1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 /* 116 * signals when all in-flight requests are done 117 */ 118 struct completion *requests_done; 119 120 struct { 121 /* 122 * This counts the number of available slots in the ringbuffer, 123 * so we avoid overflowing it: it's decremented (if positive) 124 * when allocating a kiocb and incremented when the resulting 125 * io_event is pulled off the ringbuffer. 126 * 127 * We batch accesses to it with a percpu version. 128 */ 129 atomic_t reqs_available; 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 spinlock_t ctx_lock; 134 struct list_head active_reqs; /* used for cancellation */ 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 struct mutex ring_lock; 139 wait_queue_head_t wait; 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 unsigned tail; 144 spinlock_t completion_lock; 145 } ____cacheline_aligned_in_smp; 146 147 struct page *internal_pages[AIO_RING_PAGES]; 148 struct file *aio_ring_file; 149 150 unsigned id; 151 }; 152 153 /*------ sysctl variables----*/ 154 static DEFINE_SPINLOCK(aio_nr_lock); 155 unsigned long aio_nr; /* current system wide number of aio requests */ 156 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 157 /*----end sysctl variables---*/ 158 159 static struct kmem_cache *kiocb_cachep; 160 static struct kmem_cache *kioctx_cachep; 161 162 static struct vfsmount *aio_mnt; 163 164 static const struct file_operations aio_ring_fops; 165 static const struct address_space_operations aio_ctx_aops; 166 167 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 168 { 169 struct qstr this = QSTR_INIT("[aio]", 5); 170 struct file *file; 171 struct path path; 172 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 173 if (IS_ERR(inode)) 174 return ERR_CAST(inode); 175 176 inode->i_mapping->a_ops = &aio_ctx_aops; 177 inode->i_mapping->private_data = ctx; 178 inode->i_size = PAGE_SIZE * nr_pages; 179 180 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 181 if (!path.dentry) { 182 iput(inode); 183 return ERR_PTR(-ENOMEM); 184 } 185 path.mnt = mntget(aio_mnt); 186 187 d_instantiate(path.dentry, inode); 188 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 189 if (IS_ERR(file)) { 190 path_put(&path); 191 return file; 192 } 193 194 file->f_flags = O_RDWR; 195 return file; 196 } 197 198 static struct dentry *aio_mount(struct file_system_type *fs_type, 199 int flags, const char *dev_name, void *data) 200 { 201 static const struct dentry_operations ops = { 202 .d_dname = simple_dname, 203 }; 204 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); 205 } 206 207 /* aio_setup 208 * Creates the slab caches used by the aio routines, panic on 209 * failure as this is done early during the boot sequence. 210 */ 211 static int __init aio_setup(void) 212 { 213 static struct file_system_type aio_fs = { 214 .name = "aio", 215 .mount = aio_mount, 216 .kill_sb = kill_anon_super, 217 }; 218 aio_mnt = kern_mount(&aio_fs); 219 if (IS_ERR(aio_mnt)) 220 panic("Failed to create aio fs mount."); 221 222 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 223 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 224 225 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 226 227 return 0; 228 } 229 __initcall(aio_setup); 230 231 static void put_aio_ring_file(struct kioctx *ctx) 232 { 233 struct file *aio_ring_file = ctx->aio_ring_file; 234 if (aio_ring_file) { 235 truncate_setsize(aio_ring_file->f_inode, 0); 236 237 /* Prevent further access to the kioctx from migratepages */ 238 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 239 aio_ring_file->f_inode->i_mapping->private_data = NULL; 240 ctx->aio_ring_file = NULL; 241 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 242 243 fput(aio_ring_file); 244 } 245 } 246 247 static void aio_free_ring(struct kioctx *ctx) 248 { 249 int i; 250 251 /* Disconnect the kiotx from the ring file. This prevents future 252 * accesses to the kioctx from page migration. 253 */ 254 put_aio_ring_file(ctx); 255 256 for (i = 0; i < ctx->nr_pages; i++) { 257 struct page *page; 258 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 259 page_count(ctx->ring_pages[i])); 260 page = ctx->ring_pages[i]; 261 if (!page) 262 continue; 263 ctx->ring_pages[i] = NULL; 264 put_page(page); 265 } 266 267 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 268 kfree(ctx->ring_pages); 269 ctx->ring_pages = NULL; 270 } 271 } 272 273 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 274 { 275 vma->vm_ops = &generic_file_vm_ops; 276 return 0; 277 } 278 279 static const struct file_operations aio_ring_fops = { 280 .mmap = aio_ring_mmap, 281 }; 282 283 static int aio_set_page_dirty(struct page *page) 284 { 285 return 0; 286 } 287 288 #if IS_ENABLED(CONFIG_MIGRATION) 289 static int aio_migratepage(struct address_space *mapping, struct page *new, 290 struct page *old, enum migrate_mode mode) 291 { 292 struct kioctx *ctx; 293 unsigned long flags; 294 pgoff_t idx; 295 int rc; 296 297 rc = 0; 298 299 /* mapping->private_lock here protects against the kioctx teardown. */ 300 spin_lock(&mapping->private_lock); 301 ctx = mapping->private_data; 302 if (!ctx) { 303 rc = -EINVAL; 304 goto out; 305 } 306 307 /* The ring_lock mutex. The prevents aio_read_events() from writing 308 * to the ring's head, and prevents page migration from mucking in 309 * a partially initialized kiotx. 310 */ 311 if (!mutex_trylock(&ctx->ring_lock)) { 312 rc = -EAGAIN; 313 goto out; 314 } 315 316 idx = old->index; 317 if (idx < (pgoff_t)ctx->nr_pages) { 318 /* Make sure the old page hasn't already been changed */ 319 if (ctx->ring_pages[idx] != old) 320 rc = -EAGAIN; 321 } else 322 rc = -EINVAL; 323 324 if (rc != 0) 325 goto out_unlock; 326 327 /* Writeback must be complete */ 328 BUG_ON(PageWriteback(old)); 329 get_page(new); 330 331 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 332 if (rc != MIGRATEPAGE_SUCCESS) { 333 put_page(new); 334 goto out_unlock; 335 } 336 337 /* Take completion_lock to prevent other writes to the ring buffer 338 * while the old page is copied to the new. This prevents new 339 * events from being lost. 340 */ 341 spin_lock_irqsave(&ctx->completion_lock, flags); 342 migrate_page_copy(new, old); 343 BUG_ON(ctx->ring_pages[idx] != old); 344 ctx->ring_pages[idx] = new; 345 spin_unlock_irqrestore(&ctx->completion_lock, flags); 346 347 /* The old page is no longer accessible. */ 348 put_page(old); 349 350 out_unlock: 351 mutex_unlock(&ctx->ring_lock); 352 out: 353 spin_unlock(&mapping->private_lock); 354 return rc; 355 } 356 #endif 357 358 static const struct address_space_operations aio_ctx_aops = { 359 .set_page_dirty = aio_set_page_dirty, 360 #if IS_ENABLED(CONFIG_MIGRATION) 361 .migratepage = aio_migratepage, 362 #endif 363 }; 364 365 static int aio_setup_ring(struct kioctx *ctx) 366 { 367 struct aio_ring *ring; 368 unsigned nr_events = ctx->max_reqs; 369 struct mm_struct *mm = current->mm; 370 unsigned long size, unused; 371 int nr_pages; 372 int i; 373 struct file *file; 374 375 /* Compensate for the ring buffer's head/tail overlap entry */ 376 nr_events += 2; /* 1 is required, 2 for good luck */ 377 378 size = sizeof(struct aio_ring); 379 size += sizeof(struct io_event) * nr_events; 380 381 nr_pages = PFN_UP(size); 382 if (nr_pages < 0) 383 return -EINVAL; 384 385 file = aio_private_file(ctx, nr_pages); 386 if (IS_ERR(file)) { 387 ctx->aio_ring_file = NULL; 388 return -ENOMEM; 389 } 390 391 ctx->aio_ring_file = file; 392 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 393 / sizeof(struct io_event); 394 395 ctx->ring_pages = ctx->internal_pages; 396 if (nr_pages > AIO_RING_PAGES) { 397 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 398 GFP_KERNEL); 399 if (!ctx->ring_pages) { 400 put_aio_ring_file(ctx); 401 return -ENOMEM; 402 } 403 } 404 405 for (i = 0; i < nr_pages; i++) { 406 struct page *page; 407 page = find_or_create_page(file->f_inode->i_mapping, 408 i, GFP_HIGHUSER | __GFP_ZERO); 409 if (!page) 410 break; 411 pr_debug("pid(%d) page[%d]->count=%d\n", 412 current->pid, i, page_count(page)); 413 SetPageUptodate(page); 414 SetPageDirty(page); 415 unlock_page(page); 416 417 ctx->ring_pages[i] = page; 418 } 419 ctx->nr_pages = i; 420 421 if (unlikely(i != nr_pages)) { 422 aio_free_ring(ctx); 423 return -ENOMEM; 424 } 425 426 ctx->mmap_size = nr_pages * PAGE_SIZE; 427 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 428 429 down_write(&mm->mmap_sem); 430 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 431 PROT_READ | PROT_WRITE, 432 MAP_SHARED, 0, &unused); 433 up_write(&mm->mmap_sem); 434 if (IS_ERR((void *)ctx->mmap_base)) { 435 ctx->mmap_size = 0; 436 aio_free_ring(ctx); 437 return -ENOMEM; 438 } 439 440 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 441 442 ctx->user_id = ctx->mmap_base; 443 ctx->nr_events = nr_events; /* trusted copy */ 444 445 ring = kmap_atomic(ctx->ring_pages[0]); 446 ring->nr = nr_events; /* user copy */ 447 ring->id = ~0U; 448 ring->head = ring->tail = 0; 449 ring->magic = AIO_RING_MAGIC; 450 ring->compat_features = AIO_RING_COMPAT_FEATURES; 451 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 452 ring->header_length = sizeof(struct aio_ring); 453 kunmap_atomic(ring); 454 flush_dcache_page(ctx->ring_pages[0]); 455 456 return 0; 457 } 458 459 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 460 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 461 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 462 463 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 464 { 465 struct kioctx *ctx = req->ki_ctx; 466 unsigned long flags; 467 468 spin_lock_irqsave(&ctx->ctx_lock, flags); 469 470 if (!req->ki_list.next) 471 list_add(&req->ki_list, &ctx->active_reqs); 472 473 req->ki_cancel = cancel; 474 475 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 476 } 477 EXPORT_SYMBOL(kiocb_set_cancel_fn); 478 479 static int kiocb_cancel(struct kiocb *kiocb) 480 { 481 kiocb_cancel_fn *old, *cancel; 482 483 /* 484 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 485 * actually has a cancel function, hence the cmpxchg() 486 */ 487 488 cancel = ACCESS_ONCE(kiocb->ki_cancel); 489 do { 490 if (!cancel || cancel == KIOCB_CANCELLED) 491 return -EINVAL; 492 493 old = cancel; 494 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 495 } while (cancel != old); 496 497 return cancel(kiocb); 498 } 499 500 static void free_ioctx(struct work_struct *work) 501 { 502 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 503 504 pr_debug("freeing %p\n", ctx); 505 506 aio_free_ring(ctx); 507 free_percpu(ctx->cpu); 508 percpu_ref_exit(&ctx->reqs); 509 percpu_ref_exit(&ctx->users); 510 kmem_cache_free(kioctx_cachep, ctx); 511 } 512 513 static void free_ioctx_reqs(struct percpu_ref *ref) 514 { 515 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 516 517 /* At this point we know that there are no any in-flight requests */ 518 if (ctx->requests_done) 519 complete(ctx->requests_done); 520 521 INIT_WORK(&ctx->free_work, free_ioctx); 522 schedule_work(&ctx->free_work); 523 } 524 525 /* 526 * When this function runs, the kioctx has been removed from the "hash table" 527 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 528 * now it's safe to cancel any that need to be. 529 */ 530 static void free_ioctx_users(struct percpu_ref *ref) 531 { 532 struct kioctx *ctx = container_of(ref, struct kioctx, users); 533 struct kiocb *req; 534 535 spin_lock_irq(&ctx->ctx_lock); 536 537 while (!list_empty(&ctx->active_reqs)) { 538 req = list_first_entry(&ctx->active_reqs, 539 struct kiocb, ki_list); 540 541 list_del_init(&req->ki_list); 542 kiocb_cancel(req); 543 } 544 545 spin_unlock_irq(&ctx->ctx_lock); 546 547 percpu_ref_kill(&ctx->reqs); 548 percpu_ref_put(&ctx->reqs); 549 } 550 551 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 552 { 553 unsigned i, new_nr; 554 struct kioctx_table *table, *old; 555 struct aio_ring *ring; 556 557 spin_lock(&mm->ioctx_lock); 558 table = rcu_dereference_raw(mm->ioctx_table); 559 560 while (1) { 561 if (table) 562 for (i = 0; i < table->nr; i++) 563 if (!table->table[i]) { 564 ctx->id = i; 565 table->table[i] = ctx; 566 spin_unlock(&mm->ioctx_lock); 567 568 /* While kioctx setup is in progress, 569 * we are protected from page migration 570 * changes ring_pages by ->ring_lock. 571 */ 572 ring = kmap_atomic(ctx->ring_pages[0]); 573 ring->id = ctx->id; 574 kunmap_atomic(ring); 575 return 0; 576 } 577 578 new_nr = (table ? table->nr : 1) * 4; 579 spin_unlock(&mm->ioctx_lock); 580 581 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 582 new_nr, GFP_KERNEL); 583 if (!table) 584 return -ENOMEM; 585 586 table->nr = new_nr; 587 588 spin_lock(&mm->ioctx_lock); 589 old = rcu_dereference_raw(mm->ioctx_table); 590 591 if (!old) { 592 rcu_assign_pointer(mm->ioctx_table, table); 593 } else if (table->nr > old->nr) { 594 memcpy(table->table, old->table, 595 old->nr * sizeof(struct kioctx *)); 596 597 rcu_assign_pointer(mm->ioctx_table, table); 598 kfree_rcu(old, rcu); 599 } else { 600 kfree(table); 601 table = old; 602 } 603 } 604 } 605 606 static void aio_nr_sub(unsigned nr) 607 { 608 spin_lock(&aio_nr_lock); 609 if (WARN_ON(aio_nr - nr > aio_nr)) 610 aio_nr = 0; 611 else 612 aio_nr -= nr; 613 spin_unlock(&aio_nr_lock); 614 } 615 616 /* ioctx_alloc 617 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 618 */ 619 static struct kioctx *ioctx_alloc(unsigned nr_events) 620 { 621 struct mm_struct *mm = current->mm; 622 struct kioctx *ctx; 623 int err = -ENOMEM; 624 625 /* 626 * We keep track of the number of available ringbuffer slots, to prevent 627 * overflow (reqs_available), and we also use percpu counters for this. 628 * 629 * So since up to half the slots might be on other cpu's percpu counters 630 * and unavailable, double nr_events so userspace sees what they 631 * expected: additionally, we move req_batch slots to/from percpu 632 * counters at a time, so make sure that isn't 0: 633 */ 634 nr_events = max(nr_events, num_possible_cpus() * 4); 635 nr_events *= 2; 636 637 /* Prevent overflows */ 638 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 639 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 640 pr_debug("ENOMEM: nr_events too high\n"); 641 return ERR_PTR(-EINVAL); 642 } 643 644 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 645 return ERR_PTR(-EAGAIN); 646 647 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 648 if (!ctx) 649 return ERR_PTR(-ENOMEM); 650 651 ctx->max_reqs = nr_events; 652 653 spin_lock_init(&ctx->ctx_lock); 654 spin_lock_init(&ctx->completion_lock); 655 mutex_init(&ctx->ring_lock); 656 /* Protect against page migration throughout kiotx setup by keeping 657 * the ring_lock mutex held until setup is complete. */ 658 mutex_lock(&ctx->ring_lock); 659 init_waitqueue_head(&ctx->wait); 660 661 INIT_LIST_HEAD(&ctx->active_reqs); 662 663 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 664 goto err; 665 666 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 667 goto err; 668 669 ctx->cpu = alloc_percpu(struct kioctx_cpu); 670 if (!ctx->cpu) 671 goto err; 672 673 err = aio_setup_ring(ctx); 674 if (err < 0) 675 goto err; 676 677 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 678 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 679 if (ctx->req_batch < 1) 680 ctx->req_batch = 1; 681 682 /* limit the number of system wide aios */ 683 spin_lock(&aio_nr_lock); 684 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 685 aio_nr + nr_events < aio_nr) { 686 spin_unlock(&aio_nr_lock); 687 err = -EAGAIN; 688 goto err_ctx; 689 } 690 aio_nr += ctx->max_reqs; 691 spin_unlock(&aio_nr_lock); 692 693 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 694 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 695 696 err = ioctx_add_table(ctx, mm); 697 if (err) 698 goto err_cleanup; 699 700 /* Release the ring_lock mutex now that all setup is complete. */ 701 mutex_unlock(&ctx->ring_lock); 702 703 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 704 ctx, ctx->user_id, mm, ctx->nr_events); 705 return ctx; 706 707 err_cleanup: 708 aio_nr_sub(ctx->max_reqs); 709 err_ctx: 710 aio_free_ring(ctx); 711 err: 712 mutex_unlock(&ctx->ring_lock); 713 free_percpu(ctx->cpu); 714 percpu_ref_exit(&ctx->reqs); 715 percpu_ref_exit(&ctx->users); 716 kmem_cache_free(kioctx_cachep, ctx); 717 pr_debug("error allocating ioctx %d\n", err); 718 return ERR_PTR(err); 719 } 720 721 /* kill_ioctx 722 * Cancels all outstanding aio requests on an aio context. Used 723 * when the processes owning a context have all exited to encourage 724 * the rapid destruction of the kioctx. 725 */ 726 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 727 struct completion *requests_done) 728 { 729 struct kioctx_table *table; 730 731 if (atomic_xchg(&ctx->dead, 1)) 732 return -EINVAL; 733 734 735 spin_lock(&mm->ioctx_lock); 736 table = rcu_dereference_raw(mm->ioctx_table); 737 WARN_ON(ctx != table->table[ctx->id]); 738 table->table[ctx->id] = NULL; 739 spin_unlock(&mm->ioctx_lock); 740 741 /* percpu_ref_kill() will do the necessary call_rcu() */ 742 wake_up_all(&ctx->wait); 743 744 /* 745 * It'd be more correct to do this in free_ioctx(), after all 746 * the outstanding kiocbs have finished - but by then io_destroy 747 * has already returned, so io_setup() could potentially return 748 * -EAGAIN with no ioctxs actually in use (as far as userspace 749 * could tell). 750 */ 751 aio_nr_sub(ctx->max_reqs); 752 753 if (ctx->mmap_size) 754 vm_munmap(ctx->mmap_base, ctx->mmap_size); 755 756 ctx->requests_done = requests_done; 757 percpu_ref_kill(&ctx->users); 758 return 0; 759 } 760 761 /* wait_on_sync_kiocb: 762 * Waits on the given sync kiocb to complete. 763 */ 764 ssize_t wait_on_sync_kiocb(struct kiocb *req) 765 { 766 while (!req->ki_ctx) { 767 set_current_state(TASK_UNINTERRUPTIBLE); 768 if (req->ki_ctx) 769 break; 770 io_schedule(); 771 } 772 __set_current_state(TASK_RUNNING); 773 return req->ki_user_data; 774 } 775 EXPORT_SYMBOL(wait_on_sync_kiocb); 776 777 /* 778 * exit_aio: called when the last user of mm goes away. At this point, there is 779 * no way for any new requests to be submited or any of the io_* syscalls to be 780 * called on the context. 781 * 782 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 783 * them. 784 */ 785 void exit_aio(struct mm_struct *mm) 786 { 787 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 788 int i; 789 790 if (!table) 791 return; 792 793 for (i = 0; i < table->nr; ++i) { 794 struct kioctx *ctx = table->table[i]; 795 796 if (!ctx) 797 continue; 798 /* 799 * We don't need to bother with munmap() here - exit_mmap(mm) 800 * is coming and it'll unmap everything. And we simply can't, 801 * this is not necessarily our ->mm. 802 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 803 * that it needs to unmap the area, just set it to 0. 804 */ 805 ctx->mmap_size = 0; 806 kill_ioctx(mm, ctx, NULL); 807 } 808 809 RCU_INIT_POINTER(mm->ioctx_table, NULL); 810 kfree(table); 811 } 812 813 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 814 { 815 struct kioctx_cpu *kcpu; 816 unsigned long flags; 817 818 local_irq_save(flags); 819 kcpu = this_cpu_ptr(ctx->cpu); 820 kcpu->reqs_available += nr; 821 822 while (kcpu->reqs_available >= ctx->req_batch * 2) { 823 kcpu->reqs_available -= ctx->req_batch; 824 atomic_add(ctx->req_batch, &ctx->reqs_available); 825 } 826 827 local_irq_restore(flags); 828 } 829 830 static bool get_reqs_available(struct kioctx *ctx) 831 { 832 struct kioctx_cpu *kcpu; 833 bool ret = false; 834 unsigned long flags; 835 836 local_irq_save(flags); 837 kcpu = this_cpu_ptr(ctx->cpu); 838 if (!kcpu->reqs_available) { 839 int old, avail = atomic_read(&ctx->reqs_available); 840 841 do { 842 if (avail < ctx->req_batch) 843 goto out; 844 845 old = avail; 846 avail = atomic_cmpxchg(&ctx->reqs_available, 847 avail, avail - ctx->req_batch); 848 } while (avail != old); 849 850 kcpu->reqs_available += ctx->req_batch; 851 } 852 853 ret = true; 854 kcpu->reqs_available--; 855 out: 856 local_irq_restore(flags); 857 return ret; 858 } 859 860 /* aio_get_req 861 * Allocate a slot for an aio request. 862 * Returns NULL if no requests are free. 863 */ 864 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 865 { 866 struct kiocb *req; 867 868 if (!get_reqs_available(ctx)) 869 return NULL; 870 871 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 872 if (unlikely(!req)) 873 goto out_put; 874 875 percpu_ref_get(&ctx->reqs); 876 877 req->ki_ctx = ctx; 878 return req; 879 out_put: 880 put_reqs_available(ctx, 1); 881 return NULL; 882 } 883 884 static void kiocb_free(struct kiocb *req) 885 { 886 if (req->ki_filp) 887 fput(req->ki_filp); 888 if (req->ki_eventfd != NULL) 889 eventfd_ctx_put(req->ki_eventfd); 890 kmem_cache_free(kiocb_cachep, req); 891 } 892 893 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 894 { 895 struct aio_ring __user *ring = (void __user *)ctx_id; 896 struct mm_struct *mm = current->mm; 897 struct kioctx *ctx, *ret = NULL; 898 struct kioctx_table *table; 899 unsigned id; 900 901 if (get_user(id, &ring->id)) 902 return NULL; 903 904 rcu_read_lock(); 905 table = rcu_dereference(mm->ioctx_table); 906 907 if (!table || id >= table->nr) 908 goto out; 909 910 ctx = table->table[id]; 911 if (ctx && ctx->user_id == ctx_id) { 912 percpu_ref_get(&ctx->users); 913 ret = ctx; 914 } 915 out: 916 rcu_read_unlock(); 917 return ret; 918 } 919 920 /* aio_complete 921 * Called when the io request on the given iocb is complete. 922 */ 923 void aio_complete(struct kiocb *iocb, long res, long res2) 924 { 925 struct kioctx *ctx = iocb->ki_ctx; 926 struct aio_ring *ring; 927 struct io_event *ev_page, *event; 928 unsigned long flags; 929 unsigned tail, pos; 930 931 /* 932 * Special case handling for sync iocbs: 933 * - events go directly into the iocb for fast handling 934 * - the sync task with the iocb in its stack holds the single iocb 935 * ref, no other paths have a way to get another ref 936 * - the sync task helpfully left a reference to itself in the iocb 937 */ 938 if (is_sync_kiocb(iocb)) { 939 iocb->ki_user_data = res; 940 smp_wmb(); 941 iocb->ki_ctx = ERR_PTR(-EXDEV); 942 wake_up_process(iocb->ki_obj.tsk); 943 return; 944 } 945 946 if (iocb->ki_list.next) { 947 unsigned long flags; 948 949 spin_lock_irqsave(&ctx->ctx_lock, flags); 950 list_del(&iocb->ki_list); 951 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 952 } 953 954 /* 955 * Add a completion event to the ring buffer. Must be done holding 956 * ctx->completion_lock to prevent other code from messing with the tail 957 * pointer since we might be called from irq context. 958 */ 959 spin_lock_irqsave(&ctx->completion_lock, flags); 960 961 tail = ctx->tail; 962 pos = tail + AIO_EVENTS_OFFSET; 963 964 if (++tail >= ctx->nr_events) 965 tail = 0; 966 967 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 968 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 969 970 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 971 event->data = iocb->ki_user_data; 972 event->res = res; 973 event->res2 = res2; 974 975 kunmap_atomic(ev_page); 976 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 977 978 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 979 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 980 res, res2); 981 982 /* after flagging the request as done, we 983 * must never even look at it again 984 */ 985 smp_wmb(); /* make event visible before updating tail */ 986 987 ctx->tail = tail; 988 989 ring = kmap_atomic(ctx->ring_pages[0]); 990 ring->tail = tail; 991 kunmap_atomic(ring); 992 flush_dcache_page(ctx->ring_pages[0]); 993 994 spin_unlock_irqrestore(&ctx->completion_lock, flags); 995 996 pr_debug("added to ring %p at [%u]\n", iocb, tail); 997 998 /* 999 * Check if the user asked us to deliver the result through an 1000 * eventfd. The eventfd_signal() function is safe to be called 1001 * from IRQ context. 1002 */ 1003 if (iocb->ki_eventfd != NULL) 1004 eventfd_signal(iocb->ki_eventfd, 1); 1005 1006 /* everything turned out well, dispose of the aiocb. */ 1007 kiocb_free(iocb); 1008 put_reqs_available(ctx, 1); 1009 1010 /* 1011 * We have to order our ring_info tail store above and test 1012 * of the wait list below outside the wait lock. This is 1013 * like in wake_up_bit() where clearing a bit has to be 1014 * ordered with the unlocked test. 1015 */ 1016 smp_mb(); 1017 1018 if (waitqueue_active(&ctx->wait)) 1019 wake_up(&ctx->wait); 1020 1021 percpu_ref_put(&ctx->reqs); 1022 } 1023 EXPORT_SYMBOL(aio_complete); 1024 1025 /* aio_read_events_ring 1026 * Pull an event off of the ioctx's event ring. Returns the number of 1027 * events fetched 1028 */ 1029 static long aio_read_events_ring(struct kioctx *ctx, 1030 struct io_event __user *event, long nr) 1031 { 1032 struct aio_ring *ring; 1033 unsigned head, tail, pos; 1034 long ret = 0; 1035 int copy_ret; 1036 1037 mutex_lock(&ctx->ring_lock); 1038 1039 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1040 ring = kmap_atomic(ctx->ring_pages[0]); 1041 head = ring->head; 1042 tail = ring->tail; 1043 kunmap_atomic(ring); 1044 1045 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1046 1047 if (head == tail) 1048 goto out; 1049 1050 head %= ctx->nr_events; 1051 tail %= ctx->nr_events; 1052 1053 while (ret < nr) { 1054 long avail; 1055 struct io_event *ev; 1056 struct page *page; 1057 1058 avail = (head <= tail ? tail : ctx->nr_events) - head; 1059 if (head == tail) 1060 break; 1061 1062 avail = min(avail, nr - ret); 1063 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1064 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1065 1066 pos = head + AIO_EVENTS_OFFSET; 1067 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1068 pos %= AIO_EVENTS_PER_PAGE; 1069 1070 ev = kmap(page); 1071 copy_ret = copy_to_user(event + ret, ev + pos, 1072 sizeof(*ev) * avail); 1073 kunmap(page); 1074 1075 if (unlikely(copy_ret)) { 1076 ret = -EFAULT; 1077 goto out; 1078 } 1079 1080 ret += avail; 1081 head += avail; 1082 head %= ctx->nr_events; 1083 } 1084 1085 ring = kmap_atomic(ctx->ring_pages[0]); 1086 ring->head = head; 1087 kunmap_atomic(ring); 1088 flush_dcache_page(ctx->ring_pages[0]); 1089 1090 pr_debug("%li h%u t%u\n", ret, head, tail); 1091 out: 1092 mutex_unlock(&ctx->ring_lock); 1093 1094 return ret; 1095 } 1096 1097 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1098 struct io_event __user *event, long *i) 1099 { 1100 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1101 1102 if (ret > 0) 1103 *i += ret; 1104 1105 if (unlikely(atomic_read(&ctx->dead))) 1106 ret = -EINVAL; 1107 1108 if (!*i) 1109 *i = ret; 1110 1111 return ret < 0 || *i >= min_nr; 1112 } 1113 1114 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1115 struct io_event __user *event, 1116 struct timespec __user *timeout) 1117 { 1118 ktime_t until = { .tv64 = KTIME_MAX }; 1119 long ret = 0; 1120 1121 if (timeout) { 1122 struct timespec ts; 1123 1124 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1125 return -EFAULT; 1126 1127 until = timespec_to_ktime(ts); 1128 } 1129 1130 /* 1131 * Note that aio_read_events() is being called as the conditional - i.e. 1132 * we're calling it after prepare_to_wait() has set task state to 1133 * TASK_INTERRUPTIBLE. 1134 * 1135 * But aio_read_events() can block, and if it blocks it's going to flip 1136 * the task state back to TASK_RUNNING. 1137 * 1138 * This should be ok, provided it doesn't flip the state back to 1139 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1140 * will only happen if the mutex_lock() call blocks, and we then find 1141 * the ringbuffer empty. So in practice we should be ok, but it's 1142 * something to be aware of when touching this code. 1143 */ 1144 wait_event_interruptible_hrtimeout(ctx->wait, 1145 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1146 1147 if (!ret && signal_pending(current)) 1148 ret = -EINTR; 1149 1150 return ret; 1151 } 1152 1153 /* sys_io_setup: 1154 * Create an aio_context capable of receiving at least nr_events. 1155 * ctxp must not point to an aio_context that already exists, and 1156 * must be initialized to 0 prior to the call. On successful 1157 * creation of the aio_context, *ctxp is filled in with the resulting 1158 * handle. May fail with -EINVAL if *ctxp is not initialized, 1159 * if the specified nr_events exceeds internal limits. May fail 1160 * with -EAGAIN if the specified nr_events exceeds the user's limit 1161 * of available events. May fail with -ENOMEM if insufficient kernel 1162 * resources are available. May fail with -EFAULT if an invalid 1163 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1164 * implemented. 1165 */ 1166 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1167 { 1168 struct kioctx *ioctx = NULL; 1169 unsigned long ctx; 1170 long ret; 1171 1172 ret = get_user(ctx, ctxp); 1173 if (unlikely(ret)) 1174 goto out; 1175 1176 ret = -EINVAL; 1177 if (unlikely(ctx || nr_events == 0)) { 1178 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1179 ctx, nr_events); 1180 goto out; 1181 } 1182 1183 ioctx = ioctx_alloc(nr_events); 1184 ret = PTR_ERR(ioctx); 1185 if (!IS_ERR(ioctx)) { 1186 ret = put_user(ioctx->user_id, ctxp); 1187 if (ret) 1188 kill_ioctx(current->mm, ioctx, NULL); 1189 percpu_ref_put(&ioctx->users); 1190 } 1191 1192 out: 1193 return ret; 1194 } 1195 1196 /* sys_io_destroy: 1197 * Destroy the aio_context specified. May cancel any outstanding 1198 * AIOs and block on completion. Will fail with -ENOSYS if not 1199 * implemented. May fail with -EINVAL if the context pointed to 1200 * is invalid. 1201 */ 1202 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1203 { 1204 struct kioctx *ioctx = lookup_ioctx(ctx); 1205 if (likely(NULL != ioctx)) { 1206 struct completion requests_done = 1207 COMPLETION_INITIALIZER_ONSTACK(requests_done); 1208 int ret; 1209 1210 /* Pass requests_done to kill_ioctx() where it can be set 1211 * in a thread-safe way. If we try to set it here then we have 1212 * a race condition if two io_destroy() called simultaneously. 1213 */ 1214 ret = kill_ioctx(current->mm, ioctx, &requests_done); 1215 percpu_ref_put(&ioctx->users); 1216 1217 /* Wait until all IO for the context are done. Otherwise kernel 1218 * keep using user-space buffers even if user thinks the context 1219 * is destroyed. 1220 */ 1221 if (!ret) 1222 wait_for_completion(&requests_done); 1223 1224 return ret; 1225 } 1226 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1227 return -EINVAL; 1228 } 1229 1230 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1231 unsigned long, loff_t); 1232 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1233 1234 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1235 int rw, char __user *buf, 1236 unsigned long *nr_segs, 1237 struct iovec **iovec, 1238 bool compat) 1239 { 1240 ssize_t ret; 1241 1242 *nr_segs = kiocb->ki_nbytes; 1243 1244 #ifdef CONFIG_COMPAT 1245 if (compat) 1246 ret = compat_rw_copy_check_uvector(rw, 1247 (struct compat_iovec __user *)buf, 1248 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1249 else 1250 #endif 1251 ret = rw_copy_check_uvector(rw, 1252 (struct iovec __user *)buf, 1253 *nr_segs, UIO_FASTIOV, *iovec, iovec); 1254 if (ret < 0) 1255 return ret; 1256 1257 /* ki_nbytes now reflect bytes instead of segs */ 1258 kiocb->ki_nbytes = ret; 1259 return 0; 1260 } 1261 1262 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1263 int rw, char __user *buf, 1264 unsigned long *nr_segs, 1265 struct iovec *iovec) 1266 { 1267 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1268 return -EFAULT; 1269 1270 iovec->iov_base = buf; 1271 iovec->iov_len = kiocb->ki_nbytes; 1272 *nr_segs = 1; 1273 return 0; 1274 } 1275 1276 /* 1277 * aio_run_iocb: 1278 * Performs the initial checks and io submission. 1279 */ 1280 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1281 char __user *buf, bool compat) 1282 { 1283 struct file *file = req->ki_filp; 1284 ssize_t ret; 1285 unsigned long nr_segs; 1286 int rw; 1287 fmode_t mode; 1288 aio_rw_op *rw_op; 1289 rw_iter_op *iter_op; 1290 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1291 struct iov_iter iter; 1292 1293 switch (opcode) { 1294 case IOCB_CMD_PREAD: 1295 case IOCB_CMD_PREADV: 1296 mode = FMODE_READ; 1297 rw = READ; 1298 rw_op = file->f_op->aio_read; 1299 iter_op = file->f_op->read_iter; 1300 goto rw_common; 1301 1302 case IOCB_CMD_PWRITE: 1303 case IOCB_CMD_PWRITEV: 1304 mode = FMODE_WRITE; 1305 rw = WRITE; 1306 rw_op = file->f_op->aio_write; 1307 iter_op = file->f_op->write_iter; 1308 goto rw_common; 1309 rw_common: 1310 if (unlikely(!(file->f_mode & mode))) 1311 return -EBADF; 1312 1313 if (!rw_op && !iter_op) 1314 return -EINVAL; 1315 1316 ret = (opcode == IOCB_CMD_PREADV || 1317 opcode == IOCB_CMD_PWRITEV) 1318 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1319 &iovec, compat) 1320 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1321 iovec); 1322 if (!ret) 1323 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1324 if (ret < 0) { 1325 if (iovec != inline_vecs) 1326 kfree(iovec); 1327 return ret; 1328 } 1329 1330 req->ki_nbytes = ret; 1331 1332 /* XXX: move/kill - rw_verify_area()? */ 1333 /* This matches the pread()/pwrite() logic */ 1334 if (req->ki_pos < 0) { 1335 ret = -EINVAL; 1336 break; 1337 } 1338 1339 if (rw == WRITE) 1340 file_start_write(file); 1341 1342 if (iter_op) { 1343 iov_iter_init(&iter, rw, iovec, nr_segs, req->ki_nbytes); 1344 ret = iter_op(req, &iter); 1345 } else { 1346 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1347 } 1348 1349 if (rw == WRITE) 1350 file_end_write(file); 1351 break; 1352 1353 case IOCB_CMD_FDSYNC: 1354 if (!file->f_op->aio_fsync) 1355 return -EINVAL; 1356 1357 ret = file->f_op->aio_fsync(req, 1); 1358 break; 1359 1360 case IOCB_CMD_FSYNC: 1361 if (!file->f_op->aio_fsync) 1362 return -EINVAL; 1363 1364 ret = file->f_op->aio_fsync(req, 0); 1365 break; 1366 1367 default: 1368 pr_debug("EINVAL: no operation provided\n"); 1369 return -EINVAL; 1370 } 1371 1372 if (iovec != inline_vecs) 1373 kfree(iovec); 1374 1375 if (ret != -EIOCBQUEUED) { 1376 /* 1377 * There's no easy way to restart the syscall since other AIO's 1378 * may be already running. Just fail this IO with EINTR. 1379 */ 1380 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1381 ret == -ERESTARTNOHAND || 1382 ret == -ERESTART_RESTARTBLOCK)) 1383 ret = -EINTR; 1384 aio_complete(req, ret, 0); 1385 } 1386 1387 return 0; 1388 } 1389 1390 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1391 struct iocb *iocb, bool compat) 1392 { 1393 struct kiocb *req; 1394 ssize_t ret; 1395 1396 /* enforce forwards compatibility on users */ 1397 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1398 pr_debug("EINVAL: reserve field set\n"); 1399 return -EINVAL; 1400 } 1401 1402 /* prevent overflows */ 1403 if (unlikely( 1404 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1405 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1406 ((ssize_t)iocb->aio_nbytes < 0) 1407 )) { 1408 pr_debug("EINVAL: io_submit: overflow check\n"); 1409 return -EINVAL; 1410 } 1411 1412 req = aio_get_req(ctx); 1413 if (unlikely(!req)) 1414 return -EAGAIN; 1415 1416 req->ki_filp = fget(iocb->aio_fildes); 1417 if (unlikely(!req->ki_filp)) { 1418 ret = -EBADF; 1419 goto out_put_req; 1420 } 1421 1422 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1423 /* 1424 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1425 * instance of the file* now. The file descriptor must be 1426 * an eventfd() fd, and will be signaled for each completed 1427 * event using the eventfd_signal() function. 1428 */ 1429 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1430 if (IS_ERR(req->ki_eventfd)) { 1431 ret = PTR_ERR(req->ki_eventfd); 1432 req->ki_eventfd = NULL; 1433 goto out_put_req; 1434 } 1435 } 1436 1437 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1438 if (unlikely(ret)) { 1439 pr_debug("EFAULT: aio_key\n"); 1440 goto out_put_req; 1441 } 1442 1443 req->ki_obj.user = user_iocb; 1444 req->ki_user_data = iocb->aio_data; 1445 req->ki_pos = iocb->aio_offset; 1446 req->ki_nbytes = iocb->aio_nbytes; 1447 1448 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1449 (char __user *)(unsigned long)iocb->aio_buf, 1450 compat); 1451 if (ret) 1452 goto out_put_req; 1453 1454 return 0; 1455 out_put_req: 1456 put_reqs_available(ctx, 1); 1457 percpu_ref_put(&ctx->reqs); 1458 kiocb_free(req); 1459 return ret; 1460 } 1461 1462 long do_io_submit(aio_context_t ctx_id, long nr, 1463 struct iocb __user *__user *iocbpp, bool compat) 1464 { 1465 struct kioctx *ctx; 1466 long ret = 0; 1467 int i = 0; 1468 struct blk_plug plug; 1469 1470 if (unlikely(nr < 0)) 1471 return -EINVAL; 1472 1473 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1474 nr = LONG_MAX/sizeof(*iocbpp); 1475 1476 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1477 return -EFAULT; 1478 1479 ctx = lookup_ioctx(ctx_id); 1480 if (unlikely(!ctx)) { 1481 pr_debug("EINVAL: invalid context id\n"); 1482 return -EINVAL; 1483 } 1484 1485 blk_start_plug(&plug); 1486 1487 /* 1488 * AKPM: should this return a partial result if some of the IOs were 1489 * successfully submitted? 1490 */ 1491 for (i=0; i<nr; i++) { 1492 struct iocb __user *user_iocb; 1493 struct iocb tmp; 1494 1495 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1496 ret = -EFAULT; 1497 break; 1498 } 1499 1500 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1501 ret = -EFAULT; 1502 break; 1503 } 1504 1505 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1506 if (ret) 1507 break; 1508 } 1509 blk_finish_plug(&plug); 1510 1511 percpu_ref_put(&ctx->users); 1512 return i ? i : ret; 1513 } 1514 1515 /* sys_io_submit: 1516 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1517 * the number of iocbs queued. May return -EINVAL if the aio_context 1518 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1519 * *iocbpp[0] is not properly initialized, if the operation specified 1520 * is invalid for the file descriptor in the iocb. May fail with 1521 * -EFAULT if any of the data structures point to invalid data. May 1522 * fail with -EBADF if the file descriptor specified in the first 1523 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1524 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1525 * fail with -ENOSYS if not implemented. 1526 */ 1527 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1528 struct iocb __user * __user *, iocbpp) 1529 { 1530 return do_io_submit(ctx_id, nr, iocbpp, 0); 1531 } 1532 1533 /* lookup_kiocb 1534 * Finds a given iocb for cancellation. 1535 */ 1536 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1537 u32 key) 1538 { 1539 struct list_head *pos; 1540 1541 assert_spin_locked(&ctx->ctx_lock); 1542 1543 if (key != KIOCB_KEY) 1544 return NULL; 1545 1546 /* TODO: use a hash or array, this sucks. */ 1547 list_for_each(pos, &ctx->active_reqs) { 1548 struct kiocb *kiocb = list_kiocb(pos); 1549 if (kiocb->ki_obj.user == iocb) 1550 return kiocb; 1551 } 1552 return NULL; 1553 } 1554 1555 /* sys_io_cancel: 1556 * Attempts to cancel an iocb previously passed to io_submit. If 1557 * the operation is successfully cancelled, the resulting event is 1558 * copied into the memory pointed to by result without being placed 1559 * into the completion queue and 0 is returned. May fail with 1560 * -EFAULT if any of the data structures pointed to are invalid. 1561 * May fail with -EINVAL if aio_context specified by ctx_id is 1562 * invalid. May fail with -EAGAIN if the iocb specified was not 1563 * cancelled. Will fail with -ENOSYS if not implemented. 1564 */ 1565 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1566 struct io_event __user *, result) 1567 { 1568 struct kioctx *ctx; 1569 struct kiocb *kiocb; 1570 u32 key; 1571 int ret; 1572 1573 ret = get_user(key, &iocb->aio_key); 1574 if (unlikely(ret)) 1575 return -EFAULT; 1576 1577 ctx = lookup_ioctx(ctx_id); 1578 if (unlikely(!ctx)) 1579 return -EINVAL; 1580 1581 spin_lock_irq(&ctx->ctx_lock); 1582 1583 kiocb = lookup_kiocb(ctx, iocb, key); 1584 if (kiocb) 1585 ret = kiocb_cancel(kiocb); 1586 else 1587 ret = -EINVAL; 1588 1589 spin_unlock_irq(&ctx->ctx_lock); 1590 1591 if (!ret) { 1592 /* 1593 * The result argument is no longer used - the io_event is 1594 * always delivered via the ring buffer. -EINPROGRESS indicates 1595 * cancellation is progress: 1596 */ 1597 ret = -EINPROGRESS; 1598 } 1599 1600 percpu_ref_put(&ctx->users); 1601 1602 return ret; 1603 } 1604 1605 /* io_getevents: 1606 * Attempts to read at least min_nr events and up to nr events from 1607 * the completion queue for the aio_context specified by ctx_id. If 1608 * it succeeds, the number of read events is returned. May fail with 1609 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1610 * out of range, if timeout is out of range. May fail with -EFAULT 1611 * if any of the memory specified is invalid. May return 0 or 1612 * < min_nr if the timeout specified by timeout has elapsed 1613 * before sufficient events are available, where timeout == NULL 1614 * specifies an infinite timeout. Note that the timeout pointed to by 1615 * timeout is relative. Will fail with -ENOSYS if not implemented. 1616 */ 1617 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1618 long, min_nr, 1619 long, nr, 1620 struct io_event __user *, events, 1621 struct timespec __user *, timeout) 1622 { 1623 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1624 long ret = -EINVAL; 1625 1626 if (likely(ioctx)) { 1627 if (likely(min_nr <= nr && min_nr >= 0)) 1628 ret = read_events(ioctx, min_nr, nr, events, timeout); 1629 percpu_ref_put(&ioctx->users); 1630 } 1631 return ret; 1632 } 1633