xref: /openbmc/linux/fs/aio.c (revision 22246614)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 
195 /* __put_ioctx
196  *	Called when the last user of an aio context has gone away,
197  *	and the struct needs to be freed.
198  */
199 static void __put_ioctx(struct kioctx *ctx)
200 {
201 	unsigned nr_events = ctx->max_reqs;
202 
203 	BUG_ON(ctx->reqs_active);
204 
205 	cancel_delayed_work(&ctx->wq);
206 	cancel_work_sync(&ctx->wq.work);
207 	aio_free_ring(ctx);
208 	mmdrop(ctx->mm);
209 	ctx->mm = NULL;
210 	pr_debug("__put_ioctx: freeing %p\n", ctx);
211 	kmem_cache_free(kioctx_cachep, ctx);
212 
213 	if (nr_events) {
214 		spin_lock(&aio_nr_lock);
215 		BUG_ON(aio_nr - nr_events > aio_nr);
216 		aio_nr -= nr_events;
217 		spin_unlock(&aio_nr_lock);
218 	}
219 }
220 
221 #define get_ioctx(kioctx) do {						\
222 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
223 	atomic_inc(&(kioctx)->users);					\
224 } while (0)
225 #define put_ioctx(kioctx) do {						\
226 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
227 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
228 		__put_ioctx(kioctx);					\
229 } while (0)
230 
231 /* ioctx_alloc
232  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
233  */
234 static struct kioctx *ioctx_alloc(unsigned nr_events)
235 {
236 	struct mm_struct *mm;
237 	struct kioctx *ctx;
238 
239 	/* Prevent overflows */
240 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
241 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
242 		pr_debug("ENOMEM: nr_events too high\n");
243 		return ERR_PTR(-EINVAL);
244 	}
245 
246 	if ((unsigned long)nr_events > aio_max_nr)
247 		return ERR_PTR(-EAGAIN);
248 
249 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
250 	if (!ctx)
251 		return ERR_PTR(-ENOMEM);
252 
253 	ctx->max_reqs = nr_events;
254 	mm = ctx->mm = current->mm;
255 	atomic_inc(&mm->mm_count);
256 
257 	atomic_set(&ctx->users, 1);
258 	spin_lock_init(&ctx->ctx_lock);
259 	spin_lock_init(&ctx->ring_info.ring_lock);
260 	init_waitqueue_head(&ctx->wait);
261 
262 	INIT_LIST_HEAD(&ctx->active_reqs);
263 	INIT_LIST_HEAD(&ctx->run_list);
264 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
265 
266 	if (aio_setup_ring(ctx) < 0)
267 		goto out_freectx;
268 
269 	/* limit the number of system wide aios */
270 	spin_lock(&aio_nr_lock);
271 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
272 	    aio_nr + ctx->max_reqs < aio_nr)
273 		ctx->max_reqs = 0;
274 	else
275 		aio_nr += ctx->max_reqs;
276 	spin_unlock(&aio_nr_lock);
277 	if (ctx->max_reqs == 0)
278 		goto out_cleanup;
279 
280 	/* now link into global list. */
281 	write_lock(&mm->ioctx_list_lock);
282 	ctx->next = mm->ioctx_list;
283 	mm->ioctx_list = ctx;
284 	write_unlock(&mm->ioctx_list_lock);
285 
286 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 	return ctx;
289 
290 out_cleanup:
291 	__put_ioctx(ctx);
292 	return ERR_PTR(-EAGAIN);
293 
294 out_freectx:
295 	mmdrop(mm);
296 	kmem_cache_free(kioctx_cachep, ctx);
297 	ctx = ERR_PTR(-ENOMEM);
298 
299 	dprintk("aio: error allocating ioctx %p\n", ctx);
300 	return ctx;
301 }
302 
303 /* aio_cancel_all
304  *	Cancels all outstanding aio requests on an aio context.  Used
305  *	when the processes owning a context have all exited to encourage
306  *	the rapid destruction of the kioctx.
307  */
308 static void aio_cancel_all(struct kioctx *ctx)
309 {
310 	int (*cancel)(struct kiocb *, struct io_event *);
311 	struct io_event res;
312 	spin_lock_irq(&ctx->ctx_lock);
313 	ctx->dead = 1;
314 	while (!list_empty(&ctx->active_reqs)) {
315 		struct list_head *pos = ctx->active_reqs.next;
316 		struct kiocb *iocb = list_kiocb(pos);
317 		list_del_init(&iocb->ki_list);
318 		cancel = iocb->ki_cancel;
319 		kiocbSetCancelled(iocb);
320 		if (cancel) {
321 			iocb->ki_users++;
322 			spin_unlock_irq(&ctx->ctx_lock);
323 			cancel(iocb, &res);
324 			spin_lock_irq(&ctx->ctx_lock);
325 		}
326 	}
327 	spin_unlock_irq(&ctx->ctx_lock);
328 }
329 
330 static void wait_for_all_aios(struct kioctx *ctx)
331 {
332 	struct task_struct *tsk = current;
333 	DECLARE_WAITQUEUE(wait, tsk);
334 
335 	spin_lock_irq(&ctx->ctx_lock);
336 	if (!ctx->reqs_active)
337 		goto out;
338 
339 	add_wait_queue(&ctx->wait, &wait);
340 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 	while (ctx->reqs_active) {
342 		spin_unlock_irq(&ctx->ctx_lock);
343 		io_schedule();
344 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 		spin_lock_irq(&ctx->ctx_lock);
346 	}
347 	__set_task_state(tsk, TASK_RUNNING);
348 	remove_wait_queue(&ctx->wait, &wait);
349 
350 out:
351 	spin_unlock_irq(&ctx->ctx_lock);
352 }
353 
354 /* wait_on_sync_kiocb:
355  *	Waits on the given sync kiocb to complete.
356  */
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
358 {
359 	while (iocb->ki_users) {
360 		set_current_state(TASK_UNINTERRUPTIBLE);
361 		if (!iocb->ki_users)
362 			break;
363 		io_schedule();
364 	}
365 	__set_current_state(TASK_RUNNING);
366 	return iocb->ki_user_data;
367 }
368 
369 /* exit_aio: called when the last user of mm goes away.  At this point,
370  * there is no way for any new requests to be submited or any of the
371  * io_* syscalls to be called on the context.  However, there may be
372  * outstanding requests which hold references to the context; as they
373  * go away, they will call put_ioctx and release any pinned memory
374  * associated with the request (held via struct page * references).
375  */
376 void exit_aio(struct mm_struct *mm)
377 {
378 	struct kioctx *ctx = mm->ioctx_list;
379 	mm->ioctx_list = NULL;
380 	while (ctx) {
381 		struct kioctx *next = ctx->next;
382 		ctx->next = NULL;
383 		aio_cancel_all(ctx);
384 
385 		wait_for_all_aios(ctx);
386 		/*
387 		 * Ensure we don't leave the ctx on the aio_wq
388 		 */
389 		cancel_work_sync(&ctx->wq.work);
390 
391 		if (1 != atomic_read(&ctx->users))
392 			printk(KERN_DEBUG
393 				"exit_aio:ioctx still alive: %d %d %d\n",
394 				atomic_read(&ctx->users), ctx->dead,
395 				ctx->reqs_active);
396 		put_ioctx(ctx);
397 		ctx = next;
398 	}
399 }
400 
401 /* aio_get_req
402  *	Allocate a slot for an aio request.  Increments the users count
403  * of the kioctx so that the kioctx stays around until all requests are
404  * complete.  Returns NULL if no requests are free.
405  *
406  * Returns with kiocb->users set to 2.  The io submit code path holds
407  * an extra reference while submitting the i/o.
408  * This prevents races between the aio code path referencing the
409  * req (after submitting it) and aio_complete() freeing the req.
410  */
411 static struct kiocb *__aio_get_req(struct kioctx *ctx)
412 {
413 	struct kiocb *req = NULL;
414 	struct aio_ring *ring;
415 	int okay = 0;
416 
417 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
418 	if (unlikely(!req))
419 		return NULL;
420 
421 	req->ki_flags = 0;
422 	req->ki_users = 2;
423 	req->ki_key = 0;
424 	req->ki_ctx = ctx;
425 	req->ki_cancel = NULL;
426 	req->ki_retry = NULL;
427 	req->ki_dtor = NULL;
428 	req->private = NULL;
429 	req->ki_iovec = NULL;
430 	INIT_LIST_HEAD(&req->ki_run_list);
431 	req->ki_eventfd = ERR_PTR(-EINVAL);
432 
433 	/* Check if the completion queue has enough free space to
434 	 * accept an event from this io.
435 	 */
436 	spin_lock_irq(&ctx->ctx_lock);
437 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
438 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
439 		list_add(&req->ki_list, &ctx->active_reqs);
440 		ctx->reqs_active++;
441 		okay = 1;
442 	}
443 	kunmap_atomic(ring, KM_USER0);
444 	spin_unlock_irq(&ctx->ctx_lock);
445 
446 	if (!okay) {
447 		kmem_cache_free(kiocb_cachep, req);
448 		req = NULL;
449 	}
450 
451 	return req;
452 }
453 
454 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
455 {
456 	struct kiocb *req;
457 	/* Handle a potential starvation case -- should be exceedingly rare as
458 	 * requests will be stuck on fput_head only if the aio_fput_routine is
459 	 * delayed and the requests were the last user of the struct file.
460 	 */
461 	req = __aio_get_req(ctx);
462 	if (unlikely(NULL == req)) {
463 		aio_fput_routine(NULL);
464 		req = __aio_get_req(ctx);
465 	}
466 	return req;
467 }
468 
469 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
470 {
471 	assert_spin_locked(&ctx->ctx_lock);
472 
473 	if (!IS_ERR(req->ki_eventfd))
474 		fput(req->ki_eventfd);
475 	if (req->ki_dtor)
476 		req->ki_dtor(req);
477 	if (req->ki_iovec != &req->ki_inline_vec)
478 		kfree(req->ki_iovec);
479 	kmem_cache_free(kiocb_cachep, req);
480 	ctx->reqs_active--;
481 
482 	if (unlikely(!ctx->reqs_active && ctx->dead))
483 		wake_up(&ctx->wait);
484 }
485 
486 static void aio_fput_routine(struct work_struct *data)
487 {
488 	spin_lock_irq(&fput_lock);
489 	while (likely(!list_empty(&fput_head))) {
490 		struct kiocb *req = list_kiocb(fput_head.next);
491 		struct kioctx *ctx = req->ki_ctx;
492 
493 		list_del(&req->ki_list);
494 		spin_unlock_irq(&fput_lock);
495 
496 		/* Complete the fput */
497 		__fput(req->ki_filp);
498 
499 		/* Link the iocb into the context's free list */
500 		spin_lock_irq(&ctx->ctx_lock);
501 		really_put_req(ctx, req);
502 		spin_unlock_irq(&ctx->ctx_lock);
503 
504 		put_ioctx(ctx);
505 		spin_lock_irq(&fput_lock);
506 	}
507 	spin_unlock_irq(&fput_lock);
508 }
509 
510 /* __aio_put_req
511  *	Returns true if this put was the last user of the request.
512  */
513 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
514 {
515 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
516 		req, atomic_read(&req->ki_filp->f_count));
517 
518 	assert_spin_locked(&ctx->ctx_lock);
519 
520 	req->ki_users --;
521 	BUG_ON(req->ki_users < 0);
522 	if (likely(req->ki_users))
523 		return 0;
524 	list_del(&req->ki_list);		/* remove from active_reqs */
525 	req->ki_cancel = NULL;
526 	req->ki_retry = NULL;
527 
528 	/* Must be done under the lock to serialise against cancellation.
529 	 * Call this aio_fput as it duplicates fput via the fput_work.
530 	 */
531 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
532 		get_ioctx(ctx);
533 		spin_lock(&fput_lock);
534 		list_add(&req->ki_list, &fput_head);
535 		spin_unlock(&fput_lock);
536 		queue_work(aio_wq, &fput_work);
537 	} else
538 		really_put_req(ctx, req);
539 	return 1;
540 }
541 
542 /* aio_put_req
543  *	Returns true if this put was the last user of the kiocb,
544  *	false if the request is still in use.
545  */
546 int aio_put_req(struct kiocb *req)
547 {
548 	struct kioctx *ctx = req->ki_ctx;
549 	int ret;
550 	spin_lock_irq(&ctx->ctx_lock);
551 	ret = __aio_put_req(ctx, req);
552 	spin_unlock_irq(&ctx->ctx_lock);
553 	return ret;
554 }
555 
556 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
557 {
558 	struct kioctx *ioctx;
559 	struct mm_struct *mm;
560 
561 	mm = current->mm;
562 	read_lock(&mm->ioctx_list_lock);
563 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
564 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
565 			get_ioctx(ioctx);
566 			break;
567 		}
568 	read_unlock(&mm->ioctx_list_lock);
569 
570 	return ioctx;
571 }
572 
573 /*
574  * use_mm
575  *	Makes the calling kernel thread take on the specified
576  *	mm context.
577  *	Called by the retry thread execute retries within the
578  *	iocb issuer's mm context, so that copy_from/to_user
579  *	operations work seamlessly for aio.
580  *	(Note: this routine is intended to be called only
581  *	from a kernel thread context)
582  */
583 static void use_mm(struct mm_struct *mm)
584 {
585 	struct mm_struct *active_mm;
586 	struct task_struct *tsk = current;
587 
588 	task_lock(tsk);
589 	tsk->flags |= PF_BORROWED_MM;
590 	active_mm = tsk->active_mm;
591 	atomic_inc(&mm->mm_count);
592 	tsk->mm = mm;
593 	tsk->active_mm = mm;
594 	/*
595 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
596 	 * it won't work. Update it accordingly if you change it here
597 	 */
598 	switch_mm(active_mm, mm, tsk);
599 	task_unlock(tsk);
600 
601 	mmdrop(active_mm);
602 }
603 
604 /*
605  * unuse_mm
606  *	Reverses the effect of use_mm, i.e. releases the
607  *	specified mm context which was earlier taken on
608  *	by the calling kernel thread
609  *	(Note: this routine is intended to be called only
610  *	from a kernel thread context)
611  */
612 static void unuse_mm(struct mm_struct *mm)
613 {
614 	struct task_struct *tsk = current;
615 
616 	task_lock(tsk);
617 	tsk->flags &= ~PF_BORROWED_MM;
618 	tsk->mm = NULL;
619 	/* active_mm is still 'mm' */
620 	enter_lazy_tlb(mm, tsk);
621 	task_unlock(tsk);
622 }
623 
624 /*
625  * Queue up a kiocb to be retried. Assumes that the kiocb
626  * has already been marked as kicked, and places it on
627  * the retry run list for the corresponding ioctx, if it
628  * isn't already queued. Returns 1 if it actually queued
629  * the kiocb (to tell the caller to activate the work
630  * queue to process it), or 0, if it found that it was
631  * already queued.
632  */
633 static inline int __queue_kicked_iocb(struct kiocb *iocb)
634 {
635 	struct kioctx *ctx = iocb->ki_ctx;
636 
637 	assert_spin_locked(&ctx->ctx_lock);
638 
639 	if (list_empty(&iocb->ki_run_list)) {
640 		list_add_tail(&iocb->ki_run_list,
641 			&ctx->run_list);
642 		return 1;
643 	}
644 	return 0;
645 }
646 
647 /* aio_run_iocb
648  *	This is the core aio execution routine. It is
649  *	invoked both for initial i/o submission and
650  *	subsequent retries via the aio_kick_handler.
651  *	Expects to be invoked with iocb->ki_ctx->lock
652  *	already held. The lock is released and reacquired
653  *	as needed during processing.
654  *
655  * Calls the iocb retry method (already setup for the
656  * iocb on initial submission) for operation specific
657  * handling, but takes care of most of common retry
658  * execution details for a given iocb. The retry method
659  * needs to be non-blocking as far as possible, to avoid
660  * holding up other iocbs waiting to be serviced by the
661  * retry kernel thread.
662  *
663  * The trickier parts in this code have to do with
664  * ensuring that only one retry instance is in progress
665  * for a given iocb at any time. Providing that guarantee
666  * simplifies the coding of individual aio operations as
667  * it avoids various potential races.
668  */
669 static ssize_t aio_run_iocb(struct kiocb *iocb)
670 {
671 	struct kioctx	*ctx = iocb->ki_ctx;
672 	ssize_t (*retry)(struct kiocb *);
673 	ssize_t ret;
674 
675 	if (!(retry = iocb->ki_retry)) {
676 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
677 		return 0;
678 	}
679 
680 	/*
681 	 * We don't want the next retry iteration for this
682 	 * operation to start until this one has returned and
683 	 * updated the iocb state. However, wait_queue functions
684 	 * can trigger a kick_iocb from interrupt context in the
685 	 * meantime, indicating that data is available for the next
686 	 * iteration. We want to remember that and enable the
687 	 * next retry iteration _after_ we are through with
688 	 * this one.
689 	 *
690 	 * So, in order to be able to register a "kick", but
691 	 * prevent it from being queued now, we clear the kick
692 	 * flag, but make the kick code *think* that the iocb is
693 	 * still on the run list until we are actually done.
694 	 * When we are done with this iteration, we check if
695 	 * the iocb was kicked in the meantime and if so, queue
696 	 * it up afresh.
697 	 */
698 
699 	kiocbClearKicked(iocb);
700 
701 	/*
702 	 * This is so that aio_complete knows it doesn't need to
703 	 * pull the iocb off the run list (We can't just call
704 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
705 	 * queue this on the run list yet)
706 	 */
707 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
708 	spin_unlock_irq(&ctx->ctx_lock);
709 
710 	/* Quit retrying if the i/o has been cancelled */
711 	if (kiocbIsCancelled(iocb)) {
712 		ret = -EINTR;
713 		aio_complete(iocb, ret, 0);
714 		/* must not access the iocb after this */
715 		goto out;
716 	}
717 
718 	/*
719 	 * Now we are all set to call the retry method in async
720 	 * context.
721 	 */
722 	ret = retry(iocb);
723 
724 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
725 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
726 		aio_complete(iocb, ret, 0);
727 	}
728 out:
729 	spin_lock_irq(&ctx->ctx_lock);
730 
731 	if (-EIOCBRETRY == ret) {
732 		/*
733 		 * OK, now that we are done with this iteration
734 		 * and know that there is more left to go,
735 		 * this is where we let go so that a subsequent
736 		 * "kick" can start the next iteration
737 		 */
738 
739 		/* will make __queue_kicked_iocb succeed from here on */
740 		INIT_LIST_HEAD(&iocb->ki_run_list);
741 		/* we must queue the next iteration ourselves, if it
742 		 * has already been kicked */
743 		if (kiocbIsKicked(iocb)) {
744 			__queue_kicked_iocb(iocb);
745 
746 			/*
747 			 * __queue_kicked_iocb will always return 1 here, because
748 			 * iocb->ki_run_list is empty at this point so it should
749 			 * be safe to unconditionally queue the context into the
750 			 * work queue.
751 			 */
752 			aio_queue_work(ctx);
753 		}
754 	}
755 	return ret;
756 }
757 
758 /*
759  * __aio_run_iocbs:
760  * 	Process all pending retries queued on the ioctx
761  * 	run list.
762  * Assumes it is operating within the aio issuer's mm
763  * context.
764  */
765 static int __aio_run_iocbs(struct kioctx *ctx)
766 {
767 	struct kiocb *iocb;
768 	struct list_head run_list;
769 
770 	assert_spin_locked(&ctx->ctx_lock);
771 
772 	list_replace_init(&ctx->run_list, &run_list);
773 	while (!list_empty(&run_list)) {
774 		iocb = list_entry(run_list.next, struct kiocb,
775 			ki_run_list);
776 		list_del(&iocb->ki_run_list);
777 		/*
778 		 * Hold an extra reference while retrying i/o.
779 		 */
780 		iocb->ki_users++;       /* grab extra reference */
781 		aio_run_iocb(iocb);
782 		__aio_put_req(ctx, iocb);
783  	}
784 	if (!list_empty(&ctx->run_list))
785 		return 1;
786 	return 0;
787 }
788 
789 static void aio_queue_work(struct kioctx * ctx)
790 {
791 	unsigned long timeout;
792 	/*
793 	 * if someone is waiting, get the work started right
794 	 * away, otherwise, use a longer delay
795 	 */
796 	smp_mb();
797 	if (waitqueue_active(&ctx->wait))
798 		timeout = 1;
799 	else
800 		timeout = HZ/10;
801 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
802 }
803 
804 
805 /*
806  * aio_run_iocbs:
807  * 	Process all pending retries queued on the ioctx
808  * 	run list.
809  * Assumes it is operating within the aio issuer's mm
810  * context.
811  */
812 static inline void aio_run_iocbs(struct kioctx *ctx)
813 {
814 	int requeue;
815 
816 	spin_lock_irq(&ctx->ctx_lock);
817 
818 	requeue = __aio_run_iocbs(ctx);
819 	spin_unlock_irq(&ctx->ctx_lock);
820 	if (requeue)
821 		aio_queue_work(ctx);
822 }
823 
824 /*
825  * just like aio_run_iocbs, but keeps running them until
826  * the list stays empty
827  */
828 static inline void aio_run_all_iocbs(struct kioctx *ctx)
829 {
830 	spin_lock_irq(&ctx->ctx_lock);
831 	while (__aio_run_iocbs(ctx))
832 		;
833 	spin_unlock_irq(&ctx->ctx_lock);
834 }
835 
836 /*
837  * aio_kick_handler:
838  * 	Work queue handler triggered to process pending
839  * 	retries on an ioctx. Takes on the aio issuer's
840  *	mm context before running the iocbs, so that
841  *	copy_xxx_user operates on the issuer's address
842  *      space.
843  * Run on aiod's context.
844  */
845 static void aio_kick_handler(struct work_struct *work)
846 {
847 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
848 	mm_segment_t oldfs = get_fs();
849 	struct mm_struct *mm;
850 	int requeue;
851 
852 	set_fs(USER_DS);
853 	use_mm(ctx->mm);
854 	spin_lock_irq(&ctx->ctx_lock);
855 	requeue =__aio_run_iocbs(ctx);
856 	mm = ctx->mm;
857 	spin_unlock_irq(&ctx->ctx_lock);
858  	unuse_mm(mm);
859 	set_fs(oldfs);
860 	/*
861 	 * we're in a worker thread already, don't use queue_delayed_work,
862 	 */
863 	if (requeue)
864 		queue_delayed_work(aio_wq, &ctx->wq, 0);
865 }
866 
867 
868 /*
869  * Called by kick_iocb to queue the kiocb for retry
870  * and if required activate the aio work queue to process
871  * it
872  */
873 static void try_queue_kicked_iocb(struct kiocb *iocb)
874 {
875  	struct kioctx	*ctx = iocb->ki_ctx;
876 	unsigned long flags;
877 	int run = 0;
878 
879 	/* We're supposed to be the only path putting the iocb back on the run
880 	 * list.  If we find that the iocb is *back* on a wait queue already
881 	 * than retry has happened before we could queue the iocb.  This also
882 	 * means that the retry could have completed and freed our iocb, no
883 	 * good. */
884 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
885 
886 	spin_lock_irqsave(&ctx->ctx_lock, flags);
887 	/* set this inside the lock so that we can't race with aio_run_iocb()
888 	 * testing it and putting the iocb on the run list under the lock */
889 	if (!kiocbTryKick(iocb))
890 		run = __queue_kicked_iocb(iocb);
891 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
892 	if (run)
893 		aio_queue_work(ctx);
894 }
895 
896 /*
897  * kick_iocb:
898  *      Called typically from a wait queue callback context
899  *      (aio_wake_function) to trigger a retry of the iocb.
900  *      The retry is usually executed by aio workqueue
901  *      threads (See aio_kick_handler).
902  */
903 void kick_iocb(struct kiocb *iocb)
904 {
905 	/* sync iocbs are easy: they can only ever be executing from a
906 	 * single context. */
907 	if (is_sync_kiocb(iocb)) {
908 		kiocbSetKicked(iocb);
909 	        wake_up_process(iocb->ki_obj.tsk);
910 		return;
911 	}
912 
913 	try_queue_kicked_iocb(iocb);
914 }
915 EXPORT_SYMBOL(kick_iocb);
916 
917 /* aio_complete
918  *	Called when the io request on the given iocb is complete.
919  *	Returns true if this is the last user of the request.  The
920  *	only other user of the request can be the cancellation code.
921  */
922 int aio_complete(struct kiocb *iocb, long res, long res2)
923 {
924 	struct kioctx	*ctx = iocb->ki_ctx;
925 	struct aio_ring_info	*info;
926 	struct aio_ring	*ring;
927 	struct io_event	*event;
928 	unsigned long	flags;
929 	unsigned long	tail;
930 	int		ret;
931 
932 	/*
933 	 * Special case handling for sync iocbs:
934 	 *  - events go directly into the iocb for fast handling
935 	 *  - the sync task with the iocb in its stack holds the single iocb
936 	 *    ref, no other paths have a way to get another ref
937 	 *  - the sync task helpfully left a reference to itself in the iocb
938 	 */
939 	if (is_sync_kiocb(iocb)) {
940 		BUG_ON(iocb->ki_users != 1);
941 		iocb->ki_user_data = res;
942 		iocb->ki_users = 0;
943 		wake_up_process(iocb->ki_obj.tsk);
944 		return 1;
945 	}
946 
947 	info = &ctx->ring_info;
948 
949 	/* add a completion event to the ring buffer.
950 	 * must be done holding ctx->ctx_lock to prevent
951 	 * other code from messing with the tail
952 	 * pointer since we might be called from irq
953 	 * context.
954 	 */
955 	spin_lock_irqsave(&ctx->ctx_lock, flags);
956 
957 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
958 		list_del_init(&iocb->ki_run_list);
959 
960 	/*
961 	 * cancelled requests don't get events, userland was given one
962 	 * when the event got cancelled.
963 	 */
964 	if (kiocbIsCancelled(iocb))
965 		goto put_rq;
966 
967 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
968 
969 	tail = info->tail;
970 	event = aio_ring_event(info, tail, KM_IRQ0);
971 	if (++tail >= info->nr)
972 		tail = 0;
973 
974 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
975 	event->data = iocb->ki_user_data;
976 	event->res = res;
977 	event->res2 = res2;
978 
979 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
980 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
981 		res, res2);
982 
983 	/* after flagging the request as done, we
984 	 * must never even look at it again
985 	 */
986 	smp_wmb();	/* make event visible before updating tail */
987 
988 	info->tail = tail;
989 	ring->tail = tail;
990 
991 	put_aio_ring_event(event, KM_IRQ0);
992 	kunmap_atomic(ring, KM_IRQ1);
993 
994 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
995 
996 	/*
997 	 * Check if the user asked us to deliver the result through an
998 	 * eventfd. The eventfd_signal() function is safe to be called
999 	 * from IRQ context.
1000 	 */
1001 	if (!IS_ERR(iocb->ki_eventfd))
1002 		eventfd_signal(iocb->ki_eventfd, 1);
1003 
1004 put_rq:
1005 	/* everything turned out well, dispose of the aiocb. */
1006 	ret = __aio_put_req(ctx, iocb);
1007 
1008 	/*
1009 	 * We have to order our ring_info tail store above and test
1010 	 * of the wait list below outside the wait lock.  This is
1011 	 * like in wake_up_bit() where clearing a bit has to be
1012 	 * ordered with the unlocked test.
1013 	 */
1014 	smp_mb();
1015 
1016 	if (waitqueue_active(&ctx->wait))
1017 		wake_up(&ctx->wait);
1018 
1019 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1020 	return ret;
1021 }
1022 
1023 /* aio_read_evt
1024  *	Pull an event off of the ioctx's event ring.  Returns the number of
1025  *	events fetched (0 or 1 ;-)
1026  *	FIXME: make this use cmpxchg.
1027  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1028  */
1029 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1030 {
1031 	struct aio_ring_info *info = &ioctx->ring_info;
1032 	struct aio_ring *ring;
1033 	unsigned long head;
1034 	int ret = 0;
1035 
1036 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1037 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1038 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1039 		 (unsigned long)ring->nr);
1040 
1041 	if (ring->head == ring->tail)
1042 		goto out;
1043 
1044 	spin_lock(&info->ring_lock);
1045 
1046 	head = ring->head % info->nr;
1047 	if (head != ring->tail) {
1048 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1049 		*ent = *evp;
1050 		head = (head + 1) % info->nr;
1051 		smp_mb(); /* finish reading the event before updatng the head */
1052 		ring->head = head;
1053 		ret = 1;
1054 		put_aio_ring_event(evp, KM_USER1);
1055 	}
1056 	spin_unlock(&info->ring_lock);
1057 
1058 out:
1059 	kunmap_atomic(ring, KM_USER0);
1060 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1061 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1062 	return ret;
1063 }
1064 
1065 struct aio_timeout {
1066 	struct timer_list	timer;
1067 	int			timed_out;
1068 	struct task_struct	*p;
1069 };
1070 
1071 static void timeout_func(unsigned long data)
1072 {
1073 	struct aio_timeout *to = (struct aio_timeout *)data;
1074 
1075 	to->timed_out = 1;
1076 	wake_up_process(to->p);
1077 }
1078 
1079 static inline void init_timeout(struct aio_timeout *to)
1080 {
1081 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1082 	to->timed_out = 0;
1083 	to->p = current;
1084 }
1085 
1086 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1087 			       const struct timespec *ts)
1088 {
1089 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1090 	if (time_after(to->timer.expires, jiffies))
1091 		add_timer(&to->timer);
1092 	else
1093 		to->timed_out = 1;
1094 }
1095 
1096 static inline void clear_timeout(struct aio_timeout *to)
1097 {
1098 	del_singleshot_timer_sync(&to->timer);
1099 }
1100 
1101 static int read_events(struct kioctx *ctx,
1102 			long min_nr, long nr,
1103 			struct io_event __user *event,
1104 			struct timespec __user *timeout)
1105 {
1106 	long			start_jiffies = jiffies;
1107 	struct task_struct	*tsk = current;
1108 	DECLARE_WAITQUEUE(wait, tsk);
1109 	int			ret;
1110 	int			i = 0;
1111 	struct io_event		ent;
1112 	struct aio_timeout	to;
1113 	int			retry = 0;
1114 
1115 	/* needed to zero any padding within an entry (there shouldn't be
1116 	 * any, but C is fun!
1117 	 */
1118 	memset(&ent, 0, sizeof(ent));
1119 retry:
1120 	ret = 0;
1121 	while (likely(i < nr)) {
1122 		ret = aio_read_evt(ctx, &ent);
1123 		if (unlikely(ret <= 0))
1124 			break;
1125 
1126 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1127 			ent.data, ent.obj, ent.res, ent.res2);
1128 
1129 		/* Could we split the check in two? */
1130 		ret = -EFAULT;
1131 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1132 			dprintk("aio: lost an event due to EFAULT.\n");
1133 			break;
1134 		}
1135 		ret = 0;
1136 
1137 		/* Good, event copied to userland, update counts. */
1138 		event ++;
1139 		i ++;
1140 	}
1141 
1142 	if (min_nr <= i)
1143 		return i;
1144 	if (ret)
1145 		return ret;
1146 
1147 	/* End fast path */
1148 
1149 	/* racey check, but it gets redone */
1150 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1151 		retry = 1;
1152 		aio_run_all_iocbs(ctx);
1153 		goto retry;
1154 	}
1155 
1156 	init_timeout(&to);
1157 	if (timeout) {
1158 		struct timespec	ts;
1159 		ret = -EFAULT;
1160 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1161 			goto out;
1162 
1163 		set_timeout(start_jiffies, &to, &ts);
1164 	}
1165 
1166 	while (likely(i < nr)) {
1167 		add_wait_queue_exclusive(&ctx->wait, &wait);
1168 		do {
1169 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1170 			ret = aio_read_evt(ctx, &ent);
1171 			if (ret)
1172 				break;
1173 			if (min_nr <= i)
1174 				break;
1175 			if (unlikely(ctx->dead)) {
1176 				ret = -EINVAL;
1177 				break;
1178 			}
1179 			if (to.timed_out)	/* Only check after read evt */
1180 				break;
1181 			/* Try to only show up in io wait if there are ops
1182 			 *  in flight */
1183 			if (ctx->reqs_active)
1184 				io_schedule();
1185 			else
1186 				schedule();
1187 			if (signal_pending(tsk)) {
1188 				ret = -EINTR;
1189 				break;
1190 			}
1191 			/*ret = aio_read_evt(ctx, &ent);*/
1192 		} while (1) ;
1193 
1194 		set_task_state(tsk, TASK_RUNNING);
1195 		remove_wait_queue(&ctx->wait, &wait);
1196 
1197 		if (unlikely(ret <= 0))
1198 			break;
1199 
1200 		ret = -EFAULT;
1201 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1202 			dprintk("aio: lost an event due to EFAULT.\n");
1203 			break;
1204 		}
1205 
1206 		/* Good, event copied to userland, update counts. */
1207 		event ++;
1208 		i ++;
1209 	}
1210 
1211 	if (timeout)
1212 		clear_timeout(&to);
1213 out:
1214 	destroy_timer_on_stack(&to.timer);
1215 	return i ? i : ret;
1216 }
1217 
1218 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1219  * against races with itself via ->dead.
1220  */
1221 static void io_destroy(struct kioctx *ioctx)
1222 {
1223 	struct mm_struct *mm = current->mm;
1224 	struct kioctx **tmp;
1225 	int was_dead;
1226 
1227 	/* delete the entry from the list is someone else hasn't already */
1228 	write_lock(&mm->ioctx_list_lock);
1229 	was_dead = ioctx->dead;
1230 	ioctx->dead = 1;
1231 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1232 	     tmp = &(*tmp)->next)
1233 		;
1234 	if (*tmp)
1235 		*tmp = ioctx->next;
1236 	write_unlock(&mm->ioctx_list_lock);
1237 
1238 	dprintk("aio_release(%p)\n", ioctx);
1239 	if (likely(!was_dead))
1240 		put_ioctx(ioctx);	/* twice for the list */
1241 
1242 	aio_cancel_all(ioctx);
1243 	wait_for_all_aios(ioctx);
1244 
1245 	/*
1246 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1247 	 * by other CPUs at this point.  Right now, we rely on the
1248 	 * locking done by the above calls to ensure this consistency.
1249 	 */
1250 	wake_up(&ioctx->wait);
1251 	put_ioctx(ioctx);	/* once for the lookup */
1252 }
1253 
1254 /* sys_io_setup:
1255  *	Create an aio_context capable of receiving at least nr_events.
1256  *	ctxp must not point to an aio_context that already exists, and
1257  *	must be initialized to 0 prior to the call.  On successful
1258  *	creation of the aio_context, *ctxp is filled in with the resulting
1259  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1260  *	if the specified nr_events exceeds internal limits.  May fail
1261  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1262  *	of available events.  May fail with -ENOMEM if insufficient kernel
1263  *	resources are available.  May fail with -EFAULT if an invalid
1264  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1265  *	implemented.
1266  */
1267 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1268 {
1269 	struct kioctx *ioctx = NULL;
1270 	unsigned long ctx;
1271 	long ret;
1272 
1273 	ret = get_user(ctx, ctxp);
1274 	if (unlikely(ret))
1275 		goto out;
1276 
1277 	ret = -EINVAL;
1278 	if (unlikely(ctx || nr_events == 0)) {
1279 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1280 		         ctx, nr_events);
1281 		goto out;
1282 	}
1283 
1284 	ioctx = ioctx_alloc(nr_events);
1285 	ret = PTR_ERR(ioctx);
1286 	if (!IS_ERR(ioctx)) {
1287 		ret = put_user(ioctx->user_id, ctxp);
1288 		if (!ret)
1289 			return 0;
1290 
1291 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1292 		io_destroy(ioctx);
1293 	}
1294 
1295 out:
1296 	return ret;
1297 }
1298 
1299 /* sys_io_destroy:
1300  *	Destroy the aio_context specified.  May cancel any outstanding
1301  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1302  *	implemented.  May fail with -EFAULT if the context pointed to
1303  *	is invalid.
1304  */
1305 asmlinkage long sys_io_destroy(aio_context_t ctx)
1306 {
1307 	struct kioctx *ioctx = lookup_ioctx(ctx);
1308 	if (likely(NULL != ioctx)) {
1309 		io_destroy(ioctx);
1310 		return 0;
1311 	}
1312 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1313 	return -EINVAL;
1314 }
1315 
1316 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1317 {
1318 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1319 
1320 	BUG_ON(ret <= 0);
1321 
1322 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1323 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1324 		iov->iov_base += this;
1325 		iov->iov_len -= this;
1326 		iocb->ki_left -= this;
1327 		ret -= this;
1328 		if (iov->iov_len == 0) {
1329 			iocb->ki_cur_seg++;
1330 			iov++;
1331 		}
1332 	}
1333 
1334 	/* the caller should not have done more io than what fit in
1335 	 * the remaining iovecs */
1336 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1337 }
1338 
1339 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1340 {
1341 	struct file *file = iocb->ki_filp;
1342 	struct address_space *mapping = file->f_mapping;
1343 	struct inode *inode = mapping->host;
1344 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1345 			 unsigned long, loff_t);
1346 	ssize_t ret = 0;
1347 	unsigned short opcode;
1348 
1349 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1350 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1351 		rw_op = file->f_op->aio_read;
1352 		opcode = IOCB_CMD_PREADV;
1353 	} else {
1354 		rw_op = file->f_op->aio_write;
1355 		opcode = IOCB_CMD_PWRITEV;
1356 	}
1357 
1358 	/* This matches the pread()/pwrite() logic */
1359 	if (iocb->ki_pos < 0)
1360 		return -EINVAL;
1361 
1362 	do {
1363 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1364 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1365 			    iocb->ki_pos);
1366 		if (ret > 0)
1367 			aio_advance_iovec(iocb, ret);
1368 
1369 	/* retry all partial writes.  retry partial reads as long as its a
1370 	 * regular file. */
1371 	} while (ret > 0 && iocb->ki_left > 0 &&
1372 		 (opcode == IOCB_CMD_PWRITEV ||
1373 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1374 
1375 	/* This means we must have transferred all that we could */
1376 	/* No need to retry anymore */
1377 	if ((ret == 0) || (iocb->ki_left == 0))
1378 		ret = iocb->ki_nbytes - iocb->ki_left;
1379 
1380 	/* If we managed to write some out we return that, rather than
1381 	 * the eventual error. */
1382 	if (opcode == IOCB_CMD_PWRITEV
1383 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1384 	    && iocb->ki_nbytes - iocb->ki_left)
1385 		ret = iocb->ki_nbytes - iocb->ki_left;
1386 
1387 	return ret;
1388 }
1389 
1390 static ssize_t aio_fdsync(struct kiocb *iocb)
1391 {
1392 	struct file *file = iocb->ki_filp;
1393 	ssize_t ret = -EINVAL;
1394 
1395 	if (file->f_op->aio_fsync)
1396 		ret = file->f_op->aio_fsync(iocb, 1);
1397 	return ret;
1398 }
1399 
1400 static ssize_t aio_fsync(struct kiocb *iocb)
1401 {
1402 	struct file *file = iocb->ki_filp;
1403 	ssize_t ret = -EINVAL;
1404 
1405 	if (file->f_op->aio_fsync)
1406 		ret = file->f_op->aio_fsync(iocb, 0);
1407 	return ret;
1408 }
1409 
1410 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1411 {
1412 	ssize_t ret;
1413 
1414 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1415 				    kiocb->ki_nbytes, 1,
1416 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1417 	if (ret < 0)
1418 		goto out;
1419 
1420 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1421 	kiocb->ki_cur_seg = 0;
1422 	/* ki_nbytes/left now reflect bytes instead of segs */
1423 	kiocb->ki_nbytes = ret;
1424 	kiocb->ki_left = ret;
1425 
1426 	ret = 0;
1427 out:
1428 	return ret;
1429 }
1430 
1431 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1432 {
1433 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1434 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1435 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1436 	kiocb->ki_nr_segs = 1;
1437 	kiocb->ki_cur_seg = 0;
1438 	return 0;
1439 }
1440 
1441 /*
1442  * aio_setup_iocb:
1443  *	Performs the initial checks and aio retry method
1444  *	setup for the kiocb at the time of io submission.
1445  */
1446 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1447 {
1448 	struct file *file = kiocb->ki_filp;
1449 	ssize_t ret = 0;
1450 
1451 	switch (kiocb->ki_opcode) {
1452 	case IOCB_CMD_PREAD:
1453 		ret = -EBADF;
1454 		if (unlikely(!(file->f_mode & FMODE_READ)))
1455 			break;
1456 		ret = -EFAULT;
1457 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1458 			kiocb->ki_left)))
1459 			break;
1460 		ret = security_file_permission(file, MAY_READ);
1461 		if (unlikely(ret))
1462 			break;
1463 		ret = aio_setup_single_vector(kiocb);
1464 		if (ret)
1465 			break;
1466 		ret = -EINVAL;
1467 		if (file->f_op->aio_read)
1468 			kiocb->ki_retry = aio_rw_vect_retry;
1469 		break;
1470 	case IOCB_CMD_PWRITE:
1471 		ret = -EBADF;
1472 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1473 			break;
1474 		ret = -EFAULT;
1475 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1476 			kiocb->ki_left)))
1477 			break;
1478 		ret = security_file_permission(file, MAY_WRITE);
1479 		if (unlikely(ret))
1480 			break;
1481 		ret = aio_setup_single_vector(kiocb);
1482 		if (ret)
1483 			break;
1484 		ret = -EINVAL;
1485 		if (file->f_op->aio_write)
1486 			kiocb->ki_retry = aio_rw_vect_retry;
1487 		break;
1488 	case IOCB_CMD_PREADV:
1489 		ret = -EBADF;
1490 		if (unlikely(!(file->f_mode & FMODE_READ)))
1491 			break;
1492 		ret = security_file_permission(file, MAY_READ);
1493 		if (unlikely(ret))
1494 			break;
1495 		ret = aio_setup_vectored_rw(READ, kiocb);
1496 		if (ret)
1497 			break;
1498 		ret = -EINVAL;
1499 		if (file->f_op->aio_read)
1500 			kiocb->ki_retry = aio_rw_vect_retry;
1501 		break;
1502 	case IOCB_CMD_PWRITEV:
1503 		ret = -EBADF;
1504 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1505 			break;
1506 		ret = security_file_permission(file, MAY_WRITE);
1507 		if (unlikely(ret))
1508 			break;
1509 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1510 		if (ret)
1511 			break;
1512 		ret = -EINVAL;
1513 		if (file->f_op->aio_write)
1514 			kiocb->ki_retry = aio_rw_vect_retry;
1515 		break;
1516 	case IOCB_CMD_FDSYNC:
1517 		ret = -EINVAL;
1518 		if (file->f_op->aio_fsync)
1519 			kiocb->ki_retry = aio_fdsync;
1520 		break;
1521 	case IOCB_CMD_FSYNC:
1522 		ret = -EINVAL;
1523 		if (file->f_op->aio_fsync)
1524 			kiocb->ki_retry = aio_fsync;
1525 		break;
1526 	default:
1527 		dprintk("EINVAL: io_submit: no operation provided\n");
1528 		ret = -EINVAL;
1529 	}
1530 
1531 	if (!kiocb->ki_retry)
1532 		return ret;
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * aio_wake_function:
1539  * 	wait queue callback function for aio notification,
1540  * 	Simply triggers a retry of the operation via kick_iocb.
1541  *
1542  * 	This callback is specified in the wait queue entry in
1543  *	a kiocb.
1544  *
1545  * Note:
1546  * This routine is executed with the wait queue lock held.
1547  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1548  * the ioctx lock inside the wait queue lock. This is safe
1549  * because this callback isn't used for wait queues which
1550  * are nested inside ioctx lock (i.e. ctx->wait)
1551  */
1552 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1553 			     int sync, void *key)
1554 {
1555 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1556 
1557 	list_del_init(&wait->task_list);
1558 	kick_iocb(iocb);
1559 	return 1;
1560 }
1561 
1562 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1563 			 struct iocb *iocb)
1564 {
1565 	struct kiocb *req;
1566 	struct file *file;
1567 	ssize_t ret;
1568 
1569 	/* enforce forwards compatibility on users */
1570 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1571 		pr_debug("EINVAL: io_submit: reserve field set\n");
1572 		return -EINVAL;
1573 	}
1574 
1575 	/* prevent overflows */
1576 	if (unlikely(
1577 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1578 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1579 	    ((ssize_t)iocb->aio_nbytes < 0)
1580 	   )) {
1581 		pr_debug("EINVAL: io_submit: overflow check\n");
1582 		return -EINVAL;
1583 	}
1584 
1585 	file = fget(iocb->aio_fildes);
1586 	if (unlikely(!file))
1587 		return -EBADF;
1588 
1589 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1590 	if (unlikely(!req)) {
1591 		fput(file);
1592 		return -EAGAIN;
1593 	}
1594 	req->ki_filp = file;
1595 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1596 		/*
1597 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1598 		 * instance of the file* now. The file descriptor must be
1599 		 * an eventfd() fd, and will be signaled for each completed
1600 		 * event using the eventfd_signal() function.
1601 		 */
1602 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1603 		if (IS_ERR(req->ki_eventfd)) {
1604 			ret = PTR_ERR(req->ki_eventfd);
1605 			goto out_put_req;
1606 		}
1607 	}
1608 
1609 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1610 	if (unlikely(ret)) {
1611 		dprintk("EFAULT: aio_key\n");
1612 		goto out_put_req;
1613 	}
1614 
1615 	req->ki_obj.user = user_iocb;
1616 	req->ki_user_data = iocb->aio_data;
1617 	req->ki_pos = iocb->aio_offset;
1618 
1619 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1620 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1621 	req->ki_opcode = iocb->aio_lio_opcode;
1622 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1623 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1624 
1625 	ret = aio_setup_iocb(req);
1626 
1627 	if (ret)
1628 		goto out_put_req;
1629 
1630 	spin_lock_irq(&ctx->ctx_lock);
1631 	aio_run_iocb(req);
1632 	if (!list_empty(&ctx->run_list)) {
1633 		/* drain the run list */
1634 		while (__aio_run_iocbs(ctx))
1635 			;
1636 	}
1637 	spin_unlock_irq(&ctx->ctx_lock);
1638 	aio_put_req(req);	/* drop extra ref to req */
1639 	return 0;
1640 
1641 out_put_req:
1642 	aio_put_req(req);	/* drop extra ref to req */
1643 	aio_put_req(req);	/* drop i/o ref to req */
1644 	return ret;
1645 }
1646 
1647 /* sys_io_submit:
1648  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1649  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1650  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1651  *	*iocbpp[0] is not properly initialized, if the operation specified
1652  *	is invalid for the file descriptor in the iocb.  May fail with
1653  *	-EFAULT if any of the data structures point to invalid data.  May
1654  *	fail with -EBADF if the file descriptor specified in the first
1655  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1656  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1657  *	fail with -ENOSYS if not implemented.
1658  */
1659 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1660 			      struct iocb __user * __user *iocbpp)
1661 {
1662 	struct kioctx *ctx;
1663 	long ret = 0;
1664 	int i;
1665 
1666 	if (unlikely(nr < 0))
1667 		return -EINVAL;
1668 
1669 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1670 		return -EFAULT;
1671 
1672 	ctx = lookup_ioctx(ctx_id);
1673 	if (unlikely(!ctx)) {
1674 		pr_debug("EINVAL: io_submit: invalid context id\n");
1675 		return -EINVAL;
1676 	}
1677 
1678 	/*
1679 	 * AKPM: should this return a partial result if some of the IOs were
1680 	 * successfully submitted?
1681 	 */
1682 	for (i=0; i<nr; i++) {
1683 		struct iocb __user *user_iocb;
1684 		struct iocb tmp;
1685 
1686 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1687 			ret = -EFAULT;
1688 			break;
1689 		}
1690 
1691 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1692 			ret = -EFAULT;
1693 			break;
1694 		}
1695 
1696 		ret = io_submit_one(ctx, user_iocb, &tmp);
1697 		if (ret)
1698 			break;
1699 	}
1700 
1701 	put_ioctx(ctx);
1702 	return i ? i : ret;
1703 }
1704 
1705 /* lookup_kiocb
1706  *	Finds a given iocb for cancellation.
1707  */
1708 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1709 				  u32 key)
1710 {
1711 	struct list_head *pos;
1712 
1713 	assert_spin_locked(&ctx->ctx_lock);
1714 
1715 	/* TODO: use a hash or array, this sucks. */
1716 	list_for_each(pos, &ctx->active_reqs) {
1717 		struct kiocb *kiocb = list_kiocb(pos);
1718 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1719 			return kiocb;
1720 	}
1721 	return NULL;
1722 }
1723 
1724 /* sys_io_cancel:
1725  *	Attempts to cancel an iocb previously passed to io_submit.  If
1726  *	the operation is successfully cancelled, the resulting event is
1727  *	copied into the memory pointed to by result without being placed
1728  *	into the completion queue and 0 is returned.  May fail with
1729  *	-EFAULT if any of the data structures pointed to are invalid.
1730  *	May fail with -EINVAL if aio_context specified by ctx_id is
1731  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1732  *	cancelled.  Will fail with -ENOSYS if not implemented.
1733  */
1734 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1735 			      struct io_event __user *result)
1736 {
1737 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1738 	struct kioctx *ctx;
1739 	struct kiocb *kiocb;
1740 	u32 key;
1741 	int ret;
1742 
1743 	ret = get_user(key, &iocb->aio_key);
1744 	if (unlikely(ret))
1745 		return -EFAULT;
1746 
1747 	ctx = lookup_ioctx(ctx_id);
1748 	if (unlikely(!ctx))
1749 		return -EINVAL;
1750 
1751 	spin_lock_irq(&ctx->ctx_lock);
1752 	ret = -EAGAIN;
1753 	kiocb = lookup_kiocb(ctx, iocb, key);
1754 	if (kiocb && kiocb->ki_cancel) {
1755 		cancel = kiocb->ki_cancel;
1756 		kiocb->ki_users ++;
1757 		kiocbSetCancelled(kiocb);
1758 	} else
1759 		cancel = NULL;
1760 	spin_unlock_irq(&ctx->ctx_lock);
1761 
1762 	if (NULL != cancel) {
1763 		struct io_event tmp;
1764 		pr_debug("calling cancel\n");
1765 		memset(&tmp, 0, sizeof(tmp));
1766 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1767 		tmp.data = kiocb->ki_user_data;
1768 		ret = cancel(kiocb, &tmp);
1769 		if (!ret) {
1770 			/* Cancellation succeeded -- copy the result
1771 			 * into the user's buffer.
1772 			 */
1773 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1774 				ret = -EFAULT;
1775 		}
1776 	} else
1777 		ret = -EINVAL;
1778 
1779 	put_ioctx(ctx);
1780 
1781 	return ret;
1782 }
1783 
1784 /* io_getevents:
1785  *	Attempts to read at least min_nr events and up to nr events from
1786  *	the completion queue for the aio_context specified by ctx_id.  May
1787  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1788  *	if nr is out of range, if when is out of range.  May fail with
1789  *	-EFAULT if any of the memory specified to is invalid.  May return
1790  *	0 or < min_nr if no events are available and the timeout specified
1791  *	by when	has elapsed, where when == NULL specifies an infinite
1792  *	timeout.  Note that the timeout pointed to by when is relative and
1793  *	will be updated if not NULL and the operation blocks.  Will fail
1794  *	with -ENOSYS if not implemented.
1795  */
1796 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1797 				 long min_nr,
1798 				 long nr,
1799 				 struct io_event __user *events,
1800 				 struct timespec __user *timeout)
1801 {
1802 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1803 	long ret = -EINVAL;
1804 
1805 	if (likely(ioctx)) {
1806 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1807 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1808 		put_ioctx(ioctx);
1809 	}
1810 
1811 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1812 	return ret;
1813 }
1814 
1815 __initcall(aio_setup);
1816 
1817 EXPORT_SYMBOL(aio_complete);
1818 EXPORT_SYMBOL(aio_put_req);
1819 EXPORT_SYMBOL(wait_on_sync_kiocb);
1820