471 assert_spin_locked(&ctx->ctx_lock); 472 473 if (!IS_ERR(req->ki_eventfd)) 474 fput(req->ki_eventfd); 475 if (req->ki_dtor) 476 req->ki_dtor(req); 477 if (req->ki_iovec != &req->ki_inline_vec) 478 kfree(req->ki_iovec); 479 kmem_cache_free(kiocb_cachep, req); 480 ctx->reqs_active--; 481 482 if (unlikely(!ctx->reqs_active && ctx->dead)) 483 wake_up(&ctx->wait); 484 } 485 486 static void aio_fput_routine(struct work_struct *data) 487 { 488 spin_lock_irq(&fput_lock); 489 while (likely(!list_empty(&fput_head))) { 490 struct kiocb *req = list_kiocb(fput_head.next); 491 struct kioctx *ctx = req->ki_ctx; 492 493 list_del(&req->ki_list); 494 spin_unlock_irq(&fput_lock); 495 496 /* Complete the fput */ 497 __fput(req->ki_filp); 498 499 /* Link the iocb into the context's free list */ 500 spin_lock_irq(&ctx->ctx_lock); 501 really_put_req(ctx, req); 502 spin_unlock_irq(&ctx->ctx_lock); 503 504 put_ioctx(ctx); 505 spin_lock_irq(&fput_lock); 506 } 507 spin_unlock_irq(&fput_lock); 508 } 509 510 /* __aio_put_req 511 * Returns true if this put was the last user of the request. 512 */ 513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 514 { 515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 516 req, atomic_long_read(&req->ki_filp->f_count)); 517 518 assert_spin_locked(&ctx->ctx_lock); 519 520 req->ki_users --; 521 BUG_ON(req->ki_users < 0); 522 if (likely(req->ki_users)) 523 return 0; 524 list_del(&req->ki_list); /* remove from active_reqs */ 525 req->ki_cancel = NULL; 526 req->ki_retry = NULL; 527 528 /* Must be done under the lock to serialise against cancellation. 529 * Call this aio_fput as it duplicates fput via the fput_work. 530 */ 531 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { 532 get_ioctx(ctx); 533 spin_lock(&fput_lock); 534 list_add(&req->ki_list, &fput_head); 535 spin_unlock(&fput_lock); 536 queue_work(aio_wq, &fput_work); 537 } else 538 really_put_req(ctx, req); 539 return 1; 540 } 541 542 /* aio_put_req 543 * Returns true if this put was the last user of the kiocb, 544 * false if the request is still in use. 545 */ 546 int aio_put_req(struct kiocb *req) 547 { 548 struct kioctx *ctx = req->ki_ctx; 549 int ret; 550 spin_lock_irq(&ctx->ctx_lock); 551 ret = __aio_put_req(ctx, req); 552 spin_unlock_irq(&ctx->ctx_lock); 553 return ret; 554 } 555 556 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 557 { 558 struct kioctx *ioctx; 559 struct mm_struct *mm; 560 561 mm = current->mm; 562 read_lock(&mm->ioctx_list_lock); 563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 565 get_ioctx(ioctx); 566 break; 567 } 568 read_unlock(&mm->ioctx_list_lock); 569 570 return ioctx; 571 } 572 573 /* 574 * use_mm 575 * Makes the calling kernel thread take on the specified 576 * mm context. 577 * Called by the retry thread execute retries within the 578 * iocb issuer's mm context, so that copy_from/to_user 579 * operations work seamlessly for aio. 580 * (Note: this routine is intended to be called only 581 * from a kernel thread context) 582 */ 583 static void use_mm(struct mm_struct *mm) 584 { 585 struct mm_struct *active_mm; 586 struct task_struct *tsk = current; 587 588 task_lock(tsk); 589 active_mm = tsk->active_mm; 590 atomic_inc(&mm->mm_count); 591 tsk->mm = mm; 592 tsk->active_mm = mm; 593 switch_mm(active_mm, mm, tsk); 594 task_unlock(tsk); 595 596 mmdrop(active_mm); 597 } 598 599 /* 600 * unuse_mm 601 * Reverses the effect of use_mm, i.e. releases the 602 * specified mm context which was earlier taken on 603 * by the calling kernel thread 604 * (Note: this routine is intended to be called only 605 * from a kernel thread context) 606 */ 607 static void unuse_mm(struct mm_struct *mm) 608 { 609 struct task_struct *tsk = current; 610 611 task_lock(tsk); 612 tsk->mm = NULL; 613 /* active_mm is still 'mm' */ 614 enter_lazy_tlb(mm, tsk); 615 task_unlock(tsk); 616 } 617 618 /* 619 * Queue up a kiocb to be retried. Assumes that the kiocb 620 * has already been marked as kicked, and places it on 621 * the retry run list for the corresponding ioctx, if it 622 * isn't already queued. Returns 1 if it actually queued 623 * the kiocb (to tell the caller to activate the work 624 * queue to process it), or 0, if it found that it was 625 * already queued. 626 */ 627 static inline int __queue_kicked_iocb(struct kiocb *iocb) 628 { 629 struct kioctx *ctx = iocb->ki_ctx; 630 631 assert_spin_locked(&ctx->ctx_lock); 632 633 if (list_empty(&iocb->ki_run_list)) { 634 list_add_tail(&iocb->ki_run_list, 635 &ctx->run_list); 636 return 1; 637 } 638 return 0; 639 } 640 641 /* aio_run_iocb 642 * This is the core aio execution routine. It is 643 * invoked both for initial i/o submission and 644 * subsequent retries via the aio_kick_handler. 645 * Expects to be invoked with iocb->ki_ctx->lock 646 * already held. The lock is released and reacquired 647 * as needed during processing. 648 * 649 * Calls the iocb retry method (already setup for the 650 * iocb on initial submission) for operation specific 651 * handling, but takes care of most of common retry 652 * execution details for a given iocb. The retry method 653 * needs to be non-blocking as far as possible, to avoid 654 * holding up other iocbs waiting to be serviced by the 655 * retry kernel thread. 656 * 657 * The trickier parts in this code have to do with 658 * ensuring that only one retry instance is in progress 659 * for a given iocb at any time. Providing that guarantee 660 * simplifies the coding of individual aio operations as 661 * it avoids various potential races. 662 */ 663 static ssize_t aio_run_iocb(struct kiocb *iocb) 664 { 665 struct kioctx *ctx = iocb->ki_ctx; 666 ssize_t (*retry)(struct kiocb *); 667 ssize_t ret; 668 669 if (!(retry = iocb->ki_retry)) { 670 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 671 return 0; 672 } 673 674 /* 675 * We don't want the next retry iteration for this 676 * operation to start until this one has returned and 677 * updated the iocb state. However, wait_queue functions 678 * can trigger a kick_iocb from interrupt context in the 679 * meantime, indicating that data is available for the next 680 * iteration. We want to remember that and enable the 681 * next retry iteration _after_ we are through with 682 * this one. 683 * 684 * So, in order to be able to register a "kick", but 685 * prevent it from being queued now, we clear the kick 686 * flag, but make the kick code *think* that the iocb is 687 * still on the run list until we are actually done. 688 * When we are done with this iteration, we check if 689 * the iocb was kicked in the meantime and if so, queue 690 * it up afresh. 691 */ 692 693 kiocbClearKicked(iocb); 694 695 /* 696 * This is so that aio_complete knows it doesn't need to 697 * pull the iocb off the run list (We can't just call 698 * INIT_LIST_HEAD because we don't want a kick_iocb to 699 * queue this on the run list yet) 700 */ 701 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 702 spin_unlock_irq(&ctx->ctx_lock); 703 704 /* Quit retrying if the i/o has been cancelled */ 705 if (kiocbIsCancelled(iocb)) { 706 ret = -EINTR; 707 aio_complete(iocb, ret, 0); 708 /* must not access the iocb after this */ 709 goto out; 710 } 711 712 /* 713 * Now we are all set to call the retry method in async 714 * context. 715 */ 716 ret = retry(iocb); 717 718 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 719 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 720 aio_complete(iocb, ret, 0); 721 } 722 out: 723 spin_lock_irq(&ctx->ctx_lock); 724 725 if (-EIOCBRETRY == ret) { 726 /* 727 * OK, now that we are done with this iteration 728 * and know that there is more left to go, 729 * this is where we let go so that a subsequent 730 * "kick" can start the next iteration 731 */ 732 733 /* will make __queue_kicked_iocb succeed from here on */ 734 INIT_LIST_HEAD(&iocb->ki_run_list); 735 /* we must queue the next iteration ourselves, if it 736 * has already been kicked */ 737 if (kiocbIsKicked(iocb)) { 738 __queue_kicked_iocb(iocb); 739 740 /* 741 * __queue_kicked_iocb will always return 1 here, because 742 * iocb->ki_run_list is empty at this point so it should 743 * be safe to unconditionally queue the context into the 744 * work queue. 745 */ 746 aio_queue_work(ctx); 747 } 748 } 749 return ret; 750 } 751 752 /* 753 * __aio_run_iocbs: 754 * Process all pending retries queued on the ioctx 755 * run list. 756 * Assumes it is operating within the aio issuer's mm 757 * context. 758 */ 759 static int __aio_run_iocbs(struct kioctx *ctx) 760 { 761 struct kiocb *iocb; 762 struct list_head run_list; 763 764 assert_spin_locked(&ctx->ctx_lock); 765 766 list_replace_init(&ctx->run_list, &run_list); 767 while (!list_empty(&run_list)) { 768 iocb = list_entry(run_list.next, struct kiocb, 769 ki_run_list); 770 list_del(&iocb->ki_run_list); 771 /* 772 * Hold an extra reference while retrying i/o. 773 */ 774 iocb->ki_users++; /* grab extra reference */ 775 aio_run_iocb(iocb); 776 __aio_put_req(ctx, iocb); 777 } 778 if (!list_empty(&ctx->run_list)) 779 return 1; 780 return 0; 781 } 782 783 static void aio_queue_work(struct kioctx * ctx) 784 { 785 unsigned long timeout; 786 /* 787 * if someone is waiting, get the work started right 788 * away, otherwise, use a longer delay 789 */ 790 smp_mb(); 791 if (waitqueue_active(&ctx->wait)) 792 timeout = 1; 793 else 794 timeout = HZ/10; 795 queue_delayed_work(aio_wq, &ctx->wq, timeout); 796 } 797 798 799 /* 800 * aio_run_iocbs: 801 * Process all pending retries queued on the ioctx 802 * run list. 803 * Assumes it is operating within the aio issuer's mm 804 * context. 805 */ 806 static inline void aio_run_iocbs(struct kioctx *ctx) 807 { 808 int requeue; 809 810 spin_lock_irq(&ctx->ctx_lock); 811 812 requeue = __aio_run_iocbs(ctx); 813 spin_unlock_irq(&ctx->ctx_lock); 814 if (requeue) 815 aio_queue_work(ctx); 816 } 817 818 /* 819 * just like aio_run_iocbs, but keeps running them until 820 * the list stays empty 821 */ 822 static inline void aio_run_all_iocbs(struct kioctx *ctx) 823 { 824 spin_lock_irq(&ctx->ctx_lock); 825 while (__aio_run_iocbs(ctx)) 826 ; 827 spin_unlock_irq(&ctx->ctx_lock); 828 } 829 830 /* 831 * aio_kick_handler: 832 * Work queue handler triggered to process pending 833 * retries on an ioctx. Takes on the aio issuer's 834 * mm context before running the iocbs, so that 835 * copy_xxx_user operates on the issuer's address 836 * space. 837 * Run on aiod's context. 838 */ 839 static void aio_kick_handler(struct work_struct *work) 840 { 841 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 842 mm_segment_t oldfs = get_fs(); 843 struct mm_struct *mm; 844 int requeue; 845 846 set_fs(USER_DS); 847 use_mm(ctx->mm); 848 spin_lock_irq(&ctx->ctx_lock); 849 requeue =__aio_run_iocbs(ctx); 850 mm = ctx->mm; 851 spin_unlock_irq(&ctx->ctx_lock); 852 unuse_mm(mm); 853 set_fs(oldfs); 854 /* 855 * we're in a worker thread already, don't use queue_delayed_work, 856 */ 857 if (requeue) 858 queue_delayed_work(aio_wq, &ctx->wq, 0); 859 } 860 861 862 /* 863 * Called by kick_iocb to queue the kiocb for retry 864 * and if required activate the aio work queue to process 865 * it 866 */ 867 static void try_queue_kicked_iocb(struct kiocb *iocb) 868 { 869 struct kioctx *ctx = iocb->ki_ctx; 870 unsigned long flags; 871 int run = 0; 872 873 /* We're supposed to be the only path putting the iocb back on the run 874 * list. If we find that the iocb is *back* on a wait queue already 875 * than retry has happened before we could queue the iocb. This also 876 * means that the retry could have completed and freed our iocb, no 877 * good. */ 878 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 879 880 spin_lock_irqsave(&ctx->ctx_lock, flags); 881 /* set this inside the lock so that we can't race with aio_run_iocb() 882 * testing it and putting the iocb on the run list under the lock */ 883 if (!kiocbTryKick(iocb)) 884 run = __queue_kicked_iocb(iocb); 885 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 886 if (run) 887 aio_queue_work(ctx); 888 } 889 890 /* 891 * kick_iocb: 892 * Called typically from a wait queue callback context 893 * (aio_wake_function) to trigger a retry of the iocb. 894 * The retry is usually executed by aio workqueue 895 * threads (See aio_kick_handler). 896 */ 897 void kick_iocb(struct kiocb *iocb) 898 { 899 /* sync iocbs are easy: they can only ever be executing from a 900 * single context. */ 901 if (is_sync_kiocb(iocb)) { 902 kiocbSetKicked(iocb); 903 wake_up_process(iocb->ki_obj.tsk); 904 return; 905 } 906 907 try_queue_kicked_iocb(iocb); 908 } 909 EXPORT_SYMBOL(kick_iocb); 910 911 /* aio_complete 912 * Called when the io request on the given iocb is complete. 913 * Returns true if this is the last user of the request. The 914 * only other user of the request can be the cancellation code. 915 */ 916 int aio_complete(struct kiocb *iocb, long res, long res2) 917 { 918 struct kioctx *ctx = iocb->ki_ctx; 919 struct aio_ring_info *info; 920 struct aio_ring *ring; 921 struct io_event *event; 922 unsigned long flags; 923 unsigned long tail; 924 int ret; 925 926 /* 927 * Special case handling for sync iocbs: 928 * - events go directly into the iocb for fast handling 929 * - the sync task with the iocb in its stack holds the single iocb 930 * ref, no other paths have a way to get another ref 931 * - the sync task helpfully left a reference to itself in the iocb 932 */ 933 if (is_sync_kiocb(iocb)) { 934 BUG_ON(iocb->ki_users != 1); 935 iocb->ki_user_data = res; 936 iocb->ki_users = 0; 937 wake_up_process(iocb->ki_obj.tsk); 938 return 1; 939 } 940 941 info = &ctx->ring_info; 942 943 /* add a completion event to the ring buffer. 944 * must be done holding ctx->ctx_lock to prevent 945 * other code from messing with the tail 946 * pointer since we might be called from irq 947 * context. 948 */ 949 spin_lock_irqsave(&ctx->ctx_lock, flags); 950 951 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 952 list_del_init(&iocb->ki_run_list); 953 954 /* 955 * cancelled requests don't get events, userland was given one 956 * when the event got cancelled. 957 */ 958 if (kiocbIsCancelled(iocb)) 959 goto put_rq; 960 961 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 962 963 tail = info->tail; 964 event = aio_ring_event(info, tail, KM_IRQ0); 965 if (++tail >= info->nr) 966 tail = 0; 967 968 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 969 event->data = iocb->ki_user_data; 970 event->res = res; 971 event->res2 = res2; 972 973 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 974 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 975 res, res2); 976 977 /* after flagging the request as done, we 978 * must never even look at it again 979 */ 980 smp_wmb(); /* make event visible before updating tail */ 981 982 info->tail = tail; 983 ring->tail = tail; 984 985 put_aio_ring_event(event, KM_IRQ0); 986 kunmap_atomic(ring, KM_IRQ1); 987 988 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 989 990 /* 991 * Check if the user asked us to deliver the result through an 992 * eventfd. The eventfd_signal() function is safe to be called 993 * from IRQ context. 994 */ 995 if (!IS_ERR(iocb->ki_eventfd)) 996 eventfd_signal(iocb->ki_eventfd, 1); 997 998 put_rq: 999 /* everything turned out well, dispose of the aiocb. */ 1000 ret = __aio_put_req(ctx, iocb); 1001 1002 /* 1003 * We have to order our ring_info tail store above and test 1004 * of the wait list below outside the wait lock. This is 1005 * like in wake_up_bit() where clearing a bit has to be 1006 * ordered with the unlocked test. 1007 */ 1008 smp_mb(); 1009 1010 if (waitqueue_active(&ctx->wait)) 1011 wake_up(&ctx->wait); 1012 1013 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1014 return ret; 1015 } 1016 1017 /* aio_read_evt 1018 * Pull an event off of the ioctx's event ring. Returns the number of 1019 * events fetched (0 or 1 ;-) 1020 * FIXME: make this use cmpxchg. 1021 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1022 */ 1023 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1024 { 1025 struct aio_ring_info *info = &ioctx->ring_info; 1026 struct aio_ring *ring; 1027 unsigned long head; 1028 int ret = 0; 1029 1030 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1031 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1032 (unsigned long)ring->head, (unsigned long)ring->tail, 1033 (unsigned long)ring->nr); 1034 1035 if (ring->head == ring->tail) 1036 goto out; 1037 1038 spin_lock(&info->ring_lock); 1039 1040 head = ring->head % info->nr; 1041 if (head != ring->tail) { 1042 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1043 *ent = *evp; 1044 head = (head + 1) % info->nr; 1045 smp_mb(); /* finish reading the event before updatng the head */ 1046 ring->head = head; 1047 ret = 1; 1048 put_aio_ring_event(evp, KM_USER1); 1049 } 1050 spin_unlock(&info->ring_lock); 1051 1052 out: 1053 kunmap_atomic(ring, KM_USER0); 1054 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1055 (unsigned long)ring->head, (unsigned long)ring->tail); 1056 return ret; 1057 } 1058 1059 struct aio_timeout { 1060 struct timer_list timer; 1061 int timed_out; 1062 struct task_struct *p; 1063 }; 1064 1065 static void timeout_func(unsigned long data) 1066 { 1067 struct aio_timeout *to = (struct aio_timeout *)data; 1068 1069 to->timed_out = 1; 1070 wake_up_process(to->p); 1071 } 1072 1073 static inline void init_timeout(struct aio_timeout *to) 1074 { 1075 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1076 to->timed_out = 0; 1077 to->p = current; 1078 } 1079 1080 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1081 const struct timespec *ts) 1082 { 1083 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1084 if (time_after(to->timer.expires, jiffies)) 1085 add_timer(&to->timer); 1086 else 1087 to->timed_out = 1; 1088 } 1089 1090 static inline void clear_timeout(struct aio_timeout *to) 1091 { 1092 del_singleshot_timer_sync(&to->timer); 1093 } 1094 1095 static int read_events(struct kioctx *ctx, 1096 long min_nr, long nr, 1097 struct io_event __user *event, 1098 struct timespec __user *timeout) 1099 { 1100 long start_jiffies = jiffies; 1101 struct task_struct *tsk = current; 1102 DECLARE_WAITQUEUE(wait, tsk); 1103 int ret; 1104 int i = 0; 1105 struct io_event ent; 1106 struct aio_timeout to; 1107 int retry = 0; 1108 1109 /* needed to zero any padding within an entry (there shouldn't be 1110 * any, but C is fun! 1111 */ 1112 memset(&ent, 0, sizeof(ent)); 1113 retry: 1114 ret = 0; 1115 while (likely(i < nr)) { 1116 ret = aio_read_evt(ctx, &ent); 1117 if (unlikely(ret <= 0)) 1118 break; 1119 1120 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1121 ent.data, ent.obj, ent.res, ent.res2); 1122 1123 /* Could we split the check in two? */ 1124 ret = -EFAULT; 1125 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1126 dprintk("aio: lost an event due to EFAULT.\n"); 1127 break; 1128 } 1129 ret = 0; 1130 1131 /* Good, event copied to userland, update counts. */ 1132 event ++; 1133 i ++; 1134 } 1135 1136 if (min_nr <= i) 1137 return i; 1138 if (ret) 1139 return ret; 1140 1141 /* End fast path */ 1142 1143 /* racey check, but it gets redone */ 1144 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1145 retry = 1; 1146 aio_run_all_iocbs(ctx); 1147 goto retry; 1148 } 1149 1150 init_timeout(&to); 1151 if (timeout) { 1152 struct timespec ts; 1153 ret = -EFAULT; 1154 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1155 goto out; 1156 1157 set_timeout(start_jiffies, &to, &ts); 1158 } 1159 1160 while (likely(i < nr)) { 1161 add_wait_queue_exclusive(&ctx->wait, &wait); 1162 do { 1163 set_task_state(tsk, TASK_INTERRUPTIBLE); 1164 ret = aio_read_evt(ctx, &ent); 1165 if (ret) 1166 break; 1167 if (min_nr <= i) 1168 break; 1169 if (unlikely(ctx->dead)) { 1170 ret = -EINVAL; 1171 break; 1172 } 1173 if (to.timed_out) /* Only check after read evt */ 1174 break; 1175 /* Try to only show up in io wait if there are ops 1176 * in flight */ 1177 if (ctx->reqs_active) 1178 io_schedule(); 1179 else 1180 schedule(); 1181 if (signal_pending(tsk)) { 1182 ret = -EINTR; 1183 break; 1184 } 1185 /*ret = aio_read_evt(ctx, &ent);*/ 1186 } while (1) ; 1187 1188 set_task_state(tsk, TASK_RUNNING); 1189 remove_wait_queue(&ctx->wait, &wait); 1190 1191 if (unlikely(ret <= 0)) 1192 break; 1193 1194 ret = -EFAULT; 1195 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1196 dprintk("aio: lost an event due to EFAULT.\n"); 1197 break; 1198 } 1199 1200 /* Good, event copied to userland, update counts. */ 1201 event ++; 1202 i ++; 1203 } 1204 1205 if (timeout) 1206 clear_timeout(&to); 1207 out: 1208 destroy_timer_on_stack(&to.timer); 1209 return i ? i : ret; 1210 } 1211 1212 /* Take an ioctx and remove it from the list of ioctx's. Protects 1213 * against races with itself via ->dead. 1214 */ 1215 static void io_destroy(struct kioctx *ioctx) 1216 { 1217 struct mm_struct *mm = current->mm; 1218 struct kioctx **tmp; 1219 int was_dead; 1220 1221 /* delete the entry from the list is someone else hasn't already */ 1222 write_lock(&mm->ioctx_list_lock); 1223 was_dead = ioctx->dead; 1224 ioctx->dead = 1; 1225 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1226 tmp = &(*tmp)->next) 1227 ; 1228 if (*tmp) 1229 *tmp = ioctx->next; 1230 write_unlock(&mm->ioctx_list_lock); 1231 1232 dprintk("aio_release(%p)\n", ioctx); 1233 if (likely(!was_dead)) 1234 put_ioctx(ioctx); /* twice for the list */ 1235 1236 aio_cancel_all(ioctx); 1237 wait_for_all_aios(ioctx); 1238 1239 /* 1240 * Wake up any waiters. The setting of ctx->dead must be seen 1241 * by other CPUs at this point. Right now, we rely on the 1242 * locking done by the above calls to ensure this consistency. 1243 */ 1244 wake_up(&ioctx->wait); 1245 put_ioctx(ioctx); /* once for the lookup */ 1246 } 1247 1248 /* sys_io_setup: 1249 * Create an aio_context capable of receiving at least nr_events. 1250 * ctxp must not point to an aio_context that already exists, and 1251 * must be initialized to 0 prior to the call. On successful 1252 * creation of the aio_context, *ctxp is filled in with the resulting 1253 * handle. May fail with -EINVAL if *ctxp is not initialized, 1254 * if the specified nr_events exceeds internal limits. May fail 1255 * with -EAGAIN if the specified nr_events exceeds the user's limit 1256 * of available events. May fail with -ENOMEM if insufficient kernel 1257 * resources are available. May fail with -EFAULT if an invalid 1258 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1259 * implemented. 1260 */ 1261 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1262 { 1263 struct kioctx *ioctx = NULL; 1264 unsigned long ctx; 1265 long ret; 1266 1267 ret = get_user(ctx, ctxp); 1268 if (unlikely(ret)) 1269 goto out; 1270 1271 ret = -EINVAL; 1272 if (unlikely(ctx || nr_events == 0)) { 1273 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1274 ctx, nr_events); 1275 goto out; 1276 } 1277 1278 ioctx = ioctx_alloc(nr_events); 1279 ret = PTR_ERR(ioctx); 1280 if (!IS_ERR(ioctx)) { 1281 ret = put_user(ioctx->user_id, ctxp); 1282 if (!ret) 1283 return 0; 1284 1285 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1286 io_destroy(ioctx); 1287 } 1288 1289 out: 1290 return ret; 1291 } 1292 1293 /* sys_io_destroy: 1294 * Destroy the aio_context specified. May cancel any outstanding 1295 * AIOs and block on completion. Will fail with -ENOSYS if not 1296 * implemented. May fail with -EFAULT if the context pointed to 1297 * is invalid. 1298 */ 1299 asmlinkage long sys_io_destroy(aio_context_t ctx) 1300 { 1301 struct kioctx *ioctx = lookup_ioctx(ctx); 1302 if (likely(NULL != ioctx)) { 1303 io_destroy(ioctx); 1304 return 0; 1305 } 1306 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1307 return -EINVAL; 1308 } 1309 1310 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1311 { 1312 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1313 1314 BUG_ON(ret <= 0); 1315 1316 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1317 ssize_t this = min((ssize_t)iov->iov_len, ret); 1318 iov->iov_base += this; 1319 iov->iov_len -= this; 1320 iocb->ki_left -= this; 1321 ret -= this; 1322 if (iov->iov_len == 0) { 1323 iocb->ki_cur_seg++; 1324 iov++; 1325 } 1326 } 1327 1328 /* the caller should not have done more io than what fit in 1329 * the remaining iovecs */ 1330 BUG_ON(ret > 0 && iocb->ki_left == 0); 1331 } 1332 1333 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1334 { 1335 struct file *file = iocb->ki_filp; 1336 struct address_space *mapping = file->f_mapping; 1337 struct inode *inode = mapping->host; 1338 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1339 unsigned long, loff_t); 1340 ssize_t ret = 0; 1341 unsigned short opcode; 1342 1343 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1344 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1345 rw_op = file->f_op->aio_read; 1346 opcode = IOCB_CMD_PREADV; 1347 } else { 1348 rw_op = file->f_op->aio_write; 1349 opcode = IOCB_CMD_PWRITEV; 1350 } 1351 1352 /* This matches the pread()/pwrite() logic */ 1353 if (iocb->ki_pos < 0) 1354 return -EINVAL; 1355 1356 do { 1357 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1358 iocb->ki_nr_segs - iocb->ki_cur_seg, 1359 iocb->ki_pos); 1360 if (ret > 0) 1361 aio_advance_iovec(iocb, ret); 1362 1363 /* retry all partial writes. retry partial reads as long as its a 1364 * regular file. */ 1365 } while (ret > 0 && iocb->ki_left > 0 && 1366 (opcode == IOCB_CMD_PWRITEV || 1367 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1368 1369 /* This means we must have transferred all that we could */ 1370 /* No need to retry anymore */ 1371 if ((ret == 0) || (iocb->ki_left == 0)) 1372 ret = iocb->ki_nbytes - iocb->ki_left; 1373 1374 /* If we managed to write some out we return that, rather than 1375 * the eventual error. */ 1376 if (opcode == IOCB_CMD_PWRITEV 1377 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1378 && iocb->ki_nbytes - iocb->ki_left) 1379 ret = iocb->ki_nbytes - iocb->ki_left; 1380 1381 return ret; 1382 } 1383 1384 static ssize_t aio_fdsync(struct kiocb *iocb) 1385 { 1386 struct file *file = iocb->ki_filp; 1387 ssize_t ret = -EINVAL; 1388 1389 if (file->f_op->aio_fsync) 1390 ret = file->f_op->aio_fsync(iocb, 1); 1391 return ret; 1392 } 1393 1394 static ssize_t aio_fsync(struct kiocb *iocb) 1395 { 1396 struct file *file = iocb->ki_filp; 1397 ssize_t ret = -EINVAL; 1398 1399 if (file->f_op->aio_fsync) 1400 ret = file->f_op->aio_fsync(iocb, 0); 1401 return ret; 1402 } 1403 1404 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1405 { 1406 ssize_t ret; 1407 1408 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1409 kiocb->ki_nbytes, 1, 1410 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1411 if (ret < 0) 1412 goto out; 1413 1414 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1415 kiocb->ki_cur_seg = 0; 1416 /* ki_nbytes/left now reflect bytes instead of segs */ 1417 kiocb->ki_nbytes = ret; 1418 kiocb->ki_left = ret; 1419 1420 ret = 0; 1421 out: 1422 return ret; 1423 } 1424 1425 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1426 { 1427 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1428 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1429 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1430 kiocb->ki_nr_segs = 1; 1431 kiocb->ki_cur_seg = 0; 1432 return 0; 1433 } 1434 1435 /* 1436 * aio_setup_iocb: 1437 * Performs the initial checks and aio retry method 1438 * setup for the kiocb at the time of io submission. 1439 */ 1440 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1441 { 1442 struct file *file = kiocb->ki_filp; 1443 ssize_t ret = 0; 1444 1445 switch (kiocb->ki_opcode) { 1446 case IOCB_CMD_PREAD: 1447 ret = -EBADF; 1448 if (unlikely(!(file->f_mode & FMODE_READ))) 1449 break; 1450 ret = -EFAULT; 1451 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1452 kiocb->ki_left))) 1453 break; 1454 ret = security_file_permission(file, MAY_READ); 1455 if (unlikely(ret)) 1456 break; 1457 ret = aio_setup_single_vector(kiocb); 1458 if (ret) 1459 break; 1460 ret = -EINVAL; 1461 if (file->f_op->aio_read) 1462 kiocb->ki_retry = aio_rw_vect_retry; 1463 break; 1464 case IOCB_CMD_PWRITE: 1465 ret = -EBADF; 1466 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1467 break; 1468 ret = -EFAULT; 1469 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1470 kiocb->ki_left))) 1471 break; 1472 ret = security_file_permission(file, MAY_WRITE); 1473 if (unlikely(ret)) 1474 break; 1475 ret = aio_setup_single_vector(kiocb); 1476 if (ret) 1477 break; 1478 ret = -EINVAL; 1479 if (file->f_op->aio_write) 1480 kiocb->ki_retry = aio_rw_vect_retry; 1481 break; 1482 case IOCB_CMD_PREADV: 1483 ret = -EBADF; 1484 if (unlikely(!(file->f_mode & FMODE_READ))) 1485 break; 1486 ret = security_file_permission(file, MAY_READ); 1487 if (unlikely(ret)) 1488 break; 1489 ret = aio_setup_vectored_rw(READ, kiocb); 1490 if (ret) 1491 break; 1492 ret = -EINVAL; 1493 if (file->f_op->aio_read) 1494 kiocb->ki_retry = aio_rw_vect_retry; 1495 break; 1496 case IOCB_CMD_PWRITEV: 1497 ret = -EBADF; 1498 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1499 break; 1500 ret = security_file_permission(file, MAY_WRITE); 1501 if (unlikely(ret)) 1502 break; 1503 ret = aio_setup_vectored_rw(WRITE, kiocb); 1504 if (ret) 1505 break; 1506 ret = -EINVAL; 1507 if (file->f_op->aio_write) 1508 kiocb->ki_retry = aio_rw_vect_retry; 1509 break; 1510 case IOCB_CMD_FDSYNC: 1511 ret = -EINVAL; 1512 if (file->f_op->aio_fsync) 1513 kiocb->ki_retry = aio_fdsync; 1514 break; 1515 case IOCB_CMD_FSYNC: 1516 ret = -EINVAL; 1517 if (file->f_op->aio_fsync) 1518 kiocb->ki_retry = aio_fsync; 1519 break; 1520 default: 1521 dprintk("EINVAL: io_submit: no operation provided\n"); 1522 ret = -EINVAL; 1523 } 1524 1525 if (!kiocb->ki_retry) 1526 return ret; 1527 1528 return 0; 1529 } 1530 1531 /* 1532 * aio_wake_function: 1533 * wait queue callback function for aio notification, 1534 * Simply triggers a retry of the operation via kick_iocb. 1535 * 1536 * This callback is specified in the wait queue entry in 1537 * a kiocb. 1538 * 1539 * Note: 1540 * This routine is executed with the wait queue lock held. 1541 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1542 * the ioctx lock inside the wait queue lock. This is safe 1543 * because this callback isn't used for wait queues which 1544 * are nested inside ioctx lock (i.e. ctx->wait) 1545 */ 1546 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1547 int sync, void *key) 1548 { 1549 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1550 1551 list_del_init(&wait->task_list); 1552 kick_iocb(iocb); 1553 return 1; 1554 } 1555 1556 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1557 struct iocb *iocb) 1558 { 1559 struct kiocb *req; 1560 struct file *file; 1561 ssize_t ret; 1562 1563 /* enforce forwards compatibility on users */ 1564 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1565 pr_debug("EINVAL: io_submit: reserve field set\n"); 1566 return -EINVAL; 1567 } 1568 1569 /* prevent overflows */ 1570 if (unlikely( 1571 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1572 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1573 ((ssize_t)iocb->aio_nbytes < 0) 1574 )) { 1575 pr_debug("EINVAL: io_submit: overflow check\n"); 1576 return -EINVAL; 1577 } 1578 1579 file = fget(iocb->aio_fildes); 1580 if (unlikely(!file)) 1581 return -EBADF; 1582 1583 req = aio_get_req(ctx); /* returns with 2 references to req */ 1584 if (unlikely(!req)) { 1585 fput(file); 1586 return -EAGAIN; 1587 } 1588 req->ki_filp = file; 1589 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1590 /* 1591 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1592 * instance of the file* now. The file descriptor must be 1593 * an eventfd() fd, and will be signaled for each completed 1594 * event using the eventfd_signal() function. 1595 */ 1596 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd); 1597 if (IS_ERR(req->ki_eventfd)) { 1598 ret = PTR_ERR(req->ki_eventfd); 1599 goto out_put_req; 1600 } 1601 } 1602 1603 ret = put_user(req->ki_key, &user_iocb->aio_key); 1604 if (unlikely(ret)) { 1605 dprintk("EFAULT: aio_key\n"); 1606 goto out_put_req; 1607 } 1608 1609 req->ki_obj.user = user_iocb; 1610 req->ki_user_data = iocb->aio_data; 1611 req->ki_pos = iocb->aio_offset; 1612 1613 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1614 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1615 req->ki_opcode = iocb->aio_lio_opcode; 1616 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1617 INIT_LIST_HEAD(&req->ki_wait.task_list); 1618 1619 ret = aio_setup_iocb(req); 1620 1621 if (ret) 1622 goto out_put_req; 1623 1624 spin_lock_irq(&ctx->ctx_lock); 1625 aio_run_iocb(req); 1626 if (!list_empty(&ctx->run_list)) { 1627 /* drain the run list */ 1628 while (__aio_run_iocbs(ctx)) 1629 ; 1630 } 1631 spin_unlock_irq(&ctx->ctx_lock); 1632 aio_put_req(req); /* drop extra ref to req */ 1633 return 0; 1634 1635 out_put_req: 1636 aio_put_req(req); /* drop extra ref to req */ 1637 aio_put_req(req); /* drop i/o ref to req */ 1638 return ret; 1639 } 1640 1641 /* sys_io_submit: 1642 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1643 * the number of iocbs queued. May return -EINVAL if the aio_context 1644 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1645 * *iocbpp[0] is not properly initialized, if the operation specified 1646 * is invalid for the file descriptor in the iocb. May fail with 1647 * -EFAULT if any of the data structures point to invalid data. May 1648 * fail with -EBADF if the file descriptor specified in the first 1649 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1650 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1651 * fail with -ENOSYS if not implemented. 1652 */ 1653 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1654 struct iocb __user * __user *iocbpp) 1655 { 1656 struct kioctx *ctx; 1657 long ret = 0; 1658 int i; 1659 1660 if (unlikely(nr < 0)) 1661 return -EINVAL; 1662 1663 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1664 return -EFAULT; 1665 1666 ctx = lookup_ioctx(ctx_id); 1667 if (unlikely(!ctx)) { 1668 pr_debug("EINVAL: io_submit: invalid context id\n"); 1669 return -EINVAL; 1670 } 1671 1672 /* 1673 * AKPM: should this return a partial result if some of the IOs were 1674 * successfully submitted? 1675 */ 1676 for (i=0; i<nr; i++) { 1677 struct iocb __user *user_iocb; 1678 struct iocb tmp; 1679 1680 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1681 ret = -EFAULT; 1682 break; 1683 } 1684 1685 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1686 ret = -EFAULT; 1687 break; 1688 } 1689 1690 ret = io_submit_one(ctx, user_iocb, &tmp); 1691 if (ret) 1692 break; 1693 } 1694 1695 put_ioctx(ctx); 1696 return i ? i : ret; 1697 } 1698 1699 /* lookup_kiocb 1700 * Finds a given iocb for cancellation. 1701 */ 1702 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1703 u32 key) 1704 { 1705 struct list_head *pos; 1706 1707 assert_spin_locked(&ctx->ctx_lock); 1708 1709 /* TODO: use a hash or array, this sucks. */ 1710 list_for_each(pos, &ctx->active_reqs) { 1711 struct kiocb *kiocb = list_kiocb(pos); 1712 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1713 return kiocb; 1714 } 1715 return NULL; 1716 } 1717 1718 /* sys_io_cancel: 1719 * Attempts to cancel an iocb previously passed to io_submit. If 1720 * the operation is successfully cancelled, the resulting event is 1721 * copied into the memory pointed to by result without being placed 1722 * into the completion queue and 0 is returned. May fail with 1723 * -EFAULT if any of the data structures pointed to are invalid. 1724 * May fail with -EINVAL if aio_context specified by ctx_id is 1725 * invalid. May fail with -EAGAIN if the iocb specified was not 1726 * cancelled. Will fail with -ENOSYS if not implemented. 1727 */ 1728 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1729 struct io_event __user *result) 1730 { 1731 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1732 struct kioctx *ctx; 1733 struct kiocb *kiocb; 1734 u32 key; 1735 int ret; 1736 1737 ret = get_user(key, &iocb->aio_key); 1738 if (unlikely(ret)) 1739 return -EFAULT; 1740 1741 ctx = lookup_ioctx(ctx_id); 1742 if (unlikely(!ctx)) 1743 return -EINVAL; 1744 1745 spin_lock_irq(&ctx->ctx_lock); 1746 ret = -EAGAIN; 1747 kiocb = lookup_kiocb(ctx, iocb, key); 1748 if (kiocb && kiocb->ki_cancel) { 1749 cancel = kiocb->ki_cancel; 1750 kiocb->ki_users ++; 1751 kiocbSetCancelled(kiocb); 1752 } else 1753 cancel = NULL; 1754 spin_unlock_irq(&ctx->ctx_lock); 1755 1756 if (NULL != cancel) { 1757 struct io_event tmp; 1758 pr_debug("calling cancel\n"); 1759 memset(&tmp, 0, sizeof(tmp)); 1760 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1761 tmp.data = kiocb->ki_user_data; 1762 ret = cancel(kiocb, &tmp); 1763 if (!ret) { 1764 /* Cancellation succeeded -- copy the result 1765 * into the user's buffer. 1766 */ 1767 if (copy_to_user(result, &tmp, sizeof(tmp))) 1768 ret = -EFAULT; 1769 } 1770 } else 1771 ret = -EINVAL; 1772 1773 put_ioctx(ctx); 1774 1775 return ret; 1776 } 1777 1778 /* io_getevents: 1779 * Attempts to read at least min_nr events and up to nr events from 1780 * the completion queue for the aio_context specified by ctx_id. May 1781 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1782 * if nr is out of range, if when is out of range. May fail with 1783 * -EFAULT if any of the memory specified to is invalid. May return 1784 * 0 or < min_nr if no events are available and the timeout specified 1785 * by when has elapsed, where when == NULL specifies an infinite 1786 * timeout. Note that the timeout pointed to by when is relative and 1787 * will be updated if not NULL and the operation blocks. Will fail 1788 * with -ENOSYS if not implemented. 1789 */ 1790 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1791 long min_nr, 1792 long nr, 1793 struct io_event __user *events, 1794 struct timespec __user *timeout) 1795 { 1796 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1797 long ret = -EINVAL; 1798 1799 if (likely(ioctx)) { 1800 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1801 ret = read_events(ioctx, min_nr, nr, events, timeout); 1802 put_ioctx(ioctx); 1803 } 1804 1805 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1806 return ret; 1807 } 1808 1809 __initcall(aio_setup); 1810 1811 EXPORT_SYMBOL(aio_complete); 1812 EXPORT_SYMBOL(aio_put_req); 1813 EXPORT_SYMBOL(wait_on_sync_kiocb); 1814