1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool done; 185 bool cancelled; 186 struct wait_queue_entry wait; 187 struct work_struct work; 188 }; 189 190 /* 191 * NOTE! Each of the iocb union members has the file pointer 192 * as the first entry in their struct definition. So you can 193 * access the file pointer through any of the sub-structs, 194 * or directly as just 'ki_filp' in this struct. 195 */ 196 struct aio_kiocb { 197 union { 198 struct file *ki_filp; 199 struct kiocb rw; 200 struct fsync_iocb fsync; 201 struct poll_iocb poll; 202 }; 203 204 struct kioctx *ki_ctx; 205 kiocb_cancel_fn *ki_cancel; 206 207 struct io_event ki_res; 208 209 struct list_head ki_list; /* the aio core uses this 210 * for cancellation */ 211 refcount_t ki_refcnt; 212 213 /* 214 * If the aio_resfd field of the userspace iocb is not zero, 215 * this is the underlying eventfd context to deliver events to. 216 */ 217 struct eventfd_ctx *ki_eventfd; 218 }; 219 220 /*------ sysctl variables----*/ 221 static DEFINE_SPINLOCK(aio_nr_lock); 222 unsigned long aio_nr; /* current system wide number of aio requests */ 223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 224 /*----end sysctl variables---*/ 225 226 static struct kmem_cache *kiocb_cachep; 227 static struct kmem_cache *kioctx_cachep; 228 229 static struct vfsmount *aio_mnt; 230 231 static const struct file_operations aio_ring_fops; 232 static const struct address_space_operations aio_ctx_aops; 233 234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 235 { 236 struct file *file; 237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 238 if (IS_ERR(inode)) 239 return ERR_CAST(inode); 240 241 inode->i_mapping->a_ops = &aio_ctx_aops; 242 inode->i_mapping->private_data = ctx; 243 inode->i_size = PAGE_SIZE * nr_pages; 244 245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 246 O_RDWR, &aio_ring_fops); 247 if (IS_ERR(file)) 248 iput(inode); 249 return file; 250 } 251 252 static int aio_init_fs_context(struct fs_context *fc) 253 { 254 if (!init_pseudo(fc, AIO_RING_MAGIC)) 255 return -ENOMEM; 256 fc->s_iflags |= SB_I_NOEXEC; 257 return 0; 258 } 259 260 /* aio_setup 261 * Creates the slab caches used by the aio routines, panic on 262 * failure as this is done early during the boot sequence. 263 */ 264 static int __init aio_setup(void) 265 { 266 static struct file_system_type aio_fs = { 267 .name = "aio", 268 .init_fs_context = aio_init_fs_context, 269 .kill_sb = kill_anon_super, 270 }; 271 aio_mnt = kern_mount(&aio_fs); 272 if (IS_ERR(aio_mnt)) 273 panic("Failed to create aio fs mount."); 274 275 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 276 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 277 return 0; 278 } 279 __initcall(aio_setup); 280 281 static void put_aio_ring_file(struct kioctx *ctx) 282 { 283 struct file *aio_ring_file = ctx->aio_ring_file; 284 struct address_space *i_mapping; 285 286 if (aio_ring_file) { 287 truncate_setsize(file_inode(aio_ring_file), 0); 288 289 /* Prevent further access to the kioctx from migratepages */ 290 i_mapping = aio_ring_file->f_mapping; 291 spin_lock(&i_mapping->private_lock); 292 i_mapping->private_data = NULL; 293 ctx->aio_ring_file = NULL; 294 spin_unlock(&i_mapping->private_lock); 295 296 fput(aio_ring_file); 297 } 298 } 299 300 static void aio_free_ring(struct kioctx *ctx) 301 { 302 int i; 303 304 /* Disconnect the kiotx from the ring file. This prevents future 305 * accesses to the kioctx from page migration. 306 */ 307 put_aio_ring_file(ctx); 308 309 for (i = 0; i < ctx->nr_pages; i++) { 310 struct page *page; 311 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 312 page_count(ctx->ring_pages[i])); 313 page = ctx->ring_pages[i]; 314 if (!page) 315 continue; 316 ctx->ring_pages[i] = NULL; 317 put_page(page); 318 } 319 320 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 321 kfree(ctx->ring_pages); 322 ctx->ring_pages = NULL; 323 } 324 } 325 326 static int aio_ring_mremap(struct vm_area_struct *vma) 327 { 328 struct file *file = vma->vm_file; 329 struct mm_struct *mm = vma->vm_mm; 330 struct kioctx_table *table; 331 int i, res = -EINVAL; 332 333 spin_lock(&mm->ioctx_lock); 334 rcu_read_lock(); 335 table = rcu_dereference(mm->ioctx_table); 336 for (i = 0; i < table->nr; i++) { 337 struct kioctx *ctx; 338 339 ctx = rcu_dereference(table->table[i]); 340 if (ctx && ctx->aio_ring_file == file) { 341 if (!atomic_read(&ctx->dead)) { 342 ctx->user_id = ctx->mmap_base = vma->vm_start; 343 res = 0; 344 } 345 break; 346 } 347 } 348 349 rcu_read_unlock(); 350 spin_unlock(&mm->ioctx_lock); 351 return res; 352 } 353 354 static const struct vm_operations_struct aio_ring_vm_ops = { 355 .mremap = aio_ring_mremap, 356 #if IS_ENABLED(CONFIG_MMU) 357 .fault = filemap_fault, 358 .map_pages = filemap_map_pages, 359 .page_mkwrite = filemap_page_mkwrite, 360 #endif 361 }; 362 363 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 364 { 365 vma->vm_flags |= VM_DONTEXPAND; 366 vma->vm_ops = &aio_ring_vm_ops; 367 return 0; 368 } 369 370 static const struct file_operations aio_ring_fops = { 371 .mmap = aio_ring_mmap, 372 }; 373 374 #if IS_ENABLED(CONFIG_MIGRATION) 375 static int aio_migratepage(struct address_space *mapping, struct page *new, 376 struct page *old, enum migrate_mode mode) 377 { 378 struct kioctx *ctx; 379 unsigned long flags; 380 pgoff_t idx; 381 int rc; 382 383 /* 384 * We cannot support the _NO_COPY case here, because copy needs to 385 * happen under the ctx->completion_lock. That does not work with the 386 * migration workflow of MIGRATE_SYNC_NO_COPY. 387 */ 388 if (mode == MIGRATE_SYNC_NO_COPY) 389 return -EINVAL; 390 391 rc = 0; 392 393 /* mapping->private_lock here protects against the kioctx teardown. */ 394 spin_lock(&mapping->private_lock); 395 ctx = mapping->private_data; 396 if (!ctx) { 397 rc = -EINVAL; 398 goto out; 399 } 400 401 /* The ring_lock mutex. The prevents aio_read_events() from writing 402 * to the ring's head, and prevents page migration from mucking in 403 * a partially initialized kiotx. 404 */ 405 if (!mutex_trylock(&ctx->ring_lock)) { 406 rc = -EAGAIN; 407 goto out; 408 } 409 410 idx = old->index; 411 if (idx < (pgoff_t)ctx->nr_pages) { 412 /* Make sure the old page hasn't already been changed */ 413 if (ctx->ring_pages[idx] != old) 414 rc = -EAGAIN; 415 } else 416 rc = -EINVAL; 417 418 if (rc != 0) 419 goto out_unlock; 420 421 /* Writeback must be complete */ 422 BUG_ON(PageWriteback(old)); 423 get_page(new); 424 425 rc = migrate_page_move_mapping(mapping, new, old, 1); 426 if (rc != MIGRATEPAGE_SUCCESS) { 427 put_page(new); 428 goto out_unlock; 429 } 430 431 /* Take completion_lock to prevent other writes to the ring buffer 432 * while the old page is copied to the new. This prevents new 433 * events from being lost. 434 */ 435 spin_lock_irqsave(&ctx->completion_lock, flags); 436 migrate_page_copy(new, old); 437 BUG_ON(ctx->ring_pages[idx] != old); 438 ctx->ring_pages[idx] = new; 439 spin_unlock_irqrestore(&ctx->completion_lock, flags); 440 441 /* The old page is no longer accessible. */ 442 put_page(old); 443 444 out_unlock: 445 mutex_unlock(&ctx->ring_lock); 446 out: 447 spin_unlock(&mapping->private_lock); 448 return rc; 449 } 450 #endif 451 452 static const struct address_space_operations aio_ctx_aops = { 453 .set_page_dirty = __set_page_dirty_no_writeback, 454 #if IS_ENABLED(CONFIG_MIGRATION) 455 .migratepage = aio_migratepage, 456 #endif 457 }; 458 459 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 460 { 461 struct aio_ring *ring; 462 struct mm_struct *mm = current->mm; 463 unsigned long size, unused; 464 int nr_pages; 465 int i; 466 struct file *file; 467 468 /* Compensate for the ring buffer's head/tail overlap entry */ 469 nr_events += 2; /* 1 is required, 2 for good luck */ 470 471 size = sizeof(struct aio_ring); 472 size += sizeof(struct io_event) * nr_events; 473 474 nr_pages = PFN_UP(size); 475 if (nr_pages < 0) 476 return -EINVAL; 477 478 file = aio_private_file(ctx, nr_pages); 479 if (IS_ERR(file)) { 480 ctx->aio_ring_file = NULL; 481 return -ENOMEM; 482 } 483 484 ctx->aio_ring_file = file; 485 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 486 / sizeof(struct io_event); 487 488 ctx->ring_pages = ctx->internal_pages; 489 if (nr_pages > AIO_RING_PAGES) { 490 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 491 GFP_KERNEL); 492 if (!ctx->ring_pages) { 493 put_aio_ring_file(ctx); 494 return -ENOMEM; 495 } 496 } 497 498 for (i = 0; i < nr_pages; i++) { 499 struct page *page; 500 page = find_or_create_page(file->f_mapping, 501 i, GFP_HIGHUSER | __GFP_ZERO); 502 if (!page) 503 break; 504 pr_debug("pid(%d) page[%d]->count=%d\n", 505 current->pid, i, page_count(page)); 506 SetPageUptodate(page); 507 unlock_page(page); 508 509 ctx->ring_pages[i] = page; 510 } 511 ctx->nr_pages = i; 512 513 if (unlikely(i != nr_pages)) { 514 aio_free_ring(ctx); 515 return -ENOMEM; 516 } 517 518 ctx->mmap_size = nr_pages * PAGE_SIZE; 519 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 520 521 if (mmap_write_lock_killable(mm)) { 522 ctx->mmap_size = 0; 523 aio_free_ring(ctx); 524 return -EINTR; 525 } 526 527 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 528 PROT_READ | PROT_WRITE, 529 MAP_SHARED, 0, &unused, NULL); 530 mmap_write_unlock(mm); 531 if (IS_ERR((void *)ctx->mmap_base)) { 532 ctx->mmap_size = 0; 533 aio_free_ring(ctx); 534 return -ENOMEM; 535 } 536 537 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 538 539 ctx->user_id = ctx->mmap_base; 540 ctx->nr_events = nr_events; /* trusted copy */ 541 542 ring = kmap_atomic(ctx->ring_pages[0]); 543 ring->nr = nr_events; /* user copy */ 544 ring->id = ~0U; 545 ring->head = ring->tail = 0; 546 ring->magic = AIO_RING_MAGIC; 547 ring->compat_features = AIO_RING_COMPAT_FEATURES; 548 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 549 ring->header_length = sizeof(struct aio_ring); 550 kunmap_atomic(ring); 551 flush_dcache_page(ctx->ring_pages[0]); 552 553 return 0; 554 } 555 556 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 557 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 558 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 559 560 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 561 { 562 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 563 struct kioctx *ctx = req->ki_ctx; 564 unsigned long flags; 565 566 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 567 return; 568 569 spin_lock_irqsave(&ctx->ctx_lock, flags); 570 list_add_tail(&req->ki_list, &ctx->active_reqs); 571 req->ki_cancel = cancel; 572 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 573 } 574 EXPORT_SYMBOL(kiocb_set_cancel_fn); 575 576 /* 577 * free_ioctx() should be RCU delayed to synchronize against the RCU 578 * protected lookup_ioctx() and also needs process context to call 579 * aio_free_ring(). Use rcu_work. 580 */ 581 static void free_ioctx(struct work_struct *work) 582 { 583 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 584 free_rwork); 585 pr_debug("freeing %p\n", ctx); 586 587 aio_free_ring(ctx); 588 free_percpu(ctx->cpu); 589 percpu_ref_exit(&ctx->reqs); 590 percpu_ref_exit(&ctx->users); 591 kmem_cache_free(kioctx_cachep, ctx); 592 } 593 594 static void free_ioctx_reqs(struct percpu_ref *ref) 595 { 596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 597 598 /* At this point we know that there are no any in-flight requests */ 599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 600 complete(&ctx->rq_wait->comp); 601 602 /* Synchronize against RCU protected table->table[] dereferences */ 603 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 604 queue_rcu_work(system_wq, &ctx->free_rwork); 605 } 606 607 /* 608 * When this function runs, the kioctx has been removed from the "hash table" 609 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 610 * now it's safe to cancel any that need to be. 611 */ 612 static void free_ioctx_users(struct percpu_ref *ref) 613 { 614 struct kioctx *ctx = container_of(ref, struct kioctx, users); 615 struct aio_kiocb *req; 616 617 spin_lock_irq(&ctx->ctx_lock); 618 619 while (!list_empty(&ctx->active_reqs)) { 620 req = list_first_entry(&ctx->active_reqs, 621 struct aio_kiocb, ki_list); 622 req->ki_cancel(&req->rw); 623 list_del_init(&req->ki_list); 624 } 625 626 spin_unlock_irq(&ctx->ctx_lock); 627 628 percpu_ref_kill(&ctx->reqs); 629 percpu_ref_put(&ctx->reqs); 630 } 631 632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 633 { 634 unsigned i, new_nr; 635 struct kioctx_table *table, *old; 636 struct aio_ring *ring; 637 638 spin_lock(&mm->ioctx_lock); 639 table = rcu_dereference_raw(mm->ioctx_table); 640 641 while (1) { 642 if (table) 643 for (i = 0; i < table->nr; i++) 644 if (!rcu_access_pointer(table->table[i])) { 645 ctx->id = i; 646 rcu_assign_pointer(table->table[i], ctx); 647 spin_unlock(&mm->ioctx_lock); 648 649 /* While kioctx setup is in progress, 650 * we are protected from page migration 651 * changes ring_pages by ->ring_lock. 652 */ 653 ring = kmap_atomic(ctx->ring_pages[0]); 654 ring->id = ctx->id; 655 kunmap_atomic(ring); 656 return 0; 657 } 658 659 new_nr = (table ? table->nr : 1) * 4; 660 spin_unlock(&mm->ioctx_lock); 661 662 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 663 if (!table) 664 return -ENOMEM; 665 666 table->nr = new_nr; 667 668 spin_lock(&mm->ioctx_lock); 669 old = rcu_dereference_raw(mm->ioctx_table); 670 671 if (!old) { 672 rcu_assign_pointer(mm->ioctx_table, table); 673 } else if (table->nr > old->nr) { 674 memcpy(table->table, old->table, 675 old->nr * sizeof(struct kioctx *)); 676 677 rcu_assign_pointer(mm->ioctx_table, table); 678 kfree_rcu(old, rcu); 679 } else { 680 kfree(table); 681 table = old; 682 } 683 } 684 } 685 686 static void aio_nr_sub(unsigned nr) 687 { 688 spin_lock(&aio_nr_lock); 689 if (WARN_ON(aio_nr - nr > aio_nr)) 690 aio_nr = 0; 691 else 692 aio_nr -= nr; 693 spin_unlock(&aio_nr_lock); 694 } 695 696 /* ioctx_alloc 697 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 698 */ 699 static struct kioctx *ioctx_alloc(unsigned nr_events) 700 { 701 struct mm_struct *mm = current->mm; 702 struct kioctx *ctx; 703 int err = -ENOMEM; 704 705 /* 706 * Store the original nr_events -- what userspace passed to io_setup(), 707 * for counting against the global limit -- before it changes. 708 */ 709 unsigned int max_reqs = nr_events; 710 711 /* 712 * We keep track of the number of available ringbuffer slots, to prevent 713 * overflow (reqs_available), and we also use percpu counters for this. 714 * 715 * So since up to half the slots might be on other cpu's percpu counters 716 * and unavailable, double nr_events so userspace sees what they 717 * expected: additionally, we move req_batch slots to/from percpu 718 * counters at a time, so make sure that isn't 0: 719 */ 720 nr_events = max(nr_events, num_possible_cpus() * 4); 721 nr_events *= 2; 722 723 /* Prevent overflows */ 724 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 725 pr_debug("ENOMEM: nr_events too high\n"); 726 return ERR_PTR(-EINVAL); 727 } 728 729 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 730 return ERR_PTR(-EAGAIN); 731 732 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 733 if (!ctx) 734 return ERR_PTR(-ENOMEM); 735 736 ctx->max_reqs = max_reqs; 737 738 spin_lock_init(&ctx->ctx_lock); 739 spin_lock_init(&ctx->completion_lock); 740 mutex_init(&ctx->ring_lock); 741 /* Protect against page migration throughout kiotx setup by keeping 742 * the ring_lock mutex held until setup is complete. */ 743 mutex_lock(&ctx->ring_lock); 744 init_waitqueue_head(&ctx->wait); 745 746 INIT_LIST_HEAD(&ctx->active_reqs); 747 748 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 749 goto err; 750 751 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 752 goto err; 753 754 ctx->cpu = alloc_percpu(struct kioctx_cpu); 755 if (!ctx->cpu) 756 goto err; 757 758 err = aio_setup_ring(ctx, nr_events); 759 if (err < 0) 760 goto err; 761 762 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 763 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 764 if (ctx->req_batch < 1) 765 ctx->req_batch = 1; 766 767 /* limit the number of system wide aios */ 768 spin_lock(&aio_nr_lock); 769 if (aio_nr + ctx->max_reqs > aio_max_nr || 770 aio_nr + ctx->max_reqs < aio_nr) { 771 spin_unlock(&aio_nr_lock); 772 err = -EAGAIN; 773 goto err_ctx; 774 } 775 aio_nr += ctx->max_reqs; 776 spin_unlock(&aio_nr_lock); 777 778 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 779 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 780 781 err = ioctx_add_table(ctx, mm); 782 if (err) 783 goto err_cleanup; 784 785 /* Release the ring_lock mutex now that all setup is complete. */ 786 mutex_unlock(&ctx->ring_lock); 787 788 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 789 ctx, ctx->user_id, mm, ctx->nr_events); 790 return ctx; 791 792 err_cleanup: 793 aio_nr_sub(ctx->max_reqs); 794 err_ctx: 795 atomic_set(&ctx->dead, 1); 796 if (ctx->mmap_size) 797 vm_munmap(ctx->mmap_base, ctx->mmap_size); 798 aio_free_ring(ctx); 799 err: 800 mutex_unlock(&ctx->ring_lock); 801 free_percpu(ctx->cpu); 802 percpu_ref_exit(&ctx->reqs); 803 percpu_ref_exit(&ctx->users); 804 kmem_cache_free(kioctx_cachep, ctx); 805 pr_debug("error allocating ioctx %d\n", err); 806 return ERR_PTR(err); 807 } 808 809 /* kill_ioctx 810 * Cancels all outstanding aio requests on an aio context. Used 811 * when the processes owning a context have all exited to encourage 812 * the rapid destruction of the kioctx. 813 */ 814 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 815 struct ctx_rq_wait *wait) 816 { 817 struct kioctx_table *table; 818 819 spin_lock(&mm->ioctx_lock); 820 if (atomic_xchg(&ctx->dead, 1)) { 821 spin_unlock(&mm->ioctx_lock); 822 return -EINVAL; 823 } 824 825 table = rcu_dereference_raw(mm->ioctx_table); 826 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 827 RCU_INIT_POINTER(table->table[ctx->id], NULL); 828 spin_unlock(&mm->ioctx_lock); 829 830 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 831 wake_up_all(&ctx->wait); 832 833 /* 834 * It'd be more correct to do this in free_ioctx(), after all 835 * the outstanding kiocbs have finished - but by then io_destroy 836 * has already returned, so io_setup() could potentially return 837 * -EAGAIN with no ioctxs actually in use (as far as userspace 838 * could tell). 839 */ 840 aio_nr_sub(ctx->max_reqs); 841 842 if (ctx->mmap_size) 843 vm_munmap(ctx->mmap_base, ctx->mmap_size); 844 845 ctx->rq_wait = wait; 846 percpu_ref_kill(&ctx->users); 847 return 0; 848 } 849 850 /* 851 * exit_aio: called when the last user of mm goes away. At this point, there is 852 * no way for any new requests to be submited or any of the io_* syscalls to be 853 * called on the context. 854 * 855 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 856 * them. 857 */ 858 void exit_aio(struct mm_struct *mm) 859 { 860 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 861 struct ctx_rq_wait wait; 862 int i, skipped; 863 864 if (!table) 865 return; 866 867 atomic_set(&wait.count, table->nr); 868 init_completion(&wait.comp); 869 870 skipped = 0; 871 for (i = 0; i < table->nr; ++i) { 872 struct kioctx *ctx = 873 rcu_dereference_protected(table->table[i], true); 874 875 if (!ctx) { 876 skipped++; 877 continue; 878 } 879 880 /* 881 * We don't need to bother with munmap() here - exit_mmap(mm) 882 * is coming and it'll unmap everything. And we simply can't, 883 * this is not necessarily our ->mm. 884 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 885 * that it needs to unmap the area, just set it to 0. 886 */ 887 ctx->mmap_size = 0; 888 kill_ioctx(mm, ctx, &wait); 889 } 890 891 if (!atomic_sub_and_test(skipped, &wait.count)) { 892 /* Wait until all IO for the context are done. */ 893 wait_for_completion(&wait.comp); 894 } 895 896 RCU_INIT_POINTER(mm->ioctx_table, NULL); 897 kfree(table); 898 } 899 900 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 901 { 902 struct kioctx_cpu *kcpu; 903 unsigned long flags; 904 905 local_irq_save(flags); 906 kcpu = this_cpu_ptr(ctx->cpu); 907 kcpu->reqs_available += nr; 908 909 while (kcpu->reqs_available >= ctx->req_batch * 2) { 910 kcpu->reqs_available -= ctx->req_batch; 911 atomic_add(ctx->req_batch, &ctx->reqs_available); 912 } 913 914 local_irq_restore(flags); 915 } 916 917 static bool __get_reqs_available(struct kioctx *ctx) 918 { 919 struct kioctx_cpu *kcpu; 920 bool ret = false; 921 unsigned long flags; 922 923 local_irq_save(flags); 924 kcpu = this_cpu_ptr(ctx->cpu); 925 if (!kcpu->reqs_available) { 926 int old, avail = atomic_read(&ctx->reqs_available); 927 928 do { 929 if (avail < ctx->req_batch) 930 goto out; 931 932 old = avail; 933 avail = atomic_cmpxchg(&ctx->reqs_available, 934 avail, avail - ctx->req_batch); 935 } while (avail != old); 936 937 kcpu->reqs_available += ctx->req_batch; 938 } 939 940 ret = true; 941 kcpu->reqs_available--; 942 out: 943 local_irq_restore(flags); 944 return ret; 945 } 946 947 /* refill_reqs_available 948 * Updates the reqs_available reference counts used for tracking the 949 * number of free slots in the completion ring. This can be called 950 * from aio_complete() (to optimistically update reqs_available) or 951 * from aio_get_req() (the we're out of events case). It must be 952 * called holding ctx->completion_lock. 953 */ 954 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 955 unsigned tail) 956 { 957 unsigned events_in_ring, completed; 958 959 /* Clamp head since userland can write to it. */ 960 head %= ctx->nr_events; 961 if (head <= tail) 962 events_in_ring = tail - head; 963 else 964 events_in_ring = ctx->nr_events - (head - tail); 965 966 completed = ctx->completed_events; 967 if (events_in_ring < completed) 968 completed -= events_in_ring; 969 else 970 completed = 0; 971 972 if (!completed) 973 return; 974 975 ctx->completed_events -= completed; 976 put_reqs_available(ctx, completed); 977 } 978 979 /* user_refill_reqs_available 980 * Called to refill reqs_available when aio_get_req() encounters an 981 * out of space in the completion ring. 982 */ 983 static void user_refill_reqs_available(struct kioctx *ctx) 984 { 985 spin_lock_irq(&ctx->completion_lock); 986 if (ctx->completed_events) { 987 struct aio_ring *ring; 988 unsigned head; 989 990 /* Access of ring->head may race with aio_read_events_ring() 991 * here, but that's okay since whether we read the old version 992 * or the new version, and either will be valid. The important 993 * part is that head cannot pass tail since we prevent 994 * aio_complete() from updating tail by holding 995 * ctx->completion_lock. Even if head is invalid, the check 996 * against ctx->completed_events below will make sure we do the 997 * safe/right thing. 998 */ 999 ring = kmap_atomic(ctx->ring_pages[0]); 1000 head = ring->head; 1001 kunmap_atomic(ring); 1002 1003 refill_reqs_available(ctx, head, ctx->tail); 1004 } 1005 1006 spin_unlock_irq(&ctx->completion_lock); 1007 } 1008 1009 static bool get_reqs_available(struct kioctx *ctx) 1010 { 1011 if (__get_reqs_available(ctx)) 1012 return true; 1013 user_refill_reqs_available(ctx); 1014 return __get_reqs_available(ctx); 1015 } 1016 1017 /* aio_get_req 1018 * Allocate a slot for an aio request. 1019 * Returns NULL if no requests are free. 1020 * 1021 * The refcount is initialized to 2 - one for the async op completion, 1022 * one for the synchronous code that does this. 1023 */ 1024 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1025 { 1026 struct aio_kiocb *req; 1027 1028 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1029 if (unlikely(!req)) 1030 return NULL; 1031 1032 if (unlikely(!get_reqs_available(ctx))) { 1033 kmem_cache_free(kiocb_cachep, req); 1034 return NULL; 1035 } 1036 1037 percpu_ref_get(&ctx->reqs); 1038 req->ki_ctx = ctx; 1039 INIT_LIST_HEAD(&req->ki_list); 1040 refcount_set(&req->ki_refcnt, 2); 1041 req->ki_eventfd = NULL; 1042 return req; 1043 } 1044 1045 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1046 { 1047 struct aio_ring __user *ring = (void __user *)ctx_id; 1048 struct mm_struct *mm = current->mm; 1049 struct kioctx *ctx, *ret = NULL; 1050 struct kioctx_table *table; 1051 unsigned id; 1052 1053 if (get_user(id, &ring->id)) 1054 return NULL; 1055 1056 rcu_read_lock(); 1057 table = rcu_dereference(mm->ioctx_table); 1058 1059 if (!table || id >= table->nr) 1060 goto out; 1061 1062 id = array_index_nospec(id, table->nr); 1063 ctx = rcu_dereference(table->table[id]); 1064 if (ctx && ctx->user_id == ctx_id) { 1065 if (percpu_ref_tryget_live(&ctx->users)) 1066 ret = ctx; 1067 } 1068 out: 1069 rcu_read_unlock(); 1070 return ret; 1071 } 1072 1073 static inline void iocb_destroy(struct aio_kiocb *iocb) 1074 { 1075 if (iocb->ki_eventfd) 1076 eventfd_ctx_put(iocb->ki_eventfd); 1077 if (iocb->ki_filp) 1078 fput(iocb->ki_filp); 1079 percpu_ref_put(&iocb->ki_ctx->reqs); 1080 kmem_cache_free(kiocb_cachep, iocb); 1081 } 1082 1083 /* aio_complete 1084 * Called when the io request on the given iocb is complete. 1085 */ 1086 static void aio_complete(struct aio_kiocb *iocb) 1087 { 1088 struct kioctx *ctx = iocb->ki_ctx; 1089 struct aio_ring *ring; 1090 struct io_event *ev_page, *event; 1091 unsigned tail, pos, head; 1092 unsigned long flags; 1093 1094 /* 1095 * Add a completion event to the ring buffer. Must be done holding 1096 * ctx->completion_lock to prevent other code from messing with the tail 1097 * pointer since we might be called from irq context. 1098 */ 1099 spin_lock_irqsave(&ctx->completion_lock, flags); 1100 1101 tail = ctx->tail; 1102 pos = tail + AIO_EVENTS_OFFSET; 1103 1104 if (++tail >= ctx->nr_events) 1105 tail = 0; 1106 1107 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1108 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1109 1110 *event = iocb->ki_res; 1111 1112 kunmap_atomic(ev_page); 1113 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1114 1115 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1116 (void __user *)(unsigned long)iocb->ki_res.obj, 1117 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1118 1119 /* after flagging the request as done, we 1120 * must never even look at it again 1121 */ 1122 smp_wmb(); /* make event visible before updating tail */ 1123 1124 ctx->tail = tail; 1125 1126 ring = kmap_atomic(ctx->ring_pages[0]); 1127 head = ring->head; 1128 ring->tail = tail; 1129 kunmap_atomic(ring); 1130 flush_dcache_page(ctx->ring_pages[0]); 1131 1132 ctx->completed_events++; 1133 if (ctx->completed_events > 1) 1134 refill_reqs_available(ctx, head, tail); 1135 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1136 1137 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1138 1139 /* 1140 * Check if the user asked us to deliver the result through an 1141 * eventfd. The eventfd_signal() function is safe to be called 1142 * from IRQ context. 1143 */ 1144 if (iocb->ki_eventfd) 1145 eventfd_signal(iocb->ki_eventfd, 1); 1146 1147 /* 1148 * We have to order our ring_info tail store above and test 1149 * of the wait list below outside the wait lock. This is 1150 * like in wake_up_bit() where clearing a bit has to be 1151 * ordered with the unlocked test. 1152 */ 1153 smp_mb(); 1154 1155 if (waitqueue_active(&ctx->wait)) 1156 wake_up(&ctx->wait); 1157 } 1158 1159 static inline void iocb_put(struct aio_kiocb *iocb) 1160 { 1161 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1162 aio_complete(iocb); 1163 iocb_destroy(iocb); 1164 } 1165 } 1166 1167 /* aio_read_events_ring 1168 * Pull an event off of the ioctx's event ring. Returns the number of 1169 * events fetched 1170 */ 1171 static long aio_read_events_ring(struct kioctx *ctx, 1172 struct io_event __user *event, long nr) 1173 { 1174 struct aio_ring *ring; 1175 unsigned head, tail, pos; 1176 long ret = 0; 1177 int copy_ret; 1178 1179 /* 1180 * The mutex can block and wake us up and that will cause 1181 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1182 * and repeat. This should be rare enough that it doesn't cause 1183 * peformance issues. See the comment in read_events() for more detail. 1184 */ 1185 sched_annotate_sleep(); 1186 mutex_lock(&ctx->ring_lock); 1187 1188 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1189 ring = kmap_atomic(ctx->ring_pages[0]); 1190 head = ring->head; 1191 tail = ring->tail; 1192 kunmap_atomic(ring); 1193 1194 /* 1195 * Ensure that once we've read the current tail pointer, that 1196 * we also see the events that were stored up to the tail. 1197 */ 1198 smp_rmb(); 1199 1200 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1201 1202 if (head == tail) 1203 goto out; 1204 1205 head %= ctx->nr_events; 1206 tail %= ctx->nr_events; 1207 1208 while (ret < nr) { 1209 long avail; 1210 struct io_event *ev; 1211 struct page *page; 1212 1213 avail = (head <= tail ? tail : ctx->nr_events) - head; 1214 if (head == tail) 1215 break; 1216 1217 pos = head + AIO_EVENTS_OFFSET; 1218 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1219 pos %= AIO_EVENTS_PER_PAGE; 1220 1221 avail = min(avail, nr - ret); 1222 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1223 1224 ev = kmap(page); 1225 copy_ret = copy_to_user(event + ret, ev + pos, 1226 sizeof(*ev) * avail); 1227 kunmap(page); 1228 1229 if (unlikely(copy_ret)) { 1230 ret = -EFAULT; 1231 goto out; 1232 } 1233 1234 ret += avail; 1235 head += avail; 1236 head %= ctx->nr_events; 1237 } 1238 1239 ring = kmap_atomic(ctx->ring_pages[0]); 1240 ring->head = head; 1241 kunmap_atomic(ring); 1242 flush_dcache_page(ctx->ring_pages[0]); 1243 1244 pr_debug("%li h%u t%u\n", ret, head, tail); 1245 out: 1246 mutex_unlock(&ctx->ring_lock); 1247 1248 return ret; 1249 } 1250 1251 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1252 struct io_event __user *event, long *i) 1253 { 1254 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1255 1256 if (ret > 0) 1257 *i += ret; 1258 1259 if (unlikely(atomic_read(&ctx->dead))) 1260 ret = -EINVAL; 1261 1262 if (!*i) 1263 *i = ret; 1264 1265 return ret < 0 || *i >= min_nr; 1266 } 1267 1268 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1269 struct io_event __user *event, 1270 ktime_t until) 1271 { 1272 long ret = 0; 1273 1274 /* 1275 * Note that aio_read_events() is being called as the conditional - i.e. 1276 * we're calling it after prepare_to_wait() has set task state to 1277 * TASK_INTERRUPTIBLE. 1278 * 1279 * But aio_read_events() can block, and if it blocks it's going to flip 1280 * the task state back to TASK_RUNNING. 1281 * 1282 * This should be ok, provided it doesn't flip the state back to 1283 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1284 * will only happen if the mutex_lock() call blocks, and we then find 1285 * the ringbuffer empty. So in practice we should be ok, but it's 1286 * something to be aware of when touching this code. 1287 */ 1288 if (until == 0) 1289 aio_read_events(ctx, min_nr, nr, event, &ret); 1290 else 1291 wait_event_interruptible_hrtimeout(ctx->wait, 1292 aio_read_events(ctx, min_nr, nr, event, &ret), 1293 until); 1294 return ret; 1295 } 1296 1297 /* sys_io_setup: 1298 * Create an aio_context capable of receiving at least nr_events. 1299 * ctxp must not point to an aio_context that already exists, and 1300 * must be initialized to 0 prior to the call. On successful 1301 * creation of the aio_context, *ctxp is filled in with the resulting 1302 * handle. May fail with -EINVAL if *ctxp is not initialized, 1303 * if the specified nr_events exceeds internal limits. May fail 1304 * with -EAGAIN if the specified nr_events exceeds the user's limit 1305 * of available events. May fail with -ENOMEM if insufficient kernel 1306 * resources are available. May fail with -EFAULT if an invalid 1307 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1308 * implemented. 1309 */ 1310 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1311 { 1312 struct kioctx *ioctx = NULL; 1313 unsigned long ctx; 1314 long ret; 1315 1316 ret = get_user(ctx, ctxp); 1317 if (unlikely(ret)) 1318 goto out; 1319 1320 ret = -EINVAL; 1321 if (unlikely(ctx || nr_events == 0)) { 1322 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1323 ctx, nr_events); 1324 goto out; 1325 } 1326 1327 ioctx = ioctx_alloc(nr_events); 1328 ret = PTR_ERR(ioctx); 1329 if (!IS_ERR(ioctx)) { 1330 ret = put_user(ioctx->user_id, ctxp); 1331 if (ret) 1332 kill_ioctx(current->mm, ioctx, NULL); 1333 percpu_ref_put(&ioctx->users); 1334 } 1335 1336 out: 1337 return ret; 1338 } 1339 1340 #ifdef CONFIG_COMPAT 1341 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1342 { 1343 struct kioctx *ioctx = NULL; 1344 unsigned long ctx; 1345 long ret; 1346 1347 ret = get_user(ctx, ctx32p); 1348 if (unlikely(ret)) 1349 goto out; 1350 1351 ret = -EINVAL; 1352 if (unlikely(ctx || nr_events == 0)) { 1353 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1354 ctx, nr_events); 1355 goto out; 1356 } 1357 1358 ioctx = ioctx_alloc(nr_events); 1359 ret = PTR_ERR(ioctx); 1360 if (!IS_ERR(ioctx)) { 1361 /* truncating is ok because it's a user address */ 1362 ret = put_user((u32)ioctx->user_id, ctx32p); 1363 if (ret) 1364 kill_ioctx(current->mm, ioctx, NULL); 1365 percpu_ref_put(&ioctx->users); 1366 } 1367 1368 out: 1369 return ret; 1370 } 1371 #endif 1372 1373 /* sys_io_destroy: 1374 * Destroy the aio_context specified. May cancel any outstanding 1375 * AIOs and block on completion. Will fail with -ENOSYS if not 1376 * implemented. May fail with -EINVAL if the context pointed to 1377 * is invalid. 1378 */ 1379 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1380 { 1381 struct kioctx *ioctx = lookup_ioctx(ctx); 1382 if (likely(NULL != ioctx)) { 1383 struct ctx_rq_wait wait; 1384 int ret; 1385 1386 init_completion(&wait.comp); 1387 atomic_set(&wait.count, 1); 1388 1389 /* Pass requests_done to kill_ioctx() where it can be set 1390 * in a thread-safe way. If we try to set it here then we have 1391 * a race condition if two io_destroy() called simultaneously. 1392 */ 1393 ret = kill_ioctx(current->mm, ioctx, &wait); 1394 percpu_ref_put(&ioctx->users); 1395 1396 /* Wait until all IO for the context are done. Otherwise kernel 1397 * keep using user-space buffers even if user thinks the context 1398 * is destroyed. 1399 */ 1400 if (!ret) 1401 wait_for_completion(&wait.comp); 1402 1403 return ret; 1404 } 1405 pr_debug("EINVAL: invalid context id\n"); 1406 return -EINVAL; 1407 } 1408 1409 static void aio_remove_iocb(struct aio_kiocb *iocb) 1410 { 1411 struct kioctx *ctx = iocb->ki_ctx; 1412 unsigned long flags; 1413 1414 spin_lock_irqsave(&ctx->ctx_lock, flags); 1415 list_del(&iocb->ki_list); 1416 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1417 } 1418 1419 static void aio_complete_rw(struct kiocb *kiocb, long res) 1420 { 1421 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1422 1423 if (!list_empty_careful(&iocb->ki_list)) 1424 aio_remove_iocb(iocb); 1425 1426 if (kiocb->ki_flags & IOCB_WRITE) { 1427 struct inode *inode = file_inode(kiocb->ki_filp); 1428 1429 /* 1430 * Tell lockdep we inherited freeze protection from submission 1431 * thread. 1432 */ 1433 if (S_ISREG(inode->i_mode)) 1434 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1435 file_end_write(kiocb->ki_filp); 1436 } 1437 1438 iocb->ki_res.res = res; 1439 iocb->ki_res.res2 = 0; 1440 iocb_put(iocb); 1441 } 1442 1443 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1444 { 1445 int ret; 1446 1447 req->ki_complete = aio_complete_rw; 1448 req->private = NULL; 1449 req->ki_pos = iocb->aio_offset; 1450 req->ki_flags = iocb_flags(req->ki_filp); 1451 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1452 req->ki_flags |= IOCB_EVENTFD; 1453 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1454 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1455 /* 1456 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1457 * aio_reqprio is interpreted as an I/O scheduling 1458 * class and priority. 1459 */ 1460 ret = ioprio_check_cap(iocb->aio_reqprio); 1461 if (ret) { 1462 pr_debug("aio ioprio check cap error: %d\n", ret); 1463 return ret; 1464 } 1465 1466 req->ki_ioprio = iocb->aio_reqprio; 1467 } else 1468 req->ki_ioprio = get_current_ioprio(); 1469 1470 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1471 if (unlikely(ret)) 1472 return ret; 1473 1474 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1475 return 0; 1476 } 1477 1478 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1479 struct iovec **iovec, bool vectored, bool compat, 1480 struct iov_iter *iter) 1481 { 1482 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1483 size_t len = iocb->aio_nbytes; 1484 1485 if (!vectored) { 1486 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1487 *iovec = NULL; 1488 return ret; 1489 } 1490 1491 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1492 } 1493 1494 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1495 { 1496 switch (ret) { 1497 case -EIOCBQUEUED: 1498 break; 1499 case -ERESTARTSYS: 1500 case -ERESTARTNOINTR: 1501 case -ERESTARTNOHAND: 1502 case -ERESTART_RESTARTBLOCK: 1503 /* 1504 * There's no easy way to restart the syscall since other AIO's 1505 * may be already running. Just fail this IO with EINTR. 1506 */ 1507 ret = -EINTR; 1508 fallthrough; 1509 default: 1510 req->ki_complete(req, ret); 1511 } 1512 } 1513 1514 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1515 bool vectored, bool compat) 1516 { 1517 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1518 struct iov_iter iter; 1519 struct file *file; 1520 int ret; 1521 1522 ret = aio_prep_rw(req, iocb); 1523 if (ret) 1524 return ret; 1525 file = req->ki_filp; 1526 if (unlikely(!(file->f_mode & FMODE_READ))) 1527 return -EBADF; 1528 ret = -EINVAL; 1529 if (unlikely(!file->f_op->read_iter)) 1530 return -EINVAL; 1531 1532 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1533 if (ret < 0) 1534 return ret; 1535 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1536 if (!ret) 1537 aio_rw_done(req, call_read_iter(file, req, &iter)); 1538 kfree(iovec); 1539 return ret; 1540 } 1541 1542 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1543 bool vectored, bool compat) 1544 { 1545 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1546 struct iov_iter iter; 1547 struct file *file; 1548 int ret; 1549 1550 ret = aio_prep_rw(req, iocb); 1551 if (ret) 1552 return ret; 1553 file = req->ki_filp; 1554 1555 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1556 return -EBADF; 1557 if (unlikely(!file->f_op->write_iter)) 1558 return -EINVAL; 1559 1560 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1561 if (ret < 0) 1562 return ret; 1563 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1564 if (!ret) { 1565 /* 1566 * Open-code file_start_write here to grab freeze protection, 1567 * which will be released by another thread in 1568 * aio_complete_rw(). Fool lockdep by telling it the lock got 1569 * released so that it doesn't complain about the held lock when 1570 * we return to userspace. 1571 */ 1572 if (S_ISREG(file_inode(file)->i_mode)) { 1573 sb_start_write(file_inode(file)->i_sb); 1574 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1575 } 1576 req->ki_flags |= IOCB_WRITE; 1577 aio_rw_done(req, call_write_iter(file, req, &iter)); 1578 } 1579 kfree(iovec); 1580 return ret; 1581 } 1582 1583 static void aio_fsync_work(struct work_struct *work) 1584 { 1585 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1586 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1587 1588 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1589 revert_creds(old_cred); 1590 put_cred(iocb->fsync.creds); 1591 iocb_put(iocb); 1592 } 1593 1594 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1595 bool datasync) 1596 { 1597 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1598 iocb->aio_rw_flags)) 1599 return -EINVAL; 1600 1601 if (unlikely(!req->file->f_op->fsync)) 1602 return -EINVAL; 1603 1604 req->creds = prepare_creds(); 1605 if (!req->creds) 1606 return -ENOMEM; 1607 1608 req->datasync = datasync; 1609 INIT_WORK(&req->work, aio_fsync_work); 1610 schedule_work(&req->work); 1611 return 0; 1612 } 1613 1614 static void aio_poll_put_work(struct work_struct *work) 1615 { 1616 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1617 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1618 1619 iocb_put(iocb); 1620 } 1621 1622 static void aio_poll_complete_work(struct work_struct *work) 1623 { 1624 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1625 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1626 struct poll_table_struct pt = { ._key = req->events }; 1627 struct kioctx *ctx = iocb->ki_ctx; 1628 __poll_t mask = 0; 1629 1630 if (!READ_ONCE(req->cancelled)) 1631 mask = vfs_poll(req->file, &pt) & req->events; 1632 1633 /* 1634 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1635 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1636 * synchronize with them. In the cancellation case the list_del_init 1637 * itself is not actually needed, but harmless so we keep it in to 1638 * avoid further branches in the fast path. 1639 */ 1640 spin_lock_irq(&ctx->ctx_lock); 1641 if (!mask && !READ_ONCE(req->cancelled)) { 1642 add_wait_queue(req->head, &req->wait); 1643 spin_unlock_irq(&ctx->ctx_lock); 1644 return; 1645 } 1646 list_del_init(&iocb->ki_list); 1647 iocb->ki_res.res = mangle_poll(mask); 1648 req->done = true; 1649 spin_unlock_irq(&ctx->ctx_lock); 1650 1651 iocb_put(iocb); 1652 } 1653 1654 /* assumes we are called with irqs disabled */ 1655 static int aio_poll_cancel(struct kiocb *iocb) 1656 { 1657 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1658 struct poll_iocb *req = &aiocb->poll; 1659 1660 spin_lock(&req->head->lock); 1661 WRITE_ONCE(req->cancelled, true); 1662 if (!list_empty(&req->wait.entry)) { 1663 list_del_init(&req->wait.entry); 1664 schedule_work(&aiocb->poll.work); 1665 } 1666 spin_unlock(&req->head->lock); 1667 1668 return 0; 1669 } 1670 1671 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1672 void *key) 1673 { 1674 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1675 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1676 __poll_t mask = key_to_poll(key); 1677 unsigned long flags; 1678 1679 /* for instances that support it check for an event match first: */ 1680 if (mask && !(mask & req->events)) 1681 return 0; 1682 1683 list_del_init(&req->wait.entry); 1684 1685 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1686 struct kioctx *ctx = iocb->ki_ctx; 1687 1688 /* 1689 * Try to complete the iocb inline if we can. Use 1690 * irqsave/irqrestore because not all filesystems (e.g. fuse) 1691 * call this function with IRQs disabled and because IRQs 1692 * have to be disabled before ctx_lock is obtained. 1693 */ 1694 list_del(&iocb->ki_list); 1695 iocb->ki_res.res = mangle_poll(mask); 1696 req->done = true; 1697 if (iocb->ki_eventfd && eventfd_signal_allowed()) { 1698 iocb = NULL; 1699 INIT_WORK(&req->work, aio_poll_put_work); 1700 schedule_work(&req->work); 1701 } 1702 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1703 if (iocb) 1704 iocb_put(iocb); 1705 } else { 1706 schedule_work(&req->work); 1707 } 1708 return 1; 1709 } 1710 1711 struct aio_poll_table { 1712 struct poll_table_struct pt; 1713 struct aio_kiocb *iocb; 1714 int error; 1715 }; 1716 1717 static void 1718 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1719 struct poll_table_struct *p) 1720 { 1721 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1722 1723 /* multiple wait queues per file are not supported */ 1724 if (unlikely(pt->iocb->poll.head)) { 1725 pt->error = -EINVAL; 1726 return; 1727 } 1728 1729 pt->error = 0; 1730 pt->iocb->poll.head = head; 1731 add_wait_queue(head, &pt->iocb->poll.wait); 1732 } 1733 1734 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1735 { 1736 struct kioctx *ctx = aiocb->ki_ctx; 1737 struct poll_iocb *req = &aiocb->poll; 1738 struct aio_poll_table apt; 1739 bool cancel = false; 1740 __poll_t mask; 1741 1742 /* reject any unknown events outside the normal event mask. */ 1743 if ((u16)iocb->aio_buf != iocb->aio_buf) 1744 return -EINVAL; 1745 /* reject fields that are not defined for poll */ 1746 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1747 return -EINVAL; 1748 1749 INIT_WORK(&req->work, aio_poll_complete_work); 1750 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1751 1752 req->head = NULL; 1753 req->done = false; 1754 req->cancelled = false; 1755 1756 apt.pt._qproc = aio_poll_queue_proc; 1757 apt.pt._key = req->events; 1758 apt.iocb = aiocb; 1759 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1760 1761 /* initialized the list so that we can do list_empty checks */ 1762 INIT_LIST_HEAD(&req->wait.entry); 1763 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1764 1765 mask = vfs_poll(req->file, &apt.pt) & req->events; 1766 spin_lock_irq(&ctx->ctx_lock); 1767 if (likely(req->head)) { 1768 spin_lock(&req->head->lock); 1769 if (unlikely(list_empty(&req->wait.entry))) { 1770 if (apt.error) 1771 cancel = true; 1772 apt.error = 0; 1773 mask = 0; 1774 } 1775 if (mask || apt.error) { 1776 list_del_init(&req->wait.entry); 1777 } else if (cancel) { 1778 WRITE_ONCE(req->cancelled, true); 1779 } else if (!req->done) { /* actually waiting for an event */ 1780 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1781 aiocb->ki_cancel = aio_poll_cancel; 1782 } 1783 spin_unlock(&req->head->lock); 1784 } 1785 if (mask) { /* no async, we'd stolen it */ 1786 aiocb->ki_res.res = mangle_poll(mask); 1787 apt.error = 0; 1788 } 1789 spin_unlock_irq(&ctx->ctx_lock); 1790 if (mask) 1791 iocb_put(aiocb); 1792 return apt.error; 1793 } 1794 1795 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1796 struct iocb __user *user_iocb, struct aio_kiocb *req, 1797 bool compat) 1798 { 1799 req->ki_filp = fget(iocb->aio_fildes); 1800 if (unlikely(!req->ki_filp)) 1801 return -EBADF; 1802 1803 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1804 struct eventfd_ctx *eventfd; 1805 /* 1806 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1807 * instance of the file* now. The file descriptor must be 1808 * an eventfd() fd, and will be signaled for each completed 1809 * event using the eventfd_signal() function. 1810 */ 1811 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1812 if (IS_ERR(eventfd)) 1813 return PTR_ERR(eventfd); 1814 1815 req->ki_eventfd = eventfd; 1816 } 1817 1818 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1819 pr_debug("EFAULT: aio_key\n"); 1820 return -EFAULT; 1821 } 1822 1823 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1824 req->ki_res.data = iocb->aio_data; 1825 req->ki_res.res = 0; 1826 req->ki_res.res2 = 0; 1827 1828 switch (iocb->aio_lio_opcode) { 1829 case IOCB_CMD_PREAD: 1830 return aio_read(&req->rw, iocb, false, compat); 1831 case IOCB_CMD_PWRITE: 1832 return aio_write(&req->rw, iocb, false, compat); 1833 case IOCB_CMD_PREADV: 1834 return aio_read(&req->rw, iocb, true, compat); 1835 case IOCB_CMD_PWRITEV: 1836 return aio_write(&req->rw, iocb, true, compat); 1837 case IOCB_CMD_FSYNC: 1838 return aio_fsync(&req->fsync, iocb, false); 1839 case IOCB_CMD_FDSYNC: 1840 return aio_fsync(&req->fsync, iocb, true); 1841 case IOCB_CMD_POLL: 1842 return aio_poll(req, iocb); 1843 default: 1844 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1845 return -EINVAL; 1846 } 1847 } 1848 1849 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1850 bool compat) 1851 { 1852 struct aio_kiocb *req; 1853 struct iocb iocb; 1854 int err; 1855 1856 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1857 return -EFAULT; 1858 1859 /* enforce forwards compatibility on users */ 1860 if (unlikely(iocb.aio_reserved2)) { 1861 pr_debug("EINVAL: reserve field set\n"); 1862 return -EINVAL; 1863 } 1864 1865 /* prevent overflows */ 1866 if (unlikely( 1867 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1868 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1869 ((ssize_t)iocb.aio_nbytes < 0) 1870 )) { 1871 pr_debug("EINVAL: overflow check\n"); 1872 return -EINVAL; 1873 } 1874 1875 req = aio_get_req(ctx); 1876 if (unlikely(!req)) 1877 return -EAGAIN; 1878 1879 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 1880 1881 /* Done with the synchronous reference */ 1882 iocb_put(req); 1883 1884 /* 1885 * If err is 0, we'd either done aio_complete() ourselves or have 1886 * arranged for that to be done asynchronously. Anything non-zero 1887 * means that we need to destroy req ourselves. 1888 */ 1889 if (unlikely(err)) { 1890 iocb_destroy(req); 1891 put_reqs_available(ctx, 1); 1892 } 1893 return err; 1894 } 1895 1896 /* sys_io_submit: 1897 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1898 * the number of iocbs queued. May return -EINVAL if the aio_context 1899 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1900 * *iocbpp[0] is not properly initialized, if the operation specified 1901 * is invalid for the file descriptor in the iocb. May fail with 1902 * -EFAULT if any of the data structures point to invalid data. May 1903 * fail with -EBADF if the file descriptor specified in the first 1904 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1905 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1906 * fail with -ENOSYS if not implemented. 1907 */ 1908 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1909 struct iocb __user * __user *, iocbpp) 1910 { 1911 struct kioctx *ctx; 1912 long ret = 0; 1913 int i = 0; 1914 struct blk_plug plug; 1915 1916 if (unlikely(nr < 0)) 1917 return -EINVAL; 1918 1919 ctx = lookup_ioctx(ctx_id); 1920 if (unlikely(!ctx)) { 1921 pr_debug("EINVAL: invalid context id\n"); 1922 return -EINVAL; 1923 } 1924 1925 if (nr > ctx->nr_events) 1926 nr = ctx->nr_events; 1927 1928 if (nr > AIO_PLUG_THRESHOLD) 1929 blk_start_plug(&plug); 1930 for (i = 0; i < nr; i++) { 1931 struct iocb __user *user_iocb; 1932 1933 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1934 ret = -EFAULT; 1935 break; 1936 } 1937 1938 ret = io_submit_one(ctx, user_iocb, false); 1939 if (ret) 1940 break; 1941 } 1942 if (nr > AIO_PLUG_THRESHOLD) 1943 blk_finish_plug(&plug); 1944 1945 percpu_ref_put(&ctx->users); 1946 return i ? i : ret; 1947 } 1948 1949 #ifdef CONFIG_COMPAT 1950 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1951 int, nr, compat_uptr_t __user *, iocbpp) 1952 { 1953 struct kioctx *ctx; 1954 long ret = 0; 1955 int i = 0; 1956 struct blk_plug plug; 1957 1958 if (unlikely(nr < 0)) 1959 return -EINVAL; 1960 1961 ctx = lookup_ioctx(ctx_id); 1962 if (unlikely(!ctx)) { 1963 pr_debug("EINVAL: invalid context id\n"); 1964 return -EINVAL; 1965 } 1966 1967 if (nr > ctx->nr_events) 1968 nr = ctx->nr_events; 1969 1970 if (nr > AIO_PLUG_THRESHOLD) 1971 blk_start_plug(&plug); 1972 for (i = 0; i < nr; i++) { 1973 compat_uptr_t user_iocb; 1974 1975 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1976 ret = -EFAULT; 1977 break; 1978 } 1979 1980 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1981 if (ret) 1982 break; 1983 } 1984 if (nr > AIO_PLUG_THRESHOLD) 1985 blk_finish_plug(&plug); 1986 1987 percpu_ref_put(&ctx->users); 1988 return i ? i : ret; 1989 } 1990 #endif 1991 1992 /* sys_io_cancel: 1993 * Attempts to cancel an iocb previously passed to io_submit. If 1994 * the operation is successfully cancelled, the resulting event is 1995 * copied into the memory pointed to by result without being placed 1996 * into the completion queue and 0 is returned. May fail with 1997 * -EFAULT if any of the data structures pointed to are invalid. 1998 * May fail with -EINVAL if aio_context specified by ctx_id is 1999 * invalid. May fail with -EAGAIN if the iocb specified was not 2000 * cancelled. Will fail with -ENOSYS if not implemented. 2001 */ 2002 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2003 struct io_event __user *, result) 2004 { 2005 struct kioctx *ctx; 2006 struct aio_kiocb *kiocb; 2007 int ret = -EINVAL; 2008 u32 key; 2009 u64 obj = (u64)(unsigned long)iocb; 2010 2011 if (unlikely(get_user(key, &iocb->aio_key))) 2012 return -EFAULT; 2013 if (unlikely(key != KIOCB_KEY)) 2014 return -EINVAL; 2015 2016 ctx = lookup_ioctx(ctx_id); 2017 if (unlikely(!ctx)) 2018 return -EINVAL; 2019 2020 spin_lock_irq(&ctx->ctx_lock); 2021 /* TODO: use a hash or array, this sucks. */ 2022 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2023 if (kiocb->ki_res.obj == obj) { 2024 ret = kiocb->ki_cancel(&kiocb->rw); 2025 list_del_init(&kiocb->ki_list); 2026 break; 2027 } 2028 } 2029 spin_unlock_irq(&ctx->ctx_lock); 2030 2031 if (!ret) { 2032 /* 2033 * The result argument is no longer used - the io_event is 2034 * always delivered via the ring buffer. -EINPROGRESS indicates 2035 * cancellation is progress: 2036 */ 2037 ret = -EINPROGRESS; 2038 } 2039 2040 percpu_ref_put(&ctx->users); 2041 2042 return ret; 2043 } 2044 2045 static long do_io_getevents(aio_context_t ctx_id, 2046 long min_nr, 2047 long nr, 2048 struct io_event __user *events, 2049 struct timespec64 *ts) 2050 { 2051 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2052 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2053 long ret = -EINVAL; 2054 2055 if (likely(ioctx)) { 2056 if (likely(min_nr <= nr && min_nr >= 0)) 2057 ret = read_events(ioctx, min_nr, nr, events, until); 2058 percpu_ref_put(&ioctx->users); 2059 } 2060 2061 return ret; 2062 } 2063 2064 /* io_getevents: 2065 * Attempts to read at least min_nr events and up to nr events from 2066 * the completion queue for the aio_context specified by ctx_id. If 2067 * it succeeds, the number of read events is returned. May fail with 2068 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2069 * out of range, if timeout is out of range. May fail with -EFAULT 2070 * if any of the memory specified is invalid. May return 0 or 2071 * < min_nr if the timeout specified by timeout has elapsed 2072 * before sufficient events are available, where timeout == NULL 2073 * specifies an infinite timeout. Note that the timeout pointed to by 2074 * timeout is relative. Will fail with -ENOSYS if not implemented. 2075 */ 2076 #ifdef CONFIG_64BIT 2077 2078 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2079 long, min_nr, 2080 long, nr, 2081 struct io_event __user *, events, 2082 struct __kernel_timespec __user *, timeout) 2083 { 2084 struct timespec64 ts; 2085 int ret; 2086 2087 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2088 return -EFAULT; 2089 2090 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2091 if (!ret && signal_pending(current)) 2092 ret = -EINTR; 2093 return ret; 2094 } 2095 2096 #endif 2097 2098 struct __aio_sigset { 2099 const sigset_t __user *sigmask; 2100 size_t sigsetsize; 2101 }; 2102 2103 SYSCALL_DEFINE6(io_pgetevents, 2104 aio_context_t, ctx_id, 2105 long, min_nr, 2106 long, nr, 2107 struct io_event __user *, events, 2108 struct __kernel_timespec __user *, timeout, 2109 const struct __aio_sigset __user *, usig) 2110 { 2111 struct __aio_sigset ksig = { NULL, }; 2112 struct timespec64 ts; 2113 bool interrupted; 2114 int ret; 2115 2116 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2117 return -EFAULT; 2118 2119 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2120 return -EFAULT; 2121 2122 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2123 if (ret) 2124 return ret; 2125 2126 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2127 2128 interrupted = signal_pending(current); 2129 restore_saved_sigmask_unless(interrupted); 2130 if (interrupted && !ret) 2131 ret = -ERESTARTNOHAND; 2132 2133 return ret; 2134 } 2135 2136 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2137 2138 SYSCALL_DEFINE6(io_pgetevents_time32, 2139 aio_context_t, ctx_id, 2140 long, min_nr, 2141 long, nr, 2142 struct io_event __user *, events, 2143 struct old_timespec32 __user *, timeout, 2144 const struct __aio_sigset __user *, usig) 2145 { 2146 struct __aio_sigset ksig = { NULL, }; 2147 struct timespec64 ts; 2148 bool interrupted; 2149 int ret; 2150 2151 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2152 return -EFAULT; 2153 2154 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2155 return -EFAULT; 2156 2157 2158 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2159 if (ret) 2160 return ret; 2161 2162 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2163 2164 interrupted = signal_pending(current); 2165 restore_saved_sigmask_unless(interrupted); 2166 if (interrupted && !ret) 2167 ret = -ERESTARTNOHAND; 2168 2169 return ret; 2170 } 2171 2172 #endif 2173 2174 #if defined(CONFIG_COMPAT_32BIT_TIME) 2175 2176 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2177 __s32, min_nr, 2178 __s32, nr, 2179 struct io_event __user *, events, 2180 struct old_timespec32 __user *, timeout) 2181 { 2182 struct timespec64 t; 2183 int ret; 2184 2185 if (timeout && get_old_timespec32(&t, timeout)) 2186 return -EFAULT; 2187 2188 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2189 if (!ret && signal_pending(current)) 2190 ret = -EINTR; 2191 return ret; 2192 } 2193 2194 #endif 2195 2196 #ifdef CONFIG_COMPAT 2197 2198 struct __compat_aio_sigset { 2199 compat_uptr_t sigmask; 2200 compat_size_t sigsetsize; 2201 }; 2202 2203 #if defined(CONFIG_COMPAT_32BIT_TIME) 2204 2205 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2206 compat_aio_context_t, ctx_id, 2207 compat_long_t, min_nr, 2208 compat_long_t, nr, 2209 struct io_event __user *, events, 2210 struct old_timespec32 __user *, timeout, 2211 const struct __compat_aio_sigset __user *, usig) 2212 { 2213 struct __compat_aio_sigset ksig = { 0, }; 2214 struct timespec64 t; 2215 bool interrupted; 2216 int ret; 2217 2218 if (timeout && get_old_timespec32(&t, timeout)) 2219 return -EFAULT; 2220 2221 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2222 return -EFAULT; 2223 2224 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2225 if (ret) 2226 return ret; 2227 2228 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2229 2230 interrupted = signal_pending(current); 2231 restore_saved_sigmask_unless(interrupted); 2232 if (interrupted && !ret) 2233 ret = -ERESTARTNOHAND; 2234 2235 return ret; 2236 } 2237 2238 #endif 2239 2240 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2241 compat_aio_context_t, ctx_id, 2242 compat_long_t, min_nr, 2243 compat_long_t, nr, 2244 struct io_event __user *, events, 2245 struct __kernel_timespec __user *, timeout, 2246 const struct __compat_aio_sigset __user *, usig) 2247 { 2248 struct __compat_aio_sigset ksig = { 0, }; 2249 struct timespec64 t; 2250 bool interrupted; 2251 int ret; 2252 2253 if (timeout && get_timespec64(&t, timeout)) 2254 return -EFAULT; 2255 2256 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2257 return -EFAULT; 2258 2259 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2260 if (ret) 2261 return ret; 2262 2263 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2264 2265 interrupted = signal_pending(current); 2266 restore_saved_sigmask_unless(interrupted); 2267 if (interrupted && !ret) 2268 ret = -ERESTARTNOHAND; 2269 2270 return ret; 2271 } 2272 #endif 2273