xref: /openbmc/linux/fs/aio.c (revision 31b90347)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_table {
70 	struct rcu_head	rcu;
71 	unsigned	nr;
72 	struct kioctx	*table[];
73 };
74 
75 struct kioctx_cpu {
76 	unsigned		reqs_available;
77 };
78 
79 struct kioctx {
80 	struct percpu_ref	users;
81 	atomic_t		dead;
82 
83 	struct percpu_ref	reqs;
84 
85 	unsigned long		user_id;
86 
87 	struct __percpu kioctx_cpu *cpu;
88 
89 	/*
90 	 * For percpu reqs_available, number of slots we move to/from global
91 	 * counter at a time:
92 	 */
93 	unsigned		req_batch;
94 	/*
95 	 * This is what userspace passed to io_setup(), it's not used for
96 	 * anything but counting against the global max_reqs quota.
97 	 *
98 	 * The real limit is nr_events - 1, which will be larger (see
99 	 * aio_setup_ring())
100 	 */
101 	unsigned		max_reqs;
102 
103 	/* Size of ringbuffer, in units of struct io_event */
104 	unsigned		nr_events;
105 
106 	unsigned long		mmap_base;
107 	unsigned long		mmap_size;
108 
109 	struct page		**ring_pages;
110 	long			nr_pages;
111 
112 	struct work_struct	free_work;
113 
114 	struct {
115 		/*
116 		 * This counts the number of available slots in the ringbuffer,
117 		 * so we avoid overflowing it: it's decremented (if positive)
118 		 * when allocating a kiocb and incremented when the resulting
119 		 * io_event is pulled off the ringbuffer.
120 		 *
121 		 * We batch accesses to it with a percpu version.
122 		 */
123 		atomic_t	reqs_available;
124 	} ____cacheline_aligned_in_smp;
125 
126 	struct {
127 		spinlock_t	ctx_lock;
128 		struct list_head active_reqs;	/* used for cancellation */
129 	} ____cacheline_aligned_in_smp;
130 
131 	struct {
132 		struct mutex	ring_lock;
133 		wait_queue_head_t wait;
134 	} ____cacheline_aligned_in_smp;
135 
136 	struct {
137 		unsigned	tail;
138 		spinlock_t	completion_lock;
139 	} ____cacheline_aligned_in_smp;
140 
141 	struct page		*internal_pages[AIO_RING_PAGES];
142 	struct file		*aio_ring_file;
143 
144 	unsigned		id;
145 };
146 
147 /*------ sysctl variables----*/
148 static DEFINE_SPINLOCK(aio_nr_lock);
149 unsigned long aio_nr;		/* current system wide number of aio requests */
150 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
151 /*----end sysctl variables---*/
152 
153 static struct kmem_cache	*kiocb_cachep;
154 static struct kmem_cache	*kioctx_cachep;
155 
156 static struct vfsmount *aio_mnt;
157 
158 static const struct file_operations aio_ring_fops;
159 static const struct address_space_operations aio_ctx_aops;
160 
161 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
162 {
163 	struct qstr this = QSTR_INIT("[aio]", 5);
164 	struct file *file;
165 	struct path path;
166 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
167 	if (IS_ERR(inode))
168 		return ERR_CAST(inode);
169 
170 	inode->i_mapping->a_ops = &aio_ctx_aops;
171 	inode->i_mapping->private_data = ctx;
172 	inode->i_size = PAGE_SIZE * nr_pages;
173 
174 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
175 	if (!path.dentry) {
176 		iput(inode);
177 		return ERR_PTR(-ENOMEM);
178 	}
179 	path.mnt = mntget(aio_mnt);
180 
181 	d_instantiate(path.dentry, inode);
182 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
183 	if (IS_ERR(file)) {
184 		path_put(&path);
185 		return file;
186 	}
187 
188 	file->f_flags = O_RDWR;
189 	file->private_data = ctx;
190 	return file;
191 }
192 
193 static struct dentry *aio_mount(struct file_system_type *fs_type,
194 				int flags, const char *dev_name, void *data)
195 {
196 	static const struct dentry_operations ops = {
197 		.d_dname	= simple_dname,
198 	};
199 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
200 }
201 
202 /* aio_setup
203  *	Creates the slab caches used by the aio routines, panic on
204  *	failure as this is done early during the boot sequence.
205  */
206 static int __init aio_setup(void)
207 {
208 	static struct file_system_type aio_fs = {
209 		.name		= "aio",
210 		.mount		= aio_mount,
211 		.kill_sb	= kill_anon_super,
212 	};
213 	aio_mnt = kern_mount(&aio_fs);
214 	if (IS_ERR(aio_mnt))
215 		panic("Failed to create aio fs mount.");
216 
217 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
219 
220 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
221 
222 	return 0;
223 }
224 __initcall(aio_setup);
225 
226 static void put_aio_ring_file(struct kioctx *ctx)
227 {
228 	struct file *aio_ring_file = ctx->aio_ring_file;
229 	if (aio_ring_file) {
230 		truncate_setsize(aio_ring_file->f_inode, 0);
231 
232 		/* Prevent further access to the kioctx from migratepages */
233 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
234 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
235 		ctx->aio_ring_file = NULL;
236 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
237 
238 		fput(aio_ring_file);
239 	}
240 }
241 
242 static void aio_free_ring(struct kioctx *ctx)
243 {
244 	int i;
245 
246 	for (i = 0; i < ctx->nr_pages; i++) {
247 		struct page *page;
248 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
249 				page_count(ctx->ring_pages[i]));
250 		page = ctx->ring_pages[i];
251 		if (!page)
252 			continue;
253 		ctx->ring_pages[i] = NULL;
254 		put_page(page);
255 	}
256 
257 	put_aio_ring_file(ctx);
258 
259 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
260 		kfree(ctx->ring_pages);
261 		ctx->ring_pages = NULL;
262 	}
263 }
264 
265 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
266 {
267 	vma->vm_ops = &generic_file_vm_ops;
268 	return 0;
269 }
270 
271 static const struct file_operations aio_ring_fops = {
272 	.mmap = aio_ring_mmap,
273 };
274 
275 static int aio_set_page_dirty(struct page *page)
276 {
277 	return 0;
278 }
279 
280 #if IS_ENABLED(CONFIG_MIGRATION)
281 static int aio_migratepage(struct address_space *mapping, struct page *new,
282 			struct page *old, enum migrate_mode mode)
283 {
284 	struct kioctx *ctx;
285 	unsigned long flags;
286 	int rc;
287 
288 	rc = 0;
289 
290 	/* Make sure the old page hasn't already been changed */
291 	spin_lock(&mapping->private_lock);
292 	ctx = mapping->private_data;
293 	if (ctx) {
294 		pgoff_t idx;
295 		spin_lock_irqsave(&ctx->completion_lock, flags);
296 		idx = old->index;
297 		if (idx < (pgoff_t)ctx->nr_pages) {
298 			if (ctx->ring_pages[idx] != old)
299 				rc = -EAGAIN;
300 		} else
301 			rc = -EINVAL;
302 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
303 	} else
304 		rc = -EINVAL;
305 	spin_unlock(&mapping->private_lock);
306 
307 	if (rc != 0)
308 		return rc;
309 
310 	/* Writeback must be complete */
311 	BUG_ON(PageWriteback(old));
312 	get_page(new);
313 
314 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
315 	if (rc != MIGRATEPAGE_SUCCESS) {
316 		put_page(new);
317 		return rc;
318 	}
319 
320 	/* We can potentially race against kioctx teardown here.  Use the
321 	 * address_space's private data lock to protect the mapping's
322 	 * private_data.
323 	 */
324 	spin_lock(&mapping->private_lock);
325 	ctx = mapping->private_data;
326 	if (ctx) {
327 		pgoff_t idx;
328 		spin_lock_irqsave(&ctx->completion_lock, flags);
329 		migrate_page_copy(new, old);
330 		idx = old->index;
331 		if (idx < (pgoff_t)ctx->nr_pages) {
332 			/* And only do the move if things haven't changed */
333 			if (ctx->ring_pages[idx] == old)
334 				ctx->ring_pages[idx] = new;
335 			else
336 				rc = -EAGAIN;
337 		} else
338 			rc = -EINVAL;
339 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
340 	} else
341 		rc = -EBUSY;
342 	spin_unlock(&mapping->private_lock);
343 
344 	if (rc == MIGRATEPAGE_SUCCESS)
345 		put_page(old);
346 	else
347 		put_page(new);
348 
349 	return rc;
350 }
351 #endif
352 
353 static const struct address_space_operations aio_ctx_aops = {
354 	.set_page_dirty = aio_set_page_dirty,
355 #if IS_ENABLED(CONFIG_MIGRATION)
356 	.migratepage	= aio_migratepage,
357 #endif
358 };
359 
360 static int aio_setup_ring(struct kioctx *ctx)
361 {
362 	struct aio_ring *ring;
363 	unsigned nr_events = ctx->max_reqs;
364 	struct mm_struct *mm = current->mm;
365 	unsigned long size, unused;
366 	int nr_pages;
367 	int i;
368 	struct file *file;
369 
370 	/* Compensate for the ring buffer's head/tail overlap entry */
371 	nr_events += 2;	/* 1 is required, 2 for good luck */
372 
373 	size = sizeof(struct aio_ring);
374 	size += sizeof(struct io_event) * nr_events;
375 
376 	nr_pages = PFN_UP(size);
377 	if (nr_pages < 0)
378 		return -EINVAL;
379 
380 	file = aio_private_file(ctx, nr_pages);
381 	if (IS_ERR(file)) {
382 		ctx->aio_ring_file = NULL;
383 		return -EAGAIN;
384 	}
385 
386 	ctx->aio_ring_file = file;
387 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
388 			/ sizeof(struct io_event);
389 
390 	ctx->ring_pages = ctx->internal_pages;
391 	if (nr_pages > AIO_RING_PAGES) {
392 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
393 					  GFP_KERNEL);
394 		if (!ctx->ring_pages) {
395 			put_aio_ring_file(ctx);
396 			return -ENOMEM;
397 		}
398 	}
399 
400 	for (i = 0; i < nr_pages; i++) {
401 		struct page *page;
402 		page = find_or_create_page(file->f_inode->i_mapping,
403 					   i, GFP_HIGHUSER | __GFP_ZERO);
404 		if (!page)
405 			break;
406 		pr_debug("pid(%d) page[%d]->count=%d\n",
407 			 current->pid, i, page_count(page));
408 		SetPageUptodate(page);
409 		SetPageDirty(page);
410 		unlock_page(page);
411 
412 		ctx->ring_pages[i] = page;
413 	}
414 	ctx->nr_pages = i;
415 
416 	if (unlikely(i != nr_pages)) {
417 		aio_free_ring(ctx);
418 		return -EAGAIN;
419 	}
420 
421 	ctx->mmap_size = nr_pages * PAGE_SIZE;
422 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
423 
424 	down_write(&mm->mmap_sem);
425 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
426 				       PROT_READ | PROT_WRITE,
427 				       MAP_SHARED, 0, &unused);
428 	up_write(&mm->mmap_sem);
429 	if (IS_ERR((void *)ctx->mmap_base)) {
430 		ctx->mmap_size = 0;
431 		aio_free_ring(ctx);
432 		return -EAGAIN;
433 	}
434 
435 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
436 
437 	ctx->user_id = ctx->mmap_base;
438 	ctx->nr_events = nr_events; /* trusted copy */
439 
440 	ring = kmap_atomic(ctx->ring_pages[0]);
441 	ring->nr = nr_events;	/* user copy */
442 	ring->id = ~0U;
443 	ring->head = ring->tail = 0;
444 	ring->magic = AIO_RING_MAGIC;
445 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
446 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
447 	ring->header_length = sizeof(struct aio_ring);
448 	kunmap_atomic(ring);
449 	flush_dcache_page(ctx->ring_pages[0]);
450 
451 	return 0;
452 }
453 
454 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
455 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
456 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
457 
458 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
459 {
460 	struct kioctx *ctx = req->ki_ctx;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&ctx->ctx_lock, flags);
464 
465 	if (!req->ki_list.next)
466 		list_add(&req->ki_list, &ctx->active_reqs);
467 
468 	req->ki_cancel = cancel;
469 
470 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
471 }
472 EXPORT_SYMBOL(kiocb_set_cancel_fn);
473 
474 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
475 {
476 	kiocb_cancel_fn *old, *cancel;
477 
478 	/*
479 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
480 	 * actually has a cancel function, hence the cmpxchg()
481 	 */
482 
483 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
484 	do {
485 		if (!cancel || cancel == KIOCB_CANCELLED)
486 			return -EINVAL;
487 
488 		old = cancel;
489 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
490 	} while (cancel != old);
491 
492 	return cancel(kiocb);
493 }
494 
495 static void free_ioctx(struct work_struct *work)
496 {
497 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
498 
499 	pr_debug("freeing %p\n", ctx);
500 
501 	aio_free_ring(ctx);
502 	free_percpu(ctx->cpu);
503 	kmem_cache_free(kioctx_cachep, ctx);
504 }
505 
506 static void free_ioctx_reqs(struct percpu_ref *ref)
507 {
508 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
509 
510 	INIT_WORK(&ctx->free_work, free_ioctx);
511 	schedule_work(&ctx->free_work);
512 }
513 
514 /*
515  * When this function runs, the kioctx has been removed from the "hash table"
516  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
517  * now it's safe to cancel any that need to be.
518  */
519 static void free_ioctx_users(struct percpu_ref *ref)
520 {
521 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
522 	struct kiocb *req;
523 
524 	spin_lock_irq(&ctx->ctx_lock);
525 
526 	while (!list_empty(&ctx->active_reqs)) {
527 		req = list_first_entry(&ctx->active_reqs,
528 				       struct kiocb, ki_list);
529 
530 		list_del_init(&req->ki_list);
531 		kiocb_cancel(ctx, req);
532 	}
533 
534 	spin_unlock_irq(&ctx->ctx_lock);
535 
536 	percpu_ref_kill(&ctx->reqs);
537 	percpu_ref_put(&ctx->reqs);
538 }
539 
540 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
541 {
542 	unsigned i, new_nr;
543 	struct kioctx_table *table, *old;
544 	struct aio_ring *ring;
545 
546 	spin_lock(&mm->ioctx_lock);
547 	rcu_read_lock();
548 	table = rcu_dereference(mm->ioctx_table);
549 
550 	while (1) {
551 		if (table)
552 			for (i = 0; i < table->nr; i++)
553 				if (!table->table[i]) {
554 					ctx->id = i;
555 					table->table[i] = ctx;
556 					rcu_read_unlock();
557 					spin_unlock(&mm->ioctx_lock);
558 
559 					ring = kmap_atomic(ctx->ring_pages[0]);
560 					ring->id = ctx->id;
561 					kunmap_atomic(ring);
562 					return 0;
563 				}
564 
565 		new_nr = (table ? table->nr : 1) * 4;
566 
567 		rcu_read_unlock();
568 		spin_unlock(&mm->ioctx_lock);
569 
570 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
571 				new_nr, GFP_KERNEL);
572 		if (!table)
573 			return -ENOMEM;
574 
575 		table->nr = new_nr;
576 
577 		spin_lock(&mm->ioctx_lock);
578 		rcu_read_lock();
579 		old = rcu_dereference(mm->ioctx_table);
580 
581 		if (!old) {
582 			rcu_assign_pointer(mm->ioctx_table, table);
583 		} else if (table->nr > old->nr) {
584 			memcpy(table->table, old->table,
585 			       old->nr * sizeof(struct kioctx *));
586 
587 			rcu_assign_pointer(mm->ioctx_table, table);
588 			kfree_rcu(old, rcu);
589 		} else {
590 			kfree(table);
591 			table = old;
592 		}
593 	}
594 }
595 
596 static void aio_nr_sub(unsigned nr)
597 {
598 	spin_lock(&aio_nr_lock);
599 	if (WARN_ON(aio_nr - nr > aio_nr))
600 		aio_nr = 0;
601 	else
602 		aio_nr -= nr;
603 	spin_unlock(&aio_nr_lock);
604 }
605 
606 /* ioctx_alloc
607  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
608  */
609 static struct kioctx *ioctx_alloc(unsigned nr_events)
610 {
611 	struct mm_struct *mm = current->mm;
612 	struct kioctx *ctx;
613 	int err = -ENOMEM;
614 
615 	/*
616 	 * We keep track of the number of available ringbuffer slots, to prevent
617 	 * overflow (reqs_available), and we also use percpu counters for this.
618 	 *
619 	 * So since up to half the slots might be on other cpu's percpu counters
620 	 * and unavailable, double nr_events so userspace sees what they
621 	 * expected: additionally, we move req_batch slots to/from percpu
622 	 * counters at a time, so make sure that isn't 0:
623 	 */
624 	nr_events = max(nr_events, num_possible_cpus() * 4);
625 	nr_events *= 2;
626 
627 	/* Prevent overflows */
628 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
629 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
630 		pr_debug("ENOMEM: nr_events too high\n");
631 		return ERR_PTR(-EINVAL);
632 	}
633 
634 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
635 		return ERR_PTR(-EAGAIN);
636 
637 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
638 	if (!ctx)
639 		return ERR_PTR(-ENOMEM);
640 
641 	ctx->max_reqs = nr_events;
642 
643 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
644 		goto err;
645 
646 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
647 		goto err;
648 
649 	spin_lock_init(&ctx->ctx_lock);
650 	spin_lock_init(&ctx->completion_lock);
651 	mutex_init(&ctx->ring_lock);
652 	init_waitqueue_head(&ctx->wait);
653 
654 	INIT_LIST_HEAD(&ctx->active_reqs);
655 
656 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
657 	if (!ctx->cpu)
658 		goto err;
659 
660 	if (aio_setup_ring(ctx) < 0)
661 		goto err;
662 
663 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
664 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
665 	if (ctx->req_batch < 1)
666 		ctx->req_batch = 1;
667 
668 	/* limit the number of system wide aios */
669 	spin_lock(&aio_nr_lock);
670 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
671 	    aio_nr + nr_events < aio_nr) {
672 		spin_unlock(&aio_nr_lock);
673 		err = -EAGAIN;
674 		goto err_ctx;
675 	}
676 	aio_nr += ctx->max_reqs;
677 	spin_unlock(&aio_nr_lock);
678 
679 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
680 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
681 
682 	err = ioctx_add_table(ctx, mm);
683 	if (err)
684 		goto err_cleanup;
685 
686 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
687 		 ctx, ctx->user_id, mm, ctx->nr_events);
688 	return ctx;
689 
690 err_cleanup:
691 	aio_nr_sub(ctx->max_reqs);
692 err_ctx:
693 	aio_free_ring(ctx);
694 err:
695 	free_percpu(ctx->cpu);
696 	free_percpu(ctx->reqs.pcpu_count);
697 	free_percpu(ctx->users.pcpu_count);
698 	kmem_cache_free(kioctx_cachep, ctx);
699 	pr_debug("error allocating ioctx %d\n", err);
700 	return ERR_PTR(err);
701 }
702 
703 /* kill_ioctx
704  *	Cancels all outstanding aio requests on an aio context.  Used
705  *	when the processes owning a context have all exited to encourage
706  *	the rapid destruction of the kioctx.
707  */
708 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
709 {
710 	if (!atomic_xchg(&ctx->dead, 1)) {
711 		struct kioctx_table *table;
712 
713 		spin_lock(&mm->ioctx_lock);
714 		rcu_read_lock();
715 		table = rcu_dereference(mm->ioctx_table);
716 
717 		WARN_ON(ctx != table->table[ctx->id]);
718 		table->table[ctx->id] = NULL;
719 		rcu_read_unlock();
720 		spin_unlock(&mm->ioctx_lock);
721 
722 		/* percpu_ref_kill() will do the necessary call_rcu() */
723 		wake_up_all(&ctx->wait);
724 
725 		/*
726 		 * It'd be more correct to do this in free_ioctx(), after all
727 		 * the outstanding kiocbs have finished - but by then io_destroy
728 		 * has already returned, so io_setup() could potentially return
729 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
730 		 *  could tell).
731 		 */
732 		aio_nr_sub(ctx->max_reqs);
733 
734 		if (ctx->mmap_size)
735 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
736 
737 		percpu_ref_kill(&ctx->users);
738 	}
739 }
740 
741 /* wait_on_sync_kiocb:
742  *	Waits on the given sync kiocb to complete.
743  */
744 ssize_t wait_on_sync_kiocb(struct kiocb *req)
745 {
746 	while (!req->ki_ctx) {
747 		set_current_state(TASK_UNINTERRUPTIBLE);
748 		if (req->ki_ctx)
749 			break;
750 		io_schedule();
751 	}
752 	__set_current_state(TASK_RUNNING);
753 	return req->ki_user_data;
754 }
755 EXPORT_SYMBOL(wait_on_sync_kiocb);
756 
757 /*
758  * exit_aio: called when the last user of mm goes away.  At this point, there is
759  * no way for any new requests to be submited or any of the io_* syscalls to be
760  * called on the context.
761  *
762  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
763  * them.
764  */
765 void exit_aio(struct mm_struct *mm)
766 {
767 	struct kioctx_table *table;
768 	struct kioctx *ctx;
769 	unsigned i = 0;
770 
771 	while (1) {
772 		rcu_read_lock();
773 		table = rcu_dereference(mm->ioctx_table);
774 
775 		do {
776 			if (!table || i >= table->nr) {
777 				rcu_read_unlock();
778 				rcu_assign_pointer(mm->ioctx_table, NULL);
779 				if (table)
780 					kfree(table);
781 				return;
782 			}
783 
784 			ctx = table->table[i++];
785 		} while (!ctx);
786 
787 		rcu_read_unlock();
788 
789 		/*
790 		 * We don't need to bother with munmap() here -
791 		 * exit_mmap(mm) is coming and it'll unmap everything.
792 		 * Since aio_free_ring() uses non-zero ->mmap_size
793 		 * as indicator that it needs to unmap the area,
794 		 * just set it to 0; aio_free_ring() is the only
795 		 * place that uses ->mmap_size, so it's safe.
796 		 */
797 		ctx->mmap_size = 0;
798 
799 		kill_ioctx(mm, ctx);
800 	}
801 }
802 
803 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
804 {
805 	struct kioctx_cpu *kcpu;
806 
807 	preempt_disable();
808 	kcpu = this_cpu_ptr(ctx->cpu);
809 
810 	kcpu->reqs_available += nr;
811 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
812 		kcpu->reqs_available -= ctx->req_batch;
813 		atomic_add(ctx->req_batch, &ctx->reqs_available);
814 	}
815 
816 	preempt_enable();
817 }
818 
819 static bool get_reqs_available(struct kioctx *ctx)
820 {
821 	struct kioctx_cpu *kcpu;
822 	bool ret = false;
823 
824 	preempt_disable();
825 	kcpu = this_cpu_ptr(ctx->cpu);
826 
827 	if (!kcpu->reqs_available) {
828 		int old, avail = atomic_read(&ctx->reqs_available);
829 
830 		do {
831 			if (avail < ctx->req_batch)
832 				goto out;
833 
834 			old = avail;
835 			avail = atomic_cmpxchg(&ctx->reqs_available,
836 					       avail, avail - ctx->req_batch);
837 		} while (avail != old);
838 
839 		kcpu->reqs_available += ctx->req_batch;
840 	}
841 
842 	ret = true;
843 	kcpu->reqs_available--;
844 out:
845 	preempt_enable();
846 	return ret;
847 }
848 
849 /* aio_get_req
850  *	Allocate a slot for an aio request.
851  * Returns NULL if no requests are free.
852  */
853 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
854 {
855 	struct kiocb *req;
856 
857 	if (!get_reqs_available(ctx))
858 		return NULL;
859 
860 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
861 	if (unlikely(!req))
862 		goto out_put;
863 
864 	percpu_ref_get(&ctx->reqs);
865 
866 	req->ki_ctx = ctx;
867 	return req;
868 out_put:
869 	put_reqs_available(ctx, 1);
870 	return NULL;
871 }
872 
873 static void kiocb_free(struct kiocb *req)
874 {
875 	if (req->ki_filp)
876 		fput(req->ki_filp);
877 	if (req->ki_eventfd != NULL)
878 		eventfd_ctx_put(req->ki_eventfd);
879 	kmem_cache_free(kiocb_cachep, req);
880 }
881 
882 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
883 {
884 	struct aio_ring __user *ring  = (void __user *)ctx_id;
885 	struct mm_struct *mm = current->mm;
886 	struct kioctx *ctx, *ret = NULL;
887 	struct kioctx_table *table;
888 	unsigned id;
889 
890 	if (get_user(id, &ring->id))
891 		return NULL;
892 
893 	rcu_read_lock();
894 	table = rcu_dereference(mm->ioctx_table);
895 
896 	if (!table || id >= table->nr)
897 		goto out;
898 
899 	ctx = table->table[id];
900 	if (ctx && ctx->user_id == ctx_id) {
901 		percpu_ref_get(&ctx->users);
902 		ret = ctx;
903 	}
904 out:
905 	rcu_read_unlock();
906 	return ret;
907 }
908 
909 /* aio_complete
910  *	Called when the io request on the given iocb is complete.
911  */
912 void aio_complete(struct kiocb *iocb, long res, long res2)
913 {
914 	struct kioctx	*ctx = iocb->ki_ctx;
915 	struct aio_ring	*ring;
916 	struct io_event	*ev_page, *event;
917 	unsigned long	flags;
918 	unsigned tail, pos;
919 
920 	/*
921 	 * Special case handling for sync iocbs:
922 	 *  - events go directly into the iocb for fast handling
923 	 *  - the sync task with the iocb in its stack holds the single iocb
924 	 *    ref, no other paths have a way to get another ref
925 	 *  - the sync task helpfully left a reference to itself in the iocb
926 	 */
927 	if (is_sync_kiocb(iocb)) {
928 		iocb->ki_user_data = res;
929 		smp_wmb();
930 		iocb->ki_ctx = ERR_PTR(-EXDEV);
931 		wake_up_process(iocb->ki_obj.tsk);
932 		return;
933 	}
934 
935 	if (iocb->ki_list.next) {
936 		unsigned long flags;
937 
938 		spin_lock_irqsave(&ctx->ctx_lock, flags);
939 		list_del(&iocb->ki_list);
940 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
941 	}
942 
943 	/*
944 	 * Add a completion event to the ring buffer. Must be done holding
945 	 * ctx->completion_lock to prevent other code from messing with the tail
946 	 * pointer since we might be called from irq context.
947 	 */
948 	spin_lock_irqsave(&ctx->completion_lock, flags);
949 
950 	tail = ctx->tail;
951 	pos = tail + AIO_EVENTS_OFFSET;
952 
953 	if (++tail >= ctx->nr_events)
954 		tail = 0;
955 
956 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
957 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
958 
959 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
960 	event->data = iocb->ki_user_data;
961 	event->res = res;
962 	event->res2 = res2;
963 
964 	kunmap_atomic(ev_page);
965 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
966 
967 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
968 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
969 		 res, res2);
970 
971 	/* after flagging the request as done, we
972 	 * must never even look at it again
973 	 */
974 	smp_wmb();	/* make event visible before updating tail */
975 
976 	ctx->tail = tail;
977 
978 	ring = kmap_atomic(ctx->ring_pages[0]);
979 	ring->tail = tail;
980 	kunmap_atomic(ring);
981 	flush_dcache_page(ctx->ring_pages[0]);
982 
983 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
984 
985 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
986 
987 	/*
988 	 * Check if the user asked us to deliver the result through an
989 	 * eventfd. The eventfd_signal() function is safe to be called
990 	 * from IRQ context.
991 	 */
992 	if (iocb->ki_eventfd != NULL)
993 		eventfd_signal(iocb->ki_eventfd, 1);
994 
995 	/* everything turned out well, dispose of the aiocb. */
996 	kiocb_free(iocb);
997 
998 	/*
999 	 * We have to order our ring_info tail store above and test
1000 	 * of the wait list below outside the wait lock.  This is
1001 	 * like in wake_up_bit() where clearing a bit has to be
1002 	 * ordered with the unlocked test.
1003 	 */
1004 	smp_mb();
1005 
1006 	if (waitqueue_active(&ctx->wait))
1007 		wake_up(&ctx->wait);
1008 
1009 	percpu_ref_put(&ctx->reqs);
1010 }
1011 EXPORT_SYMBOL(aio_complete);
1012 
1013 /* aio_read_events
1014  *	Pull an event off of the ioctx's event ring.  Returns the number of
1015  *	events fetched
1016  */
1017 static long aio_read_events_ring(struct kioctx *ctx,
1018 				 struct io_event __user *event, long nr)
1019 {
1020 	struct aio_ring *ring;
1021 	unsigned head, tail, pos;
1022 	long ret = 0;
1023 	int copy_ret;
1024 
1025 	mutex_lock(&ctx->ring_lock);
1026 
1027 	ring = kmap_atomic(ctx->ring_pages[0]);
1028 	head = ring->head;
1029 	tail = ring->tail;
1030 	kunmap_atomic(ring);
1031 
1032 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1033 
1034 	if (head == tail)
1035 		goto out;
1036 
1037 	while (ret < nr) {
1038 		long avail;
1039 		struct io_event *ev;
1040 		struct page *page;
1041 
1042 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1043 		if (head == tail)
1044 			break;
1045 
1046 		avail = min(avail, nr - ret);
1047 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1048 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1049 
1050 		pos = head + AIO_EVENTS_OFFSET;
1051 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1052 		pos %= AIO_EVENTS_PER_PAGE;
1053 
1054 		ev = kmap(page);
1055 		copy_ret = copy_to_user(event + ret, ev + pos,
1056 					sizeof(*ev) * avail);
1057 		kunmap(page);
1058 
1059 		if (unlikely(copy_ret)) {
1060 			ret = -EFAULT;
1061 			goto out;
1062 		}
1063 
1064 		ret += avail;
1065 		head += avail;
1066 		head %= ctx->nr_events;
1067 	}
1068 
1069 	ring = kmap_atomic(ctx->ring_pages[0]);
1070 	ring->head = head;
1071 	kunmap_atomic(ring);
1072 	flush_dcache_page(ctx->ring_pages[0]);
1073 
1074 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1075 
1076 	put_reqs_available(ctx, ret);
1077 out:
1078 	mutex_unlock(&ctx->ring_lock);
1079 
1080 	return ret;
1081 }
1082 
1083 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1084 			    struct io_event __user *event, long *i)
1085 {
1086 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1087 
1088 	if (ret > 0)
1089 		*i += ret;
1090 
1091 	if (unlikely(atomic_read(&ctx->dead)))
1092 		ret = -EINVAL;
1093 
1094 	if (!*i)
1095 		*i = ret;
1096 
1097 	return ret < 0 || *i >= min_nr;
1098 }
1099 
1100 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1101 			struct io_event __user *event,
1102 			struct timespec __user *timeout)
1103 {
1104 	ktime_t until = { .tv64 = KTIME_MAX };
1105 	long ret = 0;
1106 
1107 	if (timeout) {
1108 		struct timespec	ts;
1109 
1110 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1111 			return -EFAULT;
1112 
1113 		until = timespec_to_ktime(ts);
1114 	}
1115 
1116 	/*
1117 	 * Note that aio_read_events() is being called as the conditional - i.e.
1118 	 * we're calling it after prepare_to_wait() has set task state to
1119 	 * TASK_INTERRUPTIBLE.
1120 	 *
1121 	 * But aio_read_events() can block, and if it blocks it's going to flip
1122 	 * the task state back to TASK_RUNNING.
1123 	 *
1124 	 * This should be ok, provided it doesn't flip the state back to
1125 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1126 	 * will only happen if the mutex_lock() call blocks, and we then find
1127 	 * the ringbuffer empty. So in practice we should be ok, but it's
1128 	 * something to be aware of when touching this code.
1129 	 */
1130 	wait_event_interruptible_hrtimeout(ctx->wait,
1131 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1132 
1133 	if (!ret && signal_pending(current))
1134 		ret = -EINTR;
1135 
1136 	return ret;
1137 }
1138 
1139 /* sys_io_setup:
1140  *	Create an aio_context capable of receiving at least nr_events.
1141  *	ctxp must not point to an aio_context that already exists, and
1142  *	must be initialized to 0 prior to the call.  On successful
1143  *	creation of the aio_context, *ctxp is filled in with the resulting
1144  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1145  *	if the specified nr_events exceeds internal limits.  May fail
1146  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1147  *	of available events.  May fail with -ENOMEM if insufficient kernel
1148  *	resources are available.  May fail with -EFAULT if an invalid
1149  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1150  *	implemented.
1151  */
1152 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1153 {
1154 	struct kioctx *ioctx = NULL;
1155 	unsigned long ctx;
1156 	long ret;
1157 
1158 	ret = get_user(ctx, ctxp);
1159 	if (unlikely(ret))
1160 		goto out;
1161 
1162 	ret = -EINVAL;
1163 	if (unlikely(ctx || nr_events == 0)) {
1164 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1165 		         ctx, nr_events);
1166 		goto out;
1167 	}
1168 
1169 	ioctx = ioctx_alloc(nr_events);
1170 	ret = PTR_ERR(ioctx);
1171 	if (!IS_ERR(ioctx)) {
1172 		ret = put_user(ioctx->user_id, ctxp);
1173 		if (ret)
1174 			kill_ioctx(current->mm, ioctx);
1175 		percpu_ref_put(&ioctx->users);
1176 	}
1177 
1178 out:
1179 	return ret;
1180 }
1181 
1182 /* sys_io_destroy:
1183  *	Destroy the aio_context specified.  May cancel any outstanding
1184  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1185  *	implemented.  May fail with -EINVAL if the context pointed to
1186  *	is invalid.
1187  */
1188 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1189 {
1190 	struct kioctx *ioctx = lookup_ioctx(ctx);
1191 	if (likely(NULL != ioctx)) {
1192 		kill_ioctx(current->mm, ioctx);
1193 		percpu_ref_put(&ioctx->users);
1194 		return 0;
1195 	}
1196 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1197 	return -EINVAL;
1198 }
1199 
1200 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1201 			    unsigned long, loff_t);
1202 
1203 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1204 				     int rw, char __user *buf,
1205 				     unsigned long *nr_segs,
1206 				     struct iovec **iovec,
1207 				     bool compat)
1208 {
1209 	ssize_t ret;
1210 
1211 	*nr_segs = kiocb->ki_nbytes;
1212 
1213 #ifdef CONFIG_COMPAT
1214 	if (compat)
1215 		ret = compat_rw_copy_check_uvector(rw,
1216 				(struct compat_iovec __user *)buf,
1217 				*nr_segs, 1, *iovec, iovec);
1218 	else
1219 #endif
1220 		ret = rw_copy_check_uvector(rw,
1221 				(struct iovec __user *)buf,
1222 				*nr_segs, 1, *iovec, iovec);
1223 	if (ret < 0)
1224 		return ret;
1225 
1226 	/* ki_nbytes now reflect bytes instead of segs */
1227 	kiocb->ki_nbytes = ret;
1228 	return 0;
1229 }
1230 
1231 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1232 				       int rw, char __user *buf,
1233 				       unsigned long *nr_segs,
1234 				       struct iovec *iovec)
1235 {
1236 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1237 		return -EFAULT;
1238 
1239 	iovec->iov_base = buf;
1240 	iovec->iov_len = kiocb->ki_nbytes;
1241 	*nr_segs = 1;
1242 	return 0;
1243 }
1244 
1245 /*
1246  * aio_setup_iocb:
1247  *	Performs the initial checks and aio retry method
1248  *	setup for the kiocb at the time of io submission.
1249  */
1250 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1251 			    char __user *buf, bool compat)
1252 {
1253 	struct file *file = req->ki_filp;
1254 	ssize_t ret;
1255 	unsigned long nr_segs;
1256 	int rw;
1257 	fmode_t mode;
1258 	aio_rw_op *rw_op;
1259 	struct iovec inline_vec, *iovec = &inline_vec;
1260 
1261 	switch (opcode) {
1262 	case IOCB_CMD_PREAD:
1263 	case IOCB_CMD_PREADV:
1264 		mode	= FMODE_READ;
1265 		rw	= READ;
1266 		rw_op	= file->f_op->aio_read;
1267 		goto rw_common;
1268 
1269 	case IOCB_CMD_PWRITE:
1270 	case IOCB_CMD_PWRITEV:
1271 		mode	= FMODE_WRITE;
1272 		rw	= WRITE;
1273 		rw_op	= file->f_op->aio_write;
1274 		goto rw_common;
1275 rw_common:
1276 		if (unlikely(!(file->f_mode & mode)))
1277 			return -EBADF;
1278 
1279 		if (!rw_op)
1280 			return -EINVAL;
1281 
1282 		ret = (opcode == IOCB_CMD_PREADV ||
1283 		       opcode == IOCB_CMD_PWRITEV)
1284 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1285 						&iovec, compat)
1286 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1287 						  iovec);
1288 		if (ret)
1289 			return ret;
1290 
1291 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1292 		if (ret < 0) {
1293 			if (iovec != &inline_vec)
1294 				kfree(iovec);
1295 			return ret;
1296 		}
1297 
1298 		req->ki_nbytes = ret;
1299 
1300 		/* XXX: move/kill - rw_verify_area()? */
1301 		/* This matches the pread()/pwrite() logic */
1302 		if (req->ki_pos < 0) {
1303 			ret = -EINVAL;
1304 			break;
1305 		}
1306 
1307 		if (rw == WRITE)
1308 			file_start_write(file);
1309 
1310 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1311 
1312 		if (rw == WRITE)
1313 			file_end_write(file);
1314 		break;
1315 
1316 	case IOCB_CMD_FDSYNC:
1317 		if (!file->f_op->aio_fsync)
1318 			return -EINVAL;
1319 
1320 		ret = file->f_op->aio_fsync(req, 1);
1321 		break;
1322 
1323 	case IOCB_CMD_FSYNC:
1324 		if (!file->f_op->aio_fsync)
1325 			return -EINVAL;
1326 
1327 		ret = file->f_op->aio_fsync(req, 0);
1328 		break;
1329 
1330 	default:
1331 		pr_debug("EINVAL: no operation provided\n");
1332 		return -EINVAL;
1333 	}
1334 
1335 	if (iovec != &inline_vec)
1336 		kfree(iovec);
1337 
1338 	if (ret != -EIOCBQUEUED) {
1339 		/*
1340 		 * There's no easy way to restart the syscall since other AIO's
1341 		 * may be already running. Just fail this IO with EINTR.
1342 		 */
1343 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1344 			     ret == -ERESTARTNOHAND ||
1345 			     ret == -ERESTART_RESTARTBLOCK))
1346 			ret = -EINTR;
1347 		aio_complete(req, ret, 0);
1348 	}
1349 
1350 	return 0;
1351 }
1352 
1353 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1354 			 struct iocb *iocb, bool compat)
1355 {
1356 	struct kiocb *req;
1357 	ssize_t ret;
1358 
1359 	/* enforce forwards compatibility on users */
1360 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1361 		pr_debug("EINVAL: reserve field set\n");
1362 		return -EINVAL;
1363 	}
1364 
1365 	/* prevent overflows */
1366 	if (unlikely(
1367 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1368 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1369 	    ((ssize_t)iocb->aio_nbytes < 0)
1370 	   )) {
1371 		pr_debug("EINVAL: io_submit: overflow check\n");
1372 		return -EINVAL;
1373 	}
1374 
1375 	req = aio_get_req(ctx);
1376 	if (unlikely(!req))
1377 		return -EAGAIN;
1378 
1379 	req->ki_filp = fget(iocb->aio_fildes);
1380 	if (unlikely(!req->ki_filp)) {
1381 		ret = -EBADF;
1382 		goto out_put_req;
1383 	}
1384 
1385 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1386 		/*
1387 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1388 		 * instance of the file* now. The file descriptor must be
1389 		 * an eventfd() fd, and will be signaled for each completed
1390 		 * event using the eventfd_signal() function.
1391 		 */
1392 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1393 		if (IS_ERR(req->ki_eventfd)) {
1394 			ret = PTR_ERR(req->ki_eventfd);
1395 			req->ki_eventfd = NULL;
1396 			goto out_put_req;
1397 		}
1398 	}
1399 
1400 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1401 	if (unlikely(ret)) {
1402 		pr_debug("EFAULT: aio_key\n");
1403 		goto out_put_req;
1404 	}
1405 
1406 	req->ki_obj.user = user_iocb;
1407 	req->ki_user_data = iocb->aio_data;
1408 	req->ki_pos = iocb->aio_offset;
1409 	req->ki_nbytes = iocb->aio_nbytes;
1410 
1411 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1412 			   (char __user *)(unsigned long)iocb->aio_buf,
1413 			   compat);
1414 	if (ret)
1415 		goto out_put_req;
1416 
1417 	return 0;
1418 out_put_req:
1419 	put_reqs_available(ctx, 1);
1420 	percpu_ref_put(&ctx->reqs);
1421 	kiocb_free(req);
1422 	return ret;
1423 }
1424 
1425 long do_io_submit(aio_context_t ctx_id, long nr,
1426 		  struct iocb __user *__user *iocbpp, bool compat)
1427 {
1428 	struct kioctx *ctx;
1429 	long ret = 0;
1430 	int i = 0;
1431 	struct blk_plug plug;
1432 
1433 	if (unlikely(nr < 0))
1434 		return -EINVAL;
1435 
1436 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1437 		nr = LONG_MAX/sizeof(*iocbpp);
1438 
1439 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1440 		return -EFAULT;
1441 
1442 	ctx = lookup_ioctx(ctx_id);
1443 	if (unlikely(!ctx)) {
1444 		pr_debug("EINVAL: invalid context id\n");
1445 		return -EINVAL;
1446 	}
1447 
1448 	blk_start_plug(&plug);
1449 
1450 	/*
1451 	 * AKPM: should this return a partial result if some of the IOs were
1452 	 * successfully submitted?
1453 	 */
1454 	for (i=0; i<nr; i++) {
1455 		struct iocb __user *user_iocb;
1456 		struct iocb tmp;
1457 
1458 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1459 			ret = -EFAULT;
1460 			break;
1461 		}
1462 
1463 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1464 			ret = -EFAULT;
1465 			break;
1466 		}
1467 
1468 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1469 		if (ret)
1470 			break;
1471 	}
1472 	blk_finish_plug(&plug);
1473 
1474 	percpu_ref_put(&ctx->users);
1475 	return i ? i : ret;
1476 }
1477 
1478 /* sys_io_submit:
1479  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1480  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1481  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1482  *	*iocbpp[0] is not properly initialized, if the operation specified
1483  *	is invalid for the file descriptor in the iocb.  May fail with
1484  *	-EFAULT if any of the data structures point to invalid data.  May
1485  *	fail with -EBADF if the file descriptor specified in the first
1486  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1487  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1488  *	fail with -ENOSYS if not implemented.
1489  */
1490 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1491 		struct iocb __user * __user *, iocbpp)
1492 {
1493 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1494 }
1495 
1496 /* lookup_kiocb
1497  *	Finds a given iocb for cancellation.
1498  */
1499 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1500 				  u32 key)
1501 {
1502 	struct list_head *pos;
1503 
1504 	assert_spin_locked(&ctx->ctx_lock);
1505 
1506 	if (key != KIOCB_KEY)
1507 		return NULL;
1508 
1509 	/* TODO: use a hash or array, this sucks. */
1510 	list_for_each(pos, &ctx->active_reqs) {
1511 		struct kiocb *kiocb = list_kiocb(pos);
1512 		if (kiocb->ki_obj.user == iocb)
1513 			return kiocb;
1514 	}
1515 	return NULL;
1516 }
1517 
1518 /* sys_io_cancel:
1519  *	Attempts to cancel an iocb previously passed to io_submit.  If
1520  *	the operation is successfully cancelled, the resulting event is
1521  *	copied into the memory pointed to by result without being placed
1522  *	into the completion queue and 0 is returned.  May fail with
1523  *	-EFAULT if any of the data structures pointed to are invalid.
1524  *	May fail with -EINVAL if aio_context specified by ctx_id is
1525  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1526  *	cancelled.  Will fail with -ENOSYS if not implemented.
1527  */
1528 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1529 		struct io_event __user *, result)
1530 {
1531 	struct kioctx *ctx;
1532 	struct kiocb *kiocb;
1533 	u32 key;
1534 	int ret;
1535 
1536 	ret = get_user(key, &iocb->aio_key);
1537 	if (unlikely(ret))
1538 		return -EFAULT;
1539 
1540 	ctx = lookup_ioctx(ctx_id);
1541 	if (unlikely(!ctx))
1542 		return -EINVAL;
1543 
1544 	spin_lock_irq(&ctx->ctx_lock);
1545 
1546 	kiocb = lookup_kiocb(ctx, iocb, key);
1547 	if (kiocb)
1548 		ret = kiocb_cancel(ctx, kiocb);
1549 	else
1550 		ret = -EINVAL;
1551 
1552 	spin_unlock_irq(&ctx->ctx_lock);
1553 
1554 	if (!ret) {
1555 		/*
1556 		 * The result argument is no longer used - the io_event is
1557 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1558 		 * cancellation is progress:
1559 		 */
1560 		ret = -EINPROGRESS;
1561 	}
1562 
1563 	percpu_ref_put(&ctx->users);
1564 
1565 	return ret;
1566 }
1567 
1568 /* io_getevents:
1569  *	Attempts to read at least min_nr events and up to nr events from
1570  *	the completion queue for the aio_context specified by ctx_id. If
1571  *	it succeeds, the number of read events is returned. May fail with
1572  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1573  *	out of range, if timeout is out of range.  May fail with -EFAULT
1574  *	if any of the memory specified is invalid.  May return 0 or
1575  *	< min_nr if the timeout specified by timeout has elapsed
1576  *	before sufficient events are available, where timeout == NULL
1577  *	specifies an infinite timeout. Note that the timeout pointed to by
1578  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1579  */
1580 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1581 		long, min_nr,
1582 		long, nr,
1583 		struct io_event __user *, events,
1584 		struct timespec __user *, timeout)
1585 {
1586 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1587 	long ret = -EINVAL;
1588 
1589 	if (likely(ioctx)) {
1590 		if (likely(min_nr <= nr && min_nr >= 0))
1591 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1592 		percpu_ref_put(&ioctx->users);
1593 	}
1594 	return ret;
1595 }
1596