xref: /openbmc/linux/fs/aio.c (revision 2699126b)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head		rcu;
72 	unsigned		nr;
73 	struct kioctx __rcu	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct rcu_head		free_rcu;
119 	struct work_struct	free_work;	/* see free_ioctx() */
120 
121 	/*
122 	 * signals when all in-flight requests are done
123 	 */
124 	struct ctx_rq_wait	*rq_wait;
125 
126 	struct {
127 		/*
128 		 * This counts the number of available slots in the ringbuffer,
129 		 * so we avoid overflowing it: it's decremented (if positive)
130 		 * when allocating a kiocb and incremented when the resulting
131 		 * io_event is pulled off the ringbuffer.
132 		 *
133 		 * We batch accesses to it with a percpu version.
134 		 */
135 		atomic_t	reqs_available;
136 	} ____cacheline_aligned_in_smp;
137 
138 	struct {
139 		spinlock_t	ctx_lock;
140 		struct list_head active_reqs;	/* used for cancellation */
141 	} ____cacheline_aligned_in_smp;
142 
143 	struct {
144 		struct mutex	ring_lock;
145 		wait_queue_head_t wait;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		unsigned	tail;
150 		unsigned	completed_events;
151 		spinlock_t	completion_lock;
152 	} ____cacheline_aligned_in_smp;
153 
154 	struct page		*internal_pages[AIO_RING_PAGES];
155 	struct file		*aio_ring_file;
156 
157 	unsigned		id;
158 };
159 
160 /*
161  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
162  * cancelled or completed (this makes a certain amount of sense because
163  * successful cancellation - io_cancel() - does deliver the completion to
164  * userspace).
165  *
166  * And since most things don't implement kiocb cancellation and we'd really like
167  * kiocb completion to be lockless when possible, we use ki_cancel to
168  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
169  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
170  */
171 #define KIOCB_CANCELLED		((void *) (~0ULL))
172 
173 struct aio_kiocb {
174 	struct kiocb		common;
175 
176 	struct kioctx		*ki_ctx;
177 	kiocb_cancel_fn		*ki_cancel;
178 
179 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
180 	__u64			ki_user_data;	/* user's data for completion */
181 
182 	struct list_head	ki_list;	/* the aio core uses this
183 						 * for cancellation */
184 
185 	/*
186 	 * If the aio_resfd field of the userspace iocb is not zero,
187 	 * this is the underlying eventfd context to deliver events to.
188 	 */
189 	struct eventfd_ctx	*ki_eventfd;
190 };
191 
192 /*------ sysctl variables----*/
193 static DEFINE_SPINLOCK(aio_nr_lock);
194 unsigned long aio_nr;		/* current system wide number of aio requests */
195 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
196 /*----end sysctl variables---*/
197 
198 static struct kmem_cache	*kiocb_cachep;
199 static struct kmem_cache	*kioctx_cachep;
200 
201 static struct vfsmount *aio_mnt;
202 
203 static const struct file_operations aio_ring_fops;
204 static const struct address_space_operations aio_ctx_aops;
205 
206 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
207 {
208 	struct qstr this = QSTR_INIT("[aio]", 5);
209 	struct file *file;
210 	struct path path;
211 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
212 	if (IS_ERR(inode))
213 		return ERR_CAST(inode);
214 
215 	inode->i_mapping->a_ops = &aio_ctx_aops;
216 	inode->i_mapping->private_data = ctx;
217 	inode->i_size = PAGE_SIZE * nr_pages;
218 
219 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
220 	if (!path.dentry) {
221 		iput(inode);
222 		return ERR_PTR(-ENOMEM);
223 	}
224 	path.mnt = mntget(aio_mnt);
225 
226 	d_instantiate(path.dentry, inode);
227 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
228 	if (IS_ERR(file)) {
229 		path_put(&path);
230 		return file;
231 	}
232 
233 	file->f_flags = O_RDWR;
234 	return file;
235 }
236 
237 static struct dentry *aio_mount(struct file_system_type *fs_type,
238 				int flags, const char *dev_name, void *data)
239 {
240 	static const struct dentry_operations ops = {
241 		.d_dname	= simple_dname,
242 	};
243 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
244 					   AIO_RING_MAGIC);
245 
246 	if (!IS_ERR(root))
247 		root->d_sb->s_iflags |= SB_I_NOEXEC;
248 	return root;
249 }
250 
251 /* aio_setup
252  *	Creates the slab caches used by the aio routines, panic on
253  *	failure as this is done early during the boot sequence.
254  */
255 static int __init aio_setup(void)
256 {
257 	static struct file_system_type aio_fs = {
258 		.name		= "aio",
259 		.mount		= aio_mount,
260 		.kill_sb	= kill_anon_super,
261 	};
262 	aio_mnt = kern_mount(&aio_fs);
263 	if (IS_ERR(aio_mnt))
264 		panic("Failed to create aio fs mount.");
265 
266 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
268 
269 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
270 
271 	return 0;
272 }
273 __initcall(aio_setup);
274 
275 static void put_aio_ring_file(struct kioctx *ctx)
276 {
277 	struct file *aio_ring_file = ctx->aio_ring_file;
278 	struct address_space *i_mapping;
279 
280 	if (aio_ring_file) {
281 		truncate_setsize(file_inode(aio_ring_file), 0);
282 
283 		/* Prevent further access to the kioctx from migratepages */
284 		i_mapping = aio_ring_file->f_mapping;
285 		spin_lock(&i_mapping->private_lock);
286 		i_mapping->private_data = NULL;
287 		ctx->aio_ring_file = NULL;
288 		spin_unlock(&i_mapping->private_lock);
289 
290 		fput(aio_ring_file);
291 	}
292 }
293 
294 static void aio_free_ring(struct kioctx *ctx)
295 {
296 	int i;
297 
298 	/* Disconnect the kiotx from the ring file.  This prevents future
299 	 * accesses to the kioctx from page migration.
300 	 */
301 	put_aio_ring_file(ctx);
302 
303 	for (i = 0; i < ctx->nr_pages; i++) {
304 		struct page *page;
305 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
306 				page_count(ctx->ring_pages[i]));
307 		page = ctx->ring_pages[i];
308 		if (!page)
309 			continue;
310 		ctx->ring_pages[i] = NULL;
311 		put_page(page);
312 	}
313 
314 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
315 		kfree(ctx->ring_pages);
316 		ctx->ring_pages = NULL;
317 	}
318 }
319 
320 static int aio_ring_mremap(struct vm_area_struct *vma)
321 {
322 	struct file *file = vma->vm_file;
323 	struct mm_struct *mm = vma->vm_mm;
324 	struct kioctx_table *table;
325 	int i, res = -EINVAL;
326 
327 	spin_lock(&mm->ioctx_lock);
328 	rcu_read_lock();
329 	table = rcu_dereference(mm->ioctx_table);
330 	for (i = 0; i < table->nr; i++) {
331 		struct kioctx *ctx;
332 
333 		ctx = rcu_dereference(table->table[i]);
334 		if (ctx && ctx->aio_ring_file == file) {
335 			if (!atomic_read(&ctx->dead)) {
336 				ctx->user_id = ctx->mmap_base = vma->vm_start;
337 				res = 0;
338 			}
339 			break;
340 		}
341 	}
342 
343 	rcu_read_unlock();
344 	spin_unlock(&mm->ioctx_lock);
345 	return res;
346 }
347 
348 static const struct vm_operations_struct aio_ring_vm_ops = {
349 	.mremap		= aio_ring_mremap,
350 #if IS_ENABLED(CONFIG_MMU)
351 	.fault		= filemap_fault,
352 	.map_pages	= filemap_map_pages,
353 	.page_mkwrite	= filemap_page_mkwrite,
354 #endif
355 };
356 
357 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
358 {
359 	vma->vm_flags |= VM_DONTEXPAND;
360 	vma->vm_ops = &aio_ring_vm_ops;
361 	return 0;
362 }
363 
364 static const struct file_operations aio_ring_fops = {
365 	.mmap = aio_ring_mmap,
366 };
367 
368 #if IS_ENABLED(CONFIG_MIGRATION)
369 static int aio_migratepage(struct address_space *mapping, struct page *new,
370 			struct page *old, enum migrate_mode mode)
371 {
372 	struct kioctx *ctx;
373 	unsigned long flags;
374 	pgoff_t idx;
375 	int rc;
376 
377 	/*
378 	 * We cannot support the _NO_COPY case here, because copy needs to
379 	 * happen under the ctx->completion_lock. That does not work with the
380 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 	 */
382 	if (mode == MIGRATE_SYNC_NO_COPY)
383 		return -EINVAL;
384 
385 	rc = 0;
386 
387 	/* mapping->private_lock here protects against the kioctx teardown.  */
388 	spin_lock(&mapping->private_lock);
389 	ctx = mapping->private_data;
390 	if (!ctx) {
391 		rc = -EINVAL;
392 		goto out;
393 	}
394 
395 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
396 	 * to the ring's head, and prevents page migration from mucking in
397 	 * a partially initialized kiotx.
398 	 */
399 	if (!mutex_trylock(&ctx->ring_lock)) {
400 		rc = -EAGAIN;
401 		goto out;
402 	}
403 
404 	idx = old->index;
405 	if (idx < (pgoff_t)ctx->nr_pages) {
406 		/* Make sure the old page hasn't already been changed */
407 		if (ctx->ring_pages[idx] != old)
408 			rc = -EAGAIN;
409 	} else
410 		rc = -EINVAL;
411 
412 	if (rc != 0)
413 		goto out_unlock;
414 
415 	/* Writeback must be complete */
416 	BUG_ON(PageWriteback(old));
417 	get_page(new);
418 
419 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
420 	if (rc != MIGRATEPAGE_SUCCESS) {
421 		put_page(new);
422 		goto out_unlock;
423 	}
424 
425 	/* Take completion_lock to prevent other writes to the ring buffer
426 	 * while the old page is copied to the new.  This prevents new
427 	 * events from being lost.
428 	 */
429 	spin_lock_irqsave(&ctx->completion_lock, flags);
430 	migrate_page_copy(new, old);
431 	BUG_ON(ctx->ring_pages[idx] != old);
432 	ctx->ring_pages[idx] = new;
433 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
434 
435 	/* The old page is no longer accessible. */
436 	put_page(old);
437 
438 out_unlock:
439 	mutex_unlock(&ctx->ring_lock);
440 out:
441 	spin_unlock(&mapping->private_lock);
442 	return rc;
443 }
444 #endif
445 
446 static const struct address_space_operations aio_ctx_aops = {
447 	.set_page_dirty = __set_page_dirty_no_writeback,
448 #if IS_ENABLED(CONFIG_MIGRATION)
449 	.migratepage	= aio_migratepage,
450 #endif
451 };
452 
453 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
454 {
455 	struct aio_ring *ring;
456 	struct mm_struct *mm = current->mm;
457 	unsigned long size, unused;
458 	int nr_pages;
459 	int i;
460 	struct file *file;
461 
462 	/* Compensate for the ring buffer's head/tail overlap entry */
463 	nr_events += 2;	/* 1 is required, 2 for good luck */
464 
465 	size = sizeof(struct aio_ring);
466 	size += sizeof(struct io_event) * nr_events;
467 
468 	nr_pages = PFN_UP(size);
469 	if (nr_pages < 0)
470 		return -EINVAL;
471 
472 	file = aio_private_file(ctx, nr_pages);
473 	if (IS_ERR(file)) {
474 		ctx->aio_ring_file = NULL;
475 		return -ENOMEM;
476 	}
477 
478 	ctx->aio_ring_file = file;
479 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
480 			/ sizeof(struct io_event);
481 
482 	ctx->ring_pages = ctx->internal_pages;
483 	if (nr_pages > AIO_RING_PAGES) {
484 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
485 					  GFP_KERNEL);
486 		if (!ctx->ring_pages) {
487 			put_aio_ring_file(ctx);
488 			return -ENOMEM;
489 		}
490 	}
491 
492 	for (i = 0; i < nr_pages; i++) {
493 		struct page *page;
494 		page = find_or_create_page(file->f_mapping,
495 					   i, GFP_HIGHUSER | __GFP_ZERO);
496 		if (!page)
497 			break;
498 		pr_debug("pid(%d) page[%d]->count=%d\n",
499 			 current->pid, i, page_count(page));
500 		SetPageUptodate(page);
501 		unlock_page(page);
502 
503 		ctx->ring_pages[i] = page;
504 	}
505 	ctx->nr_pages = i;
506 
507 	if (unlikely(i != nr_pages)) {
508 		aio_free_ring(ctx);
509 		return -ENOMEM;
510 	}
511 
512 	ctx->mmap_size = nr_pages * PAGE_SIZE;
513 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
514 
515 	if (down_write_killable(&mm->mmap_sem)) {
516 		ctx->mmap_size = 0;
517 		aio_free_ring(ctx);
518 		return -EINTR;
519 	}
520 
521 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
522 				       PROT_READ | PROT_WRITE,
523 				       MAP_SHARED, 0, &unused, NULL);
524 	up_write(&mm->mmap_sem);
525 	if (IS_ERR((void *)ctx->mmap_base)) {
526 		ctx->mmap_size = 0;
527 		aio_free_ring(ctx);
528 		return -ENOMEM;
529 	}
530 
531 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
532 
533 	ctx->user_id = ctx->mmap_base;
534 	ctx->nr_events = nr_events; /* trusted copy */
535 
536 	ring = kmap_atomic(ctx->ring_pages[0]);
537 	ring->nr = nr_events;	/* user copy */
538 	ring->id = ~0U;
539 	ring->head = ring->tail = 0;
540 	ring->magic = AIO_RING_MAGIC;
541 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
542 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
543 	ring->header_length = sizeof(struct aio_ring);
544 	kunmap_atomic(ring);
545 	flush_dcache_page(ctx->ring_pages[0]);
546 
547 	return 0;
548 }
549 
550 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
551 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
552 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553 
554 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
555 {
556 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
557 	struct kioctx *ctx = req->ki_ctx;
558 	unsigned long flags;
559 
560 	spin_lock_irqsave(&ctx->ctx_lock, flags);
561 
562 	if (!req->ki_list.next)
563 		list_add(&req->ki_list, &ctx->active_reqs);
564 
565 	req->ki_cancel = cancel;
566 
567 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
568 }
569 EXPORT_SYMBOL(kiocb_set_cancel_fn);
570 
571 static int kiocb_cancel(struct aio_kiocb *kiocb)
572 {
573 	kiocb_cancel_fn *old, *cancel;
574 
575 	/*
576 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
577 	 * actually has a cancel function, hence the cmpxchg()
578 	 */
579 
580 	cancel = READ_ONCE(kiocb->ki_cancel);
581 	do {
582 		if (!cancel || cancel == KIOCB_CANCELLED)
583 			return -EINVAL;
584 
585 		old = cancel;
586 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
587 	} while (cancel != old);
588 
589 	return cancel(&kiocb->common);
590 }
591 
592 /*
593  * free_ioctx() should be RCU delayed to synchronize against the RCU
594  * protected lookup_ioctx() and also needs process context to call
595  * aio_free_ring(), so the double bouncing through kioctx->free_rcu and
596  * ->free_work.
597  */
598 static void free_ioctx(struct work_struct *work)
599 {
600 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
601 
602 	pr_debug("freeing %p\n", ctx);
603 
604 	aio_free_ring(ctx);
605 	free_percpu(ctx->cpu);
606 	percpu_ref_exit(&ctx->reqs);
607 	percpu_ref_exit(&ctx->users);
608 	kmem_cache_free(kioctx_cachep, ctx);
609 }
610 
611 static void free_ioctx_rcufn(struct rcu_head *head)
612 {
613 	struct kioctx *ctx = container_of(head, struct kioctx, free_rcu);
614 
615 	INIT_WORK(&ctx->free_work, free_ioctx);
616 	schedule_work(&ctx->free_work);
617 }
618 
619 static void free_ioctx_reqs(struct percpu_ref *ref)
620 {
621 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
622 
623 	/* At this point we know that there are no any in-flight requests */
624 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
625 		complete(&ctx->rq_wait->comp);
626 
627 	/* Synchronize against RCU protected table->table[] dereferences */
628 	call_rcu(&ctx->free_rcu, free_ioctx_rcufn);
629 }
630 
631 /*
632  * When this function runs, the kioctx has been removed from the "hash table"
633  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
634  * now it's safe to cancel any that need to be.
635  */
636 static void free_ioctx_users(struct percpu_ref *ref)
637 {
638 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
639 	struct aio_kiocb *req;
640 
641 	spin_lock_irq(&ctx->ctx_lock);
642 
643 	while (!list_empty(&ctx->active_reqs)) {
644 		req = list_first_entry(&ctx->active_reqs,
645 				       struct aio_kiocb, ki_list);
646 
647 		list_del_init(&req->ki_list);
648 		kiocb_cancel(req);
649 	}
650 
651 	spin_unlock_irq(&ctx->ctx_lock);
652 
653 	percpu_ref_kill(&ctx->reqs);
654 	percpu_ref_put(&ctx->reqs);
655 }
656 
657 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
658 {
659 	unsigned i, new_nr;
660 	struct kioctx_table *table, *old;
661 	struct aio_ring *ring;
662 
663 	spin_lock(&mm->ioctx_lock);
664 	table = rcu_dereference_raw(mm->ioctx_table);
665 
666 	while (1) {
667 		if (table)
668 			for (i = 0; i < table->nr; i++)
669 				if (!rcu_access_pointer(table->table[i])) {
670 					ctx->id = i;
671 					rcu_assign_pointer(table->table[i], ctx);
672 					spin_unlock(&mm->ioctx_lock);
673 
674 					/* While kioctx setup is in progress,
675 					 * we are protected from page migration
676 					 * changes ring_pages by ->ring_lock.
677 					 */
678 					ring = kmap_atomic(ctx->ring_pages[0]);
679 					ring->id = ctx->id;
680 					kunmap_atomic(ring);
681 					return 0;
682 				}
683 
684 		new_nr = (table ? table->nr : 1) * 4;
685 		spin_unlock(&mm->ioctx_lock);
686 
687 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
688 				new_nr, GFP_KERNEL);
689 		if (!table)
690 			return -ENOMEM;
691 
692 		table->nr = new_nr;
693 
694 		spin_lock(&mm->ioctx_lock);
695 		old = rcu_dereference_raw(mm->ioctx_table);
696 
697 		if (!old) {
698 			rcu_assign_pointer(mm->ioctx_table, table);
699 		} else if (table->nr > old->nr) {
700 			memcpy(table->table, old->table,
701 			       old->nr * sizeof(struct kioctx *));
702 
703 			rcu_assign_pointer(mm->ioctx_table, table);
704 			kfree_rcu(old, rcu);
705 		} else {
706 			kfree(table);
707 			table = old;
708 		}
709 	}
710 }
711 
712 static void aio_nr_sub(unsigned nr)
713 {
714 	spin_lock(&aio_nr_lock);
715 	if (WARN_ON(aio_nr - nr > aio_nr))
716 		aio_nr = 0;
717 	else
718 		aio_nr -= nr;
719 	spin_unlock(&aio_nr_lock);
720 }
721 
722 /* ioctx_alloc
723  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
724  */
725 static struct kioctx *ioctx_alloc(unsigned nr_events)
726 {
727 	struct mm_struct *mm = current->mm;
728 	struct kioctx *ctx;
729 	int err = -ENOMEM;
730 
731 	/*
732 	 * Store the original nr_events -- what userspace passed to io_setup(),
733 	 * for counting against the global limit -- before it changes.
734 	 */
735 	unsigned int max_reqs = nr_events;
736 
737 	/*
738 	 * We keep track of the number of available ringbuffer slots, to prevent
739 	 * overflow (reqs_available), and we also use percpu counters for this.
740 	 *
741 	 * So since up to half the slots might be on other cpu's percpu counters
742 	 * and unavailable, double nr_events so userspace sees what they
743 	 * expected: additionally, we move req_batch slots to/from percpu
744 	 * counters at a time, so make sure that isn't 0:
745 	 */
746 	nr_events = max(nr_events, num_possible_cpus() * 4);
747 	nr_events *= 2;
748 
749 	/* Prevent overflows */
750 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
751 		pr_debug("ENOMEM: nr_events too high\n");
752 		return ERR_PTR(-EINVAL);
753 	}
754 
755 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
756 		return ERR_PTR(-EAGAIN);
757 
758 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
759 	if (!ctx)
760 		return ERR_PTR(-ENOMEM);
761 
762 	ctx->max_reqs = max_reqs;
763 
764 	spin_lock_init(&ctx->ctx_lock);
765 	spin_lock_init(&ctx->completion_lock);
766 	mutex_init(&ctx->ring_lock);
767 	/* Protect against page migration throughout kiotx setup by keeping
768 	 * the ring_lock mutex held until setup is complete. */
769 	mutex_lock(&ctx->ring_lock);
770 	init_waitqueue_head(&ctx->wait);
771 
772 	INIT_LIST_HEAD(&ctx->active_reqs);
773 
774 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
775 		goto err;
776 
777 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
778 		goto err;
779 
780 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
781 	if (!ctx->cpu)
782 		goto err;
783 
784 	err = aio_setup_ring(ctx, nr_events);
785 	if (err < 0)
786 		goto err;
787 
788 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
789 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
790 	if (ctx->req_batch < 1)
791 		ctx->req_batch = 1;
792 
793 	/* limit the number of system wide aios */
794 	spin_lock(&aio_nr_lock);
795 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
796 	    aio_nr + ctx->max_reqs < aio_nr) {
797 		spin_unlock(&aio_nr_lock);
798 		err = -EAGAIN;
799 		goto err_ctx;
800 	}
801 	aio_nr += ctx->max_reqs;
802 	spin_unlock(&aio_nr_lock);
803 
804 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
805 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
806 
807 	err = ioctx_add_table(ctx, mm);
808 	if (err)
809 		goto err_cleanup;
810 
811 	/* Release the ring_lock mutex now that all setup is complete. */
812 	mutex_unlock(&ctx->ring_lock);
813 
814 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
815 		 ctx, ctx->user_id, mm, ctx->nr_events);
816 	return ctx;
817 
818 err_cleanup:
819 	aio_nr_sub(ctx->max_reqs);
820 err_ctx:
821 	atomic_set(&ctx->dead, 1);
822 	if (ctx->mmap_size)
823 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
824 	aio_free_ring(ctx);
825 err:
826 	mutex_unlock(&ctx->ring_lock);
827 	free_percpu(ctx->cpu);
828 	percpu_ref_exit(&ctx->reqs);
829 	percpu_ref_exit(&ctx->users);
830 	kmem_cache_free(kioctx_cachep, ctx);
831 	pr_debug("error allocating ioctx %d\n", err);
832 	return ERR_PTR(err);
833 }
834 
835 /* kill_ioctx
836  *	Cancels all outstanding aio requests on an aio context.  Used
837  *	when the processes owning a context have all exited to encourage
838  *	the rapid destruction of the kioctx.
839  */
840 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
841 		      struct ctx_rq_wait *wait)
842 {
843 	struct kioctx_table *table;
844 
845 	spin_lock(&mm->ioctx_lock);
846 	if (atomic_xchg(&ctx->dead, 1)) {
847 		spin_unlock(&mm->ioctx_lock);
848 		return -EINVAL;
849 	}
850 
851 	table = rcu_dereference_raw(mm->ioctx_table);
852 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
853 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
854 	spin_unlock(&mm->ioctx_lock);
855 
856 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
857 	wake_up_all(&ctx->wait);
858 
859 	/*
860 	 * It'd be more correct to do this in free_ioctx(), after all
861 	 * the outstanding kiocbs have finished - but by then io_destroy
862 	 * has already returned, so io_setup() could potentially return
863 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
864 	 *  could tell).
865 	 */
866 	aio_nr_sub(ctx->max_reqs);
867 
868 	if (ctx->mmap_size)
869 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
870 
871 	ctx->rq_wait = wait;
872 	percpu_ref_kill(&ctx->users);
873 	return 0;
874 }
875 
876 /*
877  * exit_aio: called when the last user of mm goes away.  At this point, there is
878  * no way for any new requests to be submited or any of the io_* syscalls to be
879  * called on the context.
880  *
881  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
882  * them.
883  */
884 void exit_aio(struct mm_struct *mm)
885 {
886 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
887 	struct ctx_rq_wait wait;
888 	int i, skipped;
889 
890 	if (!table)
891 		return;
892 
893 	atomic_set(&wait.count, table->nr);
894 	init_completion(&wait.comp);
895 
896 	skipped = 0;
897 	for (i = 0; i < table->nr; ++i) {
898 		struct kioctx *ctx =
899 			rcu_dereference_protected(table->table[i], true);
900 
901 		if (!ctx) {
902 			skipped++;
903 			continue;
904 		}
905 
906 		/*
907 		 * We don't need to bother with munmap() here - exit_mmap(mm)
908 		 * is coming and it'll unmap everything. And we simply can't,
909 		 * this is not necessarily our ->mm.
910 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
911 		 * that it needs to unmap the area, just set it to 0.
912 		 */
913 		ctx->mmap_size = 0;
914 		kill_ioctx(mm, ctx, &wait);
915 	}
916 
917 	if (!atomic_sub_and_test(skipped, &wait.count)) {
918 		/* Wait until all IO for the context are done. */
919 		wait_for_completion(&wait.comp);
920 	}
921 
922 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
923 	kfree(table);
924 }
925 
926 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
927 {
928 	struct kioctx_cpu *kcpu;
929 	unsigned long flags;
930 
931 	local_irq_save(flags);
932 	kcpu = this_cpu_ptr(ctx->cpu);
933 	kcpu->reqs_available += nr;
934 
935 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
936 		kcpu->reqs_available -= ctx->req_batch;
937 		atomic_add(ctx->req_batch, &ctx->reqs_available);
938 	}
939 
940 	local_irq_restore(flags);
941 }
942 
943 static bool get_reqs_available(struct kioctx *ctx)
944 {
945 	struct kioctx_cpu *kcpu;
946 	bool ret = false;
947 	unsigned long flags;
948 
949 	local_irq_save(flags);
950 	kcpu = this_cpu_ptr(ctx->cpu);
951 	if (!kcpu->reqs_available) {
952 		int old, avail = atomic_read(&ctx->reqs_available);
953 
954 		do {
955 			if (avail < ctx->req_batch)
956 				goto out;
957 
958 			old = avail;
959 			avail = atomic_cmpxchg(&ctx->reqs_available,
960 					       avail, avail - ctx->req_batch);
961 		} while (avail != old);
962 
963 		kcpu->reqs_available += ctx->req_batch;
964 	}
965 
966 	ret = true;
967 	kcpu->reqs_available--;
968 out:
969 	local_irq_restore(flags);
970 	return ret;
971 }
972 
973 /* refill_reqs_available
974  *	Updates the reqs_available reference counts used for tracking the
975  *	number of free slots in the completion ring.  This can be called
976  *	from aio_complete() (to optimistically update reqs_available) or
977  *	from aio_get_req() (the we're out of events case).  It must be
978  *	called holding ctx->completion_lock.
979  */
980 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
981                                   unsigned tail)
982 {
983 	unsigned events_in_ring, completed;
984 
985 	/* Clamp head since userland can write to it. */
986 	head %= ctx->nr_events;
987 	if (head <= tail)
988 		events_in_ring = tail - head;
989 	else
990 		events_in_ring = ctx->nr_events - (head - tail);
991 
992 	completed = ctx->completed_events;
993 	if (events_in_ring < completed)
994 		completed -= events_in_ring;
995 	else
996 		completed = 0;
997 
998 	if (!completed)
999 		return;
1000 
1001 	ctx->completed_events -= completed;
1002 	put_reqs_available(ctx, completed);
1003 }
1004 
1005 /* user_refill_reqs_available
1006  *	Called to refill reqs_available when aio_get_req() encounters an
1007  *	out of space in the completion ring.
1008  */
1009 static void user_refill_reqs_available(struct kioctx *ctx)
1010 {
1011 	spin_lock_irq(&ctx->completion_lock);
1012 	if (ctx->completed_events) {
1013 		struct aio_ring *ring;
1014 		unsigned head;
1015 
1016 		/* Access of ring->head may race with aio_read_events_ring()
1017 		 * here, but that's okay since whether we read the old version
1018 		 * or the new version, and either will be valid.  The important
1019 		 * part is that head cannot pass tail since we prevent
1020 		 * aio_complete() from updating tail by holding
1021 		 * ctx->completion_lock.  Even if head is invalid, the check
1022 		 * against ctx->completed_events below will make sure we do the
1023 		 * safe/right thing.
1024 		 */
1025 		ring = kmap_atomic(ctx->ring_pages[0]);
1026 		head = ring->head;
1027 		kunmap_atomic(ring);
1028 
1029 		refill_reqs_available(ctx, head, ctx->tail);
1030 	}
1031 
1032 	spin_unlock_irq(&ctx->completion_lock);
1033 }
1034 
1035 /* aio_get_req
1036  *	Allocate a slot for an aio request.
1037  * Returns NULL if no requests are free.
1038  */
1039 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1040 {
1041 	struct aio_kiocb *req;
1042 
1043 	if (!get_reqs_available(ctx)) {
1044 		user_refill_reqs_available(ctx);
1045 		if (!get_reqs_available(ctx))
1046 			return NULL;
1047 	}
1048 
1049 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1050 	if (unlikely(!req))
1051 		goto out_put;
1052 
1053 	percpu_ref_get(&ctx->reqs);
1054 
1055 	req->ki_ctx = ctx;
1056 	return req;
1057 out_put:
1058 	put_reqs_available(ctx, 1);
1059 	return NULL;
1060 }
1061 
1062 static void kiocb_free(struct aio_kiocb *req)
1063 {
1064 	if (req->common.ki_filp)
1065 		fput(req->common.ki_filp);
1066 	if (req->ki_eventfd != NULL)
1067 		eventfd_ctx_put(req->ki_eventfd);
1068 	kmem_cache_free(kiocb_cachep, req);
1069 }
1070 
1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1072 {
1073 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1074 	struct mm_struct *mm = current->mm;
1075 	struct kioctx *ctx, *ret = NULL;
1076 	struct kioctx_table *table;
1077 	unsigned id;
1078 
1079 	if (get_user(id, &ring->id))
1080 		return NULL;
1081 
1082 	rcu_read_lock();
1083 	table = rcu_dereference(mm->ioctx_table);
1084 
1085 	if (!table || id >= table->nr)
1086 		goto out;
1087 
1088 	ctx = rcu_dereference(table->table[id]);
1089 	if (ctx && ctx->user_id == ctx_id) {
1090 		percpu_ref_get(&ctx->users);
1091 		ret = ctx;
1092 	}
1093 out:
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 
1098 /* aio_complete
1099  *	Called when the io request on the given iocb is complete.
1100  */
1101 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1102 {
1103 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1104 	struct kioctx	*ctx = iocb->ki_ctx;
1105 	struct aio_ring	*ring;
1106 	struct io_event	*ev_page, *event;
1107 	unsigned tail, pos, head;
1108 	unsigned long	flags;
1109 
1110 	if (kiocb->ki_flags & IOCB_WRITE) {
1111 		struct file *file = kiocb->ki_filp;
1112 
1113 		/*
1114 		 * Tell lockdep we inherited freeze protection from submission
1115 		 * thread.
1116 		 */
1117 		if (S_ISREG(file_inode(file)->i_mode))
1118 			__sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1119 		file_end_write(file);
1120 	}
1121 
1122 	/*
1123 	 * Special case handling for sync iocbs:
1124 	 *  - events go directly into the iocb for fast handling
1125 	 *  - the sync task with the iocb in its stack holds the single iocb
1126 	 *    ref, no other paths have a way to get another ref
1127 	 *  - the sync task helpfully left a reference to itself in the iocb
1128 	 */
1129 	BUG_ON(is_sync_kiocb(kiocb));
1130 
1131 	if (iocb->ki_list.next) {
1132 		unsigned long flags;
1133 
1134 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1135 		list_del(&iocb->ki_list);
1136 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1137 	}
1138 
1139 	/*
1140 	 * Add a completion event to the ring buffer. Must be done holding
1141 	 * ctx->completion_lock to prevent other code from messing with the tail
1142 	 * pointer since we might be called from irq context.
1143 	 */
1144 	spin_lock_irqsave(&ctx->completion_lock, flags);
1145 
1146 	tail = ctx->tail;
1147 	pos = tail + AIO_EVENTS_OFFSET;
1148 
1149 	if (++tail >= ctx->nr_events)
1150 		tail = 0;
1151 
1152 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1153 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1154 
1155 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1156 	event->data = iocb->ki_user_data;
1157 	event->res = res;
1158 	event->res2 = res2;
1159 
1160 	kunmap_atomic(ev_page);
1161 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1162 
1163 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1164 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1165 		 res, res2);
1166 
1167 	/* after flagging the request as done, we
1168 	 * must never even look at it again
1169 	 */
1170 	smp_wmb();	/* make event visible before updating tail */
1171 
1172 	ctx->tail = tail;
1173 
1174 	ring = kmap_atomic(ctx->ring_pages[0]);
1175 	head = ring->head;
1176 	ring->tail = tail;
1177 	kunmap_atomic(ring);
1178 	flush_dcache_page(ctx->ring_pages[0]);
1179 
1180 	ctx->completed_events++;
1181 	if (ctx->completed_events > 1)
1182 		refill_reqs_available(ctx, head, tail);
1183 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1184 
1185 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1186 
1187 	/*
1188 	 * Check if the user asked us to deliver the result through an
1189 	 * eventfd. The eventfd_signal() function is safe to be called
1190 	 * from IRQ context.
1191 	 */
1192 	if (iocb->ki_eventfd != NULL)
1193 		eventfd_signal(iocb->ki_eventfd, 1);
1194 
1195 	/* everything turned out well, dispose of the aiocb. */
1196 	kiocb_free(iocb);
1197 
1198 	/*
1199 	 * We have to order our ring_info tail store above and test
1200 	 * of the wait list below outside the wait lock.  This is
1201 	 * like in wake_up_bit() where clearing a bit has to be
1202 	 * ordered with the unlocked test.
1203 	 */
1204 	smp_mb();
1205 
1206 	if (waitqueue_active(&ctx->wait))
1207 		wake_up(&ctx->wait);
1208 
1209 	percpu_ref_put(&ctx->reqs);
1210 }
1211 
1212 /* aio_read_events_ring
1213  *	Pull an event off of the ioctx's event ring.  Returns the number of
1214  *	events fetched
1215  */
1216 static long aio_read_events_ring(struct kioctx *ctx,
1217 				 struct io_event __user *event, long nr)
1218 {
1219 	struct aio_ring *ring;
1220 	unsigned head, tail, pos;
1221 	long ret = 0;
1222 	int copy_ret;
1223 
1224 	/*
1225 	 * The mutex can block and wake us up and that will cause
1226 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1227 	 * and repeat. This should be rare enough that it doesn't cause
1228 	 * peformance issues. See the comment in read_events() for more detail.
1229 	 */
1230 	sched_annotate_sleep();
1231 	mutex_lock(&ctx->ring_lock);
1232 
1233 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1234 	ring = kmap_atomic(ctx->ring_pages[0]);
1235 	head = ring->head;
1236 	tail = ring->tail;
1237 	kunmap_atomic(ring);
1238 
1239 	/*
1240 	 * Ensure that once we've read the current tail pointer, that
1241 	 * we also see the events that were stored up to the tail.
1242 	 */
1243 	smp_rmb();
1244 
1245 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1246 
1247 	if (head == tail)
1248 		goto out;
1249 
1250 	head %= ctx->nr_events;
1251 	tail %= ctx->nr_events;
1252 
1253 	while (ret < nr) {
1254 		long avail;
1255 		struct io_event *ev;
1256 		struct page *page;
1257 
1258 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1259 		if (head == tail)
1260 			break;
1261 
1262 		avail = min(avail, nr - ret);
1263 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1264 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1265 
1266 		pos = head + AIO_EVENTS_OFFSET;
1267 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1268 		pos %= AIO_EVENTS_PER_PAGE;
1269 
1270 		ev = kmap(page);
1271 		copy_ret = copy_to_user(event + ret, ev + pos,
1272 					sizeof(*ev) * avail);
1273 		kunmap(page);
1274 
1275 		if (unlikely(copy_ret)) {
1276 			ret = -EFAULT;
1277 			goto out;
1278 		}
1279 
1280 		ret += avail;
1281 		head += avail;
1282 		head %= ctx->nr_events;
1283 	}
1284 
1285 	ring = kmap_atomic(ctx->ring_pages[0]);
1286 	ring->head = head;
1287 	kunmap_atomic(ring);
1288 	flush_dcache_page(ctx->ring_pages[0]);
1289 
1290 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1291 out:
1292 	mutex_unlock(&ctx->ring_lock);
1293 
1294 	return ret;
1295 }
1296 
1297 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1298 			    struct io_event __user *event, long *i)
1299 {
1300 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1301 
1302 	if (ret > 0)
1303 		*i += ret;
1304 
1305 	if (unlikely(atomic_read(&ctx->dead)))
1306 		ret = -EINVAL;
1307 
1308 	if (!*i)
1309 		*i = ret;
1310 
1311 	return ret < 0 || *i >= min_nr;
1312 }
1313 
1314 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1315 			struct io_event __user *event,
1316 			ktime_t until)
1317 {
1318 	long ret = 0;
1319 
1320 	/*
1321 	 * Note that aio_read_events() is being called as the conditional - i.e.
1322 	 * we're calling it after prepare_to_wait() has set task state to
1323 	 * TASK_INTERRUPTIBLE.
1324 	 *
1325 	 * But aio_read_events() can block, and if it blocks it's going to flip
1326 	 * the task state back to TASK_RUNNING.
1327 	 *
1328 	 * This should be ok, provided it doesn't flip the state back to
1329 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1330 	 * will only happen if the mutex_lock() call blocks, and we then find
1331 	 * the ringbuffer empty. So in practice we should be ok, but it's
1332 	 * something to be aware of when touching this code.
1333 	 */
1334 	if (until == 0)
1335 		aio_read_events(ctx, min_nr, nr, event, &ret);
1336 	else
1337 		wait_event_interruptible_hrtimeout(ctx->wait,
1338 				aio_read_events(ctx, min_nr, nr, event, &ret),
1339 				until);
1340 
1341 	if (!ret && signal_pending(current))
1342 		ret = -EINTR;
1343 
1344 	return ret;
1345 }
1346 
1347 /* sys_io_setup:
1348  *	Create an aio_context capable of receiving at least nr_events.
1349  *	ctxp must not point to an aio_context that already exists, and
1350  *	must be initialized to 0 prior to the call.  On successful
1351  *	creation of the aio_context, *ctxp is filled in with the resulting
1352  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1353  *	if the specified nr_events exceeds internal limits.  May fail
1354  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1355  *	of available events.  May fail with -ENOMEM if insufficient kernel
1356  *	resources are available.  May fail with -EFAULT if an invalid
1357  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1358  *	implemented.
1359  */
1360 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1361 {
1362 	struct kioctx *ioctx = NULL;
1363 	unsigned long ctx;
1364 	long ret;
1365 
1366 	ret = get_user(ctx, ctxp);
1367 	if (unlikely(ret))
1368 		goto out;
1369 
1370 	ret = -EINVAL;
1371 	if (unlikely(ctx || nr_events == 0)) {
1372 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1373 		         ctx, nr_events);
1374 		goto out;
1375 	}
1376 
1377 	ioctx = ioctx_alloc(nr_events);
1378 	ret = PTR_ERR(ioctx);
1379 	if (!IS_ERR(ioctx)) {
1380 		ret = put_user(ioctx->user_id, ctxp);
1381 		if (ret)
1382 			kill_ioctx(current->mm, ioctx, NULL);
1383 		percpu_ref_put(&ioctx->users);
1384 	}
1385 
1386 out:
1387 	return ret;
1388 }
1389 
1390 #ifdef CONFIG_COMPAT
1391 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1392 {
1393 	struct kioctx *ioctx = NULL;
1394 	unsigned long ctx;
1395 	long ret;
1396 
1397 	ret = get_user(ctx, ctx32p);
1398 	if (unlikely(ret))
1399 		goto out;
1400 
1401 	ret = -EINVAL;
1402 	if (unlikely(ctx || nr_events == 0)) {
1403 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1404 		         ctx, nr_events);
1405 		goto out;
1406 	}
1407 
1408 	ioctx = ioctx_alloc(nr_events);
1409 	ret = PTR_ERR(ioctx);
1410 	if (!IS_ERR(ioctx)) {
1411 		/* truncating is ok because it's a user address */
1412 		ret = put_user((u32)ioctx->user_id, ctx32p);
1413 		if (ret)
1414 			kill_ioctx(current->mm, ioctx, NULL);
1415 		percpu_ref_put(&ioctx->users);
1416 	}
1417 
1418 out:
1419 	return ret;
1420 }
1421 #endif
1422 
1423 /* sys_io_destroy:
1424  *	Destroy the aio_context specified.  May cancel any outstanding
1425  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1426  *	implemented.  May fail with -EINVAL if the context pointed to
1427  *	is invalid.
1428  */
1429 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1430 {
1431 	struct kioctx *ioctx = lookup_ioctx(ctx);
1432 	if (likely(NULL != ioctx)) {
1433 		struct ctx_rq_wait wait;
1434 		int ret;
1435 
1436 		init_completion(&wait.comp);
1437 		atomic_set(&wait.count, 1);
1438 
1439 		/* Pass requests_done to kill_ioctx() where it can be set
1440 		 * in a thread-safe way. If we try to set it here then we have
1441 		 * a race condition if two io_destroy() called simultaneously.
1442 		 */
1443 		ret = kill_ioctx(current->mm, ioctx, &wait);
1444 		percpu_ref_put(&ioctx->users);
1445 
1446 		/* Wait until all IO for the context are done. Otherwise kernel
1447 		 * keep using user-space buffers even if user thinks the context
1448 		 * is destroyed.
1449 		 */
1450 		if (!ret)
1451 			wait_for_completion(&wait.comp);
1452 
1453 		return ret;
1454 	}
1455 	pr_debug("EINVAL: invalid context id\n");
1456 	return -EINVAL;
1457 }
1458 
1459 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1460 		bool vectored, bool compat, struct iov_iter *iter)
1461 {
1462 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1463 	size_t len = iocb->aio_nbytes;
1464 
1465 	if (!vectored) {
1466 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1467 		*iovec = NULL;
1468 		return ret;
1469 	}
1470 #ifdef CONFIG_COMPAT
1471 	if (compat)
1472 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1473 				iter);
1474 #endif
1475 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1476 }
1477 
1478 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1479 {
1480 	switch (ret) {
1481 	case -EIOCBQUEUED:
1482 		return ret;
1483 	case -ERESTARTSYS:
1484 	case -ERESTARTNOINTR:
1485 	case -ERESTARTNOHAND:
1486 	case -ERESTART_RESTARTBLOCK:
1487 		/*
1488 		 * There's no easy way to restart the syscall since other AIO's
1489 		 * may be already running. Just fail this IO with EINTR.
1490 		 */
1491 		ret = -EINTR;
1492 		/*FALLTHRU*/
1493 	default:
1494 		aio_complete(req, ret, 0);
1495 		return 0;
1496 	}
1497 }
1498 
1499 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1500 		bool compat)
1501 {
1502 	struct file *file = req->ki_filp;
1503 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1504 	struct iov_iter iter;
1505 	ssize_t ret;
1506 
1507 	if (unlikely(!(file->f_mode & FMODE_READ)))
1508 		return -EBADF;
1509 	if (unlikely(!file->f_op->read_iter))
1510 		return -EINVAL;
1511 
1512 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1513 	if (ret)
1514 		return ret;
1515 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1516 	if (!ret)
1517 		ret = aio_ret(req, call_read_iter(file, req, &iter));
1518 	kfree(iovec);
1519 	return ret;
1520 }
1521 
1522 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1523 		bool compat)
1524 {
1525 	struct file *file = req->ki_filp;
1526 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1527 	struct iov_iter iter;
1528 	ssize_t ret;
1529 
1530 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1531 		return -EBADF;
1532 	if (unlikely(!file->f_op->write_iter))
1533 		return -EINVAL;
1534 
1535 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1536 	if (ret)
1537 		return ret;
1538 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1539 	if (!ret) {
1540 		req->ki_flags |= IOCB_WRITE;
1541 		file_start_write(file);
1542 		ret = aio_ret(req, call_write_iter(file, req, &iter));
1543 		/*
1544 		 * We release freeze protection in aio_complete().  Fool lockdep
1545 		 * by telling it the lock got released so that it doesn't
1546 		 * complain about held lock when we return to userspace.
1547 		 */
1548 		if (S_ISREG(file_inode(file)->i_mode))
1549 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1550 	}
1551 	kfree(iovec);
1552 	return ret;
1553 }
1554 
1555 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1556 			 struct iocb *iocb, bool compat)
1557 {
1558 	struct aio_kiocb *req;
1559 	struct file *file;
1560 	ssize_t ret;
1561 
1562 	/* enforce forwards compatibility on users */
1563 	if (unlikely(iocb->aio_reserved2)) {
1564 		pr_debug("EINVAL: reserve field set\n");
1565 		return -EINVAL;
1566 	}
1567 
1568 	/* prevent overflows */
1569 	if (unlikely(
1570 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1571 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1572 	    ((ssize_t)iocb->aio_nbytes < 0)
1573 	   )) {
1574 		pr_debug("EINVAL: overflow check\n");
1575 		return -EINVAL;
1576 	}
1577 
1578 	req = aio_get_req(ctx);
1579 	if (unlikely(!req))
1580 		return -EAGAIN;
1581 
1582 	req->common.ki_filp = file = fget(iocb->aio_fildes);
1583 	if (unlikely(!req->common.ki_filp)) {
1584 		ret = -EBADF;
1585 		goto out_put_req;
1586 	}
1587 	req->common.ki_pos = iocb->aio_offset;
1588 	req->common.ki_complete = aio_complete;
1589 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1590 	req->common.ki_hint = file_write_hint(file);
1591 
1592 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1593 		/*
1594 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1595 		 * instance of the file* now. The file descriptor must be
1596 		 * an eventfd() fd, and will be signaled for each completed
1597 		 * event using the eventfd_signal() function.
1598 		 */
1599 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1600 		if (IS_ERR(req->ki_eventfd)) {
1601 			ret = PTR_ERR(req->ki_eventfd);
1602 			req->ki_eventfd = NULL;
1603 			goto out_put_req;
1604 		}
1605 
1606 		req->common.ki_flags |= IOCB_EVENTFD;
1607 	}
1608 
1609 	ret = kiocb_set_rw_flags(&req->common, iocb->aio_rw_flags);
1610 	if (unlikely(ret)) {
1611 		pr_debug("EINVAL: aio_rw_flags\n");
1612 		goto out_put_req;
1613 	}
1614 
1615 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1616 	if (unlikely(ret)) {
1617 		pr_debug("EFAULT: aio_key\n");
1618 		goto out_put_req;
1619 	}
1620 
1621 	req->ki_user_iocb = user_iocb;
1622 	req->ki_user_data = iocb->aio_data;
1623 
1624 	get_file(file);
1625 	switch (iocb->aio_lio_opcode) {
1626 	case IOCB_CMD_PREAD:
1627 		ret = aio_read(&req->common, iocb, false, compat);
1628 		break;
1629 	case IOCB_CMD_PWRITE:
1630 		ret = aio_write(&req->common, iocb, false, compat);
1631 		break;
1632 	case IOCB_CMD_PREADV:
1633 		ret = aio_read(&req->common, iocb, true, compat);
1634 		break;
1635 	case IOCB_CMD_PWRITEV:
1636 		ret = aio_write(&req->common, iocb, true, compat);
1637 		break;
1638 	default:
1639 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1640 		ret = -EINVAL;
1641 		break;
1642 	}
1643 	fput(file);
1644 
1645 	if (ret && ret != -EIOCBQUEUED)
1646 		goto out_put_req;
1647 	return 0;
1648 out_put_req:
1649 	put_reqs_available(ctx, 1);
1650 	percpu_ref_put(&ctx->reqs);
1651 	kiocb_free(req);
1652 	return ret;
1653 }
1654 
1655 static long do_io_submit(aio_context_t ctx_id, long nr,
1656 			  struct iocb __user *__user *iocbpp, bool compat)
1657 {
1658 	struct kioctx *ctx;
1659 	long ret = 0;
1660 	int i = 0;
1661 	struct blk_plug plug;
1662 
1663 	if (unlikely(nr < 0))
1664 		return -EINVAL;
1665 
1666 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1667 		nr = LONG_MAX/sizeof(*iocbpp);
1668 
1669 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1670 		return -EFAULT;
1671 
1672 	ctx = lookup_ioctx(ctx_id);
1673 	if (unlikely(!ctx)) {
1674 		pr_debug("EINVAL: invalid context id\n");
1675 		return -EINVAL;
1676 	}
1677 
1678 	blk_start_plug(&plug);
1679 
1680 	/*
1681 	 * AKPM: should this return a partial result if some of the IOs were
1682 	 * successfully submitted?
1683 	 */
1684 	for (i=0; i<nr; i++) {
1685 		struct iocb __user *user_iocb;
1686 		struct iocb tmp;
1687 
1688 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1689 			ret = -EFAULT;
1690 			break;
1691 		}
1692 
1693 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1694 			ret = -EFAULT;
1695 			break;
1696 		}
1697 
1698 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1699 		if (ret)
1700 			break;
1701 	}
1702 	blk_finish_plug(&plug);
1703 
1704 	percpu_ref_put(&ctx->users);
1705 	return i ? i : ret;
1706 }
1707 
1708 /* sys_io_submit:
1709  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1710  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1711  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1712  *	*iocbpp[0] is not properly initialized, if the operation specified
1713  *	is invalid for the file descriptor in the iocb.  May fail with
1714  *	-EFAULT if any of the data structures point to invalid data.  May
1715  *	fail with -EBADF if the file descriptor specified in the first
1716  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1717  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1718  *	fail with -ENOSYS if not implemented.
1719  */
1720 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1721 		struct iocb __user * __user *, iocbpp)
1722 {
1723 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1724 }
1725 
1726 #ifdef CONFIG_COMPAT
1727 static inline long
1728 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1729 {
1730 	compat_uptr_t uptr;
1731 	int i;
1732 
1733 	for (i = 0; i < nr; ++i) {
1734 		if (get_user(uptr, ptr32 + i))
1735 			return -EFAULT;
1736 		if (put_user(compat_ptr(uptr), ptr64 + i))
1737 			return -EFAULT;
1738 	}
1739 	return 0;
1740 }
1741 
1742 #define MAX_AIO_SUBMITS 	(PAGE_SIZE/sizeof(struct iocb *))
1743 
1744 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1745 		       int, nr, u32 __user *, iocb)
1746 {
1747 	struct iocb __user * __user *iocb64;
1748 	long ret;
1749 
1750 	if (unlikely(nr < 0))
1751 		return -EINVAL;
1752 
1753 	if (nr > MAX_AIO_SUBMITS)
1754 		nr = MAX_AIO_SUBMITS;
1755 
1756 	iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1757 	ret = copy_iocb(nr, iocb, iocb64);
1758 	if (!ret)
1759 		ret = do_io_submit(ctx_id, nr, iocb64, 1);
1760 	return ret;
1761 }
1762 #endif
1763 
1764 /* lookup_kiocb
1765  *	Finds a given iocb for cancellation.
1766  */
1767 static struct aio_kiocb *
1768 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1769 {
1770 	struct aio_kiocb *kiocb;
1771 
1772 	assert_spin_locked(&ctx->ctx_lock);
1773 
1774 	if (key != KIOCB_KEY)
1775 		return NULL;
1776 
1777 	/* TODO: use a hash or array, this sucks. */
1778 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1779 		if (kiocb->ki_user_iocb == iocb)
1780 			return kiocb;
1781 	}
1782 	return NULL;
1783 }
1784 
1785 /* sys_io_cancel:
1786  *	Attempts to cancel an iocb previously passed to io_submit.  If
1787  *	the operation is successfully cancelled, the resulting event is
1788  *	copied into the memory pointed to by result without being placed
1789  *	into the completion queue and 0 is returned.  May fail with
1790  *	-EFAULT if any of the data structures pointed to are invalid.
1791  *	May fail with -EINVAL if aio_context specified by ctx_id is
1792  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1793  *	cancelled.  Will fail with -ENOSYS if not implemented.
1794  */
1795 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1796 		struct io_event __user *, result)
1797 {
1798 	struct kioctx *ctx;
1799 	struct aio_kiocb *kiocb;
1800 	u32 key;
1801 	int ret;
1802 
1803 	ret = get_user(key, &iocb->aio_key);
1804 	if (unlikely(ret))
1805 		return -EFAULT;
1806 
1807 	ctx = lookup_ioctx(ctx_id);
1808 	if (unlikely(!ctx))
1809 		return -EINVAL;
1810 
1811 	spin_lock_irq(&ctx->ctx_lock);
1812 
1813 	kiocb = lookup_kiocb(ctx, iocb, key);
1814 	if (kiocb)
1815 		ret = kiocb_cancel(kiocb);
1816 	else
1817 		ret = -EINVAL;
1818 
1819 	spin_unlock_irq(&ctx->ctx_lock);
1820 
1821 	if (!ret) {
1822 		/*
1823 		 * The result argument is no longer used - the io_event is
1824 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1825 		 * cancellation is progress:
1826 		 */
1827 		ret = -EINPROGRESS;
1828 	}
1829 
1830 	percpu_ref_put(&ctx->users);
1831 
1832 	return ret;
1833 }
1834 
1835 static long do_io_getevents(aio_context_t ctx_id,
1836 		long min_nr,
1837 		long nr,
1838 		struct io_event __user *events,
1839 		struct timespec64 *ts)
1840 {
1841 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
1842 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1843 	long ret = -EINVAL;
1844 
1845 	if (likely(ioctx)) {
1846 		if (likely(min_nr <= nr && min_nr >= 0))
1847 			ret = read_events(ioctx, min_nr, nr, events, until);
1848 		percpu_ref_put(&ioctx->users);
1849 	}
1850 
1851 	return ret;
1852 }
1853 
1854 /* io_getevents:
1855  *	Attempts to read at least min_nr events and up to nr events from
1856  *	the completion queue for the aio_context specified by ctx_id. If
1857  *	it succeeds, the number of read events is returned. May fail with
1858  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1859  *	out of range, if timeout is out of range.  May fail with -EFAULT
1860  *	if any of the memory specified is invalid.  May return 0 or
1861  *	< min_nr if the timeout specified by timeout has elapsed
1862  *	before sufficient events are available, where timeout == NULL
1863  *	specifies an infinite timeout. Note that the timeout pointed to by
1864  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1865  */
1866 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1867 		long, min_nr,
1868 		long, nr,
1869 		struct io_event __user *, events,
1870 		struct timespec __user *, timeout)
1871 {
1872 	struct timespec64	ts;
1873 
1874 	if (timeout) {
1875 		if (unlikely(get_timespec64(&ts, timeout)))
1876 			return -EFAULT;
1877 	}
1878 
1879 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
1880 }
1881 
1882 #ifdef CONFIG_COMPAT
1883 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1884 		       compat_long_t, min_nr,
1885 		       compat_long_t, nr,
1886 		       struct io_event __user *, events,
1887 		       struct compat_timespec __user *, timeout)
1888 {
1889 	struct timespec64 t;
1890 
1891 	if (timeout) {
1892 		if (compat_get_timespec64(&t, timeout))
1893 			return -EFAULT;
1894 
1895 	}
1896 
1897 	return do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
1898 }
1899 #endif
1900