1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 {} 243 }; 244 245 static void __init aio_sysctl_init(void) 246 { 247 register_sysctl_init("fs", aio_sysctls); 248 } 249 #else 250 #define aio_sysctl_init() do { } while (0) 251 #endif 252 253 static struct kmem_cache *kiocb_cachep; 254 static struct kmem_cache *kioctx_cachep; 255 256 static struct vfsmount *aio_mnt; 257 258 static const struct file_operations aio_ring_fops; 259 static const struct address_space_operations aio_ctx_aops; 260 261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 262 { 263 struct file *file; 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 265 if (IS_ERR(inode)) 266 return ERR_CAST(inode); 267 268 inode->i_mapping->a_ops = &aio_ctx_aops; 269 inode->i_mapping->private_data = ctx; 270 inode->i_size = PAGE_SIZE * nr_pages; 271 272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 273 O_RDWR, &aio_ring_fops); 274 if (IS_ERR(file)) 275 iput(inode); 276 return file; 277 } 278 279 static int aio_init_fs_context(struct fs_context *fc) 280 { 281 if (!init_pseudo(fc, AIO_RING_MAGIC)) 282 return -ENOMEM; 283 fc->s_iflags |= SB_I_NOEXEC; 284 return 0; 285 } 286 287 /* aio_setup 288 * Creates the slab caches used by the aio routines, panic on 289 * failure as this is done early during the boot sequence. 290 */ 291 static int __init aio_setup(void) 292 { 293 static struct file_system_type aio_fs = { 294 .name = "aio", 295 .init_fs_context = aio_init_fs_context, 296 .kill_sb = kill_anon_super, 297 }; 298 aio_mnt = kern_mount(&aio_fs); 299 if (IS_ERR(aio_mnt)) 300 panic("Failed to create aio fs mount."); 301 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 304 aio_sysctl_init(); 305 return 0; 306 } 307 __initcall(aio_setup); 308 309 static void put_aio_ring_file(struct kioctx *ctx) 310 { 311 struct file *aio_ring_file = ctx->aio_ring_file; 312 struct address_space *i_mapping; 313 314 if (aio_ring_file) { 315 truncate_setsize(file_inode(aio_ring_file), 0); 316 317 /* Prevent further access to the kioctx from migratepages */ 318 i_mapping = aio_ring_file->f_mapping; 319 spin_lock(&i_mapping->private_lock); 320 i_mapping->private_data = NULL; 321 ctx->aio_ring_file = NULL; 322 spin_unlock(&i_mapping->private_lock); 323 324 fput(aio_ring_file); 325 } 326 } 327 328 static void aio_free_ring(struct kioctx *ctx) 329 { 330 int i; 331 332 /* Disconnect the kiotx from the ring file. This prevents future 333 * accesses to the kioctx from page migration. 334 */ 335 put_aio_ring_file(ctx); 336 337 for (i = 0; i < ctx->nr_pages; i++) { 338 struct page *page; 339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 340 page_count(ctx->ring_pages[i])); 341 page = ctx->ring_pages[i]; 342 if (!page) 343 continue; 344 ctx->ring_pages[i] = NULL; 345 put_page(page); 346 } 347 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 349 kfree(ctx->ring_pages); 350 ctx->ring_pages = NULL; 351 } 352 } 353 354 static int aio_ring_mremap(struct vm_area_struct *vma) 355 { 356 struct file *file = vma->vm_file; 357 struct mm_struct *mm = vma->vm_mm; 358 struct kioctx_table *table; 359 int i, res = -EINVAL; 360 361 spin_lock(&mm->ioctx_lock); 362 rcu_read_lock(); 363 table = rcu_dereference(mm->ioctx_table); 364 for (i = 0; i < table->nr; i++) { 365 struct kioctx *ctx; 366 367 ctx = rcu_dereference(table->table[i]); 368 if (ctx && ctx->aio_ring_file == file) { 369 if (!atomic_read(&ctx->dead)) { 370 ctx->user_id = ctx->mmap_base = vma->vm_start; 371 res = 0; 372 } 373 break; 374 } 375 } 376 377 rcu_read_unlock(); 378 spin_unlock(&mm->ioctx_lock); 379 return res; 380 } 381 382 static const struct vm_operations_struct aio_ring_vm_ops = { 383 .mremap = aio_ring_mremap, 384 #if IS_ENABLED(CONFIG_MMU) 385 .fault = filemap_fault, 386 .map_pages = filemap_map_pages, 387 .page_mkwrite = filemap_page_mkwrite, 388 #endif 389 }; 390 391 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 392 { 393 vma->vm_flags |= VM_DONTEXPAND; 394 vma->vm_ops = &aio_ring_vm_ops; 395 return 0; 396 } 397 398 static const struct file_operations aio_ring_fops = { 399 .mmap = aio_ring_mmap, 400 }; 401 402 #if IS_ENABLED(CONFIG_MIGRATION) 403 static int aio_migratepage(struct address_space *mapping, struct page *new, 404 struct page *old, enum migrate_mode mode) 405 { 406 struct kioctx *ctx; 407 unsigned long flags; 408 pgoff_t idx; 409 int rc; 410 411 /* 412 * We cannot support the _NO_COPY case here, because copy needs to 413 * happen under the ctx->completion_lock. That does not work with the 414 * migration workflow of MIGRATE_SYNC_NO_COPY. 415 */ 416 if (mode == MIGRATE_SYNC_NO_COPY) 417 return -EINVAL; 418 419 rc = 0; 420 421 /* mapping->private_lock here protects against the kioctx teardown. */ 422 spin_lock(&mapping->private_lock); 423 ctx = mapping->private_data; 424 if (!ctx) { 425 rc = -EINVAL; 426 goto out; 427 } 428 429 /* The ring_lock mutex. The prevents aio_read_events() from writing 430 * to the ring's head, and prevents page migration from mucking in 431 * a partially initialized kiotx. 432 */ 433 if (!mutex_trylock(&ctx->ring_lock)) { 434 rc = -EAGAIN; 435 goto out; 436 } 437 438 idx = old->index; 439 if (idx < (pgoff_t)ctx->nr_pages) { 440 /* Make sure the old page hasn't already been changed */ 441 if (ctx->ring_pages[idx] != old) 442 rc = -EAGAIN; 443 } else 444 rc = -EINVAL; 445 446 if (rc != 0) 447 goto out_unlock; 448 449 /* Writeback must be complete */ 450 BUG_ON(PageWriteback(old)); 451 get_page(new); 452 453 rc = migrate_page_move_mapping(mapping, new, old, 1); 454 if (rc != MIGRATEPAGE_SUCCESS) { 455 put_page(new); 456 goto out_unlock; 457 } 458 459 /* Take completion_lock to prevent other writes to the ring buffer 460 * while the old page is copied to the new. This prevents new 461 * events from being lost. 462 */ 463 spin_lock_irqsave(&ctx->completion_lock, flags); 464 migrate_page_copy(new, old); 465 BUG_ON(ctx->ring_pages[idx] != old); 466 ctx->ring_pages[idx] = new; 467 spin_unlock_irqrestore(&ctx->completion_lock, flags); 468 469 /* The old page is no longer accessible. */ 470 put_page(old); 471 472 out_unlock: 473 mutex_unlock(&ctx->ring_lock); 474 out: 475 spin_unlock(&mapping->private_lock); 476 return rc; 477 } 478 #endif 479 480 static const struct address_space_operations aio_ctx_aops = { 481 .dirty_folio = noop_dirty_folio, 482 #if IS_ENABLED(CONFIG_MIGRATION) 483 .migratepage = aio_migratepage, 484 #endif 485 }; 486 487 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 488 { 489 struct aio_ring *ring; 490 struct mm_struct *mm = current->mm; 491 unsigned long size, unused; 492 int nr_pages; 493 int i; 494 struct file *file; 495 496 /* Compensate for the ring buffer's head/tail overlap entry */ 497 nr_events += 2; /* 1 is required, 2 for good luck */ 498 499 size = sizeof(struct aio_ring); 500 size += sizeof(struct io_event) * nr_events; 501 502 nr_pages = PFN_UP(size); 503 if (nr_pages < 0) 504 return -EINVAL; 505 506 file = aio_private_file(ctx, nr_pages); 507 if (IS_ERR(file)) { 508 ctx->aio_ring_file = NULL; 509 return -ENOMEM; 510 } 511 512 ctx->aio_ring_file = file; 513 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 514 / sizeof(struct io_event); 515 516 ctx->ring_pages = ctx->internal_pages; 517 if (nr_pages > AIO_RING_PAGES) { 518 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 519 GFP_KERNEL); 520 if (!ctx->ring_pages) { 521 put_aio_ring_file(ctx); 522 return -ENOMEM; 523 } 524 } 525 526 for (i = 0; i < nr_pages; i++) { 527 struct page *page; 528 page = find_or_create_page(file->f_mapping, 529 i, GFP_HIGHUSER | __GFP_ZERO); 530 if (!page) 531 break; 532 pr_debug("pid(%d) page[%d]->count=%d\n", 533 current->pid, i, page_count(page)); 534 SetPageUptodate(page); 535 unlock_page(page); 536 537 ctx->ring_pages[i] = page; 538 } 539 ctx->nr_pages = i; 540 541 if (unlikely(i != nr_pages)) { 542 aio_free_ring(ctx); 543 return -ENOMEM; 544 } 545 546 ctx->mmap_size = nr_pages * PAGE_SIZE; 547 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 548 549 if (mmap_write_lock_killable(mm)) { 550 ctx->mmap_size = 0; 551 aio_free_ring(ctx); 552 return -EINTR; 553 } 554 555 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 556 PROT_READ | PROT_WRITE, 557 MAP_SHARED, 0, &unused, NULL); 558 mmap_write_unlock(mm); 559 if (IS_ERR((void *)ctx->mmap_base)) { 560 ctx->mmap_size = 0; 561 aio_free_ring(ctx); 562 return -ENOMEM; 563 } 564 565 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 566 567 ctx->user_id = ctx->mmap_base; 568 ctx->nr_events = nr_events; /* trusted copy */ 569 570 ring = kmap_atomic(ctx->ring_pages[0]); 571 ring->nr = nr_events; /* user copy */ 572 ring->id = ~0U; 573 ring->head = ring->tail = 0; 574 ring->magic = AIO_RING_MAGIC; 575 ring->compat_features = AIO_RING_COMPAT_FEATURES; 576 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 577 ring->header_length = sizeof(struct aio_ring); 578 kunmap_atomic(ring); 579 flush_dcache_page(ctx->ring_pages[0]); 580 581 return 0; 582 } 583 584 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 585 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 586 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 587 588 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 589 { 590 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 591 struct kioctx *ctx = req->ki_ctx; 592 unsigned long flags; 593 594 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 595 return; 596 597 spin_lock_irqsave(&ctx->ctx_lock, flags); 598 list_add_tail(&req->ki_list, &ctx->active_reqs); 599 req->ki_cancel = cancel; 600 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 601 } 602 EXPORT_SYMBOL(kiocb_set_cancel_fn); 603 604 /* 605 * free_ioctx() should be RCU delayed to synchronize against the RCU 606 * protected lookup_ioctx() and also needs process context to call 607 * aio_free_ring(). Use rcu_work. 608 */ 609 static void free_ioctx(struct work_struct *work) 610 { 611 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 612 free_rwork); 613 pr_debug("freeing %p\n", ctx); 614 615 aio_free_ring(ctx); 616 free_percpu(ctx->cpu); 617 percpu_ref_exit(&ctx->reqs); 618 percpu_ref_exit(&ctx->users); 619 kmem_cache_free(kioctx_cachep, ctx); 620 } 621 622 static void free_ioctx_reqs(struct percpu_ref *ref) 623 { 624 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 625 626 /* At this point we know that there are no any in-flight requests */ 627 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 628 complete(&ctx->rq_wait->comp); 629 630 /* Synchronize against RCU protected table->table[] dereferences */ 631 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 632 queue_rcu_work(system_wq, &ctx->free_rwork); 633 } 634 635 /* 636 * When this function runs, the kioctx has been removed from the "hash table" 637 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 638 * now it's safe to cancel any that need to be. 639 */ 640 static void free_ioctx_users(struct percpu_ref *ref) 641 { 642 struct kioctx *ctx = container_of(ref, struct kioctx, users); 643 struct aio_kiocb *req; 644 645 spin_lock_irq(&ctx->ctx_lock); 646 647 while (!list_empty(&ctx->active_reqs)) { 648 req = list_first_entry(&ctx->active_reqs, 649 struct aio_kiocb, ki_list); 650 req->ki_cancel(&req->rw); 651 list_del_init(&req->ki_list); 652 } 653 654 spin_unlock_irq(&ctx->ctx_lock); 655 656 percpu_ref_kill(&ctx->reqs); 657 percpu_ref_put(&ctx->reqs); 658 } 659 660 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 661 { 662 unsigned i, new_nr; 663 struct kioctx_table *table, *old; 664 struct aio_ring *ring; 665 666 spin_lock(&mm->ioctx_lock); 667 table = rcu_dereference_raw(mm->ioctx_table); 668 669 while (1) { 670 if (table) 671 for (i = 0; i < table->nr; i++) 672 if (!rcu_access_pointer(table->table[i])) { 673 ctx->id = i; 674 rcu_assign_pointer(table->table[i], ctx); 675 spin_unlock(&mm->ioctx_lock); 676 677 /* While kioctx setup is in progress, 678 * we are protected from page migration 679 * changes ring_pages by ->ring_lock. 680 */ 681 ring = kmap_atomic(ctx->ring_pages[0]); 682 ring->id = ctx->id; 683 kunmap_atomic(ring); 684 return 0; 685 } 686 687 new_nr = (table ? table->nr : 1) * 4; 688 spin_unlock(&mm->ioctx_lock); 689 690 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 691 if (!table) 692 return -ENOMEM; 693 694 table->nr = new_nr; 695 696 spin_lock(&mm->ioctx_lock); 697 old = rcu_dereference_raw(mm->ioctx_table); 698 699 if (!old) { 700 rcu_assign_pointer(mm->ioctx_table, table); 701 } else if (table->nr > old->nr) { 702 memcpy(table->table, old->table, 703 old->nr * sizeof(struct kioctx *)); 704 705 rcu_assign_pointer(mm->ioctx_table, table); 706 kfree_rcu(old, rcu); 707 } else { 708 kfree(table); 709 table = old; 710 } 711 } 712 } 713 714 static void aio_nr_sub(unsigned nr) 715 { 716 spin_lock(&aio_nr_lock); 717 if (WARN_ON(aio_nr - nr > aio_nr)) 718 aio_nr = 0; 719 else 720 aio_nr -= nr; 721 spin_unlock(&aio_nr_lock); 722 } 723 724 /* ioctx_alloc 725 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 726 */ 727 static struct kioctx *ioctx_alloc(unsigned nr_events) 728 { 729 struct mm_struct *mm = current->mm; 730 struct kioctx *ctx; 731 int err = -ENOMEM; 732 733 /* 734 * Store the original nr_events -- what userspace passed to io_setup(), 735 * for counting against the global limit -- before it changes. 736 */ 737 unsigned int max_reqs = nr_events; 738 739 /* 740 * We keep track of the number of available ringbuffer slots, to prevent 741 * overflow (reqs_available), and we also use percpu counters for this. 742 * 743 * So since up to half the slots might be on other cpu's percpu counters 744 * and unavailable, double nr_events so userspace sees what they 745 * expected: additionally, we move req_batch slots to/from percpu 746 * counters at a time, so make sure that isn't 0: 747 */ 748 nr_events = max(nr_events, num_possible_cpus() * 4); 749 nr_events *= 2; 750 751 /* Prevent overflows */ 752 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 753 pr_debug("ENOMEM: nr_events too high\n"); 754 return ERR_PTR(-EINVAL); 755 } 756 757 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 758 return ERR_PTR(-EAGAIN); 759 760 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 761 if (!ctx) 762 return ERR_PTR(-ENOMEM); 763 764 ctx->max_reqs = max_reqs; 765 766 spin_lock_init(&ctx->ctx_lock); 767 spin_lock_init(&ctx->completion_lock); 768 mutex_init(&ctx->ring_lock); 769 /* Protect against page migration throughout kiotx setup by keeping 770 * the ring_lock mutex held until setup is complete. */ 771 mutex_lock(&ctx->ring_lock); 772 init_waitqueue_head(&ctx->wait); 773 774 INIT_LIST_HEAD(&ctx->active_reqs); 775 776 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 777 goto err; 778 779 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 780 goto err; 781 782 ctx->cpu = alloc_percpu(struct kioctx_cpu); 783 if (!ctx->cpu) 784 goto err; 785 786 err = aio_setup_ring(ctx, nr_events); 787 if (err < 0) 788 goto err; 789 790 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 791 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 792 if (ctx->req_batch < 1) 793 ctx->req_batch = 1; 794 795 /* limit the number of system wide aios */ 796 spin_lock(&aio_nr_lock); 797 if (aio_nr + ctx->max_reqs > aio_max_nr || 798 aio_nr + ctx->max_reqs < aio_nr) { 799 spin_unlock(&aio_nr_lock); 800 err = -EAGAIN; 801 goto err_ctx; 802 } 803 aio_nr += ctx->max_reqs; 804 spin_unlock(&aio_nr_lock); 805 806 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 807 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 808 809 err = ioctx_add_table(ctx, mm); 810 if (err) 811 goto err_cleanup; 812 813 /* Release the ring_lock mutex now that all setup is complete. */ 814 mutex_unlock(&ctx->ring_lock); 815 816 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 817 ctx, ctx->user_id, mm, ctx->nr_events); 818 return ctx; 819 820 err_cleanup: 821 aio_nr_sub(ctx->max_reqs); 822 err_ctx: 823 atomic_set(&ctx->dead, 1); 824 if (ctx->mmap_size) 825 vm_munmap(ctx->mmap_base, ctx->mmap_size); 826 aio_free_ring(ctx); 827 err: 828 mutex_unlock(&ctx->ring_lock); 829 free_percpu(ctx->cpu); 830 percpu_ref_exit(&ctx->reqs); 831 percpu_ref_exit(&ctx->users); 832 kmem_cache_free(kioctx_cachep, ctx); 833 pr_debug("error allocating ioctx %d\n", err); 834 return ERR_PTR(err); 835 } 836 837 /* kill_ioctx 838 * Cancels all outstanding aio requests on an aio context. Used 839 * when the processes owning a context have all exited to encourage 840 * the rapid destruction of the kioctx. 841 */ 842 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 843 struct ctx_rq_wait *wait) 844 { 845 struct kioctx_table *table; 846 847 spin_lock(&mm->ioctx_lock); 848 if (atomic_xchg(&ctx->dead, 1)) { 849 spin_unlock(&mm->ioctx_lock); 850 return -EINVAL; 851 } 852 853 table = rcu_dereference_raw(mm->ioctx_table); 854 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 855 RCU_INIT_POINTER(table->table[ctx->id], NULL); 856 spin_unlock(&mm->ioctx_lock); 857 858 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 859 wake_up_all(&ctx->wait); 860 861 /* 862 * It'd be more correct to do this in free_ioctx(), after all 863 * the outstanding kiocbs have finished - but by then io_destroy 864 * has already returned, so io_setup() could potentially return 865 * -EAGAIN with no ioctxs actually in use (as far as userspace 866 * could tell). 867 */ 868 aio_nr_sub(ctx->max_reqs); 869 870 if (ctx->mmap_size) 871 vm_munmap(ctx->mmap_base, ctx->mmap_size); 872 873 ctx->rq_wait = wait; 874 percpu_ref_kill(&ctx->users); 875 return 0; 876 } 877 878 /* 879 * exit_aio: called when the last user of mm goes away. At this point, there is 880 * no way for any new requests to be submited or any of the io_* syscalls to be 881 * called on the context. 882 * 883 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 884 * them. 885 */ 886 void exit_aio(struct mm_struct *mm) 887 { 888 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 889 struct ctx_rq_wait wait; 890 int i, skipped; 891 892 if (!table) 893 return; 894 895 atomic_set(&wait.count, table->nr); 896 init_completion(&wait.comp); 897 898 skipped = 0; 899 for (i = 0; i < table->nr; ++i) { 900 struct kioctx *ctx = 901 rcu_dereference_protected(table->table[i], true); 902 903 if (!ctx) { 904 skipped++; 905 continue; 906 } 907 908 /* 909 * We don't need to bother with munmap() here - exit_mmap(mm) 910 * is coming and it'll unmap everything. And we simply can't, 911 * this is not necessarily our ->mm. 912 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 913 * that it needs to unmap the area, just set it to 0. 914 */ 915 ctx->mmap_size = 0; 916 kill_ioctx(mm, ctx, &wait); 917 } 918 919 if (!atomic_sub_and_test(skipped, &wait.count)) { 920 /* Wait until all IO for the context are done. */ 921 wait_for_completion(&wait.comp); 922 } 923 924 RCU_INIT_POINTER(mm->ioctx_table, NULL); 925 kfree(table); 926 } 927 928 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 929 { 930 struct kioctx_cpu *kcpu; 931 unsigned long flags; 932 933 local_irq_save(flags); 934 kcpu = this_cpu_ptr(ctx->cpu); 935 kcpu->reqs_available += nr; 936 937 while (kcpu->reqs_available >= ctx->req_batch * 2) { 938 kcpu->reqs_available -= ctx->req_batch; 939 atomic_add(ctx->req_batch, &ctx->reqs_available); 940 } 941 942 local_irq_restore(flags); 943 } 944 945 static bool __get_reqs_available(struct kioctx *ctx) 946 { 947 struct kioctx_cpu *kcpu; 948 bool ret = false; 949 unsigned long flags; 950 951 local_irq_save(flags); 952 kcpu = this_cpu_ptr(ctx->cpu); 953 if (!kcpu->reqs_available) { 954 int old, avail = atomic_read(&ctx->reqs_available); 955 956 do { 957 if (avail < ctx->req_batch) 958 goto out; 959 960 old = avail; 961 avail = atomic_cmpxchg(&ctx->reqs_available, 962 avail, avail - ctx->req_batch); 963 } while (avail != old); 964 965 kcpu->reqs_available += ctx->req_batch; 966 } 967 968 ret = true; 969 kcpu->reqs_available--; 970 out: 971 local_irq_restore(flags); 972 return ret; 973 } 974 975 /* refill_reqs_available 976 * Updates the reqs_available reference counts used for tracking the 977 * number of free slots in the completion ring. This can be called 978 * from aio_complete() (to optimistically update reqs_available) or 979 * from aio_get_req() (the we're out of events case). It must be 980 * called holding ctx->completion_lock. 981 */ 982 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 983 unsigned tail) 984 { 985 unsigned events_in_ring, completed; 986 987 /* Clamp head since userland can write to it. */ 988 head %= ctx->nr_events; 989 if (head <= tail) 990 events_in_ring = tail - head; 991 else 992 events_in_ring = ctx->nr_events - (head - tail); 993 994 completed = ctx->completed_events; 995 if (events_in_ring < completed) 996 completed -= events_in_ring; 997 else 998 completed = 0; 999 1000 if (!completed) 1001 return; 1002 1003 ctx->completed_events -= completed; 1004 put_reqs_available(ctx, completed); 1005 } 1006 1007 /* user_refill_reqs_available 1008 * Called to refill reqs_available when aio_get_req() encounters an 1009 * out of space in the completion ring. 1010 */ 1011 static void user_refill_reqs_available(struct kioctx *ctx) 1012 { 1013 spin_lock_irq(&ctx->completion_lock); 1014 if (ctx->completed_events) { 1015 struct aio_ring *ring; 1016 unsigned head; 1017 1018 /* Access of ring->head may race with aio_read_events_ring() 1019 * here, but that's okay since whether we read the old version 1020 * or the new version, and either will be valid. The important 1021 * part is that head cannot pass tail since we prevent 1022 * aio_complete() from updating tail by holding 1023 * ctx->completion_lock. Even if head is invalid, the check 1024 * against ctx->completed_events below will make sure we do the 1025 * safe/right thing. 1026 */ 1027 ring = kmap_atomic(ctx->ring_pages[0]); 1028 head = ring->head; 1029 kunmap_atomic(ring); 1030 1031 refill_reqs_available(ctx, head, ctx->tail); 1032 } 1033 1034 spin_unlock_irq(&ctx->completion_lock); 1035 } 1036 1037 static bool get_reqs_available(struct kioctx *ctx) 1038 { 1039 if (__get_reqs_available(ctx)) 1040 return true; 1041 user_refill_reqs_available(ctx); 1042 return __get_reqs_available(ctx); 1043 } 1044 1045 /* aio_get_req 1046 * Allocate a slot for an aio request. 1047 * Returns NULL if no requests are free. 1048 * 1049 * The refcount is initialized to 2 - one for the async op completion, 1050 * one for the synchronous code that does this. 1051 */ 1052 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1053 { 1054 struct aio_kiocb *req; 1055 1056 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1057 if (unlikely(!req)) 1058 return NULL; 1059 1060 if (unlikely(!get_reqs_available(ctx))) { 1061 kmem_cache_free(kiocb_cachep, req); 1062 return NULL; 1063 } 1064 1065 percpu_ref_get(&ctx->reqs); 1066 req->ki_ctx = ctx; 1067 INIT_LIST_HEAD(&req->ki_list); 1068 refcount_set(&req->ki_refcnt, 2); 1069 req->ki_eventfd = NULL; 1070 return req; 1071 } 1072 1073 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1074 { 1075 struct aio_ring __user *ring = (void __user *)ctx_id; 1076 struct mm_struct *mm = current->mm; 1077 struct kioctx *ctx, *ret = NULL; 1078 struct kioctx_table *table; 1079 unsigned id; 1080 1081 if (get_user(id, &ring->id)) 1082 return NULL; 1083 1084 rcu_read_lock(); 1085 table = rcu_dereference(mm->ioctx_table); 1086 1087 if (!table || id >= table->nr) 1088 goto out; 1089 1090 id = array_index_nospec(id, table->nr); 1091 ctx = rcu_dereference(table->table[id]); 1092 if (ctx && ctx->user_id == ctx_id) { 1093 if (percpu_ref_tryget_live(&ctx->users)) 1094 ret = ctx; 1095 } 1096 out: 1097 rcu_read_unlock(); 1098 return ret; 1099 } 1100 1101 static inline void iocb_destroy(struct aio_kiocb *iocb) 1102 { 1103 if (iocb->ki_eventfd) 1104 eventfd_ctx_put(iocb->ki_eventfd); 1105 if (iocb->ki_filp) 1106 fput(iocb->ki_filp); 1107 percpu_ref_put(&iocb->ki_ctx->reqs); 1108 kmem_cache_free(kiocb_cachep, iocb); 1109 } 1110 1111 /* aio_complete 1112 * Called when the io request on the given iocb is complete. 1113 */ 1114 static void aio_complete(struct aio_kiocb *iocb) 1115 { 1116 struct kioctx *ctx = iocb->ki_ctx; 1117 struct aio_ring *ring; 1118 struct io_event *ev_page, *event; 1119 unsigned tail, pos, head; 1120 unsigned long flags; 1121 1122 /* 1123 * Add a completion event to the ring buffer. Must be done holding 1124 * ctx->completion_lock to prevent other code from messing with the tail 1125 * pointer since we might be called from irq context. 1126 */ 1127 spin_lock_irqsave(&ctx->completion_lock, flags); 1128 1129 tail = ctx->tail; 1130 pos = tail + AIO_EVENTS_OFFSET; 1131 1132 if (++tail >= ctx->nr_events) 1133 tail = 0; 1134 1135 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1136 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1137 1138 *event = iocb->ki_res; 1139 1140 kunmap_atomic(ev_page); 1141 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1142 1143 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1144 (void __user *)(unsigned long)iocb->ki_res.obj, 1145 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1146 1147 /* after flagging the request as done, we 1148 * must never even look at it again 1149 */ 1150 smp_wmb(); /* make event visible before updating tail */ 1151 1152 ctx->tail = tail; 1153 1154 ring = kmap_atomic(ctx->ring_pages[0]); 1155 head = ring->head; 1156 ring->tail = tail; 1157 kunmap_atomic(ring); 1158 flush_dcache_page(ctx->ring_pages[0]); 1159 1160 ctx->completed_events++; 1161 if (ctx->completed_events > 1) 1162 refill_reqs_available(ctx, head, tail); 1163 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1164 1165 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1166 1167 /* 1168 * Check if the user asked us to deliver the result through an 1169 * eventfd. The eventfd_signal() function is safe to be called 1170 * from IRQ context. 1171 */ 1172 if (iocb->ki_eventfd) 1173 eventfd_signal(iocb->ki_eventfd, 1); 1174 1175 /* 1176 * We have to order our ring_info tail store above and test 1177 * of the wait list below outside the wait lock. This is 1178 * like in wake_up_bit() where clearing a bit has to be 1179 * ordered with the unlocked test. 1180 */ 1181 smp_mb(); 1182 1183 if (waitqueue_active(&ctx->wait)) 1184 wake_up(&ctx->wait); 1185 } 1186 1187 static inline void iocb_put(struct aio_kiocb *iocb) 1188 { 1189 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1190 aio_complete(iocb); 1191 iocb_destroy(iocb); 1192 } 1193 } 1194 1195 /* aio_read_events_ring 1196 * Pull an event off of the ioctx's event ring. Returns the number of 1197 * events fetched 1198 */ 1199 static long aio_read_events_ring(struct kioctx *ctx, 1200 struct io_event __user *event, long nr) 1201 { 1202 struct aio_ring *ring; 1203 unsigned head, tail, pos; 1204 long ret = 0; 1205 int copy_ret; 1206 1207 /* 1208 * The mutex can block and wake us up and that will cause 1209 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1210 * and repeat. This should be rare enough that it doesn't cause 1211 * peformance issues. See the comment in read_events() for more detail. 1212 */ 1213 sched_annotate_sleep(); 1214 mutex_lock(&ctx->ring_lock); 1215 1216 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1217 ring = kmap_atomic(ctx->ring_pages[0]); 1218 head = ring->head; 1219 tail = ring->tail; 1220 kunmap_atomic(ring); 1221 1222 /* 1223 * Ensure that once we've read the current tail pointer, that 1224 * we also see the events that were stored up to the tail. 1225 */ 1226 smp_rmb(); 1227 1228 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1229 1230 if (head == tail) 1231 goto out; 1232 1233 head %= ctx->nr_events; 1234 tail %= ctx->nr_events; 1235 1236 while (ret < nr) { 1237 long avail; 1238 struct io_event *ev; 1239 struct page *page; 1240 1241 avail = (head <= tail ? tail : ctx->nr_events) - head; 1242 if (head == tail) 1243 break; 1244 1245 pos = head + AIO_EVENTS_OFFSET; 1246 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1247 pos %= AIO_EVENTS_PER_PAGE; 1248 1249 avail = min(avail, nr - ret); 1250 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1251 1252 ev = kmap(page); 1253 copy_ret = copy_to_user(event + ret, ev + pos, 1254 sizeof(*ev) * avail); 1255 kunmap(page); 1256 1257 if (unlikely(copy_ret)) { 1258 ret = -EFAULT; 1259 goto out; 1260 } 1261 1262 ret += avail; 1263 head += avail; 1264 head %= ctx->nr_events; 1265 } 1266 1267 ring = kmap_atomic(ctx->ring_pages[0]); 1268 ring->head = head; 1269 kunmap_atomic(ring); 1270 flush_dcache_page(ctx->ring_pages[0]); 1271 1272 pr_debug("%li h%u t%u\n", ret, head, tail); 1273 out: 1274 mutex_unlock(&ctx->ring_lock); 1275 1276 return ret; 1277 } 1278 1279 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1280 struct io_event __user *event, long *i) 1281 { 1282 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1283 1284 if (ret > 0) 1285 *i += ret; 1286 1287 if (unlikely(atomic_read(&ctx->dead))) 1288 ret = -EINVAL; 1289 1290 if (!*i) 1291 *i = ret; 1292 1293 return ret < 0 || *i >= min_nr; 1294 } 1295 1296 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1297 struct io_event __user *event, 1298 ktime_t until) 1299 { 1300 long ret = 0; 1301 1302 /* 1303 * Note that aio_read_events() is being called as the conditional - i.e. 1304 * we're calling it after prepare_to_wait() has set task state to 1305 * TASK_INTERRUPTIBLE. 1306 * 1307 * But aio_read_events() can block, and if it blocks it's going to flip 1308 * the task state back to TASK_RUNNING. 1309 * 1310 * This should be ok, provided it doesn't flip the state back to 1311 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1312 * will only happen if the mutex_lock() call blocks, and we then find 1313 * the ringbuffer empty. So in practice we should be ok, but it's 1314 * something to be aware of when touching this code. 1315 */ 1316 if (until == 0) 1317 aio_read_events(ctx, min_nr, nr, event, &ret); 1318 else 1319 wait_event_interruptible_hrtimeout(ctx->wait, 1320 aio_read_events(ctx, min_nr, nr, event, &ret), 1321 until); 1322 return ret; 1323 } 1324 1325 /* sys_io_setup: 1326 * Create an aio_context capable of receiving at least nr_events. 1327 * ctxp must not point to an aio_context that already exists, and 1328 * must be initialized to 0 prior to the call. On successful 1329 * creation of the aio_context, *ctxp is filled in with the resulting 1330 * handle. May fail with -EINVAL if *ctxp is not initialized, 1331 * if the specified nr_events exceeds internal limits. May fail 1332 * with -EAGAIN if the specified nr_events exceeds the user's limit 1333 * of available events. May fail with -ENOMEM if insufficient kernel 1334 * resources are available. May fail with -EFAULT if an invalid 1335 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1336 * implemented. 1337 */ 1338 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1339 { 1340 struct kioctx *ioctx = NULL; 1341 unsigned long ctx; 1342 long ret; 1343 1344 ret = get_user(ctx, ctxp); 1345 if (unlikely(ret)) 1346 goto out; 1347 1348 ret = -EINVAL; 1349 if (unlikely(ctx || nr_events == 0)) { 1350 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1351 ctx, nr_events); 1352 goto out; 1353 } 1354 1355 ioctx = ioctx_alloc(nr_events); 1356 ret = PTR_ERR(ioctx); 1357 if (!IS_ERR(ioctx)) { 1358 ret = put_user(ioctx->user_id, ctxp); 1359 if (ret) 1360 kill_ioctx(current->mm, ioctx, NULL); 1361 percpu_ref_put(&ioctx->users); 1362 } 1363 1364 out: 1365 return ret; 1366 } 1367 1368 #ifdef CONFIG_COMPAT 1369 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1370 { 1371 struct kioctx *ioctx = NULL; 1372 unsigned long ctx; 1373 long ret; 1374 1375 ret = get_user(ctx, ctx32p); 1376 if (unlikely(ret)) 1377 goto out; 1378 1379 ret = -EINVAL; 1380 if (unlikely(ctx || nr_events == 0)) { 1381 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1382 ctx, nr_events); 1383 goto out; 1384 } 1385 1386 ioctx = ioctx_alloc(nr_events); 1387 ret = PTR_ERR(ioctx); 1388 if (!IS_ERR(ioctx)) { 1389 /* truncating is ok because it's a user address */ 1390 ret = put_user((u32)ioctx->user_id, ctx32p); 1391 if (ret) 1392 kill_ioctx(current->mm, ioctx, NULL); 1393 percpu_ref_put(&ioctx->users); 1394 } 1395 1396 out: 1397 return ret; 1398 } 1399 #endif 1400 1401 /* sys_io_destroy: 1402 * Destroy the aio_context specified. May cancel any outstanding 1403 * AIOs and block on completion. Will fail with -ENOSYS if not 1404 * implemented. May fail with -EINVAL if the context pointed to 1405 * is invalid. 1406 */ 1407 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1408 { 1409 struct kioctx *ioctx = lookup_ioctx(ctx); 1410 if (likely(NULL != ioctx)) { 1411 struct ctx_rq_wait wait; 1412 int ret; 1413 1414 init_completion(&wait.comp); 1415 atomic_set(&wait.count, 1); 1416 1417 /* Pass requests_done to kill_ioctx() where it can be set 1418 * in a thread-safe way. If we try to set it here then we have 1419 * a race condition if two io_destroy() called simultaneously. 1420 */ 1421 ret = kill_ioctx(current->mm, ioctx, &wait); 1422 percpu_ref_put(&ioctx->users); 1423 1424 /* Wait until all IO for the context are done. Otherwise kernel 1425 * keep using user-space buffers even if user thinks the context 1426 * is destroyed. 1427 */ 1428 if (!ret) 1429 wait_for_completion(&wait.comp); 1430 1431 return ret; 1432 } 1433 pr_debug("EINVAL: invalid context id\n"); 1434 return -EINVAL; 1435 } 1436 1437 static void aio_remove_iocb(struct aio_kiocb *iocb) 1438 { 1439 struct kioctx *ctx = iocb->ki_ctx; 1440 unsigned long flags; 1441 1442 spin_lock_irqsave(&ctx->ctx_lock, flags); 1443 list_del(&iocb->ki_list); 1444 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1445 } 1446 1447 static void aio_complete_rw(struct kiocb *kiocb, long res) 1448 { 1449 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1450 1451 if (!list_empty_careful(&iocb->ki_list)) 1452 aio_remove_iocb(iocb); 1453 1454 if (kiocb->ki_flags & IOCB_WRITE) { 1455 struct inode *inode = file_inode(kiocb->ki_filp); 1456 1457 /* 1458 * Tell lockdep we inherited freeze protection from submission 1459 * thread. 1460 */ 1461 if (S_ISREG(inode->i_mode)) 1462 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1463 file_end_write(kiocb->ki_filp); 1464 } 1465 1466 iocb->ki_res.res = res; 1467 iocb->ki_res.res2 = 0; 1468 iocb_put(iocb); 1469 } 1470 1471 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1472 { 1473 int ret; 1474 1475 req->ki_complete = aio_complete_rw; 1476 req->private = NULL; 1477 req->ki_pos = iocb->aio_offset; 1478 req->ki_flags = iocb_flags(req->ki_filp); 1479 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1480 req->ki_flags |= IOCB_EVENTFD; 1481 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1482 /* 1483 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1484 * aio_reqprio is interpreted as an I/O scheduling 1485 * class and priority. 1486 */ 1487 ret = ioprio_check_cap(iocb->aio_reqprio); 1488 if (ret) { 1489 pr_debug("aio ioprio check cap error: %d\n", ret); 1490 return ret; 1491 } 1492 1493 req->ki_ioprio = iocb->aio_reqprio; 1494 } else 1495 req->ki_ioprio = get_current_ioprio(); 1496 1497 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1498 if (unlikely(ret)) 1499 return ret; 1500 1501 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1502 return 0; 1503 } 1504 1505 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1506 struct iovec **iovec, bool vectored, bool compat, 1507 struct iov_iter *iter) 1508 { 1509 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1510 size_t len = iocb->aio_nbytes; 1511 1512 if (!vectored) { 1513 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1514 *iovec = NULL; 1515 return ret; 1516 } 1517 1518 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1519 } 1520 1521 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1522 { 1523 switch (ret) { 1524 case -EIOCBQUEUED: 1525 break; 1526 case -ERESTARTSYS: 1527 case -ERESTARTNOINTR: 1528 case -ERESTARTNOHAND: 1529 case -ERESTART_RESTARTBLOCK: 1530 /* 1531 * There's no easy way to restart the syscall since other AIO's 1532 * may be already running. Just fail this IO with EINTR. 1533 */ 1534 ret = -EINTR; 1535 fallthrough; 1536 default: 1537 req->ki_complete(req, ret); 1538 } 1539 } 1540 1541 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1542 bool vectored, bool compat) 1543 { 1544 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1545 struct iov_iter iter; 1546 struct file *file; 1547 int ret; 1548 1549 ret = aio_prep_rw(req, iocb); 1550 if (ret) 1551 return ret; 1552 file = req->ki_filp; 1553 if (unlikely(!(file->f_mode & FMODE_READ))) 1554 return -EBADF; 1555 if (unlikely(!file->f_op->read_iter)) 1556 return -EINVAL; 1557 1558 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1559 if (ret < 0) 1560 return ret; 1561 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1562 if (!ret) 1563 aio_rw_done(req, call_read_iter(file, req, &iter)); 1564 kfree(iovec); 1565 return ret; 1566 } 1567 1568 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1569 bool vectored, bool compat) 1570 { 1571 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1572 struct iov_iter iter; 1573 struct file *file; 1574 int ret; 1575 1576 ret = aio_prep_rw(req, iocb); 1577 if (ret) 1578 return ret; 1579 file = req->ki_filp; 1580 1581 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1582 return -EBADF; 1583 if (unlikely(!file->f_op->write_iter)) 1584 return -EINVAL; 1585 1586 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1587 if (ret < 0) 1588 return ret; 1589 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1590 if (!ret) { 1591 /* 1592 * Open-code file_start_write here to grab freeze protection, 1593 * which will be released by another thread in 1594 * aio_complete_rw(). Fool lockdep by telling it the lock got 1595 * released so that it doesn't complain about the held lock when 1596 * we return to userspace. 1597 */ 1598 if (S_ISREG(file_inode(file)->i_mode)) { 1599 sb_start_write(file_inode(file)->i_sb); 1600 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1601 } 1602 req->ki_flags |= IOCB_WRITE; 1603 aio_rw_done(req, call_write_iter(file, req, &iter)); 1604 } 1605 kfree(iovec); 1606 return ret; 1607 } 1608 1609 static void aio_fsync_work(struct work_struct *work) 1610 { 1611 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1612 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1613 1614 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1615 revert_creds(old_cred); 1616 put_cred(iocb->fsync.creds); 1617 iocb_put(iocb); 1618 } 1619 1620 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1621 bool datasync) 1622 { 1623 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1624 iocb->aio_rw_flags)) 1625 return -EINVAL; 1626 1627 if (unlikely(!req->file->f_op->fsync)) 1628 return -EINVAL; 1629 1630 req->creds = prepare_creds(); 1631 if (!req->creds) 1632 return -ENOMEM; 1633 1634 req->datasync = datasync; 1635 INIT_WORK(&req->work, aio_fsync_work); 1636 schedule_work(&req->work); 1637 return 0; 1638 } 1639 1640 static void aio_poll_put_work(struct work_struct *work) 1641 { 1642 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1643 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1644 1645 iocb_put(iocb); 1646 } 1647 1648 /* 1649 * Safely lock the waitqueue which the request is on, synchronizing with the 1650 * case where the ->poll() provider decides to free its waitqueue early. 1651 * 1652 * Returns true on success, meaning that req->head->lock was locked, req->wait 1653 * is on req->head, and an RCU read lock was taken. Returns false if the 1654 * request was already removed from its waitqueue (which might no longer exist). 1655 */ 1656 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1657 { 1658 wait_queue_head_t *head; 1659 1660 /* 1661 * While we hold the waitqueue lock and the waitqueue is nonempty, 1662 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1663 * lock in the first place can race with the waitqueue being freed. 1664 * 1665 * We solve this as eventpoll does: by taking advantage of the fact that 1666 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1667 * we enter rcu_read_lock() and see that the pointer to the queue is 1668 * non-NULL, we can then lock it without the memory being freed out from 1669 * under us, then check whether the request is still on the queue. 1670 * 1671 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1672 * case the caller deletes the entry from the queue, leaving it empty. 1673 * In that case, only RCU prevents the queue memory from being freed. 1674 */ 1675 rcu_read_lock(); 1676 head = smp_load_acquire(&req->head); 1677 if (head) { 1678 spin_lock(&head->lock); 1679 if (!list_empty(&req->wait.entry)) 1680 return true; 1681 spin_unlock(&head->lock); 1682 } 1683 rcu_read_unlock(); 1684 return false; 1685 } 1686 1687 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1688 { 1689 spin_unlock(&req->head->lock); 1690 rcu_read_unlock(); 1691 } 1692 1693 static void aio_poll_complete_work(struct work_struct *work) 1694 { 1695 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1696 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1697 struct poll_table_struct pt = { ._key = req->events }; 1698 struct kioctx *ctx = iocb->ki_ctx; 1699 __poll_t mask = 0; 1700 1701 if (!READ_ONCE(req->cancelled)) 1702 mask = vfs_poll(req->file, &pt) & req->events; 1703 1704 /* 1705 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1706 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1707 * synchronize with them. In the cancellation case the list_del_init 1708 * itself is not actually needed, but harmless so we keep it in to 1709 * avoid further branches in the fast path. 1710 */ 1711 spin_lock_irq(&ctx->ctx_lock); 1712 if (poll_iocb_lock_wq(req)) { 1713 if (!mask && !READ_ONCE(req->cancelled)) { 1714 /* 1715 * The request isn't actually ready to be completed yet. 1716 * Reschedule completion if another wakeup came in. 1717 */ 1718 if (req->work_need_resched) { 1719 schedule_work(&req->work); 1720 req->work_need_resched = false; 1721 } else { 1722 req->work_scheduled = false; 1723 } 1724 poll_iocb_unlock_wq(req); 1725 spin_unlock_irq(&ctx->ctx_lock); 1726 return; 1727 } 1728 list_del_init(&req->wait.entry); 1729 poll_iocb_unlock_wq(req); 1730 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1731 list_del_init(&iocb->ki_list); 1732 iocb->ki_res.res = mangle_poll(mask); 1733 spin_unlock_irq(&ctx->ctx_lock); 1734 1735 iocb_put(iocb); 1736 } 1737 1738 /* assumes we are called with irqs disabled */ 1739 static int aio_poll_cancel(struct kiocb *iocb) 1740 { 1741 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1742 struct poll_iocb *req = &aiocb->poll; 1743 1744 if (poll_iocb_lock_wq(req)) { 1745 WRITE_ONCE(req->cancelled, true); 1746 if (!req->work_scheduled) { 1747 schedule_work(&aiocb->poll.work); 1748 req->work_scheduled = true; 1749 } 1750 poll_iocb_unlock_wq(req); 1751 } /* else, the request was force-cancelled by POLLFREE already */ 1752 1753 return 0; 1754 } 1755 1756 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1757 void *key) 1758 { 1759 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1760 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1761 __poll_t mask = key_to_poll(key); 1762 unsigned long flags; 1763 1764 /* for instances that support it check for an event match first: */ 1765 if (mask && !(mask & req->events)) 1766 return 0; 1767 1768 /* 1769 * Complete the request inline if possible. This requires that three 1770 * conditions be met: 1771 * 1. An event mask must have been passed. If a plain wakeup was done 1772 * instead, then mask == 0 and we have to call vfs_poll() to get 1773 * the events, so inline completion isn't possible. 1774 * 2. The completion work must not have already been scheduled. 1775 * 3. ctx_lock must not be busy. We have to use trylock because we 1776 * already hold the waitqueue lock, so this inverts the normal 1777 * locking order. Use irqsave/irqrestore because not all 1778 * filesystems (e.g. fuse) call this function with IRQs disabled, 1779 * yet IRQs have to be disabled before ctx_lock is obtained. 1780 */ 1781 if (mask && !req->work_scheduled && 1782 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1783 struct kioctx *ctx = iocb->ki_ctx; 1784 1785 list_del_init(&req->wait.entry); 1786 list_del(&iocb->ki_list); 1787 iocb->ki_res.res = mangle_poll(mask); 1788 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1789 iocb = NULL; 1790 INIT_WORK(&req->work, aio_poll_put_work); 1791 schedule_work(&req->work); 1792 } 1793 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1794 if (iocb) 1795 iocb_put(iocb); 1796 } else { 1797 /* 1798 * Schedule the completion work if needed. If it was already 1799 * scheduled, record that another wakeup came in. 1800 * 1801 * Don't remove the request from the waitqueue here, as it might 1802 * not actually be complete yet (we won't know until vfs_poll() 1803 * is called), and we must not miss any wakeups. POLLFREE is an 1804 * exception to this; see below. 1805 */ 1806 if (req->work_scheduled) { 1807 req->work_need_resched = true; 1808 } else { 1809 schedule_work(&req->work); 1810 req->work_scheduled = true; 1811 } 1812 1813 /* 1814 * If the waitqueue is being freed early but we can't complete 1815 * the request inline, we have to tear down the request as best 1816 * we can. That means immediately removing the request from its 1817 * waitqueue and preventing all further accesses to the 1818 * waitqueue via the request. We also need to schedule the 1819 * completion work (done above). Also mark the request as 1820 * cancelled, to potentially skip an unneeded call to ->poll(). 1821 */ 1822 if (mask & POLLFREE) { 1823 WRITE_ONCE(req->cancelled, true); 1824 list_del_init(&req->wait.entry); 1825 1826 /* 1827 * Careful: this *must* be the last step, since as soon 1828 * as req->head is NULL'ed out, the request can be 1829 * completed and freed, since aio_poll_complete_work() 1830 * will no longer need to take the waitqueue lock. 1831 */ 1832 smp_store_release(&req->head, NULL); 1833 } 1834 } 1835 return 1; 1836 } 1837 1838 struct aio_poll_table { 1839 struct poll_table_struct pt; 1840 struct aio_kiocb *iocb; 1841 bool queued; 1842 int error; 1843 }; 1844 1845 static void 1846 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1847 struct poll_table_struct *p) 1848 { 1849 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1850 1851 /* multiple wait queues per file are not supported */ 1852 if (unlikely(pt->queued)) { 1853 pt->error = -EINVAL; 1854 return; 1855 } 1856 1857 pt->queued = true; 1858 pt->error = 0; 1859 pt->iocb->poll.head = head; 1860 add_wait_queue(head, &pt->iocb->poll.wait); 1861 } 1862 1863 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1864 { 1865 struct kioctx *ctx = aiocb->ki_ctx; 1866 struct poll_iocb *req = &aiocb->poll; 1867 struct aio_poll_table apt; 1868 bool cancel = false; 1869 __poll_t mask; 1870 1871 /* reject any unknown events outside the normal event mask. */ 1872 if ((u16)iocb->aio_buf != iocb->aio_buf) 1873 return -EINVAL; 1874 /* reject fields that are not defined for poll */ 1875 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1876 return -EINVAL; 1877 1878 INIT_WORK(&req->work, aio_poll_complete_work); 1879 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1880 1881 req->head = NULL; 1882 req->cancelled = false; 1883 req->work_scheduled = false; 1884 req->work_need_resched = false; 1885 1886 apt.pt._qproc = aio_poll_queue_proc; 1887 apt.pt._key = req->events; 1888 apt.iocb = aiocb; 1889 apt.queued = false; 1890 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1891 1892 /* initialized the list so that we can do list_empty checks */ 1893 INIT_LIST_HEAD(&req->wait.entry); 1894 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1895 1896 mask = vfs_poll(req->file, &apt.pt) & req->events; 1897 spin_lock_irq(&ctx->ctx_lock); 1898 if (likely(apt.queued)) { 1899 bool on_queue = poll_iocb_lock_wq(req); 1900 1901 if (!on_queue || req->work_scheduled) { 1902 /* 1903 * aio_poll_wake() already either scheduled the async 1904 * completion work, or completed the request inline. 1905 */ 1906 if (apt.error) /* unsupported case: multiple queues */ 1907 cancel = true; 1908 apt.error = 0; 1909 mask = 0; 1910 } 1911 if (mask || apt.error) { 1912 /* Steal to complete synchronously. */ 1913 list_del_init(&req->wait.entry); 1914 } else if (cancel) { 1915 /* Cancel if possible (may be too late though). */ 1916 WRITE_ONCE(req->cancelled, true); 1917 } else if (on_queue) { 1918 /* 1919 * Actually waiting for an event, so add the request to 1920 * active_reqs so that it can be cancelled if needed. 1921 */ 1922 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1923 aiocb->ki_cancel = aio_poll_cancel; 1924 } 1925 if (on_queue) 1926 poll_iocb_unlock_wq(req); 1927 } 1928 if (mask) { /* no async, we'd stolen it */ 1929 aiocb->ki_res.res = mangle_poll(mask); 1930 apt.error = 0; 1931 } 1932 spin_unlock_irq(&ctx->ctx_lock); 1933 if (mask) 1934 iocb_put(aiocb); 1935 return apt.error; 1936 } 1937 1938 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1939 struct iocb __user *user_iocb, struct aio_kiocb *req, 1940 bool compat) 1941 { 1942 req->ki_filp = fget(iocb->aio_fildes); 1943 if (unlikely(!req->ki_filp)) 1944 return -EBADF; 1945 1946 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1947 struct eventfd_ctx *eventfd; 1948 /* 1949 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1950 * instance of the file* now. The file descriptor must be 1951 * an eventfd() fd, and will be signaled for each completed 1952 * event using the eventfd_signal() function. 1953 */ 1954 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1955 if (IS_ERR(eventfd)) 1956 return PTR_ERR(eventfd); 1957 1958 req->ki_eventfd = eventfd; 1959 } 1960 1961 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1962 pr_debug("EFAULT: aio_key\n"); 1963 return -EFAULT; 1964 } 1965 1966 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1967 req->ki_res.data = iocb->aio_data; 1968 req->ki_res.res = 0; 1969 req->ki_res.res2 = 0; 1970 1971 switch (iocb->aio_lio_opcode) { 1972 case IOCB_CMD_PREAD: 1973 return aio_read(&req->rw, iocb, false, compat); 1974 case IOCB_CMD_PWRITE: 1975 return aio_write(&req->rw, iocb, false, compat); 1976 case IOCB_CMD_PREADV: 1977 return aio_read(&req->rw, iocb, true, compat); 1978 case IOCB_CMD_PWRITEV: 1979 return aio_write(&req->rw, iocb, true, compat); 1980 case IOCB_CMD_FSYNC: 1981 return aio_fsync(&req->fsync, iocb, false); 1982 case IOCB_CMD_FDSYNC: 1983 return aio_fsync(&req->fsync, iocb, true); 1984 case IOCB_CMD_POLL: 1985 return aio_poll(req, iocb); 1986 default: 1987 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1988 return -EINVAL; 1989 } 1990 } 1991 1992 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1993 bool compat) 1994 { 1995 struct aio_kiocb *req; 1996 struct iocb iocb; 1997 int err; 1998 1999 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2000 return -EFAULT; 2001 2002 /* enforce forwards compatibility on users */ 2003 if (unlikely(iocb.aio_reserved2)) { 2004 pr_debug("EINVAL: reserve field set\n"); 2005 return -EINVAL; 2006 } 2007 2008 /* prevent overflows */ 2009 if (unlikely( 2010 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2011 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2012 ((ssize_t)iocb.aio_nbytes < 0) 2013 )) { 2014 pr_debug("EINVAL: overflow check\n"); 2015 return -EINVAL; 2016 } 2017 2018 req = aio_get_req(ctx); 2019 if (unlikely(!req)) 2020 return -EAGAIN; 2021 2022 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2023 2024 /* Done with the synchronous reference */ 2025 iocb_put(req); 2026 2027 /* 2028 * If err is 0, we'd either done aio_complete() ourselves or have 2029 * arranged for that to be done asynchronously. Anything non-zero 2030 * means that we need to destroy req ourselves. 2031 */ 2032 if (unlikely(err)) { 2033 iocb_destroy(req); 2034 put_reqs_available(ctx, 1); 2035 } 2036 return err; 2037 } 2038 2039 /* sys_io_submit: 2040 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2041 * the number of iocbs queued. May return -EINVAL if the aio_context 2042 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2043 * *iocbpp[0] is not properly initialized, if the operation specified 2044 * is invalid for the file descriptor in the iocb. May fail with 2045 * -EFAULT if any of the data structures point to invalid data. May 2046 * fail with -EBADF if the file descriptor specified in the first 2047 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2048 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2049 * fail with -ENOSYS if not implemented. 2050 */ 2051 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2052 struct iocb __user * __user *, iocbpp) 2053 { 2054 struct kioctx *ctx; 2055 long ret = 0; 2056 int i = 0; 2057 struct blk_plug plug; 2058 2059 if (unlikely(nr < 0)) 2060 return -EINVAL; 2061 2062 ctx = lookup_ioctx(ctx_id); 2063 if (unlikely(!ctx)) { 2064 pr_debug("EINVAL: invalid context id\n"); 2065 return -EINVAL; 2066 } 2067 2068 if (nr > ctx->nr_events) 2069 nr = ctx->nr_events; 2070 2071 if (nr > AIO_PLUG_THRESHOLD) 2072 blk_start_plug(&plug); 2073 for (i = 0; i < nr; i++) { 2074 struct iocb __user *user_iocb; 2075 2076 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2077 ret = -EFAULT; 2078 break; 2079 } 2080 2081 ret = io_submit_one(ctx, user_iocb, false); 2082 if (ret) 2083 break; 2084 } 2085 if (nr > AIO_PLUG_THRESHOLD) 2086 blk_finish_plug(&plug); 2087 2088 percpu_ref_put(&ctx->users); 2089 return i ? i : ret; 2090 } 2091 2092 #ifdef CONFIG_COMPAT 2093 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2094 int, nr, compat_uptr_t __user *, iocbpp) 2095 { 2096 struct kioctx *ctx; 2097 long ret = 0; 2098 int i = 0; 2099 struct blk_plug plug; 2100 2101 if (unlikely(nr < 0)) 2102 return -EINVAL; 2103 2104 ctx = lookup_ioctx(ctx_id); 2105 if (unlikely(!ctx)) { 2106 pr_debug("EINVAL: invalid context id\n"); 2107 return -EINVAL; 2108 } 2109 2110 if (nr > ctx->nr_events) 2111 nr = ctx->nr_events; 2112 2113 if (nr > AIO_PLUG_THRESHOLD) 2114 blk_start_plug(&plug); 2115 for (i = 0; i < nr; i++) { 2116 compat_uptr_t user_iocb; 2117 2118 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2119 ret = -EFAULT; 2120 break; 2121 } 2122 2123 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2124 if (ret) 2125 break; 2126 } 2127 if (nr > AIO_PLUG_THRESHOLD) 2128 blk_finish_plug(&plug); 2129 2130 percpu_ref_put(&ctx->users); 2131 return i ? i : ret; 2132 } 2133 #endif 2134 2135 /* sys_io_cancel: 2136 * Attempts to cancel an iocb previously passed to io_submit. If 2137 * the operation is successfully cancelled, the resulting event is 2138 * copied into the memory pointed to by result without being placed 2139 * into the completion queue and 0 is returned. May fail with 2140 * -EFAULT if any of the data structures pointed to are invalid. 2141 * May fail with -EINVAL if aio_context specified by ctx_id is 2142 * invalid. May fail with -EAGAIN if the iocb specified was not 2143 * cancelled. Will fail with -ENOSYS if not implemented. 2144 */ 2145 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2146 struct io_event __user *, result) 2147 { 2148 struct kioctx *ctx; 2149 struct aio_kiocb *kiocb; 2150 int ret = -EINVAL; 2151 u32 key; 2152 u64 obj = (u64)(unsigned long)iocb; 2153 2154 if (unlikely(get_user(key, &iocb->aio_key))) 2155 return -EFAULT; 2156 if (unlikely(key != KIOCB_KEY)) 2157 return -EINVAL; 2158 2159 ctx = lookup_ioctx(ctx_id); 2160 if (unlikely(!ctx)) 2161 return -EINVAL; 2162 2163 spin_lock_irq(&ctx->ctx_lock); 2164 /* TODO: use a hash or array, this sucks. */ 2165 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2166 if (kiocb->ki_res.obj == obj) { 2167 ret = kiocb->ki_cancel(&kiocb->rw); 2168 list_del_init(&kiocb->ki_list); 2169 break; 2170 } 2171 } 2172 spin_unlock_irq(&ctx->ctx_lock); 2173 2174 if (!ret) { 2175 /* 2176 * The result argument is no longer used - the io_event is 2177 * always delivered via the ring buffer. -EINPROGRESS indicates 2178 * cancellation is progress: 2179 */ 2180 ret = -EINPROGRESS; 2181 } 2182 2183 percpu_ref_put(&ctx->users); 2184 2185 return ret; 2186 } 2187 2188 static long do_io_getevents(aio_context_t ctx_id, 2189 long min_nr, 2190 long nr, 2191 struct io_event __user *events, 2192 struct timespec64 *ts) 2193 { 2194 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2195 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2196 long ret = -EINVAL; 2197 2198 if (likely(ioctx)) { 2199 if (likely(min_nr <= nr && min_nr >= 0)) 2200 ret = read_events(ioctx, min_nr, nr, events, until); 2201 percpu_ref_put(&ioctx->users); 2202 } 2203 2204 return ret; 2205 } 2206 2207 /* io_getevents: 2208 * Attempts to read at least min_nr events and up to nr events from 2209 * the completion queue for the aio_context specified by ctx_id. If 2210 * it succeeds, the number of read events is returned. May fail with 2211 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2212 * out of range, if timeout is out of range. May fail with -EFAULT 2213 * if any of the memory specified is invalid. May return 0 or 2214 * < min_nr if the timeout specified by timeout has elapsed 2215 * before sufficient events are available, where timeout == NULL 2216 * specifies an infinite timeout. Note that the timeout pointed to by 2217 * timeout is relative. Will fail with -ENOSYS if not implemented. 2218 */ 2219 #ifdef CONFIG_64BIT 2220 2221 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2222 long, min_nr, 2223 long, nr, 2224 struct io_event __user *, events, 2225 struct __kernel_timespec __user *, timeout) 2226 { 2227 struct timespec64 ts; 2228 int ret; 2229 2230 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2231 return -EFAULT; 2232 2233 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2234 if (!ret && signal_pending(current)) 2235 ret = -EINTR; 2236 return ret; 2237 } 2238 2239 #endif 2240 2241 struct __aio_sigset { 2242 const sigset_t __user *sigmask; 2243 size_t sigsetsize; 2244 }; 2245 2246 SYSCALL_DEFINE6(io_pgetevents, 2247 aio_context_t, ctx_id, 2248 long, min_nr, 2249 long, nr, 2250 struct io_event __user *, events, 2251 struct __kernel_timespec __user *, timeout, 2252 const struct __aio_sigset __user *, usig) 2253 { 2254 struct __aio_sigset ksig = { NULL, }; 2255 struct timespec64 ts; 2256 bool interrupted; 2257 int ret; 2258 2259 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2260 return -EFAULT; 2261 2262 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2263 return -EFAULT; 2264 2265 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2266 if (ret) 2267 return ret; 2268 2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2270 2271 interrupted = signal_pending(current); 2272 restore_saved_sigmask_unless(interrupted); 2273 if (interrupted && !ret) 2274 ret = -ERESTARTNOHAND; 2275 2276 return ret; 2277 } 2278 2279 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2280 2281 SYSCALL_DEFINE6(io_pgetevents_time32, 2282 aio_context_t, ctx_id, 2283 long, min_nr, 2284 long, nr, 2285 struct io_event __user *, events, 2286 struct old_timespec32 __user *, timeout, 2287 const struct __aio_sigset __user *, usig) 2288 { 2289 struct __aio_sigset ksig = { NULL, }; 2290 struct timespec64 ts; 2291 bool interrupted; 2292 int ret; 2293 2294 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2295 return -EFAULT; 2296 2297 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2298 return -EFAULT; 2299 2300 2301 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2302 if (ret) 2303 return ret; 2304 2305 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2306 2307 interrupted = signal_pending(current); 2308 restore_saved_sigmask_unless(interrupted); 2309 if (interrupted && !ret) 2310 ret = -ERESTARTNOHAND; 2311 2312 return ret; 2313 } 2314 2315 #endif 2316 2317 #if defined(CONFIG_COMPAT_32BIT_TIME) 2318 2319 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2320 __s32, min_nr, 2321 __s32, nr, 2322 struct io_event __user *, events, 2323 struct old_timespec32 __user *, timeout) 2324 { 2325 struct timespec64 t; 2326 int ret; 2327 2328 if (timeout && get_old_timespec32(&t, timeout)) 2329 return -EFAULT; 2330 2331 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2332 if (!ret && signal_pending(current)) 2333 ret = -EINTR; 2334 return ret; 2335 } 2336 2337 #endif 2338 2339 #ifdef CONFIG_COMPAT 2340 2341 struct __compat_aio_sigset { 2342 compat_uptr_t sigmask; 2343 compat_size_t sigsetsize; 2344 }; 2345 2346 #if defined(CONFIG_COMPAT_32BIT_TIME) 2347 2348 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2349 compat_aio_context_t, ctx_id, 2350 compat_long_t, min_nr, 2351 compat_long_t, nr, 2352 struct io_event __user *, events, 2353 struct old_timespec32 __user *, timeout, 2354 const struct __compat_aio_sigset __user *, usig) 2355 { 2356 struct __compat_aio_sigset ksig = { 0, }; 2357 struct timespec64 t; 2358 bool interrupted; 2359 int ret; 2360 2361 if (timeout && get_old_timespec32(&t, timeout)) 2362 return -EFAULT; 2363 2364 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2365 return -EFAULT; 2366 2367 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2368 if (ret) 2369 return ret; 2370 2371 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2372 2373 interrupted = signal_pending(current); 2374 restore_saved_sigmask_unless(interrupted); 2375 if (interrupted && !ret) 2376 ret = -ERESTARTNOHAND; 2377 2378 return ret; 2379 } 2380 2381 #endif 2382 2383 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2384 compat_aio_context_t, ctx_id, 2385 compat_long_t, min_nr, 2386 compat_long_t, nr, 2387 struct io_event __user *, events, 2388 struct __kernel_timespec __user *, timeout, 2389 const struct __compat_aio_sigset __user *, usig) 2390 { 2391 struct __compat_aio_sigset ksig = { 0, }; 2392 struct timespec64 t; 2393 bool interrupted; 2394 int ret; 2395 2396 if (timeout && get_timespec64(&t, timeout)) 2397 return -EFAULT; 2398 2399 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2400 return -EFAULT; 2401 2402 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2403 if (ret) 2404 return ret; 2405 2406 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2407 2408 interrupted = signal_pending(current); 2409 restore_saved_sigmask_unless(interrupted); 2410 if (interrupted && !ret) 2411 ret = -ERESTARTNOHAND; 2412 2413 return ret; 2414 } 2415 #endif 2416