1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/aio.h> 30 #include <linux/highmem.h> 31 #include <linux/workqueue.h> 32 #include <linux/security.h> 33 #include <linux/eventfd.h> 34 35 #include <asm/kmap_types.h> 36 #include <asm/uaccess.h> 37 #include <asm/mmu_context.h> 38 39 #if DEBUG > 1 40 #define dprintk printk 41 #else 42 #define dprintk(x...) do { ; } while (0) 43 #endif 44 45 /*------ sysctl variables----*/ 46 static DEFINE_SPINLOCK(aio_nr_lock); 47 unsigned long aio_nr; /* current system wide number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static struct kmem_cache *kiocb_cachep; 52 static struct kmem_cache *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(struct work_struct *); 58 static DECLARE_WORK(fput_work, aio_fput_routine); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 static LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(struct work_struct *); 64 static void aio_queue_work(struct kioctx *); 65 66 /* aio_setup 67 * Creates the slab caches used by the aio routines, panic on 68 * failure as this is done early during the boot sequence. 69 */ 70 static int __init aio_setup(void) 71 { 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 } 129 130 info->mmap_size = nr_pages * PAGE_SIZE; 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 132 down_write(&ctx->mm->mmap_sem); 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 135 0); 136 if (IS_ERR((void *)info->mmap_base)) { 137 up_write(&ctx->mm->mmap_sem); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 195 /* __put_ioctx 196 * Called when the last user of an aio context has gone away, 197 * and the struct needs to be freed. 198 */ 199 static void __put_ioctx(struct kioctx *ctx) 200 { 201 unsigned nr_events = ctx->max_reqs; 202 203 BUG_ON(ctx->reqs_active); 204 205 cancel_delayed_work(&ctx->wq); 206 cancel_work_sync(&ctx->wq.work); 207 aio_free_ring(ctx); 208 mmdrop(ctx->mm); 209 ctx->mm = NULL; 210 pr_debug("__put_ioctx: freeing %p\n", ctx); 211 kmem_cache_free(kioctx_cachep, ctx); 212 213 if (nr_events) { 214 spin_lock(&aio_nr_lock); 215 BUG_ON(aio_nr - nr_events > aio_nr); 216 aio_nr -= nr_events; 217 spin_unlock(&aio_nr_lock); 218 } 219 } 220 221 #define get_ioctx(kioctx) do { \ 222 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 223 atomic_inc(&(kioctx)->users); \ 224 } while (0) 225 #define put_ioctx(kioctx) do { \ 226 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 227 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 228 __put_ioctx(kioctx); \ 229 } while (0) 230 231 /* ioctx_alloc 232 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 233 */ 234 static struct kioctx *ioctx_alloc(unsigned nr_events) 235 { 236 struct mm_struct *mm; 237 struct kioctx *ctx; 238 239 /* Prevent overflows */ 240 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 241 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 242 pr_debug("ENOMEM: nr_events too high\n"); 243 return ERR_PTR(-EINVAL); 244 } 245 246 if ((unsigned long)nr_events > aio_max_nr) 247 return ERR_PTR(-EAGAIN); 248 249 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 250 if (!ctx) 251 return ERR_PTR(-ENOMEM); 252 253 ctx->max_reqs = nr_events; 254 mm = ctx->mm = current->mm; 255 atomic_inc(&mm->mm_count); 256 257 atomic_set(&ctx->users, 1); 258 spin_lock_init(&ctx->ctx_lock); 259 spin_lock_init(&ctx->ring_info.ring_lock); 260 init_waitqueue_head(&ctx->wait); 261 262 INIT_LIST_HEAD(&ctx->active_reqs); 263 INIT_LIST_HEAD(&ctx->run_list); 264 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 265 266 if (aio_setup_ring(ctx) < 0) 267 goto out_freectx; 268 269 /* limit the number of system wide aios */ 270 spin_lock(&aio_nr_lock); 271 if (aio_nr + ctx->max_reqs > aio_max_nr || 272 aio_nr + ctx->max_reqs < aio_nr) 273 ctx->max_reqs = 0; 274 else 275 aio_nr += ctx->max_reqs; 276 spin_unlock(&aio_nr_lock); 277 if (ctx->max_reqs == 0) 278 goto out_cleanup; 279 280 /* now link into global list. */ 281 write_lock(&mm->ioctx_list_lock); 282 ctx->next = mm->ioctx_list; 283 mm->ioctx_list = ctx; 284 write_unlock(&mm->ioctx_list_lock); 285 286 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 287 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 288 return ctx; 289 290 out_cleanup: 291 __put_ioctx(ctx); 292 return ERR_PTR(-EAGAIN); 293 294 out_freectx: 295 mmdrop(mm); 296 kmem_cache_free(kioctx_cachep, ctx); 297 ctx = ERR_PTR(-ENOMEM); 298 299 dprintk("aio: error allocating ioctx %p\n", ctx); 300 return ctx; 301 } 302 303 /* aio_cancel_all 304 * Cancels all outstanding aio requests on an aio context. Used 305 * when the processes owning a context have all exited to encourage 306 * the rapid destruction of the kioctx. 307 */ 308 static void aio_cancel_all(struct kioctx *ctx) 309 { 310 int (*cancel)(struct kiocb *, struct io_event *); 311 struct io_event res; 312 spin_lock_irq(&ctx->ctx_lock); 313 ctx->dead = 1; 314 while (!list_empty(&ctx->active_reqs)) { 315 struct list_head *pos = ctx->active_reqs.next; 316 struct kiocb *iocb = list_kiocb(pos); 317 list_del_init(&iocb->ki_list); 318 cancel = iocb->ki_cancel; 319 kiocbSetCancelled(iocb); 320 if (cancel) { 321 iocb->ki_users++; 322 spin_unlock_irq(&ctx->ctx_lock); 323 cancel(iocb, &res); 324 spin_lock_irq(&ctx->ctx_lock); 325 } 326 } 327 spin_unlock_irq(&ctx->ctx_lock); 328 } 329 330 static void wait_for_all_aios(struct kioctx *ctx) 331 { 332 struct task_struct *tsk = current; 333 DECLARE_WAITQUEUE(wait, tsk); 334 335 spin_lock_irq(&ctx->ctx_lock); 336 if (!ctx->reqs_active) 337 goto out; 338 339 add_wait_queue(&ctx->wait, &wait); 340 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 341 while (ctx->reqs_active) { 342 spin_unlock_irq(&ctx->ctx_lock); 343 io_schedule(); 344 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 345 spin_lock_irq(&ctx->ctx_lock); 346 } 347 __set_task_state(tsk, TASK_RUNNING); 348 remove_wait_queue(&ctx->wait, &wait); 349 350 out: 351 spin_unlock_irq(&ctx->ctx_lock); 352 } 353 354 /* wait_on_sync_kiocb: 355 * Waits on the given sync kiocb to complete. 356 */ 357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 358 { 359 while (iocb->ki_users) { 360 set_current_state(TASK_UNINTERRUPTIBLE); 361 if (!iocb->ki_users) 362 break; 363 io_schedule(); 364 } 365 __set_current_state(TASK_RUNNING); 366 return iocb->ki_user_data; 367 } 368 369 /* exit_aio: called when the last user of mm goes away. At this point, 370 * there is no way for any new requests to be submited or any of the 371 * io_* syscalls to be called on the context. However, there may be 372 * outstanding requests which hold references to the context; as they 373 * go away, they will call put_ioctx and release any pinned memory 374 * associated with the request (held via struct page * references). 375 */ 376 void exit_aio(struct mm_struct *mm) 377 { 378 struct kioctx *ctx = mm->ioctx_list; 379 mm->ioctx_list = NULL; 380 while (ctx) { 381 struct kioctx *next = ctx->next; 382 ctx->next = NULL; 383 aio_cancel_all(ctx); 384 385 wait_for_all_aios(ctx); 386 /* 387 * Ensure we don't leave the ctx on the aio_wq 388 */ 389 cancel_work_sync(&ctx->wq.work); 390 391 if (1 != atomic_read(&ctx->users)) 392 printk(KERN_DEBUG 393 "exit_aio:ioctx still alive: %d %d %d\n", 394 atomic_read(&ctx->users), ctx->dead, 395 ctx->reqs_active); 396 put_ioctx(ctx); 397 ctx = next; 398 } 399 } 400 401 /* aio_get_req 402 * Allocate a slot for an aio request. Increments the users count 403 * of the kioctx so that the kioctx stays around until all requests are 404 * complete. Returns NULL if no requests are free. 405 * 406 * Returns with kiocb->users set to 2. The io submit code path holds 407 * an extra reference while submitting the i/o. 408 * This prevents races between the aio code path referencing the 409 * req (after submitting it) and aio_complete() freeing the req. 410 */ 411 static struct kiocb *__aio_get_req(struct kioctx *ctx) 412 { 413 struct kiocb *req = NULL; 414 struct aio_ring *ring; 415 int okay = 0; 416 417 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 418 if (unlikely(!req)) 419 return NULL; 420 421 req->ki_flags = 0; 422 req->ki_users = 2; 423 req->ki_key = 0; 424 req->ki_ctx = ctx; 425 req->ki_cancel = NULL; 426 req->ki_retry = NULL; 427 req->ki_dtor = NULL; 428 req->private = NULL; 429 req->ki_iovec = NULL; 430 INIT_LIST_HEAD(&req->ki_run_list); 431 req->ki_eventfd = ERR_PTR(-EINVAL); 432 433 /* Check if the completion queue has enough free space to 434 * accept an event from this io. 435 */ 436 spin_lock_irq(&ctx->ctx_lock); 437 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 438 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 439 list_add(&req->ki_list, &ctx->active_reqs); 440 ctx->reqs_active++; 441 okay = 1; 442 } 443 kunmap_atomic(ring, KM_USER0); 444 spin_unlock_irq(&ctx->ctx_lock); 445 446 if (!okay) { 447 kmem_cache_free(kiocb_cachep, req); 448 req = NULL; 449 } 450 451 return req; 452 } 453 454 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 455 { 456 struct kiocb *req; 457 /* Handle a potential starvation case -- should be exceedingly rare as 458 * requests will be stuck on fput_head only if the aio_fput_routine is 459 * delayed and the requests were the last user of the struct file. 460 */ 461 req = __aio_get_req(ctx); 462 if (unlikely(NULL == req)) { 463 aio_fput_routine(NULL); 464 req = __aio_get_req(ctx); 465 } 466 return req; 467 } 468 469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 470 { 471 assert_spin_locked(&ctx->ctx_lock); 472 473 if (!IS_ERR(req->ki_eventfd)) 474 fput(req->ki_eventfd); 475 if (req->ki_dtor) 476 req->ki_dtor(req); 477 if (req->ki_iovec != &req->ki_inline_vec) 478 kfree(req->ki_iovec); 479 kmem_cache_free(kiocb_cachep, req); 480 ctx->reqs_active--; 481 482 if (unlikely(!ctx->reqs_active && ctx->dead)) 483 wake_up(&ctx->wait); 484 } 485 486 static void aio_fput_routine(struct work_struct *data) 487 { 488 spin_lock_irq(&fput_lock); 489 while (likely(!list_empty(&fput_head))) { 490 struct kiocb *req = list_kiocb(fput_head.next); 491 struct kioctx *ctx = req->ki_ctx; 492 493 list_del(&req->ki_list); 494 spin_unlock_irq(&fput_lock); 495 496 /* Complete the fput */ 497 __fput(req->ki_filp); 498 499 /* Link the iocb into the context's free list */ 500 spin_lock_irq(&ctx->ctx_lock); 501 really_put_req(ctx, req); 502 spin_unlock_irq(&ctx->ctx_lock); 503 504 put_ioctx(ctx); 505 spin_lock_irq(&fput_lock); 506 } 507 spin_unlock_irq(&fput_lock); 508 } 509 510 /* __aio_put_req 511 * Returns true if this put was the last user of the request. 512 */ 513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 514 { 515 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 516 req, atomic_read(&req->ki_filp->f_count)); 517 518 assert_spin_locked(&ctx->ctx_lock); 519 520 req->ki_users --; 521 BUG_ON(req->ki_users < 0); 522 if (likely(req->ki_users)) 523 return 0; 524 list_del(&req->ki_list); /* remove from active_reqs */ 525 req->ki_cancel = NULL; 526 req->ki_retry = NULL; 527 528 /* Must be done under the lock to serialise against cancellation. 529 * Call this aio_fput as it duplicates fput via the fput_work. 530 */ 531 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 532 get_ioctx(ctx); 533 spin_lock(&fput_lock); 534 list_add(&req->ki_list, &fput_head); 535 spin_unlock(&fput_lock); 536 queue_work(aio_wq, &fput_work); 537 } else 538 really_put_req(ctx, req); 539 return 1; 540 } 541 542 /* aio_put_req 543 * Returns true if this put was the last user of the kiocb, 544 * false if the request is still in use. 545 */ 546 int aio_put_req(struct kiocb *req) 547 { 548 struct kioctx *ctx = req->ki_ctx; 549 int ret; 550 spin_lock_irq(&ctx->ctx_lock); 551 ret = __aio_put_req(ctx, req); 552 spin_unlock_irq(&ctx->ctx_lock); 553 return ret; 554 } 555 556 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 557 { 558 struct kioctx *ioctx; 559 struct mm_struct *mm; 560 561 mm = current->mm; 562 read_lock(&mm->ioctx_list_lock); 563 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 564 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 565 get_ioctx(ioctx); 566 break; 567 } 568 read_unlock(&mm->ioctx_list_lock); 569 570 return ioctx; 571 } 572 573 /* 574 * use_mm 575 * Makes the calling kernel thread take on the specified 576 * mm context. 577 * Called by the retry thread execute retries within the 578 * iocb issuer's mm context, so that copy_from/to_user 579 * operations work seamlessly for aio. 580 * (Note: this routine is intended to be called only 581 * from a kernel thread context) 582 */ 583 static void use_mm(struct mm_struct *mm) 584 { 585 struct mm_struct *active_mm; 586 struct task_struct *tsk = current; 587 588 task_lock(tsk); 589 tsk->flags |= PF_BORROWED_MM; 590 active_mm = tsk->active_mm; 591 atomic_inc(&mm->mm_count); 592 tsk->mm = mm; 593 tsk->active_mm = mm; 594 /* 595 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise 596 * it won't work. Update it accordingly if you change it here 597 */ 598 switch_mm(active_mm, mm, tsk); 599 task_unlock(tsk); 600 601 mmdrop(active_mm); 602 } 603 604 /* 605 * unuse_mm 606 * Reverses the effect of use_mm, i.e. releases the 607 * specified mm context which was earlier taken on 608 * by the calling kernel thread 609 * (Note: this routine is intended to be called only 610 * from a kernel thread context) 611 */ 612 static void unuse_mm(struct mm_struct *mm) 613 { 614 struct task_struct *tsk = current; 615 616 task_lock(tsk); 617 tsk->flags &= ~PF_BORROWED_MM; 618 tsk->mm = NULL; 619 /* active_mm is still 'mm' */ 620 enter_lazy_tlb(mm, tsk); 621 task_unlock(tsk); 622 } 623 624 /* 625 * Queue up a kiocb to be retried. Assumes that the kiocb 626 * has already been marked as kicked, and places it on 627 * the retry run list for the corresponding ioctx, if it 628 * isn't already queued. Returns 1 if it actually queued 629 * the kiocb (to tell the caller to activate the work 630 * queue to process it), or 0, if it found that it was 631 * already queued. 632 */ 633 static inline int __queue_kicked_iocb(struct kiocb *iocb) 634 { 635 struct kioctx *ctx = iocb->ki_ctx; 636 637 assert_spin_locked(&ctx->ctx_lock); 638 639 if (list_empty(&iocb->ki_run_list)) { 640 list_add_tail(&iocb->ki_run_list, 641 &ctx->run_list); 642 return 1; 643 } 644 return 0; 645 } 646 647 /* aio_run_iocb 648 * This is the core aio execution routine. It is 649 * invoked both for initial i/o submission and 650 * subsequent retries via the aio_kick_handler. 651 * Expects to be invoked with iocb->ki_ctx->lock 652 * already held. The lock is released and reacquired 653 * as needed during processing. 654 * 655 * Calls the iocb retry method (already setup for the 656 * iocb on initial submission) for operation specific 657 * handling, but takes care of most of common retry 658 * execution details for a given iocb. The retry method 659 * needs to be non-blocking as far as possible, to avoid 660 * holding up other iocbs waiting to be serviced by the 661 * retry kernel thread. 662 * 663 * The trickier parts in this code have to do with 664 * ensuring that only one retry instance is in progress 665 * for a given iocb at any time. Providing that guarantee 666 * simplifies the coding of individual aio operations as 667 * it avoids various potential races. 668 */ 669 static ssize_t aio_run_iocb(struct kiocb *iocb) 670 { 671 struct kioctx *ctx = iocb->ki_ctx; 672 ssize_t (*retry)(struct kiocb *); 673 ssize_t ret; 674 675 if (!(retry = iocb->ki_retry)) { 676 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 677 return 0; 678 } 679 680 /* 681 * We don't want the next retry iteration for this 682 * operation to start until this one has returned and 683 * updated the iocb state. However, wait_queue functions 684 * can trigger a kick_iocb from interrupt context in the 685 * meantime, indicating that data is available for the next 686 * iteration. We want to remember that and enable the 687 * next retry iteration _after_ we are through with 688 * this one. 689 * 690 * So, in order to be able to register a "kick", but 691 * prevent it from being queued now, we clear the kick 692 * flag, but make the kick code *think* that the iocb is 693 * still on the run list until we are actually done. 694 * When we are done with this iteration, we check if 695 * the iocb was kicked in the meantime and if so, queue 696 * it up afresh. 697 */ 698 699 kiocbClearKicked(iocb); 700 701 /* 702 * This is so that aio_complete knows it doesn't need to 703 * pull the iocb off the run list (We can't just call 704 * INIT_LIST_HEAD because we don't want a kick_iocb to 705 * queue this on the run list yet) 706 */ 707 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 708 spin_unlock_irq(&ctx->ctx_lock); 709 710 /* Quit retrying if the i/o has been cancelled */ 711 if (kiocbIsCancelled(iocb)) { 712 ret = -EINTR; 713 aio_complete(iocb, ret, 0); 714 /* must not access the iocb after this */ 715 goto out; 716 } 717 718 /* 719 * Now we are all set to call the retry method in async 720 * context. 721 */ 722 ret = retry(iocb); 723 724 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 725 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 726 aio_complete(iocb, ret, 0); 727 } 728 out: 729 spin_lock_irq(&ctx->ctx_lock); 730 731 if (-EIOCBRETRY == ret) { 732 /* 733 * OK, now that we are done with this iteration 734 * and know that there is more left to go, 735 * this is where we let go so that a subsequent 736 * "kick" can start the next iteration 737 */ 738 739 /* will make __queue_kicked_iocb succeed from here on */ 740 INIT_LIST_HEAD(&iocb->ki_run_list); 741 /* we must queue the next iteration ourselves, if it 742 * has already been kicked */ 743 if (kiocbIsKicked(iocb)) { 744 __queue_kicked_iocb(iocb); 745 746 /* 747 * __queue_kicked_iocb will always return 1 here, because 748 * iocb->ki_run_list is empty at this point so it should 749 * be safe to unconditionally queue the context into the 750 * work queue. 751 */ 752 aio_queue_work(ctx); 753 } 754 } 755 return ret; 756 } 757 758 /* 759 * __aio_run_iocbs: 760 * Process all pending retries queued on the ioctx 761 * run list. 762 * Assumes it is operating within the aio issuer's mm 763 * context. 764 */ 765 static int __aio_run_iocbs(struct kioctx *ctx) 766 { 767 struct kiocb *iocb; 768 struct list_head run_list; 769 770 assert_spin_locked(&ctx->ctx_lock); 771 772 list_replace_init(&ctx->run_list, &run_list); 773 while (!list_empty(&run_list)) { 774 iocb = list_entry(run_list.next, struct kiocb, 775 ki_run_list); 776 list_del(&iocb->ki_run_list); 777 /* 778 * Hold an extra reference while retrying i/o. 779 */ 780 iocb->ki_users++; /* grab extra reference */ 781 aio_run_iocb(iocb); 782 __aio_put_req(ctx, iocb); 783 } 784 if (!list_empty(&ctx->run_list)) 785 return 1; 786 return 0; 787 } 788 789 static void aio_queue_work(struct kioctx * ctx) 790 { 791 unsigned long timeout; 792 /* 793 * if someone is waiting, get the work started right 794 * away, otherwise, use a longer delay 795 */ 796 smp_mb(); 797 if (waitqueue_active(&ctx->wait)) 798 timeout = 1; 799 else 800 timeout = HZ/10; 801 queue_delayed_work(aio_wq, &ctx->wq, timeout); 802 } 803 804 805 /* 806 * aio_run_iocbs: 807 * Process all pending retries queued on the ioctx 808 * run list. 809 * Assumes it is operating within the aio issuer's mm 810 * context. 811 */ 812 static inline void aio_run_iocbs(struct kioctx *ctx) 813 { 814 int requeue; 815 816 spin_lock_irq(&ctx->ctx_lock); 817 818 requeue = __aio_run_iocbs(ctx); 819 spin_unlock_irq(&ctx->ctx_lock); 820 if (requeue) 821 aio_queue_work(ctx); 822 } 823 824 /* 825 * just like aio_run_iocbs, but keeps running them until 826 * the list stays empty 827 */ 828 static inline void aio_run_all_iocbs(struct kioctx *ctx) 829 { 830 spin_lock_irq(&ctx->ctx_lock); 831 while (__aio_run_iocbs(ctx)) 832 ; 833 spin_unlock_irq(&ctx->ctx_lock); 834 } 835 836 /* 837 * aio_kick_handler: 838 * Work queue handler triggered to process pending 839 * retries on an ioctx. Takes on the aio issuer's 840 * mm context before running the iocbs, so that 841 * copy_xxx_user operates on the issuer's address 842 * space. 843 * Run on aiod's context. 844 */ 845 static void aio_kick_handler(struct work_struct *work) 846 { 847 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 848 mm_segment_t oldfs = get_fs(); 849 struct mm_struct *mm; 850 int requeue; 851 852 set_fs(USER_DS); 853 use_mm(ctx->mm); 854 spin_lock_irq(&ctx->ctx_lock); 855 requeue =__aio_run_iocbs(ctx); 856 mm = ctx->mm; 857 spin_unlock_irq(&ctx->ctx_lock); 858 unuse_mm(mm); 859 set_fs(oldfs); 860 /* 861 * we're in a worker thread already, don't use queue_delayed_work, 862 */ 863 if (requeue) 864 queue_delayed_work(aio_wq, &ctx->wq, 0); 865 } 866 867 868 /* 869 * Called by kick_iocb to queue the kiocb for retry 870 * and if required activate the aio work queue to process 871 * it 872 */ 873 static void try_queue_kicked_iocb(struct kiocb *iocb) 874 { 875 struct kioctx *ctx = iocb->ki_ctx; 876 unsigned long flags; 877 int run = 0; 878 879 /* We're supposed to be the only path putting the iocb back on the run 880 * list. If we find that the iocb is *back* on a wait queue already 881 * than retry has happened before we could queue the iocb. This also 882 * means that the retry could have completed and freed our iocb, no 883 * good. */ 884 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 885 886 spin_lock_irqsave(&ctx->ctx_lock, flags); 887 /* set this inside the lock so that we can't race with aio_run_iocb() 888 * testing it and putting the iocb on the run list under the lock */ 889 if (!kiocbTryKick(iocb)) 890 run = __queue_kicked_iocb(iocb); 891 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 892 if (run) 893 aio_queue_work(ctx); 894 } 895 896 /* 897 * kick_iocb: 898 * Called typically from a wait queue callback context 899 * (aio_wake_function) to trigger a retry of the iocb. 900 * The retry is usually executed by aio workqueue 901 * threads (See aio_kick_handler). 902 */ 903 void kick_iocb(struct kiocb *iocb) 904 { 905 /* sync iocbs are easy: they can only ever be executing from a 906 * single context. */ 907 if (is_sync_kiocb(iocb)) { 908 kiocbSetKicked(iocb); 909 wake_up_process(iocb->ki_obj.tsk); 910 return; 911 } 912 913 try_queue_kicked_iocb(iocb); 914 } 915 EXPORT_SYMBOL(kick_iocb); 916 917 /* aio_complete 918 * Called when the io request on the given iocb is complete. 919 * Returns true if this is the last user of the request. The 920 * only other user of the request can be the cancellation code. 921 */ 922 int aio_complete(struct kiocb *iocb, long res, long res2) 923 { 924 struct kioctx *ctx = iocb->ki_ctx; 925 struct aio_ring_info *info; 926 struct aio_ring *ring; 927 struct io_event *event; 928 unsigned long flags; 929 unsigned long tail; 930 int ret; 931 932 /* 933 * Special case handling for sync iocbs: 934 * - events go directly into the iocb for fast handling 935 * - the sync task with the iocb in its stack holds the single iocb 936 * ref, no other paths have a way to get another ref 937 * - the sync task helpfully left a reference to itself in the iocb 938 */ 939 if (is_sync_kiocb(iocb)) { 940 BUG_ON(iocb->ki_users != 1); 941 iocb->ki_user_data = res; 942 iocb->ki_users = 0; 943 wake_up_process(iocb->ki_obj.tsk); 944 return 1; 945 } 946 947 info = &ctx->ring_info; 948 949 /* add a completion event to the ring buffer. 950 * must be done holding ctx->ctx_lock to prevent 951 * other code from messing with the tail 952 * pointer since we might be called from irq 953 * context. 954 */ 955 spin_lock_irqsave(&ctx->ctx_lock, flags); 956 957 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 958 list_del_init(&iocb->ki_run_list); 959 960 /* 961 * cancelled requests don't get events, userland was given one 962 * when the event got cancelled. 963 */ 964 if (kiocbIsCancelled(iocb)) 965 goto put_rq; 966 967 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 968 969 tail = info->tail; 970 event = aio_ring_event(info, tail, KM_IRQ0); 971 if (++tail >= info->nr) 972 tail = 0; 973 974 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 975 event->data = iocb->ki_user_data; 976 event->res = res; 977 event->res2 = res2; 978 979 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 980 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 981 res, res2); 982 983 /* after flagging the request as done, we 984 * must never even look at it again 985 */ 986 smp_wmb(); /* make event visible before updating tail */ 987 988 info->tail = tail; 989 ring->tail = tail; 990 991 put_aio_ring_event(event, KM_IRQ0); 992 kunmap_atomic(ring, KM_IRQ1); 993 994 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 995 996 /* 997 * Check if the user asked us to deliver the result through an 998 * eventfd. The eventfd_signal() function is safe to be called 999 * from IRQ context. 1000 */ 1001 if (!IS_ERR(iocb->ki_eventfd)) 1002 eventfd_signal(iocb->ki_eventfd, 1); 1003 1004 put_rq: 1005 /* everything turned out well, dispose of the aiocb. */ 1006 ret = __aio_put_req(ctx, iocb); 1007 1008 /* 1009 * We have to order our ring_info tail store above and test 1010 * of the wait list below outside the wait lock. This is 1011 * like in wake_up_bit() where clearing a bit has to be 1012 * ordered with the unlocked test. 1013 */ 1014 smp_mb(); 1015 1016 if (waitqueue_active(&ctx->wait)) 1017 wake_up(&ctx->wait); 1018 1019 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1020 return ret; 1021 } 1022 1023 /* aio_read_evt 1024 * Pull an event off of the ioctx's event ring. Returns the number of 1025 * events fetched (0 or 1 ;-) 1026 * FIXME: make this use cmpxchg. 1027 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1028 */ 1029 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1030 { 1031 struct aio_ring_info *info = &ioctx->ring_info; 1032 struct aio_ring *ring; 1033 unsigned long head; 1034 int ret = 0; 1035 1036 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1037 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1038 (unsigned long)ring->head, (unsigned long)ring->tail, 1039 (unsigned long)ring->nr); 1040 1041 if (ring->head == ring->tail) 1042 goto out; 1043 1044 spin_lock(&info->ring_lock); 1045 1046 head = ring->head % info->nr; 1047 if (head != ring->tail) { 1048 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1049 *ent = *evp; 1050 head = (head + 1) % info->nr; 1051 smp_mb(); /* finish reading the event before updatng the head */ 1052 ring->head = head; 1053 ret = 1; 1054 put_aio_ring_event(evp, KM_USER1); 1055 } 1056 spin_unlock(&info->ring_lock); 1057 1058 out: 1059 kunmap_atomic(ring, KM_USER0); 1060 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1061 (unsigned long)ring->head, (unsigned long)ring->tail); 1062 return ret; 1063 } 1064 1065 struct aio_timeout { 1066 struct timer_list timer; 1067 int timed_out; 1068 struct task_struct *p; 1069 }; 1070 1071 static void timeout_func(unsigned long data) 1072 { 1073 struct aio_timeout *to = (struct aio_timeout *)data; 1074 1075 to->timed_out = 1; 1076 wake_up_process(to->p); 1077 } 1078 1079 static inline void init_timeout(struct aio_timeout *to) 1080 { 1081 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1082 to->timed_out = 0; 1083 to->p = current; 1084 } 1085 1086 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1087 const struct timespec *ts) 1088 { 1089 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1090 if (time_after(to->timer.expires, jiffies)) 1091 add_timer(&to->timer); 1092 else 1093 to->timed_out = 1; 1094 } 1095 1096 static inline void clear_timeout(struct aio_timeout *to) 1097 { 1098 del_singleshot_timer_sync(&to->timer); 1099 } 1100 1101 static int read_events(struct kioctx *ctx, 1102 long min_nr, long nr, 1103 struct io_event __user *event, 1104 struct timespec __user *timeout) 1105 { 1106 long start_jiffies = jiffies; 1107 struct task_struct *tsk = current; 1108 DECLARE_WAITQUEUE(wait, tsk); 1109 int ret; 1110 int i = 0; 1111 struct io_event ent; 1112 struct aio_timeout to; 1113 int retry = 0; 1114 1115 /* needed to zero any padding within an entry (there shouldn't be 1116 * any, but C is fun! 1117 */ 1118 memset(&ent, 0, sizeof(ent)); 1119 retry: 1120 ret = 0; 1121 while (likely(i < nr)) { 1122 ret = aio_read_evt(ctx, &ent); 1123 if (unlikely(ret <= 0)) 1124 break; 1125 1126 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1127 ent.data, ent.obj, ent.res, ent.res2); 1128 1129 /* Could we split the check in two? */ 1130 ret = -EFAULT; 1131 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1132 dprintk("aio: lost an event due to EFAULT.\n"); 1133 break; 1134 } 1135 ret = 0; 1136 1137 /* Good, event copied to userland, update counts. */ 1138 event ++; 1139 i ++; 1140 } 1141 1142 if (min_nr <= i) 1143 return i; 1144 if (ret) 1145 return ret; 1146 1147 /* End fast path */ 1148 1149 /* racey check, but it gets redone */ 1150 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1151 retry = 1; 1152 aio_run_all_iocbs(ctx); 1153 goto retry; 1154 } 1155 1156 init_timeout(&to); 1157 if (timeout) { 1158 struct timespec ts; 1159 ret = -EFAULT; 1160 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1161 goto out; 1162 1163 set_timeout(start_jiffies, &to, &ts); 1164 } 1165 1166 while (likely(i < nr)) { 1167 add_wait_queue_exclusive(&ctx->wait, &wait); 1168 do { 1169 set_task_state(tsk, TASK_INTERRUPTIBLE); 1170 ret = aio_read_evt(ctx, &ent); 1171 if (ret) 1172 break; 1173 if (min_nr <= i) 1174 break; 1175 if (unlikely(ctx->dead)) { 1176 ret = -EINVAL; 1177 break; 1178 } 1179 if (to.timed_out) /* Only check after read evt */ 1180 break; 1181 /* Try to only show up in io wait if there are ops 1182 * in flight */ 1183 if (ctx->reqs_active) 1184 io_schedule(); 1185 else 1186 schedule(); 1187 if (signal_pending(tsk)) { 1188 ret = -EINTR; 1189 break; 1190 } 1191 /*ret = aio_read_evt(ctx, &ent);*/ 1192 } while (1) ; 1193 1194 set_task_state(tsk, TASK_RUNNING); 1195 remove_wait_queue(&ctx->wait, &wait); 1196 1197 if (unlikely(ret <= 0)) 1198 break; 1199 1200 ret = -EFAULT; 1201 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1202 dprintk("aio: lost an event due to EFAULT.\n"); 1203 break; 1204 } 1205 1206 /* Good, event copied to userland, update counts. */ 1207 event ++; 1208 i ++; 1209 } 1210 1211 if (timeout) 1212 clear_timeout(&to); 1213 out: 1214 destroy_timer_on_stack(&to.timer); 1215 return i ? i : ret; 1216 } 1217 1218 /* Take an ioctx and remove it from the list of ioctx's. Protects 1219 * against races with itself via ->dead. 1220 */ 1221 static void io_destroy(struct kioctx *ioctx) 1222 { 1223 struct mm_struct *mm = current->mm; 1224 struct kioctx **tmp; 1225 int was_dead; 1226 1227 /* delete the entry from the list is someone else hasn't already */ 1228 write_lock(&mm->ioctx_list_lock); 1229 was_dead = ioctx->dead; 1230 ioctx->dead = 1; 1231 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1232 tmp = &(*tmp)->next) 1233 ; 1234 if (*tmp) 1235 *tmp = ioctx->next; 1236 write_unlock(&mm->ioctx_list_lock); 1237 1238 dprintk("aio_release(%p)\n", ioctx); 1239 if (likely(!was_dead)) 1240 put_ioctx(ioctx); /* twice for the list */ 1241 1242 aio_cancel_all(ioctx); 1243 wait_for_all_aios(ioctx); 1244 1245 /* 1246 * Wake up any waiters. The setting of ctx->dead must be seen 1247 * by other CPUs at this point. Right now, we rely on the 1248 * locking done by the above calls to ensure this consistency. 1249 */ 1250 wake_up(&ioctx->wait); 1251 put_ioctx(ioctx); /* once for the lookup */ 1252 } 1253 1254 /* sys_io_setup: 1255 * Create an aio_context capable of receiving at least nr_events. 1256 * ctxp must not point to an aio_context that already exists, and 1257 * must be initialized to 0 prior to the call. On successful 1258 * creation of the aio_context, *ctxp is filled in with the resulting 1259 * handle. May fail with -EINVAL if *ctxp is not initialized, 1260 * if the specified nr_events exceeds internal limits. May fail 1261 * with -EAGAIN if the specified nr_events exceeds the user's limit 1262 * of available events. May fail with -ENOMEM if insufficient kernel 1263 * resources are available. May fail with -EFAULT if an invalid 1264 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1265 * implemented. 1266 */ 1267 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1268 { 1269 struct kioctx *ioctx = NULL; 1270 unsigned long ctx; 1271 long ret; 1272 1273 ret = get_user(ctx, ctxp); 1274 if (unlikely(ret)) 1275 goto out; 1276 1277 ret = -EINVAL; 1278 if (unlikely(ctx || nr_events == 0)) { 1279 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1280 ctx, nr_events); 1281 goto out; 1282 } 1283 1284 ioctx = ioctx_alloc(nr_events); 1285 ret = PTR_ERR(ioctx); 1286 if (!IS_ERR(ioctx)) { 1287 ret = put_user(ioctx->user_id, ctxp); 1288 if (!ret) 1289 return 0; 1290 1291 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1292 io_destroy(ioctx); 1293 } 1294 1295 out: 1296 return ret; 1297 } 1298 1299 /* sys_io_destroy: 1300 * Destroy the aio_context specified. May cancel any outstanding 1301 * AIOs and block on completion. Will fail with -ENOSYS if not 1302 * implemented. May fail with -EFAULT if the context pointed to 1303 * is invalid. 1304 */ 1305 asmlinkage long sys_io_destroy(aio_context_t ctx) 1306 { 1307 struct kioctx *ioctx = lookup_ioctx(ctx); 1308 if (likely(NULL != ioctx)) { 1309 io_destroy(ioctx); 1310 return 0; 1311 } 1312 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1313 return -EINVAL; 1314 } 1315 1316 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1317 { 1318 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1319 1320 BUG_ON(ret <= 0); 1321 1322 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1323 ssize_t this = min((ssize_t)iov->iov_len, ret); 1324 iov->iov_base += this; 1325 iov->iov_len -= this; 1326 iocb->ki_left -= this; 1327 ret -= this; 1328 if (iov->iov_len == 0) { 1329 iocb->ki_cur_seg++; 1330 iov++; 1331 } 1332 } 1333 1334 /* the caller should not have done more io than what fit in 1335 * the remaining iovecs */ 1336 BUG_ON(ret > 0 && iocb->ki_left == 0); 1337 } 1338 1339 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1340 { 1341 struct file *file = iocb->ki_filp; 1342 struct address_space *mapping = file->f_mapping; 1343 struct inode *inode = mapping->host; 1344 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1345 unsigned long, loff_t); 1346 ssize_t ret = 0; 1347 unsigned short opcode; 1348 1349 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1350 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1351 rw_op = file->f_op->aio_read; 1352 opcode = IOCB_CMD_PREADV; 1353 } else { 1354 rw_op = file->f_op->aio_write; 1355 opcode = IOCB_CMD_PWRITEV; 1356 } 1357 1358 /* This matches the pread()/pwrite() logic */ 1359 if (iocb->ki_pos < 0) 1360 return -EINVAL; 1361 1362 do { 1363 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1364 iocb->ki_nr_segs - iocb->ki_cur_seg, 1365 iocb->ki_pos); 1366 if (ret > 0) 1367 aio_advance_iovec(iocb, ret); 1368 1369 /* retry all partial writes. retry partial reads as long as its a 1370 * regular file. */ 1371 } while (ret > 0 && iocb->ki_left > 0 && 1372 (opcode == IOCB_CMD_PWRITEV || 1373 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1374 1375 /* This means we must have transferred all that we could */ 1376 /* No need to retry anymore */ 1377 if ((ret == 0) || (iocb->ki_left == 0)) 1378 ret = iocb->ki_nbytes - iocb->ki_left; 1379 1380 /* If we managed to write some out we return that, rather than 1381 * the eventual error. */ 1382 if (opcode == IOCB_CMD_PWRITEV 1383 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1384 && iocb->ki_nbytes - iocb->ki_left) 1385 ret = iocb->ki_nbytes - iocb->ki_left; 1386 1387 return ret; 1388 } 1389 1390 static ssize_t aio_fdsync(struct kiocb *iocb) 1391 { 1392 struct file *file = iocb->ki_filp; 1393 ssize_t ret = -EINVAL; 1394 1395 if (file->f_op->aio_fsync) 1396 ret = file->f_op->aio_fsync(iocb, 1); 1397 return ret; 1398 } 1399 1400 static ssize_t aio_fsync(struct kiocb *iocb) 1401 { 1402 struct file *file = iocb->ki_filp; 1403 ssize_t ret = -EINVAL; 1404 1405 if (file->f_op->aio_fsync) 1406 ret = file->f_op->aio_fsync(iocb, 0); 1407 return ret; 1408 } 1409 1410 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1411 { 1412 ssize_t ret; 1413 1414 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1415 kiocb->ki_nbytes, 1, 1416 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1417 if (ret < 0) 1418 goto out; 1419 1420 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1421 kiocb->ki_cur_seg = 0; 1422 /* ki_nbytes/left now reflect bytes instead of segs */ 1423 kiocb->ki_nbytes = ret; 1424 kiocb->ki_left = ret; 1425 1426 ret = 0; 1427 out: 1428 return ret; 1429 } 1430 1431 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1432 { 1433 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1434 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1435 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1436 kiocb->ki_nr_segs = 1; 1437 kiocb->ki_cur_seg = 0; 1438 return 0; 1439 } 1440 1441 /* 1442 * aio_setup_iocb: 1443 * Performs the initial checks and aio retry method 1444 * setup for the kiocb at the time of io submission. 1445 */ 1446 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1447 { 1448 struct file *file = kiocb->ki_filp; 1449 ssize_t ret = 0; 1450 1451 switch (kiocb->ki_opcode) { 1452 case IOCB_CMD_PREAD: 1453 ret = -EBADF; 1454 if (unlikely(!(file->f_mode & FMODE_READ))) 1455 break; 1456 ret = -EFAULT; 1457 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1458 kiocb->ki_left))) 1459 break; 1460 ret = security_file_permission(file, MAY_READ); 1461 if (unlikely(ret)) 1462 break; 1463 ret = aio_setup_single_vector(kiocb); 1464 if (ret) 1465 break; 1466 ret = -EINVAL; 1467 if (file->f_op->aio_read) 1468 kiocb->ki_retry = aio_rw_vect_retry; 1469 break; 1470 case IOCB_CMD_PWRITE: 1471 ret = -EBADF; 1472 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1473 break; 1474 ret = -EFAULT; 1475 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1476 kiocb->ki_left))) 1477 break; 1478 ret = security_file_permission(file, MAY_WRITE); 1479 if (unlikely(ret)) 1480 break; 1481 ret = aio_setup_single_vector(kiocb); 1482 if (ret) 1483 break; 1484 ret = -EINVAL; 1485 if (file->f_op->aio_write) 1486 kiocb->ki_retry = aio_rw_vect_retry; 1487 break; 1488 case IOCB_CMD_PREADV: 1489 ret = -EBADF; 1490 if (unlikely(!(file->f_mode & FMODE_READ))) 1491 break; 1492 ret = security_file_permission(file, MAY_READ); 1493 if (unlikely(ret)) 1494 break; 1495 ret = aio_setup_vectored_rw(READ, kiocb); 1496 if (ret) 1497 break; 1498 ret = -EINVAL; 1499 if (file->f_op->aio_read) 1500 kiocb->ki_retry = aio_rw_vect_retry; 1501 break; 1502 case IOCB_CMD_PWRITEV: 1503 ret = -EBADF; 1504 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1505 break; 1506 ret = security_file_permission(file, MAY_WRITE); 1507 if (unlikely(ret)) 1508 break; 1509 ret = aio_setup_vectored_rw(WRITE, kiocb); 1510 if (ret) 1511 break; 1512 ret = -EINVAL; 1513 if (file->f_op->aio_write) 1514 kiocb->ki_retry = aio_rw_vect_retry; 1515 break; 1516 case IOCB_CMD_FDSYNC: 1517 ret = -EINVAL; 1518 if (file->f_op->aio_fsync) 1519 kiocb->ki_retry = aio_fdsync; 1520 break; 1521 case IOCB_CMD_FSYNC: 1522 ret = -EINVAL; 1523 if (file->f_op->aio_fsync) 1524 kiocb->ki_retry = aio_fsync; 1525 break; 1526 default: 1527 dprintk("EINVAL: io_submit: no operation provided\n"); 1528 ret = -EINVAL; 1529 } 1530 1531 if (!kiocb->ki_retry) 1532 return ret; 1533 1534 return 0; 1535 } 1536 1537 /* 1538 * aio_wake_function: 1539 * wait queue callback function for aio notification, 1540 * Simply triggers a retry of the operation via kick_iocb. 1541 * 1542 * This callback is specified in the wait queue entry in 1543 * a kiocb. 1544 * 1545 * Note: 1546 * This routine is executed with the wait queue lock held. 1547 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1548 * the ioctx lock inside the wait queue lock. This is safe 1549 * because this callback isn't used for wait queues which 1550 * are nested inside ioctx lock (i.e. ctx->wait) 1551 */ 1552 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1553 int sync, void *key) 1554 { 1555 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1556 1557 list_del_init(&wait->task_list); 1558 kick_iocb(iocb); 1559 return 1; 1560 } 1561 1562 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1563 struct iocb *iocb) 1564 { 1565 struct kiocb *req; 1566 struct file *file; 1567 ssize_t ret; 1568 1569 /* enforce forwards compatibility on users */ 1570 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1571 pr_debug("EINVAL: io_submit: reserve field set\n"); 1572 return -EINVAL; 1573 } 1574 1575 /* prevent overflows */ 1576 if (unlikely( 1577 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1578 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1579 ((ssize_t)iocb->aio_nbytes < 0) 1580 )) { 1581 pr_debug("EINVAL: io_submit: overflow check\n"); 1582 return -EINVAL; 1583 } 1584 1585 file = fget(iocb->aio_fildes); 1586 if (unlikely(!file)) 1587 return -EBADF; 1588 1589 req = aio_get_req(ctx); /* returns with 2 references to req */ 1590 if (unlikely(!req)) { 1591 fput(file); 1592 return -EAGAIN; 1593 } 1594 req->ki_filp = file; 1595 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1596 /* 1597 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1598 * instance of the file* now. The file descriptor must be 1599 * an eventfd() fd, and will be signaled for each completed 1600 * event using the eventfd_signal() function. 1601 */ 1602 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd); 1603 if (IS_ERR(req->ki_eventfd)) { 1604 ret = PTR_ERR(req->ki_eventfd); 1605 goto out_put_req; 1606 } 1607 } 1608 1609 ret = put_user(req->ki_key, &user_iocb->aio_key); 1610 if (unlikely(ret)) { 1611 dprintk("EFAULT: aio_key\n"); 1612 goto out_put_req; 1613 } 1614 1615 req->ki_obj.user = user_iocb; 1616 req->ki_user_data = iocb->aio_data; 1617 req->ki_pos = iocb->aio_offset; 1618 1619 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1620 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1621 req->ki_opcode = iocb->aio_lio_opcode; 1622 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1623 INIT_LIST_HEAD(&req->ki_wait.task_list); 1624 1625 ret = aio_setup_iocb(req); 1626 1627 if (ret) 1628 goto out_put_req; 1629 1630 spin_lock_irq(&ctx->ctx_lock); 1631 aio_run_iocb(req); 1632 if (!list_empty(&ctx->run_list)) { 1633 /* drain the run list */ 1634 while (__aio_run_iocbs(ctx)) 1635 ; 1636 } 1637 spin_unlock_irq(&ctx->ctx_lock); 1638 aio_put_req(req); /* drop extra ref to req */ 1639 return 0; 1640 1641 out_put_req: 1642 aio_put_req(req); /* drop extra ref to req */ 1643 aio_put_req(req); /* drop i/o ref to req */ 1644 return ret; 1645 } 1646 1647 /* sys_io_submit: 1648 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1649 * the number of iocbs queued. May return -EINVAL if the aio_context 1650 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1651 * *iocbpp[0] is not properly initialized, if the operation specified 1652 * is invalid for the file descriptor in the iocb. May fail with 1653 * -EFAULT if any of the data structures point to invalid data. May 1654 * fail with -EBADF if the file descriptor specified in the first 1655 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1656 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1657 * fail with -ENOSYS if not implemented. 1658 */ 1659 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1660 struct iocb __user * __user *iocbpp) 1661 { 1662 struct kioctx *ctx; 1663 long ret = 0; 1664 int i; 1665 1666 if (unlikely(nr < 0)) 1667 return -EINVAL; 1668 1669 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1670 return -EFAULT; 1671 1672 ctx = lookup_ioctx(ctx_id); 1673 if (unlikely(!ctx)) { 1674 pr_debug("EINVAL: io_submit: invalid context id\n"); 1675 return -EINVAL; 1676 } 1677 1678 /* 1679 * AKPM: should this return a partial result if some of the IOs were 1680 * successfully submitted? 1681 */ 1682 for (i=0; i<nr; i++) { 1683 struct iocb __user *user_iocb; 1684 struct iocb tmp; 1685 1686 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1687 ret = -EFAULT; 1688 break; 1689 } 1690 1691 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1692 ret = -EFAULT; 1693 break; 1694 } 1695 1696 ret = io_submit_one(ctx, user_iocb, &tmp); 1697 if (ret) 1698 break; 1699 } 1700 1701 put_ioctx(ctx); 1702 return i ? i : ret; 1703 } 1704 1705 /* lookup_kiocb 1706 * Finds a given iocb for cancellation. 1707 */ 1708 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1709 u32 key) 1710 { 1711 struct list_head *pos; 1712 1713 assert_spin_locked(&ctx->ctx_lock); 1714 1715 /* TODO: use a hash or array, this sucks. */ 1716 list_for_each(pos, &ctx->active_reqs) { 1717 struct kiocb *kiocb = list_kiocb(pos); 1718 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1719 return kiocb; 1720 } 1721 return NULL; 1722 } 1723 1724 /* sys_io_cancel: 1725 * Attempts to cancel an iocb previously passed to io_submit. If 1726 * the operation is successfully cancelled, the resulting event is 1727 * copied into the memory pointed to by result without being placed 1728 * into the completion queue and 0 is returned. May fail with 1729 * -EFAULT if any of the data structures pointed to are invalid. 1730 * May fail with -EINVAL if aio_context specified by ctx_id is 1731 * invalid. May fail with -EAGAIN if the iocb specified was not 1732 * cancelled. Will fail with -ENOSYS if not implemented. 1733 */ 1734 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1735 struct io_event __user *result) 1736 { 1737 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1738 struct kioctx *ctx; 1739 struct kiocb *kiocb; 1740 u32 key; 1741 int ret; 1742 1743 ret = get_user(key, &iocb->aio_key); 1744 if (unlikely(ret)) 1745 return -EFAULT; 1746 1747 ctx = lookup_ioctx(ctx_id); 1748 if (unlikely(!ctx)) 1749 return -EINVAL; 1750 1751 spin_lock_irq(&ctx->ctx_lock); 1752 ret = -EAGAIN; 1753 kiocb = lookup_kiocb(ctx, iocb, key); 1754 if (kiocb && kiocb->ki_cancel) { 1755 cancel = kiocb->ki_cancel; 1756 kiocb->ki_users ++; 1757 kiocbSetCancelled(kiocb); 1758 } else 1759 cancel = NULL; 1760 spin_unlock_irq(&ctx->ctx_lock); 1761 1762 if (NULL != cancel) { 1763 struct io_event tmp; 1764 pr_debug("calling cancel\n"); 1765 memset(&tmp, 0, sizeof(tmp)); 1766 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1767 tmp.data = kiocb->ki_user_data; 1768 ret = cancel(kiocb, &tmp); 1769 if (!ret) { 1770 /* Cancellation succeeded -- copy the result 1771 * into the user's buffer. 1772 */ 1773 if (copy_to_user(result, &tmp, sizeof(tmp))) 1774 ret = -EFAULT; 1775 } 1776 } else 1777 ret = -EINVAL; 1778 1779 put_ioctx(ctx); 1780 1781 return ret; 1782 } 1783 1784 /* io_getevents: 1785 * Attempts to read at least min_nr events and up to nr events from 1786 * the completion queue for the aio_context specified by ctx_id. May 1787 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1788 * if nr is out of range, if when is out of range. May fail with 1789 * -EFAULT if any of the memory specified to is invalid. May return 1790 * 0 or < min_nr if no events are available and the timeout specified 1791 * by when has elapsed, where when == NULL specifies an infinite 1792 * timeout. Note that the timeout pointed to by when is relative and 1793 * will be updated if not NULL and the operation blocks. Will fail 1794 * with -ENOSYS if not implemented. 1795 */ 1796 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1797 long min_nr, 1798 long nr, 1799 struct io_event __user *events, 1800 struct timespec __user *timeout) 1801 { 1802 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1803 long ret = -EINVAL; 1804 1805 if (likely(ioctx)) { 1806 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1807 ret = read_events(ioctx, min_nr, nr, events, timeout); 1808 put_ioctx(ioctx); 1809 } 1810 1811 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1812 return ret; 1813 } 1814 1815 __initcall(aio_setup); 1816 1817 EXPORT_SYMBOL(aio_complete); 1818 EXPORT_SYMBOL(aio_put_req); 1819 EXPORT_SYMBOL(wait_on_sync_kiocb); 1820