xref: /openbmc/linux/fs/aio.c (revision 3252b11f)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 
40 #include <asm/kmap_types.h>
41 #include <asm/uaccess.h>
42 
43 #if DEBUG > 1
44 #define dprintk		printk
45 #else
46 #define dprintk(x...)	do { ; } while (0)
47 #endif
48 
49 /*------ sysctl variables----*/
50 static DEFINE_SPINLOCK(aio_nr_lock);
51 unsigned long aio_nr;		/* current system wide number of aio requests */
52 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
53 /*----end sysctl variables---*/
54 
55 static struct kmem_cache	*kiocb_cachep;
56 static struct kmem_cache	*kioctx_cachep;
57 
58 static struct workqueue_struct *aio_wq;
59 
60 /* Used for rare fput completion. */
61 static void aio_fput_routine(struct work_struct *);
62 static DECLARE_WORK(fput_work, aio_fput_routine);
63 
64 static DEFINE_SPINLOCK(fput_lock);
65 static LIST_HEAD(fput_head);
66 
67 #define AIO_BATCH_HASH_BITS	3 /* allocated on-stack, so don't go crazy */
68 #define AIO_BATCH_HASH_SIZE	(1 << AIO_BATCH_HASH_BITS)
69 struct aio_batch_entry {
70 	struct hlist_node list;
71 	struct address_space *mapping;
72 };
73 mempool_t *abe_pool;
74 
75 static void aio_kick_handler(struct work_struct *);
76 static void aio_queue_work(struct kioctx *);
77 
78 /* aio_setup
79  *	Creates the slab caches used by the aio routines, panic on
80  *	failure as this is done early during the boot sequence.
81  */
82 static int __init aio_setup(void)
83 {
84 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
85 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 
87 	aio_wq = create_workqueue("aio");
88 	abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
89 	BUG_ON(!abe_pool);
90 
91 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
92 
93 	return 0;
94 }
95 __initcall(aio_setup);
96 
97 static void aio_free_ring(struct kioctx *ctx)
98 {
99 	struct aio_ring_info *info = &ctx->ring_info;
100 	long i;
101 
102 	for (i=0; i<info->nr_pages; i++)
103 		put_page(info->ring_pages[i]);
104 
105 	if (info->mmap_size) {
106 		down_write(&ctx->mm->mmap_sem);
107 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
108 		up_write(&ctx->mm->mmap_sem);
109 	}
110 
111 	if (info->ring_pages && info->ring_pages != info->internal_pages)
112 		kfree(info->ring_pages);
113 	info->ring_pages = NULL;
114 	info->nr = 0;
115 }
116 
117 static int aio_setup_ring(struct kioctx *ctx)
118 {
119 	struct aio_ring *ring;
120 	struct aio_ring_info *info = &ctx->ring_info;
121 	unsigned nr_events = ctx->max_reqs;
122 	unsigned long size;
123 	int nr_pages;
124 
125 	/* Compensate for the ring buffer's head/tail overlap entry */
126 	nr_events += 2;	/* 1 is required, 2 for good luck */
127 
128 	size = sizeof(struct aio_ring);
129 	size += sizeof(struct io_event) * nr_events;
130 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
131 
132 	if (nr_pages < 0)
133 		return -EINVAL;
134 
135 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
136 
137 	info->nr = 0;
138 	info->ring_pages = info->internal_pages;
139 	if (nr_pages > AIO_RING_PAGES) {
140 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
141 		if (!info->ring_pages)
142 			return -ENOMEM;
143 	}
144 
145 	info->mmap_size = nr_pages * PAGE_SIZE;
146 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
147 	down_write(&ctx->mm->mmap_sem);
148 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
149 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
150 				  0);
151 	if (IS_ERR((void *)info->mmap_base)) {
152 		up_write(&ctx->mm->mmap_sem);
153 		info->mmap_size = 0;
154 		aio_free_ring(ctx);
155 		return -EAGAIN;
156 	}
157 
158 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
159 	info->nr_pages = get_user_pages(current, ctx->mm,
160 					info->mmap_base, nr_pages,
161 					1, 0, info->ring_pages, NULL);
162 	up_write(&ctx->mm->mmap_sem);
163 
164 	if (unlikely(info->nr_pages != nr_pages)) {
165 		aio_free_ring(ctx);
166 		return -EAGAIN;
167 	}
168 
169 	ctx->user_id = info->mmap_base;
170 
171 	info->nr = nr_events;		/* trusted copy */
172 
173 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
174 	ring->nr = nr_events;	/* user copy */
175 	ring->id = ctx->user_id;
176 	ring->head = ring->tail = 0;
177 	ring->magic = AIO_RING_MAGIC;
178 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
179 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
180 	ring->header_length = sizeof(struct aio_ring);
181 	kunmap_atomic(ring, KM_USER0);
182 
183 	return 0;
184 }
185 
186 
187 /* aio_ring_event: returns a pointer to the event at the given index from
188  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
189  */
190 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
191 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
192 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
193 
194 #define aio_ring_event(info, nr, km) ({					\
195 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
196 	struct io_event *__event;					\
197 	__event = kmap_atomic(						\
198 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
199 	__event += pos % AIO_EVENTS_PER_PAGE;				\
200 	__event;							\
201 })
202 
203 #define put_aio_ring_event(event, km) do {	\
204 	struct io_event *__event = (event);	\
205 	(void)__event;				\
206 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
207 } while(0)
208 
209 static void ctx_rcu_free(struct rcu_head *head)
210 {
211 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
212 	unsigned nr_events = ctx->max_reqs;
213 
214 	kmem_cache_free(kioctx_cachep, ctx);
215 
216 	if (nr_events) {
217 		spin_lock(&aio_nr_lock);
218 		BUG_ON(aio_nr - nr_events > aio_nr);
219 		aio_nr -= nr_events;
220 		spin_unlock(&aio_nr_lock);
221 	}
222 }
223 
224 /* __put_ioctx
225  *	Called when the last user of an aio context has gone away,
226  *	and the struct needs to be freed.
227  */
228 static void __put_ioctx(struct kioctx *ctx)
229 {
230 	BUG_ON(ctx->reqs_active);
231 
232 	cancel_delayed_work(&ctx->wq);
233 	cancel_work_sync(&ctx->wq.work);
234 	aio_free_ring(ctx);
235 	mmdrop(ctx->mm);
236 	ctx->mm = NULL;
237 	pr_debug("__put_ioctx: freeing %p\n", ctx);
238 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
239 }
240 
241 #define get_ioctx(kioctx) do {						\
242 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
243 	atomic_inc(&(kioctx)->users);					\
244 } while (0)
245 #define put_ioctx(kioctx) do {						\
246 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
247 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
248 		__put_ioctx(kioctx);					\
249 } while (0)
250 
251 /* ioctx_alloc
252  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
253  */
254 static struct kioctx *ioctx_alloc(unsigned nr_events)
255 {
256 	struct mm_struct *mm;
257 	struct kioctx *ctx;
258 	int did_sync = 0;
259 
260 	/* Prevent overflows */
261 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
262 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
263 		pr_debug("ENOMEM: nr_events too high\n");
264 		return ERR_PTR(-EINVAL);
265 	}
266 
267 	if ((unsigned long)nr_events > aio_max_nr)
268 		return ERR_PTR(-EAGAIN);
269 
270 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
271 	if (!ctx)
272 		return ERR_PTR(-ENOMEM);
273 
274 	ctx->max_reqs = nr_events;
275 	mm = ctx->mm = current->mm;
276 	atomic_inc(&mm->mm_count);
277 
278 	atomic_set(&ctx->users, 1);
279 	spin_lock_init(&ctx->ctx_lock);
280 	spin_lock_init(&ctx->ring_info.ring_lock);
281 	init_waitqueue_head(&ctx->wait);
282 
283 	INIT_LIST_HEAD(&ctx->active_reqs);
284 	INIT_LIST_HEAD(&ctx->run_list);
285 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
286 
287 	if (aio_setup_ring(ctx) < 0)
288 		goto out_freectx;
289 
290 	/* limit the number of system wide aios */
291 	do {
292 		spin_lock_bh(&aio_nr_lock);
293 		if (aio_nr + nr_events > aio_max_nr ||
294 		    aio_nr + nr_events < aio_nr)
295 			ctx->max_reqs = 0;
296 		else
297 			aio_nr += ctx->max_reqs;
298 		spin_unlock_bh(&aio_nr_lock);
299 		if (ctx->max_reqs || did_sync)
300 			break;
301 
302 		/* wait for rcu callbacks to have completed before giving up */
303 		synchronize_rcu();
304 		did_sync = 1;
305 		ctx->max_reqs = nr_events;
306 	} while (1);
307 
308 	if (ctx->max_reqs == 0)
309 		goto out_cleanup;
310 
311 	/* now link into global list. */
312 	spin_lock(&mm->ioctx_lock);
313 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
314 	spin_unlock(&mm->ioctx_lock);
315 
316 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
317 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
318 	return ctx;
319 
320 out_cleanup:
321 	__put_ioctx(ctx);
322 	return ERR_PTR(-EAGAIN);
323 
324 out_freectx:
325 	mmdrop(mm);
326 	kmem_cache_free(kioctx_cachep, ctx);
327 	ctx = ERR_PTR(-ENOMEM);
328 
329 	dprintk("aio: error allocating ioctx %p\n", ctx);
330 	return ctx;
331 }
332 
333 /* aio_cancel_all
334  *	Cancels all outstanding aio requests on an aio context.  Used
335  *	when the processes owning a context have all exited to encourage
336  *	the rapid destruction of the kioctx.
337  */
338 static void aio_cancel_all(struct kioctx *ctx)
339 {
340 	int (*cancel)(struct kiocb *, struct io_event *);
341 	struct io_event res;
342 	spin_lock_irq(&ctx->ctx_lock);
343 	ctx->dead = 1;
344 	while (!list_empty(&ctx->active_reqs)) {
345 		struct list_head *pos = ctx->active_reqs.next;
346 		struct kiocb *iocb = list_kiocb(pos);
347 		list_del_init(&iocb->ki_list);
348 		cancel = iocb->ki_cancel;
349 		kiocbSetCancelled(iocb);
350 		if (cancel) {
351 			iocb->ki_users++;
352 			spin_unlock_irq(&ctx->ctx_lock);
353 			cancel(iocb, &res);
354 			spin_lock_irq(&ctx->ctx_lock);
355 		}
356 	}
357 	spin_unlock_irq(&ctx->ctx_lock);
358 }
359 
360 static void wait_for_all_aios(struct kioctx *ctx)
361 {
362 	struct task_struct *tsk = current;
363 	DECLARE_WAITQUEUE(wait, tsk);
364 
365 	spin_lock_irq(&ctx->ctx_lock);
366 	if (!ctx->reqs_active)
367 		goto out;
368 
369 	add_wait_queue(&ctx->wait, &wait);
370 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
371 	while (ctx->reqs_active) {
372 		spin_unlock_irq(&ctx->ctx_lock);
373 		io_schedule();
374 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
375 		spin_lock_irq(&ctx->ctx_lock);
376 	}
377 	__set_task_state(tsk, TASK_RUNNING);
378 	remove_wait_queue(&ctx->wait, &wait);
379 
380 out:
381 	spin_unlock_irq(&ctx->ctx_lock);
382 }
383 
384 /* wait_on_sync_kiocb:
385  *	Waits on the given sync kiocb to complete.
386  */
387 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
388 {
389 	while (iocb->ki_users) {
390 		set_current_state(TASK_UNINTERRUPTIBLE);
391 		if (!iocb->ki_users)
392 			break;
393 		io_schedule();
394 	}
395 	__set_current_state(TASK_RUNNING);
396 	return iocb->ki_user_data;
397 }
398 EXPORT_SYMBOL(wait_on_sync_kiocb);
399 
400 /* exit_aio: called when the last user of mm goes away.  At this point,
401  * there is no way for any new requests to be submited or any of the
402  * io_* syscalls to be called on the context.  However, there may be
403  * outstanding requests which hold references to the context; as they
404  * go away, they will call put_ioctx and release any pinned memory
405  * associated with the request (held via struct page * references).
406  */
407 void exit_aio(struct mm_struct *mm)
408 {
409 	struct kioctx *ctx;
410 
411 	while (!hlist_empty(&mm->ioctx_list)) {
412 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
413 		hlist_del_rcu(&ctx->list);
414 
415 		aio_cancel_all(ctx);
416 
417 		wait_for_all_aios(ctx);
418 		/*
419 		 * Ensure we don't leave the ctx on the aio_wq
420 		 */
421 		cancel_work_sync(&ctx->wq.work);
422 
423 		if (1 != atomic_read(&ctx->users))
424 			printk(KERN_DEBUG
425 				"exit_aio:ioctx still alive: %d %d %d\n",
426 				atomic_read(&ctx->users), ctx->dead,
427 				ctx->reqs_active);
428 		put_ioctx(ctx);
429 	}
430 }
431 
432 /* aio_get_req
433  *	Allocate a slot for an aio request.  Increments the users count
434  * of the kioctx so that the kioctx stays around until all requests are
435  * complete.  Returns NULL if no requests are free.
436  *
437  * Returns with kiocb->users set to 2.  The io submit code path holds
438  * an extra reference while submitting the i/o.
439  * This prevents races between the aio code path referencing the
440  * req (after submitting it) and aio_complete() freeing the req.
441  */
442 static struct kiocb *__aio_get_req(struct kioctx *ctx)
443 {
444 	struct kiocb *req = NULL;
445 	struct aio_ring *ring;
446 	int okay = 0;
447 
448 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
449 	if (unlikely(!req))
450 		return NULL;
451 
452 	req->ki_flags = 0;
453 	req->ki_users = 2;
454 	req->ki_key = 0;
455 	req->ki_ctx = ctx;
456 	req->ki_cancel = NULL;
457 	req->ki_retry = NULL;
458 	req->ki_dtor = NULL;
459 	req->private = NULL;
460 	req->ki_iovec = NULL;
461 	INIT_LIST_HEAD(&req->ki_run_list);
462 	req->ki_eventfd = NULL;
463 
464 	/* Check if the completion queue has enough free space to
465 	 * accept an event from this io.
466 	 */
467 	spin_lock_irq(&ctx->ctx_lock);
468 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
469 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
470 		list_add(&req->ki_list, &ctx->active_reqs);
471 		ctx->reqs_active++;
472 		okay = 1;
473 	}
474 	kunmap_atomic(ring, KM_USER0);
475 	spin_unlock_irq(&ctx->ctx_lock);
476 
477 	if (!okay) {
478 		kmem_cache_free(kiocb_cachep, req);
479 		req = NULL;
480 	}
481 
482 	return req;
483 }
484 
485 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
486 {
487 	struct kiocb *req;
488 	/* Handle a potential starvation case -- should be exceedingly rare as
489 	 * requests will be stuck on fput_head only if the aio_fput_routine is
490 	 * delayed and the requests were the last user of the struct file.
491 	 */
492 	req = __aio_get_req(ctx);
493 	if (unlikely(NULL == req)) {
494 		aio_fput_routine(NULL);
495 		req = __aio_get_req(ctx);
496 	}
497 	return req;
498 }
499 
500 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
501 {
502 	assert_spin_locked(&ctx->ctx_lock);
503 
504 	if (req->ki_eventfd != NULL)
505 		eventfd_ctx_put(req->ki_eventfd);
506 	if (req->ki_dtor)
507 		req->ki_dtor(req);
508 	if (req->ki_iovec != &req->ki_inline_vec)
509 		kfree(req->ki_iovec);
510 	kmem_cache_free(kiocb_cachep, req);
511 	ctx->reqs_active--;
512 
513 	if (unlikely(!ctx->reqs_active && ctx->dead))
514 		wake_up(&ctx->wait);
515 }
516 
517 static void aio_fput_routine(struct work_struct *data)
518 {
519 	spin_lock_irq(&fput_lock);
520 	while (likely(!list_empty(&fput_head))) {
521 		struct kiocb *req = list_kiocb(fput_head.next);
522 		struct kioctx *ctx = req->ki_ctx;
523 
524 		list_del(&req->ki_list);
525 		spin_unlock_irq(&fput_lock);
526 
527 		/* Complete the fput(s) */
528 		if (req->ki_filp != NULL)
529 			__fput(req->ki_filp);
530 
531 		/* Link the iocb into the context's free list */
532 		spin_lock_irq(&ctx->ctx_lock);
533 		really_put_req(ctx, req);
534 		spin_unlock_irq(&ctx->ctx_lock);
535 
536 		put_ioctx(ctx);
537 		spin_lock_irq(&fput_lock);
538 	}
539 	spin_unlock_irq(&fput_lock);
540 }
541 
542 /* __aio_put_req
543  *	Returns true if this put was the last user of the request.
544  */
545 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
546 {
547 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
548 		req, atomic_long_read(&req->ki_filp->f_count));
549 
550 	assert_spin_locked(&ctx->ctx_lock);
551 
552 	req->ki_users--;
553 	BUG_ON(req->ki_users < 0);
554 	if (likely(req->ki_users))
555 		return 0;
556 	list_del(&req->ki_list);		/* remove from active_reqs */
557 	req->ki_cancel = NULL;
558 	req->ki_retry = NULL;
559 
560 	/*
561 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
562 	 * schedule work in case it is not __fput() time. In normal cases,
563 	 * we would not be holding the last reference to the file*, so
564 	 * this function will be executed w/out any aio kthread wakeup.
565 	 */
566 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
567 		get_ioctx(ctx);
568 		spin_lock(&fput_lock);
569 		list_add(&req->ki_list, &fput_head);
570 		spin_unlock(&fput_lock);
571 		queue_work(aio_wq, &fput_work);
572 	} else {
573 		req->ki_filp = NULL;
574 		really_put_req(ctx, req);
575 	}
576 	return 1;
577 }
578 
579 /* aio_put_req
580  *	Returns true if this put was the last user of the kiocb,
581  *	false if the request is still in use.
582  */
583 int aio_put_req(struct kiocb *req)
584 {
585 	struct kioctx *ctx = req->ki_ctx;
586 	int ret;
587 	spin_lock_irq(&ctx->ctx_lock);
588 	ret = __aio_put_req(ctx, req);
589 	spin_unlock_irq(&ctx->ctx_lock);
590 	return ret;
591 }
592 EXPORT_SYMBOL(aio_put_req);
593 
594 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
595 {
596 	struct mm_struct *mm = current->mm;
597 	struct kioctx *ctx, *ret = NULL;
598 	struct hlist_node *n;
599 
600 	rcu_read_lock();
601 
602 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
603 		if (ctx->user_id == ctx_id && !ctx->dead) {
604 			get_ioctx(ctx);
605 			ret = ctx;
606 			break;
607 		}
608 	}
609 
610 	rcu_read_unlock();
611 	return ret;
612 }
613 
614 /*
615  * Queue up a kiocb to be retried. Assumes that the kiocb
616  * has already been marked as kicked, and places it on
617  * the retry run list for the corresponding ioctx, if it
618  * isn't already queued. Returns 1 if it actually queued
619  * the kiocb (to tell the caller to activate the work
620  * queue to process it), or 0, if it found that it was
621  * already queued.
622  */
623 static inline int __queue_kicked_iocb(struct kiocb *iocb)
624 {
625 	struct kioctx *ctx = iocb->ki_ctx;
626 
627 	assert_spin_locked(&ctx->ctx_lock);
628 
629 	if (list_empty(&iocb->ki_run_list)) {
630 		list_add_tail(&iocb->ki_run_list,
631 			&ctx->run_list);
632 		return 1;
633 	}
634 	return 0;
635 }
636 
637 /* aio_run_iocb
638  *	This is the core aio execution routine. It is
639  *	invoked both for initial i/o submission and
640  *	subsequent retries via the aio_kick_handler.
641  *	Expects to be invoked with iocb->ki_ctx->lock
642  *	already held. The lock is released and reacquired
643  *	as needed during processing.
644  *
645  * Calls the iocb retry method (already setup for the
646  * iocb on initial submission) for operation specific
647  * handling, but takes care of most of common retry
648  * execution details for a given iocb. The retry method
649  * needs to be non-blocking as far as possible, to avoid
650  * holding up other iocbs waiting to be serviced by the
651  * retry kernel thread.
652  *
653  * The trickier parts in this code have to do with
654  * ensuring that only one retry instance is in progress
655  * for a given iocb at any time. Providing that guarantee
656  * simplifies the coding of individual aio operations as
657  * it avoids various potential races.
658  */
659 static ssize_t aio_run_iocb(struct kiocb *iocb)
660 {
661 	struct kioctx	*ctx = iocb->ki_ctx;
662 	ssize_t (*retry)(struct kiocb *);
663 	ssize_t ret;
664 
665 	if (!(retry = iocb->ki_retry)) {
666 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
667 		return 0;
668 	}
669 
670 	/*
671 	 * We don't want the next retry iteration for this
672 	 * operation to start until this one has returned and
673 	 * updated the iocb state. However, wait_queue functions
674 	 * can trigger a kick_iocb from interrupt context in the
675 	 * meantime, indicating that data is available for the next
676 	 * iteration. We want to remember that and enable the
677 	 * next retry iteration _after_ we are through with
678 	 * this one.
679 	 *
680 	 * So, in order to be able to register a "kick", but
681 	 * prevent it from being queued now, we clear the kick
682 	 * flag, but make the kick code *think* that the iocb is
683 	 * still on the run list until we are actually done.
684 	 * When we are done with this iteration, we check if
685 	 * the iocb was kicked in the meantime and if so, queue
686 	 * it up afresh.
687 	 */
688 
689 	kiocbClearKicked(iocb);
690 
691 	/*
692 	 * This is so that aio_complete knows it doesn't need to
693 	 * pull the iocb off the run list (We can't just call
694 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
695 	 * queue this on the run list yet)
696 	 */
697 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
698 	spin_unlock_irq(&ctx->ctx_lock);
699 
700 	/* Quit retrying if the i/o has been cancelled */
701 	if (kiocbIsCancelled(iocb)) {
702 		ret = -EINTR;
703 		aio_complete(iocb, ret, 0);
704 		/* must not access the iocb after this */
705 		goto out;
706 	}
707 
708 	/*
709 	 * Now we are all set to call the retry method in async
710 	 * context.
711 	 */
712 	ret = retry(iocb);
713 
714 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
715 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
716 		aio_complete(iocb, ret, 0);
717 	}
718 out:
719 	spin_lock_irq(&ctx->ctx_lock);
720 
721 	if (-EIOCBRETRY == ret) {
722 		/*
723 		 * OK, now that we are done with this iteration
724 		 * and know that there is more left to go,
725 		 * this is where we let go so that a subsequent
726 		 * "kick" can start the next iteration
727 		 */
728 
729 		/* will make __queue_kicked_iocb succeed from here on */
730 		INIT_LIST_HEAD(&iocb->ki_run_list);
731 		/* we must queue the next iteration ourselves, if it
732 		 * has already been kicked */
733 		if (kiocbIsKicked(iocb)) {
734 			__queue_kicked_iocb(iocb);
735 
736 			/*
737 			 * __queue_kicked_iocb will always return 1 here, because
738 			 * iocb->ki_run_list is empty at this point so it should
739 			 * be safe to unconditionally queue the context into the
740 			 * work queue.
741 			 */
742 			aio_queue_work(ctx);
743 		}
744 	}
745 	return ret;
746 }
747 
748 /*
749  * __aio_run_iocbs:
750  * 	Process all pending retries queued on the ioctx
751  * 	run list.
752  * Assumes it is operating within the aio issuer's mm
753  * context.
754  */
755 static int __aio_run_iocbs(struct kioctx *ctx)
756 {
757 	struct kiocb *iocb;
758 	struct list_head run_list;
759 
760 	assert_spin_locked(&ctx->ctx_lock);
761 
762 	list_replace_init(&ctx->run_list, &run_list);
763 	while (!list_empty(&run_list)) {
764 		iocb = list_entry(run_list.next, struct kiocb,
765 			ki_run_list);
766 		list_del(&iocb->ki_run_list);
767 		/*
768 		 * Hold an extra reference while retrying i/o.
769 		 */
770 		iocb->ki_users++;       /* grab extra reference */
771 		aio_run_iocb(iocb);
772 		__aio_put_req(ctx, iocb);
773  	}
774 	if (!list_empty(&ctx->run_list))
775 		return 1;
776 	return 0;
777 }
778 
779 static void aio_queue_work(struct kioctx * ctx)
780 {
781 	unsigned long timeout;
782 	/*
783 	 * if someone is waiting, get the work started right
784 	 * away, otherwise, use a longer delay
785 	 */
786 	smp_mb();
787 	if (waitqueue_active(&ctx->wait))
788 		timeout = 1;
789 	else
790 		timeout = HZ/10;
791 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
792 }
793 
794 
795 /*
796  * aio_run_iocbs:
797  * 	Process all pending retries queued on the ioctx
798  * 	run list.
799  * Assumes it is operating within the aio issuer's mm
800  * context.
801  */
802 static inline void aio_run_iocbs(struct kioctx *ctx)
803 {
804 	int requeue;
805 
806 	spin_lock_irq(&ctx->ctx_lock);
807 
808 	requeue = __aio_run_iocbs(ctx);
809 	spin_unlock_irq(&ctx->ctx_lock);
810 	if (requeue)
811 		aio_queue_work(ctx);
812 }
813 
814 /*
815  * just like aio_run_iocbs, but keeps running them until
816  * the list stays empty
817  */
818 static inline void aio_run_all_iocbs(struct kioctx *ctx)
819 {
820 	spin_lock_irq(&ctx->ctx_lock);
821 	while (__aio_run_iocbs(ctx))
822 		;
823 	spin_unlock_irq(&ctx->ctx_lock);
824 }
825 
826 /*
827  * aio_kick_handler:
828  * 	Work queue handler triggered to process pending
829  * 	retries on an ioctx. Takes on the aio issuer's
830  *	mm context before running the iocbs, so that
831  *	copy_xxx_user operates on the issuer's address
832  *      space.
833  * Run on aiod's context.
834  */
835 static void aio_kick_handler(struct work_struct *work)
836 {
837 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
838 	mm_segment_t oldfs = get_fs();
839 	struct mm_struct *mm;
840 	int requeue;
841 
842 	set_fs(USER_DS);
843 	use_mm(ctx->mm);
844 	spin_lock_irq(&ctx->ctx_lock);
845 	requeue =__aio_run_iocbs(ctx);
846 	mm = ctx->mm;
847 	spin_unlock_irq(&ctx->ctx_lock);
848  	unuse_mm(mm);
849 	set_fs(oldfs);
850 	/*
851 	 * we're in a worker thread already, don't use queue_delayed_work,
852 	 */
853 	if (requeue)
854 		queue_delayed_work(aio_wq, &ctx->wq, 0);
855 }
856 
857 
858 /*
859  * Called by kick_iocb to queue the kiocb for retry
860  * and if required activate the aio work queue to process
861  * it
862  */
863 static void try_queue_kicked_iocb(struct kiocb *iocb)
864 {
865  	struct kioctx	*ctx = iocb->ki_ctx;
866 	unsigned long flags;
867 	int run = 0;
868 
869 	/* We're supposed to be the only path putting the iocb back on the run
870 	 * list.  If we find that the iocb is *back* on a wait queue already
871 	 * than retry has happened before we could queue the iocb.  This also
872 	 * means that the retry could have completed and freed our iocb, no
873 	 * good. */
874 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
875 
876 	spin_lock_irqsave(&ctx->ctx_lock, flags);
877 	/* set this inside the lock so that we can't race with aio_run_iocb()
878 	 * testing it and putting the iocb on the run list under the lock */
879 	if (!kiocbTryKick(iocb))
880 		run = __queue_kicked_iocb(iocb);
881 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
882 	if (run)
883 		aio_queue_work(ctx);
884 }
885 
886 /*
887  * kick_iocb:
888  *      Called typically from a wait queue callback context
889  *      (aio_wake_function) to trigger a retry of the iocb.
890  *      The retry is usually executed by aio workqueue
891  *      threads (See aio_kick_handler).
892  */
893 void kick_iocb(struct kiocb *iocb)
894 {
895 	/* sync iocbs are easy: they can only ever be executing from a
896 	 * single context. */
897 	if (is_sync_kiocb(iocb)) {
898 		kiocbSetKicked(iocb);
899 	        wake_up_process(iocb->ki_obj.tsk);
900 		return;
901 	}
902 
903 	try_queue_kicked_iocb(iocb);
904 }
905 EXPORT_SYMBOL(kick_iocb);
906 
907 /* aio_complete
908  *	Called when the io request on the given iocb is complete.
909  *	Returns true if this is the last user of the request.  The
910  *	only other user of the request can be the cancellation code.
911  */
912 int aio_complete(struct kiocb *iocb, long res, long res2)
913 {
914 	struct kioctx	*ctx = iocb->ki_ctx;
915 	struct aio_ring_info	*info;
916 	struct aio_ring	*ring;
917 	struct io_event	*event;
918 	unsigned long	flags;
919 	unsigned long	tail;
920 	int		ret;
921 
922 	/*
923 	 * Special case handling for sync iocbs:
924 	 *  - events go directly into the iocb for fast handling
925 	 *  - the sync task with the iocb in its stack holds the single iocb
926 	 *    ref, no other paths have a way to get another ref
927 	 *  - the sync task helpfully left a reference to itself in the iocb
928 	 */
929 	if (is_sync_kiocb(iocb)) {
930 		BUG_ON(iocb->ki_users != 1);
931 		iocb->ki_user_data = res;
932 		iocb->ki_users = 0;
933 		wake_up_process(iocb->ki_obj.tsk);
934 		return 1;
935 	}
936 
937 	info = &ctx->ring_info;
938 
939 	/* add a completion event to the ring buffer.
940 	 * must be done holding ctx->ctx_lock to prevent
941 	 * other code from messing with the tail
942 	 * pointer since we might be called from irq
943 	 * context.
944 	 */
945 	spin_lock_irqsave(&ctx->ctx_lock, flags);
946 
947 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
948 		list_del_init(&iocb->ki_run_list);
949 
950 	/*
951 	 * cancelled requests don't get events, userland was given one
952 	 * when the event got cancelled.
953 	 */
954 	if (kiocbIsCancelled(iocb))
955 		goto put_rq;
956 
957 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
958 
959 	tail = info->tail;
960 	event = aio_ring_event(info, tail, KM_IRQ0);
961 	if (++tail >= info->nr)
962 		tail = 0;
963 
964 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
965 	event->data = iocb->ki_user_data;
966 	event->res = res;
967 	event->res2 = res2;
968 
969 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
970 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
971 		res, res2);
972 
973 	/* after flagging the request as done, we
974 	 * must never even look at it again
975 	 */
976 	smp_wmb();	/* make event visible before updating tail */
977 
978 	info->tail = tail;
979 	ring->tail = tail;
980 
981 	put_aio_ring_event(event, KM_IRQ0);
982 	kunmap_atomic(ring, KM_IRQ1);
983 
984 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
985 
986 	/*
987 	 * Check if the user asked us to deliver the result through an
988 	 * eventfd. The eventfd_signal() function is safe to be called
989 	 * from IRQ context.
990 	 */
991 	if (iocb->ki_eventfd != NULL)
992 		eventfd_signal(iocb->ki_eventfd, 1);
993 
994 put_rq:
995 	/* everything turned out well, dispose of the aiocb. */
996 	ret = __aio_put_req(ctx, iocb);
997 
998 	/*
999 	 * We have to order our ring_info tail store above and test
1000 	 * of the wait list below outside the wait lock.  This is
1001 	 * like in wake_up_bit() where clearing a bit has to be
1002 	 * ordered with the unlocked test.
1003 	 */
1004 	smp_mb();
1005 
1006 	if (waitqueue_active(&ctx->wait))
1007 		wake_up(&ctx->wait);
1008 
1009 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(aio_complete);
1013 
1014 /* aio_read_evt
1015  *	Pull an event off of the ioctx's event ring.  Returns the number of
1016  *	events fetched (0 or 1 ;-)
1017  *	FIXME: make this use cmpxchg.
1018  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1019  */
1020 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1021 {
1022 	struct aio_ring_info *info = &ioctx->ring_info;
1023 	struct aio_ring *ring;
1024 	unsigned long head;
1025 	int ret = 0;
1026 
1027 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1028 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1029 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1030 		 (unsigned long)ring->nr);
1031 
1032 	if (ring->head == ring->tail)
1033 		goto out;
1034 
1035 	spin_lock(&info->ring_lock);
1036 
1037 	head = ring->head % info->nr;
1038 	if (head != ring->tail) {
1039 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1040 		*ent = *evp;
1041 		head = (head + 1) % info->nr;
1042 		smp_mb(); /* finish reading the event before updatng the head */
1043 		ring->head = head;
1044 		ret = 1;
1045 		put_aio_ring_event(evp, KM_USER1);
1046 	}
1047 	spin_unlock(&info->ring_lock);
1048 
1049 out:
1050 	kunmap_atomic(ring, KM_USER0);
1051 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1052 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1053 	return ret;
1054 }
1055 
1056 struct aio_timeout {
1057 	struct timer_list	timer;
1058 	int			timed_out;
1059 	struct task_struct	*p;
1060 };
1061 
1062 static void timeout_func(unsigned long data)
1063 {
1064 	struct aio_timeout *to = (struct aio_timeout *)data;
1065 
1066 	to->timed_out = 1;
1067 	wake_up_process(to->p);
1068 }
1069 
1070 static inline void init_timeout(struct aio_timeout *to)
1071 {
1072 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1073 	to->timed_out = 0;
1074 	to->p = current;
1075 }
1076 
1077 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1078 			       const struct timespec *ts)
1079 {
1080 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1081 	if (time_after(to->timer.expires, jiffies))
1082 		add_timer(&to->timer);
1083 	else
1084 		to->timed_out = 1;
1085 }
1086 
1087 static inline void clear_timeout(struct aio_timeout *to)
1088 {
1089 	del_singleshot_timer_sync(&to->timer);
1090 }
1091 
1092 static int read_events(struct kioctx *ctx,
1093 			long min_nr, long nr,
1094 			struct io_event __user *event,
1095 			struct timespec __user *timeout)
1096 {
1097 	long			start_jiffies = jiffies;
1098 	struct task_struct	*tsk = current;
1099 	DECLARE_WAITQUEUE(wait, tsk);
1100 	int			ret;
1101 	int			i = 0;
1102 	struct io_event		ent;
1103 	struct aio_timeout	to;
1104 	int			retry = 0;
1105 
1106 	/* needed to zero any padding within an entry (there shouldn't be
1107 	 * any, but C is fun!
1108 	 */
1109 	memset(&ent, 0, sizeof(ent));
1110 retry:
1111 	ret = 0;
1112 	while (likely(i < nr)) {
1113 		ret = aio_read_evt(ctx, &ent);
1114 		if (unlikely(ret <= 0))
1115 			break;
1116 
1117 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1118 			ent.data, ent.obj, ent.res, ent.res2);
1119 
1120 		/* Could we split the check in two? */
1121 		ret = -EFAULT;
1122 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1123 			dprintk("aio: lost an event due to EFAULT.\n");
1124 			break;
1125 		}
1126 		ret = 0;
1127 
1128 		/* Good, event copied to userland, update counts. */
1129 		event ++;
1130 		i ++;
1131 	}
1132 
1133 	if (min_nr <= i)
1134 		return i;
1135 	if (ret)
1136 		return ret;
1137 
1138 	/* End fast path */
1139 
1140 	/* racey check, but it gets redone */
1141 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1142 		retry = 1;
1143 		aio_run_all_iocbs(ctx);
1144 		goto retry;
1145 	}
1146 
1147 	init_timeout(&to);
1148 	if (timeout) {
1149 		struct timespec	ts;
1150 		ret = -EFAULT;
1151 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1152 			goto out;
1153 
1154 		set_timeout(start_jiffies, &to, &ts);
1155 	}
1156 
1157 	while (likely(i < nr)) {
1158 		add_wait_queue_exclusive(&ctx->wait, &wait);
1159 		do {
1160 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1161 			ret = aio_read_evt(ctx, &ent);
1162 			if (ret)
1163 				break;
1164 			if (min_nr <= i)
1165 				break;
1166 			if (unlikely(ctx->dead)) {
1167 				ret = -EINVAL;
1168 				break;
1169 			}
1170 			if (to.timed_out)	/* Only check after read evt */
1171 				break;
1172 			/* Try to only show up in io wait if there are ops
1173 			 *  in flight */
1174 			if (ctx->reqs_active)
1175 				io_schedule();
1176 			else
1177 				schedule();
1178 			if (signal_pending(tsk)) {
1179 				ret = -EINTR;
1180 				break;
1181 			}
1182 			/*ret = aio_read_evt(ctx, &ent);*/
1183 		} while (1) ;
1184 
1185 		set_task_state(tsk, TASK_RUNNING);
1186 		remove_wait_queue(&ctx->wait, &wait);
1187 
1188 		if (unlikely(ret <= 0))
1189 			break;
1190 
1191 		ret = -EFAULT;
1192 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1193 			dprintk("aio: lost an event due to EFAULT.\n");
1194 			break;
1195 		}
1196 
1197 		/* Good, event copied to userland, update counts. */
1198 		event ++;
1199 		i ++;
1200 	}
1201 
1202 	if (timeout)
1203 		clear_timeout(&to);
1204 out:
1205 	destroy_timer_on_stack(&to.timer);
1206 	return i ? i : ret;
1207 }
1208 
1209 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1210  * against races with itself via ->dead.
1211  */
1212 static void io_destroy(struct kioctx *ioctx)
1213 {
1214 	struct mm_struct *mm = current->mm;
1215 	int was_dead;
1216 
1217 	/* delete the entry from the list is someone else hasn't already */
1218 	spin_lock(&mm->ioctx_lock);
1219 	was_dead = ioctx->dead;
1220 	ioctx->dead = 1;
1221 	hlist_del_rcu(&ioctx->list);
1222 	spin_unlock(&mm->ioctx_lock);
1223 
1224 	dprintk("aio_release(%p)\n", ioctx);
1225 	if (likely(!was_dead))
1226 		put_ioctx(ioctx);	/* twice for the list */
1227 
1228 	aio_cancel_all(ioctx);
1229 	wait_for_all_aios(ioctx);
1230 
1231 	/*
1232 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1233 	 * by other CPUs at this point.  Right now, we rely on the
1234 	 * locking done by the above calls to ensure this consistency.
1235 	 */
1236 	wake_up(&ioctx->wait);
1237 	put_ioctx(ioctx);	/* once for the lookup */
1238 }
1239 
1240 /* sys_io_setup:
1241  *	Create an aio_context capable of receiving at least nr_events.
1242  *	ctxp must not point to an aio_context that already exists, and
1243  *	must be initialized to 0 prior to the call.  On successful
1244  *	creation of the aio_context, *ctxp is filled in with the resulting
1245  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1246  *	if the specified nr_events exceeds internal limits.  May fail
1247  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1248  *	of available events.  May fail with -ENOMEM if insufficient kernel
1249  *	resources are available.  May fail with -EFAULT if an invalid
1250  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1251  *	implemented.
1252  */
1253 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1254 {
1255 	struct kioctx *ioctx = NULL;
1256 	unsigned long ctx;
1257 	long ret;
1258 
1259 	ret = get_user(ctx, ctxp);
1260 	if (unlikely(ret))
1261 		goto out;
1262 
1263 	ret = -EINVAL;
1264 	if (unlikely(ctx || nr_events == 0)) {
1265 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1266 		         ctx, nr_events);
1267 		goto out;
1268 	}
1269 
1270 	ioctx = ioctx_alloc(nr_events);
1271 	ret = PTR_ERR(ioctx);
1272 	if (!IS_ERR(ioctx)) {
1273 		ret = put_user(ioctx->user_id, ctxp);
1274 		if (!ret)
1275 			return 0;
1276 
1277 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1278 		io_destroy(ioctx);
1279 	}
1280 
1281 out:
1282 	return ret;
1283 }
1284 
1285 /* sys_io_destroy:
1286  *	Destroy the aio_context specified.  May cancel any outstanding
1287  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1288  *	implemented.  May fail with -EFAULT if the context pointed to
1289  *	is invalid.
1290  */
1291 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1292 {
1293 	struct kioctx *ioctx = lookup_ioctx(ctx);
1294 	if (likely(NULL != ioctx)) {
1295 		io_destroy(ioctx);
1296 		return 0;
1297 	}
1298 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1299 	return -EINVAL;
1300 }
1301 
1302 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1303 {
1304 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1305 
1306 	BUG_ON(ret <= 0);
1307 
1308 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1309 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1310 		iov->iov_base += this;
1311 		iov->iov_len -= this;
1312 		iocb->ki_left -= this;
1313 		ret -= this;
1314 		if (iov->iov_len == 0) {
1315 			iocb->ki_cur_seg++;
1316 			iov++;
1317 		}
1318 	}
1319 
1320 	/* the caller should not have done more io than what fit in
1321 	 * the remaining iovecs */
1322 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1323 }
1324 
1325 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1326 {
1327 	struct file *file = iocb->ki_filp;
1328 	struct address_space *mapping = file->f_mapping;
1329 	struct inode *inode = mapping->host;
1330 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1331 			 unsigned long, loff_t);
1332 	ssize_t ret = 0;
1333 	unsigned short opcode;
1334 
1335 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1336 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1337 		rw_op = file->f_op->aio_read;
1338 		opcode = IOCB_CMD_PREADV;
1339 	} else {
1340 		rw_op = file->f_op->aio_write;
1341 		opcode = IOCB_CMD_PWRITEV;
1342 	}
1343 
1344 	/* This matches the pread()/pwrite() logic */
1345 	if (iocb->ki_pos < 0)
1346 		return -EINVAL;
1347 
1348 	do {
1349 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1350 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1351 			    iocb->ki_pos);
1352 		if (ret > 0)
1353 			aio_advance_iovec(iocb, ret);
1354 
1355 	/* retry all partial writes.  retry partial reads as long as its a
1356 	 * regular file. */
1357 	} while (ret > 0 && iocb->ki_left > 0 &&
1358 		 (opcode == IOCB_CMD_PWRITEV ||
1359 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1360 
1361 	/* This means we must have transferred all that we could */
1362 	/* No need to retry anymore */
1363 	if ((ret == 0) || (iocb->ki_left == 0))
1364 		ret = iocb->ki_nbytes - iocb->ki_left;
1365 
1366 	/* If we managed to write some out we return that, rather than
1367 	 * the eventual error. */
1368 	if (opcode == IOCB_CMD_PWRITEV
1369 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1370 	    && iocb->ki_nbytes - iocb->ki_left)
1371 		ret = iocb->ki_nbytes - iocb->ki_left;
1372 
1373 	return ret;
1374 }
1375 
1376 static ssize_t aio_fdsync(struct kiocb *iocb)
1377 {
1378 	struct file *file = iocb->ki_filp;
1379 	ssize_t ret = -EINVAL;
1380 
1381 	if (file->f_op->aio_fsync)
1382 		ret = file->f_op->aio_fsync(iocb, 1);
1383 	return ret;
1384 }
1385 
1386 static ssize_t aio_fsync(struct kiocb *iocb)
1387 {
1388 	struct file *file = iocb->ki_filp;
1389 	ssize_t ret = -EINVAL;
1390 
1391 	if (file->f_op->aio_fsync)
1392 		ret = file->f_op->aio_fsync(iocb, 0);
1393 	return ret;
1394 }
1395 
1396 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1397 {
1398 	ssize_t ret;
1399 
1400 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1401 				    kiocb->ki_nbytes, 1,
1402 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1403 	if (ret < 0)
1404 		goto out;
1405 
1406 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1407 	kiocb->ki_cur_seg = 0;
1408 	/* ki_nbytes/left now reflect bytes instead of segs */
1409 	kiocb->ki_nbytes = ret;
1410 	kiocb->ki_left = ret;
1411 
1412 	ret = 0;
1413 out:
1414 	return ret;
1415 }
1416 
1417 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1418 {
1419 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1420 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1421 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1422 	kiocb->ki_nr_segs = 1;
1423 	kiocb->ki_cur_seg = 0;
1424 	return 0;
1425 }
1426 
1427 /*
1428  * aio_setup_iocb:
1429  *	Performs the initial checks and aio retry method
1430  *	setup for the kiocb at the time of io submission.
1431  */
1432 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1433 {
1434 	struct file *file = kiocb->ki_filp;
1435 	ssize_t ret = 0;
1436 
1437 	switch (kiocb->ki_opcode) {
1438 	case IOCB_CMD_PREAD:
1439 		ret = -EBADF;
1440 		if (unlikely(!(file->f_mode & FMODE_READ)))
1441 			break;
1442 		ret = -EFAULT;
1443 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1444 			kiocb->ki_left)))
1445 			break;
1446 		ret = security_file_permission(file, MAY_READ);
1447 		if (unlikely(ret))
1448 			break;
1449 		ret = aio_setup_single_vector(kiocb);
1450 		if (ret)
1451 			break;
1452 		ret = -EINVAL;
1453 		if (file->f_op->aio_read)
1454 			kiocb->ki_retry = aio_rw_vect_retry;
1455 		break;
1456 	case IOCB_CMD_PWRITE:
1457 		ret = -EBADF;
1458 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1459 			break;
1460 		ret = -EFAULT;
1461 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1462 			kiocb->ki_left)))
1463 			break;
1464 		ret = security_file_permission(file, MAY_WRITE);
1465 		if (unlikely(ret))
1466 			break;
1467 		ret = aio_setup_single_vector(kiocb);
1468 		if (ret)
1469 			break;
1470 		ret = -EINVAL;
1471 		if (file->f_op->aio_write)
1472 			kiocb->ki_retry = aio_rw_vect_retry;
1473 		break;
1474 	case IOCB_CMD_PREADV:
1475 		ret = -EBADF;
1476 		if (unlikely(!(file->f_mode & FMODE_READ)))
1477 			break;
1478 		ret = security_file_permission(file, MAY_READ);
1479 		if (unlikely(ret))
1480 			break;
1481 		ret = aio_setup_vectored_rw(READ, kiocb);
1482 		if (ret)
1483 			break;
1484 		ret = -EINVAL;
1485 		if (file->f_op->aio_read)
1486 			kiocb->ki_retry = aio_rw_vect_retry;
1487 		break;
1488 	case IOCB_CMD_PWRITEV:
1489 		ret = -EBADF;
1490 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1491 			break;
1492 		ret = security_file_permission(file, MAY_WRITE);
1493 		if (unlikely(ret))
1494 			break;
1495 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1496 		if (ret)
1497 			break;
1498 		ret = -EINVAL;
1499 		if (file->f_op->aio_write)
1500 			kiocb->ki_retry = aio_rw_vect_retry;
1501 		break;
1502 	case IOCB_CMD_FDSYNC:
1503 		ret = -EINVAL;
1504 		if (file->f_op->aio_fsync)
1505 			kiocb->ki_retry = aio_fdsync;
1506 		break;
1507 	case IOCB_CMD_FSYNC:
1508 		ret = -EINVAL;
1509 		if (file->f_op->aio_fsync)
1510 			kiocb->ki_retry = aio_fsync;
1511 		break;
1512 	default:
1513 		dprintk("EINVAL: io_submit: no operation provided\n");
1514 		ret = -EINVAL;
1515 	}
1516 
1517 	if (!kiocb->ki_retry)
1518 		return ret;
1519 
1520 	return 0;
1521 }
1522 
1523 /*
1524  * aio_wake_function:
1525  * 	wait queue callback function for aio notification,
1526  * 	Simply triggers a retry of the operation via kick_iocb.
1527  *
1528  * 	This callback is specified in the wait queue entry in
1529  *	a kiocb.
1530  *
1531  * Note:
1532  * This routine is executed with the wait queue lock held.
1533  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1534  * the ioctx lock inside the wait queue lock. This is safe
1535  * because this callback isn't used for wait queues which
1536  * are nested inside ioctx lock (i.e. ctx->wait)
1537  */
1538 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1539 			     int sync, void *key)
1540 {
1541 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1542 
1543 	list_del_init(&wait->task_list);
1544 	kick_iocb(iocb);
1545 	return 1;
1546 }
1547 
1548 static void aio_batch_add(struct address_space *mapping,
1549 			  struct hlist_head *batch_hash)
1550 {
1551 	struct aio_batch_entry *abe;
1552 	struct hlist_node *pos;
1553 	unsigned bucket;
1554 
1555 	bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1556 	hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1557 		if (abe->mapping == mapping)
1558 			return;
1559 	}
1560 
1561 	abe = mempool_alloc(abe_pool, GFP_KERNEL);
1562 	BUG_ON(!igrab(mapping->host));
1563 	abe->mapping = mapping;
1564 	hlist_add_head(&abe->list, &batch_hash[bucket]);
1565 	return;
1566 }
1567 
1568 static void aio_batch_free(struct hlist_head *batch_hash)
1569 {
1570 	struct aio_batch_entry *abe;
1571 	struct hlist_node *pos, *n;
1572 	int i;
1573 
1574 	for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1575 		hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1576 			blk_run_address_space(abe->mapping);
1577 			iput(abe->mapping->host);
1578 			hlist_del(&abe->list);
1579 			mempool_free(abe, abe_pool);
1580 		}
1581 	}
1582 }
1583 
1584 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1585 			 struct iocb *iocb, struct hlist_head *batch_hash)
1586 {
1587 	struct kiocb *req;
1588 	struct file *file;
1589 	ssize_t ret;
1590 
1591 	/* enforce forwards compatibility on users */
1592 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1593 		pr_debug("EINVAL: io_submit: reserve field set\n");
1594 		return -EINVAL;
1595 	}
1596 
1597 	/* prevent overflows */
1598 	if (unlikely(
1599 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1600 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1601 	    ((ssize_t)iocb->aio_nbytes < 0)
1602 	   )) {
1603 		pr_debug("EINVAL: io_submit: overflow check\n");
1604 		return -EINVAL;
1605 	}
1606 
1607 	file = fget(iocb->aio_fildes);
1608 	if (unlikely(!file))
1609 		return -EBADF;
1610 
1611 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1612 	if (unlikely(!req)) {
1613 		fput(file);
1614 		return -EAGAIN;
1615 	}
1616 	req->ki_filp = file;
1617 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1618 		/*
1619 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1620 		 * instance of the file* now. The file descriptor must be
1621 		 * an eventfd() fd, and will be signaled for each completed
1622 		 * event using the eventfd_signal() function.
1623 		 */
1624 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1625 		if (IS_ERR(req->ki_eventfd)) {
1626 			ret = PTR_ERR(req->ki_eventfd);
1627 			req->ki_eventfd = NULL;
1628 			goto out_put_req;
1629 		}
1630 	}
1631 
1632 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1633 	if (unlikely(ret)) {
1634 		dprintk("EFAULT: aio_key\n");
1635 		goto out_put_req;
1636 	}
1637 
1638 	req->ki_obj.user = user_iocb;
1639 	req->ki_user_data = iocb->aio_data;
1640 	req->ki_pos = iocb->aio_offset;
1641 
1642 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1643 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1644 	req->ki_opcode = iocb->aio_lio_opcode;
1645 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1646 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1647 
1648 	ret = aio_setup_iocb(req);
1649 
1650 	if (ret)
1651 		goto out_put_req;
1652 
1653 	spin_lock_irq(&ctx->ctx_lock);
1654 	aio_run_iocb(req);
1655 	if (!list_empty(&ctx->run_list)) {
1656 		/* drain the run list */
1657 		while (__aio_run_iocbs(ctx))
1658 			;
1659 	}
1660 	spin_unlock_irq(&ctx->ctx_lock);
1661 	if (req->ki_opcode == IOCB_CMD_PREAD ||
1662 	    req->ki_opcode == IOCB_CMD_PREADV ||
1663 	    req->ki_opcode == IOCB_CMD_PWRITE ||
1664 	    req->ki_opcode == IOCB_CMD_PWRITEV)
1665 		aio_batch_add(file->f_mapping, batch_hash);
1666 
1667 	aio_put_req(req);	/* drop extra ref to req */
1668 	return 0;
1669 
1670 out_put_req:
1671 	aio_put_req(req);	/* drop extra ref to req */
1672 	aio_put_req(req);	/* drop i/o ref to req */
1673 	return ret;
1674 }
1675 
1676 /* sys_io_submit:
1677  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1678  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1679  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1680  *	*iocbpp[0] is not properly initialized, if the operation specified
1681  *	is invalid for the file descriptor in the iocb.  May fail with
1682  *	-EFAULT if any of the data structures point to invalid data.  May
1683  *	fail with -EBADF if the file descriptor specified in the first
1684  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1685  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1686  *	fail with -ENOSYS if not implemented.
1687  */
1688 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1689 		struct iocb __user * __user *, iocbpp)
1690 {
1691 	struct kioctx *ctx;
1692 	long ret = 0;
1693 	int i;
1694 	struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1695 
1696 	if (unlikely(nr < 0))
1697 		return -EINVAL;
1698 
1699 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1700 		return -EFAULT;
1701 
1702 	ctx = lookup_ioctx(ctx_id);
1703 	if (unlikely(!ctx)) {
1704 		pr_debug("EINVAL: io_submit: invalid context id\n");
1705 		return -EINVAL;
1706 	}
1707 
1708 	/*
1709 	 * AKPM: should this return a partial result if some of the IOs were
1710 	 * successfully submitted?
1711 	 */
1712 	for (i=0; i<nr; i++) {
1713 		struct iocb __user *user_iocb;
1714 		struct iocb tmp;
1715 
1716 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1717 			ret = -EFAULT;
1718 			break;
1719 		}
1720 
1721 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1722 			ret = -EFAULT;
1723 			break;
1724 		}
1725 
1726 		ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash);
1727 		if (ret)
1728 			break;
1729 	}
1730 	aio_batch_free(batch_hash);
1731 
1732 	put_ioctx(ctx);
1733 	return i ? i : ret;
1734 }
1735 
1736 /* lookup_kiocb
1737  *	Finds a given iocb for cancellation.
1738  */
1739 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1740 				  u32 key)
1741 {
1742 	struct list_head *pos;
1743 
1744 	assert_spin_locked(&ctx->ctx_lock);
1745 
1746 	/* TODO: use a hash or array, this sucks. */
1747 	list_for_each(pos, &ctx->active_reqs) {
1748 		struct kiocb *kiocb = list_kiocb(pos);
1749 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1750 			return kiocb;
1751 	}
1752 	return NULL;
1753 }
1754 
1755 /* sys_io_cancel:
1756  *	Attempts to cancel an iocb previously passed to io_submit.  If
1757  *	the operation is successfully cancelled, the resulting event is
1758  *	copied into the memory pointed to by result without being placed
1759  *	into the completion queue and 0 is returned.  May fail with
1760  *	-EFAULT if any of the data structures pointed to are invalid.
1761  *	May fail with -EINVAL if aio_context specified by ctx_id is
1762  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1763  *	cancelled.  Will fail with -ENOSYS if not implemented.
1764  */
1765 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1766 		struct io_event __user *, result)
1767 {
1768 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1769 	struct kioctx *ctx;
1770 	struct kiocb *kiocb;
1771 	u32 key;
1772 	int ret;
1773 
1774 	ret = get_user(key, &iocb->aio_key);
1775 	if (unlikely(ret))
1776 		return -EFAULT;
1777 
1778 	ctx = lookup_ioctx(ctx_id);
1779 	if (unlikely(!ctx))
1780 		return -EINVAL;
1781 
1782 	spin_lock_irq(&ctx->ctx_lock);
1783 	ret = -EAGAIN;
1784 	kiocb = lookup_kiocb(ctx, iocb, key);
1785 	if (kiocb && kiocb->ki_cancel) {
1786 		cancel = kiocb->ki_cancel;
1787 		kiocb->ki_users ++;
1788 		kiocbSetCancelled(kiocb);
1789 	} else
1790 		cancel = NULL;
1791 	spin_unlock_irq(&ctx->ctx_lock);
1792 
1793 	if (NULL != cancel) {
1794 		struct io_event tmp;
1795 		pr_debug("calling cancel\n");
1796 		memset(&tmp, 0, sizeof(tmp));
1797 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1798 		tmp.data = kiocb->ki_user_data;
1799 		ret = cancel(kiocb, &tmp);
1800 		if (!ret) {
1801 			/* Cancellation succeeded -- copy the result
1802 			 * into the user's buffer.
1803 			 */
1804 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1805 				ret = -EFAULT;
1806 		}
1807 	} else
1808 		ret = -EINVAL;
1809 
1810 	put_ioctx(ctx);
1811 
1812 	return ret;
1813 }
1814 
1815 /* io_getevents:
1816  *	Attempts to read at least min_nr events and up to nr events from
1817  *	the completion queue for the aio_context specified by ctx_id.  May
1818  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1819  *	if nr is out of range, if when is out of range.  May fail with
1820  *	-EFAULT if any of the memory specified to is invalid.  May return
1821  *	0 or < min_nr if no events are available and the timeout specified
1822  *	by when	has elapsed, where when == NULL specifies an infinite
1823  *	timeout.  Note that the timeout pointed to by when is relative and
1824  *	will be updated if not NULL and the operation blocks.  Will fail
1825  *	with -ENOSYS if not implemented.
1826  */
1827 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1828 		long, min_nr,
1829 		long, nr,
1830 		struct io_event __user *, events,
1831 		struct timespec __user *, timeout)
1832 {
1833 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1834 	long ret = -EINVAL;
1835 
1836 	if (likely(ioctx)) {
1837 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1838 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1839 		put_ioctx(ioctx);
1840 	}
1841 
1842 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1843 	return ret;
1844 }
1845