1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/mmu_context.h> 31 #include <linux/percpu.h> 32 #include <linux/slab.h> 33 #include <linux/timer.h> 34 #include <linux/aio.h> 35 #include <linux/highmem.h> 36 #include <linux/workqueue.h> 37 #include <linux/security.h> 38 #include <linux/eventfd.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/migrate.h> 42 #include <linux/ramfs.h> 43 #include <linux/percpu-refcount.h> 44 #include <linux/mount.h> 45 46 #include <asm/kmap_types.h> 47 #include <linux/uaccess.h> 48 #include <linux/nospec.h> 49 50 #include "internal.h" 51 52 #define KIOCB_KEY 0 53 54 #define AIO_RING_MAGIC 0xa10a10a1 55 #define AIO_RING_COMPAT_FEATURES 1 56 #define AIO_RING_INCOMPAT_FEATURES 0 57 struct aio_ring { 58 unsigned id; /* kernel internal index number */ 59 unsigned nr; /* number of io_events */ 60 unsigned head; /* Written to by userland or under ring_lock 61 * mutex by aio_read_events_ring(). */ 62 unsigned tail; 63 64 unsigned magic; 65 unsigned compat_features; 66 unsigned incompat_features; 67 unsigned header_length; /* size of aio_ring */ 68 69 70 struct io_event io_events[0]; 71 }; /* 128 bytes + ring size */ 72 73 /* 74 * Plugging is meant to work with larger batches of IOs. If we don't 75 * have more than the below, then don't bother setting up a plug. 76 */ 77 #define AIO_PLUG_THRESHOLD 2 78 79 #define AIO_RING_PAGES 8 80 81 struct kioctx_table { 82 struct rcu_head rcu; 83 unsigned nr; 84 struct kioctx __rcu *table[]; 85 }; 86 87 struct kioctx_cpu { 88 unsigned reqs_available; 89 }; 90 91 struct ctx_rq_wait { 92 struct completion comp; 93 atomic_t count; 94 }; 95 96 struct kioctx { 97 struct percpu_ref users; 98 atomic_t dead; 99 100 struct percpu_ref reqs; 101 102 unsigned long user_id; 103 104 struct __percpu kioctx_cpu *cpu; 105 106 /* 107 * For percpu reqs_available, number of slots we move to/from global 108 * counter at a time: 109 */ 110 unsigned req_batch; 111 /* 112 * This is what userspace passed to io_setup(), it's not used for 113 * anything but counting against the global max_reqs quota. 114 * 115 * The real limit is nr_events - 1, which will be larger (see 116 * aio_setup_ring()) 117 */ 118 unsigned max_reqs; 119 120 /* Size of ringbuffer, in units of struct io_event */ 121 unsigned nr_events; 122 123 unsigned long mmap_base; 124 unsigned long mmap_size; 125 126 struct page **ring_pages; 127 long nr_pages; 128 129 struct rcu_work free_rwork; /* see free_ioctx() */ 130 131 /* 132 * signals when all in-flight requests are done 133 */ 134 struct ctx_rq_wait *rq_wait; 135 136 struct { 137 /* 138 * This counts the number of available slots in the ringbuffer, 139 * so we avoid overflowing it: it's decremented (if positive) 140 * when allocating a kiocb and incremented when the resulting 141 * io_event is pulled off the ringbuffer. 142 * 143 * We batch accesses to it with a percpu version. 144 */ 145 atomic_t reqs_available; 146 } ____cacheline_aligned_in_smp; 147 148 struct { 149 spinlock_t ctx_lock; 150 struct list_head active_reqs; /* used for cancellation */ 151 } ____cacheline_aligned_in_smp; 152 153 struct { 154 struct mutex ring_lock; 155 wait_queue_head_t wait; 156 } ____cacheline_aligned_in_smp; 157 158 struct { 159 unsigned tail; 160 unsigned completed_events; 161 spinlock_t completion_lock; 162 } ____cacheline_aligned_in_smp; 163 164 struct page *internal_pages[AIO_RING_PAGES]; 165 struct file *aio_ring_file; 166 167 unsigned id; 168 }; 169 170 struct fsync_iocb { 171 struct work_struct work; 172 struct file *file; 173 bool datasync; 174 }; 175 176 struct poll_iocb { 177 struct file *file; 178 struct wait_queue_head *head; 179 __poll_t events; 180 bool woken; 181 bool cancelled; 182 struct wait_queue_entry wait; 183 struct work_struct work; 184 }; 185 186 struct aio_kiocb { 187 union { 188 struct kiocb rw; 189 struct fsync_iocb fsync; 190 struct poll_iocb poll; 191 }; 192 193 struct kioctx *ki_ctx; 194 kiocb_cancel_fn *ki_cancel; 195 196 struct iocb __user *ki_user_iocb; /* user's aiocb */ 197 __u64 ki_user_data; /* user's data for completion */ 198 199 struct list_head ki_list; /* the aio core uses this 200 * for cancellation */ 201 refcount_t ki_refcnt; 202 203 /* 204 * If the aio_resfd field of the userspace iocb is not zero, 205 * this is the underlying eventfd context to deliver events to. 206 */ 207 struct eventfd_ctx *ki_eventfd; 208 }; 209 210 /*------ sysctl variables----*/ 211 static DEFINE_SPINLOCK(aio_nr_lock); 212 unsigned long aio_nr; /* current system wide number of aio requests */ 213 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 214 /*----end sysctl variables---*/ 215 216 static struct kmem_cache *kiocb_cachep; 217 static struct kmem_cache *kioctx_cachep; 218 219 static struct vfsmount *aio_mnt; 220 221 static const struct file_operations aio_ring_fops; 222 static const struct address_space_operations aio_ctx_aops; 223 224 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 225 { 226 struct file *file; 227 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 228 if (IS_ERR(inode)) 229 return ERR_CAST(inode); 230 231 inode->i_mapping->a_ops = &aio_ctx_aops; 232 inode->i_mapping->private_data = ctx; 233 inode->i_size = PAGE_SIZE * nr_pages; 234 235 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 236 O_RDWR, &aio_ring_fops); 237 if (IS_ERR(file)) 238 iput(inode); 239 return file; 240 } 241 242 static struct dentry *aio_mount(struct file_system_type *fs_type, 243 int flags, const char *dev_name, void *data) 244 { 245 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL, 246 AIO_RING_MAGIC); 247 248 if (!IS_ERR(root)) 249 root->d_sb->s_iflags |= SB_I_NOEXEC; 250 return root; 251 } 252 253 /* aio_setup 254 * Creates the slab caches used by the aio routines, panic on 255 * failure as this is done early during the boot sequence. 256 */ 257 static int __init aio_setup(void) 258 { 259 static struct file_system_type aio_fs = { 260 .name = "aio", 261 .mount = aio_mount, 262 .kill_sb = kill_anon_super, 263 }; 264 aio_mnt = kern_mount(&aio_fs); 265 if (IS_ERR(aio_mnt)) 266 panic("Failed to create aio fs mount."); 267 268 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 269 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 270 return 0; 271 } 272 __initcall(aio_setup); 273 274 static void put_aio_ring_file(struct kioctx *ctx) 275 { 276 struct file *aio_ring_file = ctx->aio_ring_file; 277 struct address_space *i_mapping; 278 279 if (aio_ring_file) { 280 truncate_setsize(file_inode(aio_ring_file), 0); 281 282 /* Prevent further access to the kioctx from migratepages */ 283 i_mapping = aio_ring_file->f_mapping; 284 spin_lock(&i_mapping->private_lock); 285 i_mapping->private_data = NULL; 286 ctx->aio_ring_file = NULL; 287 spin_unlock(&i_mapping->private_lock); 288 289 fput(aio_ring_file); 290 } 291 } 292 293 static void aio_free_ring(struct kioctx *ctx) 294 { 295 int i; 296 297 /* Disconnect the kiotx from the ring file. This prevents future 298 * accesses to the kioctx from page migration. 299 */ 300 put_aio_ring_file(ctx); 301 302 for (i = 0; i < ctx->nr_pages; i++) { 303 struct page *page; 304 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 305 page_count(ctx->ring_pages[i])); 306 page = ctx->ring_pages[i]; 307 if (!page) 308 continue; 309 ctx->ring_pages[i] = NULL; 310 put_page(page); 311 } 312 313 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 314 kfree(ctx->ring_pages); 315 ctx->ring_pages = NULL; 316 } 317 } 318 319 static int aio_ring_mremap(struct vm_area_struct *vma) 320 { 321 struct file *file = vma->vm_file; 322 struct mm_struct *mm = vma->vm_mm; 323 struct kioctx_table *table; 324 int i, res = -EINVAL; 325 326 spin_lock(&mm->ioctx_lock); 327 rcu_read_lock(); 328 table = rcu_dereference(mm->ioctx_table); 329 for (i = 0; i < table->nr; i++) { 330 struct kioctx *ctx; 331 332 ctx = rcu_dereference(table->table[i]); 333 if (ctx && ctx->aio_ring_file == file) { 334 if (!atomic_read(&ctx->dead)) { 335 ctx->user_id = ctx->mmap_base = vma->vm_start; 336 res = 0; 337 } 338 break; 339 } 340 } 341 342 rcu_read_unlock(); 343 spin_unlock(&mm->ioctx_lock); 344 return res; 345 } 346 347 static const struct vm_operations_struct aio_ring_vm_ops = { 348 .mremap = aio_ring_mremap, 349 #if IS_ENABLED(CONFIG_MMU) 350 .fault = filemap_fault, 351 .map_pages = filemap_map_pages, 352 .page_mkwrite = filemap_page_mkwrite, 353 #endif 354 }; 355 356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 357 { 358 vma->vm_flags |= VM_DONTEXPAND; 359 vma->vm_ops = &aio_ring_vm_ops; 360 return 0; 361 } 362 363 static const struct file_operations aio_ring_fops = { 364 .mmap = aio_ring_mmap, 365 }; 366 367 #if IS_ENABLED(CONFIG_MIGRATION) 368 static int aio_migratepage(struct address_space *mapping, struct page *new, 369 struct page *old, enum migrate_mode mode) 370 { 371 struct kioctx *ctx; 372 unsigned long flags; 373 pgoff_t idx; 374 int rc; 375 376 /* 377 * We cannot support the _NO_COPY case here, because copy needs to 378 * happen under the ctx->completion_lock. That does not work with the 379 * migration workflow of MIGRATE_SYNC_NO_COPY. 380 */ 381 if (mode == MIGRATE_SYNC_NO_COPY) 382 return -EINVAL; 383 384 rc = 0; 385 386 /* mapping->private_lock here protects against the kioctx teardown. */ 387 spin_lock(&mapping->private_lock); 388 ctx = mapping->private_data; 389 if (!ctx) { 390 rc = -EINVAL; 391 goto out; 392 } 393 394 /* The ring_lock mutex. The prevents aio_read_events() from writing 395 * to the ring's head, and prevents page migration from mucking in 396 * a partially initialized kiotx. 397 */ 398 if (!mutex_trylock(&ctx->ring_lock)) { 399 rc = -EAGAIN; 400 goto out; 401 } 402 403 idx = old->index; 404 if (idx < (pgoff_t)ctx->nr_pages) { 405 /* Make sure the old page hasn't already been changed */ 406 if (ctx->ring_pages[idx] != old) 407 rc = -EAGAIN; 408 } else 409 rc = -EINVAL; 410 411 if (rc != 0) 412 goto out_unlock; 413 414 /* Writeback must be complete */ 415 BUG_ON(PageWriteback(old)); 416 get_page(new); 417 418 rc = migrate_page_move_mapping(mapping, new, old, mode, 1); 419 if (rc != MIGRATEPAGE_SUCCESS) { 420 put_page(new); 421 goto out_unlock; 422 } 423 424 /* Take completion_lock to prevent other writes to the ring buffer 425 * while the old page is copied to the new. This prevents new 426 * events from being lost. 427 */ 428 spin_lock_irqsave(&ctx->completion_lock, flags); 429 migrate_page_copy(new, old); 430 BUG_ON(ctx->ring_pages[idx] != old); 431 ctx->ring_pages[idx] = new; 432 spin_unlock_irqrestore(&ctx->completion_lock, flags); 433 434 /* The old page is no longer accessible. */ 435 put_page(old); 436 437 out_unlock: 438 mutex_unlock(&ctx->ring_lock); 439 out: 440 spin_unlock(&mapping->private_lock); 441 return rc; 442 } 443 #endif 444 445 static const struct address_space_operations aio_ctx_aops = { 446 .set_page_dirty = __set_page_dirty_no_writeback, 447 #if IS_ENABLED(CONFIG_MIGRATION) 448 .migratepage = aio_migratepage, 449 #endif 450 }; 451 452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 453 { 454 struct aio_ring *ring; 455 struct mm_struct *mm = current->mm; 456 unsigned long size, unused; 457 int nr_pages; 458 int i; 459 struct file *file; 460 461 /* Compensate for the ring buffer's head/tail overlap entry */ 462 nr_events += 2; /* 1 is required, 2 for good luck */ 463 464 size = sizeof(struct aio_ring); 465 size += sizeof(struct io_event) * nr_events; 466 467 nr_pages = PFN_UP(size); 468 if (nr_pages < 0) 469 return -EINVAL; 470 471 file = aio_private_file(ctx, nr_pages); 472 if (IS_ERR(file)) { 473 ctx->aio_ring_file = NULL; 474 return -ENOMEM; 475 } 476 477 ctx->aio_ring_file = file; 478 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 479 / sizeof(struct io_event); 480 481 ctx->ring_pages = ctx->internal_pages; 482 if (nr_pages > AIO_RING_PAGES) { 483 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 484 GFP_KERNEL); 485 if (!ctx->ring_pages) { 486 put_aio_ring_file(ctx); 487 return -ENOMEM; 488 } 489 } 490 491 for (i = 0; i < nr_pages; i++) { 492 struct page *page; 493 page = find_or_create_page(file->f_mapping, 494 i, GFP_HIGHUSER | __GFP_ZERO); 495 if (!page) 496 break; 497 pr_debug("pid(%d) page[%d]->count=%d\n", 498 current->pid, i, page_count(page)); 499 SetPageUptodate(page); 500 unlock_page(page); 501 502 ctx->ring_pages[i] = page; 503 } 504 ctx->nr_pages = i; 505 506 if (unlikely(i != nr_pages)) { 507 aio_free_ring(ctx); 508 return -ENOMEM; 509 } 510 511 ctx->mmap_size = nr_pages * PAGE_SIZE; 512 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 513 514 if (down_write_killable(&mm->mmap_sem)) { 515 ctx->mmap_size = 0; 516 aio_free_ring(ctx); 517 return -EINTR; 518 } 519 520 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 521 PROT_READ | PROT_WRITE, 522 MAP_SHARED, 0, &unused, NULL); 523 up_write(&mm->mmap_sem); 524 if (IS_ERR((void *)ctx->mmap_base)) { 525 ctx->mmap_size = 0; 526 aio_free_ring(ctx); 527 return -ENOMEM; 528 } 529 530 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 531 532 ctx->user_id = ctx->mmap_base; 533 ctx->nr_events = nr_events; /* trusted copy */ 534 535 ring = kmap_atomic(ctx->ring_pages[0]); 536 ring->nr = nr_events; /* user copy */ 537 ring->id = ~0U; 538 ring->head = ring->tail = 0; 539 ring->magic = AIO_RING_MAGIC; 540 ring->compat_features = AIO_RING_COMPAT_FEATURES; 541 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 542 ring->header_length = sizeof(struct aio_ring); 543 kunmap_atomic(ring); 544 flush_dcache_page(ctx->ring_pages[0]); 545 546 return 0; 547 } 548 549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 552 553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 554 { 555 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 556 struct kioctx *ctx = req->ki_ctx; 557 unsigned long flags; 558 559 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 560 return; 561 562 spin_lock_irqsave(&ctx->ctx_lock, flags); 563 list_add_tail(&req->ki_list, &ctx->active_reqs); 564 req->ki_cancel = cancel; 565 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 566 } 567 EXPORT_SYMBOL(kiocb_set_cancel_fn); 568 569 /* 570 * free_ioctx() should be RCU delayed to synchronize against the RCU 571 * protected lookup_ioctx() and also needs process context to call 572 * aio_free_ring(). Use rcu_work. 573 */ 574 static void free_ioctx(struct work_struct *work) 575 { 576 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 577 free_rwork); 578 pr_debug("freeing %p\n", ctx); 579 580 aio_free_ring(ctx); 581 free_percpu(ctx->cpu); 582 percpu_ref_exit(&ctx->reqs); 583 percpu_ref_exit(&ctx->users); 584 kmem_cache_free(kioctx_cachep, ctx); 585 } 586 587 static void free_ioctx_reqs(struct percpu_ref *ref) 588 { 589 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 590 591 /* At this point we know that there are no any in-flight requests */ 592 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 593 complete(&ctx->rq_wait->comp); 594 595 /* Synchronize against RCU protected table->table[] dereferences */ 596 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 597 queue_rcu_work(system_wq, &ctx->free_rwork); 598 } 599 600 /* 601 * When this function runs, the kioctx has been removed from the "hash table" 602 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 603 * now it's safe to cancel any that need to be. 604 */ 605 static void free_ioctx_users(struct percpu_ref *ref) 606 { 607 struct kioctx *ctx = container_of(ref, struct kioctx, users); 608 struct aio_kiocb *req; 609 610 spin_lock_irq(&ctx->ctx_lock); 611 612 while (!list_empty(&ctx->active_reqs)) { 613 req = list_first_entry(&ctx->active_reqs, 614 struct aio_kiocb, ki_list); 615 req->ki_cancel(&req->rw); 616 list_del_init(&req->ki_list); 617 } 618 619 spin_unlock_irq(&ctx->ctx_lock); 620 621 percpu_ref_kill(&ctx->reqs); 622 percpu_ref_put(&ctx->reqs); 623 } 624 625 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 626 { 627 unsigned i, new_nr; 628 struct kioctx_table *table, *old; 629 struct aio_ring *ring; 630 631 spin_lock(&mm->ioctx_lock); 632 table = rcu_dereference_raw(mm->ioctx_table); 633 634 while (1) { 635 if (table) 636 for (i = 0; i < table->nr; i++) 637 if (!rcu_access_pointer(table->table[i])) { 638 ctx->id = i; 639 rcu_assign_pointer(table->table[i], ctx); 640 spin_unlock(&mm->ioctx_lock); 641 642 /* While kioctx setup is in progress, 643 * we are protected from page migration 644 * changes ring_pages by ->ring_lock. 645 */ 646 ring = kmap_atomic(ctx->ring_pages[0]); 647 ring->id = ctx->id; 648 kunmap_atomic(ring); 649 return 0; 650 } 651 652 new_nr = (table ? table->nr : 1) * 4; 653 spin_unlock(&mm->ioctx_lock); 654 655 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 656 new_nr, GFP_KERNEL); 657 if (!table) 658 return -ENOMEM; 659 660 table->nr = new_nr; 661 662 spin_lock(&mm->ioctx_lock); 663 old = rcu_dereference_raw(mm->ioctx_table); 664 665 if (!old) { 666 rcu_assign_pointer(mm->ioctx_table, table); 667 } else if (table->nr > old->nr) { 668 memcpy(table->table, old->table, 669 old->nr * sizeof(struct kioctx *)); 670 671 rcu_assign_pointer(mm->ioctx_table, table); 672 kfree_rcu(old, rcu); 673 } else { 674 kfree(table); 675 table = old; 676 } 677 } 678 } 679 680 static void aio_nr_sub(unsigned nr) 681 { 682 spin_lock(&aio_nr_lock); 683 if (WARN_ON(aio_nr - nr > aio_nr)) 684 aio_nr = 0; 685 else 686 aio_nr -= nr; 687 spin_unlock(&aio_nr_lock); 688 } 689 690 /* ioctx_alloc 691 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 692 */ 693 static struct kioctx *ioctx_alloc(unsigned nr_events) 694 { 695 struct mm_struct *mm = current->mm; 696 struct kioctx *ctx; 697 int err = -ENOMEM; 698 699 /* 700 * Store the original nr_events -- what userspace passed to io_setup(), 701 * for counting against the global limit -- before it changes. 702 */ 703 unsigned int max_reqs = nr_events; 704 705 /* 706 * We keep track of the number of available ringbuffer slots, to prevent 707 * overflow (reqs_available), and we also use percpu counters for this. 708 * 709 * So since up to half the slots might be on other cpu's percpu counters 710 * and unavailable, double nr_events so userspace sees what they 711 * expected: additionally, we move req_batch slots to/from percpu 712 * counters at a time, so make sure that isn't 0: 713 */ 714 nr_events = max(nr_events, num_possible_cpus() * 4); 715 nr_events *= 2; 716 717 /* Prevent overflows */ 718 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 719 pr_debug("ENOMEM: nr_events too high\n"); 720 return ERR_PTR(-EINVAL); 721 } 722 723 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 724 return ERR_PTR(-EAGAIN); 725 726 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 727 if (!ctx) 728 return ERR_PTR(-ENOMEM); 729 730 ctx->max_reqs = max_reqs; 731 732 spin_lock_init(&ctx->ctx_lock); 733 spin_lock_init(&ctx->completion_lock); 734 mutex_init(&ctx->ring_lock); 735 /* Protect against page migration throughout kiotx setup by keeping 736 * the ring_lock mutex held until setup is complete. */ 737 mutex_lock(&ctx->ring_lock); 738 init_waitqueue_head(&ctx->wait); 739 740 INIT_LIST_HEAD(&ctx->active_reqs); 741 742 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 743 goto err; 744 745 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 746 goto err; 747 748 ctx->cpu = alloc_percpu(struct kioctx_cpu); 749 if (!ctx->cpu) 750 goto err; 751 752 err = aio_setup_ring(ctx, nr_events); 753 if (err < 0) 754 goto err; 755 756 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 757 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 758 if (ctx->req_batch < 1) 759 ctx->req_batch = 1; 760 761 /* limit the number of system wide aios */ 762 spin_lock(&aio_nr_lock); 763 if (aio_nr + ctx->max_reqs > aio_max_nr || 764 aio_nr + ctx->max_reqs < aio_nr) { 765 spin_unlock(&aio_nr_lock); 766 err = -EAGAIN; 767 goto err_ctx; 768 } 769 aio_nr += ctx->max_reqs; 770 spin_unlock(&aio_nr_lock); 771 772 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 773 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 774 775 err = ioctx_add_table(ctx, mm); 776 if (err) 777 goto err_cleanup; 778 779 /* Release the ring_lock mutex now that all setup is complete. */ 780 mutex_unlock(&ctx->ring_lock); 781 782 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 783 ctx, ctx->user_id, mm, ctx->nr_events); 784 return ctx; 785 786 err_cleanup: 787 aio_nr_sub(ctx->max_reqs); 788 err_ctx: 789 atomic_set(&ctx->dead, 1); 790 if (ctx->mmap_size) 791 vm_munmap(ctx->mmap_base, ctx->mmap_size); 792 aio_free_ring(ctx); 793 err: 794 mutex_unlock(&ctx->ring_lock); 795 free_percpu(ctx->cpu); 796 percpu_ref_exit(&ctx->reqs); 797 percpu_ref_exit(&ctx->users); 798 kmem_cache_free(kioctx_cachep, ctx); 799 pr_debug("error allocating ioctx %d\n", err); 800 return ERR_PTR(err); 801 } 802 803 /* kill_ioctx 804 * Cancels all outstanding aio requests on an aio context. Used 805 * when the processes owning a context have all exited to encourage 806 * the rapid destruction of the kioctx. 807 */ 808 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 809 struct ctx_rq_wait *wait) 810 { 811 struct kioctx_table *table; 812 813 spin_lock(&mm->ioctx_lock); 814 if (atomic_xchg(&ctx->dead, 1)) { 815 spin_unlock(&mm->ioctx_lock); 816 return -EINVAL; 817 } 818 819 table = rcu_dereference_raw(mm->ioctx_table); 820 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 821 RCU_INIT_POINTER(table->table[ctx->id], NULL); 822 spin_unlock(&mm->ioctx_lock); 823 824 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 825 wake_up_all(&ctx->wait); 826 827 /* 828 * It'd be more correct to do this in free_ioctx(), after all 829 * the outstanding kiocbs have finished - but by then io_destroy 830 * has already returned, so io_setup() could potentially return 831 * -EAGAIN with no ioctxs actually in use (as far as userspace 832 * could tell). 833 */ 834 aio_nr_sub(ctx->max_reqs); 835 836 if (ctx->mmap_size) 837 vm_munmap(ctx->mmap_base, ctx->mmap_size); 838 839 ctx->rq_wait = wait; 840 percpu_ref_kill(&ctx->users); 841 return 0; 842 } 843 844 /* 845 * exit_aio: called when the last user of mm goes away. At this point, there is 846 * no way for any new requests to be submited or any of the io_* syscalls to be 847 * called on the context. 848 * 849 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 850 * them. 851 */ 852 void exit_aio(struct mm_struct *mm) 853 { 854 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 855 struct ctx_rq_wait wait; 856 int i, skipped; 857 858 if (!table) 859 return; 860 861 atomic_set(&wait.count, table->nr); 862 init_completion(&wait.comp); 863 864 skipped = 0; 865 for (i = 0; i < table->nr; ++i) { 866 struct kioctx *ctx = 867 rcu_dereference_protected(table->table[i], true); 868 869 if (!ctx) { 870 skipped++; 871 continue; 872 } 873 874 /* 875 * We don't need to bother with munmap() here - exit_mmap(mm) 876 * is coming and it'll unmap everything. And we simply can't, 877 * this is not necessarily our ->mm. 878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 879 * that it needs to unmap the area, just set it to 0. 880 */ 881 ctx->mmap_size = 0; 882 kill_ioctx(mm, ctx, &wait); 883 } 884 885 if (!atomic_sub_and_test(skipped, &wait.count)) { 886 /* Wait until all IO for the context are done. */ 887 wait_for_completion(&wait.comp); 888 } 889 890 RCU_INIT_POINTER(mm->ioctx_table, NULL); 891 kfree(table); 892 } 893 894 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 895 { 896 struct kioctx_cpu *kcpu; 897 unsigned long flags; 898 899 local_irq_save(flags); 900 kcpu = this_cpu_ptr(ctx->cpu); 901 kcpu->reqs_available += nr; 902 903 while (kcpu->reqs_available >= ctx->req_batch * 2) { 904 kcpu->reqs_available -= ctx->req_batch; 905 atomic_add(ctx->req_batch, &ctx->reqs_available); 906 } 907 908 local_irq_restore(flags); 909 } 910 911 static bool __get_reqs_available(struct kioctx *ctx) 912 { 913 struct kioctx_cpu *kcpu; 914 bool ret = false; 915 unsigned long flags; 916 917 local_irq_save(flags); 918 kcpu = this_cpu_ptr(ctx->cpu); 919 if (!kcpu->reqs_available) { 920 int old, avail = atomic_read(&ctx->reqs_available); 921 922 do { 923 if (avail < ctx->req_batch) 924 goto out; 925 926 old = avail; 927 avail = atomic_cmpxchg(&ctx->reqs_available, 928 avail, avail - ctx->req_batch); 929 } while (avail != old); 930 931 kcpu->reqs_available += ctx->req_batch; 932 } 933 934 ret = true; 935 kcpu->reqs_available--; 936 out: 937 local_irq_restore(flags); 938 return ret; 939 } 940 941 /* refill_reqs_available 942 * Updates the reqs_available reference counts used for tracking the 943 * number of free slots in the completion ring. This can be called 944 * from aio_complete() (to optimistically update reqs_available) or 945 * from aio_get_req() (the we're out of events case). It must be 946 * called holding ctx->completion_lock. 947 */ 948 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 949 unsigned tail) 950 { 951 unsigned events_in_ring, completed; 952 953 /* Clamp head since userland can write to it. */ 954 head %= ctx->nr_events; 955 if (head <= tail) 956 events_in_ring = tail - head; 957 else 958 events_in_ring = ctx->nr_events - (head - tail); 959 960 completed = ctx->completed_events; 961 if (events_in_ring < completed) 962 completed -= events_in_ring; 963 else 964 completed = 0; 965 966 if (!completed) 967 return; 968 969 ctx->completed_events -= completed; 970 put_reqs_available(ctx, completed); 971 } 972 973 /* user_refill_reqs_available 974 * Called to refill reqs_available when aio_get_req() encounters an 975 * out of space in the completion ring. 976 */ 977 static void user_refill_reqs_available(struct kioctx *ctx) 978 { 979 spin_lock_irq(&ctx->completion_lock); 980 if (ctx->completed_events) { 981 struct aio_ring *ring; 982 unsigned head; 983 984 /* Access of ring->head may race with aio_read_events_ring() 985 * here, but that's okay since whether we read the old version 986 * or the new version, and either will be valid. The important 987 * part is that head cannot pass tail since we prevent 988 * aio_complete() from updating tail by holding 989 * ctx->completion_lock. Even if head is invalid, the check 990 * against ctx->completed_events below will make sure we do the 991 * safe/right thing. 992 */ 993 ring = kmap_atomic(ctx->ring_pages[0]); 994 head = ring->head; 995 kunmap_atomic(ring); 996 997 refill_reqs_available(ctx, head, ctx->tail); 998 } 999 1000 spin_unlock_irq(&ctx->completion_lock); 1001 } 1002 1003 static bool get_reqs_available(struct kioctx *ctx) 1004 { 1005 if (__get_reqs_available(ctx)) 1006 return true; 1007 user_refill_reqs_available(ctx); 1008 return __get_reqs_available(ctx); 1009 } 1010 1011 /* aio_get_req 1012 * Allocate a slot for an aio request. 1013 * Returns NULL if no requests are free. 1014 */ 1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1016 { 1017 struct aio_kiocb *req; 1018 1019 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1020 if (unlikely(!req)) 1021 return NULL; 1022 1023 percpu_ref_get(&ctx->reqs); 1024 req->ki_ctx = ctx; 1025 INIT_LIST_HEAD(&req->ki_list); 1026 refcount_set(&req->ki_refcnt, 0); 1027 req->ki_eventfd = NULL; 1028 return req; 1029 } 1030 1031 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1032 { 1033 struct aio_ring __user *ring = (void __user *)ctx_id; 1034 struct mm_struct *mm = current->mm; 1035 struct kioctx *ctx, *ret = NULL; 1036 struct kioctx_table *table; 1037 unsigned id; 1038 1039 if (get_user(id, &ring->id)) 1040 return NULL; 1041 1042 rcu_read_lock(); 1043 table = rcu_dereference(mm->ioctx_table); 1044 1045 if (!table || id >= table->nr) 1046 goto out; 1047 1048 id = array_index_nospec(id, table->nr); 1049 ctx = rcu_dereference(table->table[id]); 1050 if (ctx && ctx->user_id == ctx_id) { 1051 if (percpu_ref_tryget_live(&ctx->users)) 1052 ret = ctx; 1053 } 1054 out: 1055 rcu_read_unlock(); 1056 return ret; 1057 } 1058 1059 static inline void iocb_put(struct aio_kiocb *iocb) 1060 { 1061 if (refcount_read(&iocb->ki_refcnt) == 0 || 1062 refcount_dec_and_test(&iocb->ki_refcnt)) { 1063 percpu_ref_put(&iocb->ki_ctx->reqs); 1064 kmem_cache_free(kiocb_cachep, iocb); 1065 } 1066 } 1067 1068 static void aio_fill_event(struct io_event *ev, struct aio_kiocb *iocb, 1069 long res, long res2) 1070 { 1071 ev->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1072 ev->data = iocb->ki_user_data; 1073 ev->res = res; 1074 ev->res2 = res2; 1075 } 1076 1077 /* aio_complete 1078 * Called when the io request on the given iocb is complete. 1079 */ 1080 static void aio_complete(struct aio_kiocb *iocb, long res, long res2) 1081 { 1082 struct kioctx *ctx = iocb->ki_ctx; 1083 struct aio_ring *ring; 1084 struct io_event *ev_page, *event; 1085 unsigned tail, pos, head; 1086 unsigned long flags; 1087 1088 /* 1089 * Add a completion event to the ring buffer. Must be done holding 1090 * ctx->completion_lock to prevent other code from messing with the tail 1091 * pointer since we might be called from irq context. 1092 */ 1093 spin_lock_irqsave(&ctx->completion_lock, flags); 1094 1095 tail = ctx->tail; 1096 pos = tail + AIO_EVENTS_OFFSET; 1097 1098 if (++tail >= ctx->nr_events) 1099 tail = 0; 1100 1101 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1102 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1103 1104 aio_fill_event(event, iocb, res, res2); 1105 1106 kunmap_atomic(ev_page); 1107 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1108 1109 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1110 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1111 res, res2); 1112 1113 /* after flagging the request as done, we 1114 * must never even look at it again 1115 */ 1116 smp_wmb(); /* make event visible before updating tail */ 1117 1118 ctx->tail = tail; 1119 1120 ring = kmap_atomic(ctx->ring_pages[0]); 1121 head = ring->head; 1122 ring->tail = tail; 1123 kunmap_atomic(ring); 1124 flush_dcache_page(ctx->ring_pages[0]); 1125 1126 ctx->completed_events++; 1127 if (ctx->completed_events > 1) 1128 refill_reqs_available(ctx, head, tail); 1129 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1130 1131 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1132 1133 /* 1134 * Check if the user asked us to deliver the result through an 1135 * eventfd. The eventfd_signal() function is safe to be called 1136 * from IRQ context. 1137 */ 1138 if (iocb->ki_eventfd) { 1139 eventfd_signal(iocb->ki_eventfd, 1); 1140 eventfd_ctx_put(iocb->ki_eventfd); 1141 } 1142 1143 /* 1144 * We have to order our ring_info tail store above and test 1145 * of the wait list below outside the wait lock. This is 1146 * like in wake_up_bit() where clearing a bit has to be 1147 * ordered with the unlocked test. 1148 */ 1149 smp_mb(); 1150 1151 if (waitqueue_active(&ctx->wait)) 1152 wake_up(&ctx->wait); 1153 iocb_put(iocb); 1154 } 1155 1156 /* aio_read_events_ring 1157 * Pull an event off of the ioctx's event ring. Returns the number of 1158 * events fetched 1159 */ 1160 static long aio_read_events_ring(struct kioctx *ctx, 1161 struct io_event __user *event, long nr) 1162 { 1163 struct aio_ring *ring; 1164 unsigned head, tail, pos; 1165 long ret = 0; 1166 int copy_ret; 1167 1168 /* 1169 * The mutex can block and wake us up and that will cause 1170 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1171 * and repeat. This should be rare enough that it doesn't cause 1172 * peformance issues. See the comment in read_events() for more detail. 1173 */ 1174 sched_annotate_sleep(); 1175 mutex_lock(&ctx->ring_lock); 1176 1177 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1178 ring = kmap_atomic(ctx->ring_pages[0]); 1179 head = ring->head; 1180 tail = ring->tail; 1181 kunmap_atomic(ring); 1182 1183 /* 1184 * Ensure that once we've read the current tail pointer, that 1185 * we also see the events that were stored up to the tail. 1186 */ 1187 smp_rmb(); 1188 1189 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1190 1191 if (head == tail) 1192 goto out; 1193 1194 head %= ctx->nr_events; 1195 tail %= ctx->nr_events; 1196 1197 while (ret < nr) { 1198 long avail; 1199 struct io_event *ev; 1200 struct page *page; 1201 1202 avail = (head <= tail ? tail : ctx->nr_events) - head; 1203 if (head == tail) 1204 break; 1205 1206 pos = head + AIO_EVENTS_OFFSET; 1207 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1208 pos %= AIO_EVENTS_PER_PAGE; 1209 1210 avail = min(avail, nr - ret); 1211 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1212 1213 ev = kmap(page); 1214 copy_ret = copy_to_user(event + ret, ev + pos, 1215 sizeof(*ev) * avail); 1216 kunmap(page); 1217 1218 if (unlikely(copy_ret)) { 1219 ret = -EFAULT; 1220 goto out; 1221 } 1222 1223 ret += avail; 1224 head += avail; 1225 head %= ctx->nr_events; 1226 } 1227 1228 ring = kmap_atomic(ctx->ring_pages[0]); 1229 ring->head = head; 1230 kunmap_atomic(ring); 1231 flush_dcache_page(ctx->ring_pages[0]); 1232 1233 pr_debug("%li h%u t%u\n", ret, head, tail); 1234 out: 1235 mutex_unlock(&ctx->ring_lock); 1236 1237 return ret; 1238 } 1239 1240 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1241 struct io_event __user *event, long *i) 1242 { 1243 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1244 1245 if (ret > 0) 1246 *i += ret; 1247 1248 if (unlikely(atomic_read(&ctx->dead))) 1249 ret = -EINVAL; 1250 1251 if (!*i) 1252 *i = ret; 1253 1254 return ret < 0 || *i >= min_nr; 1255 } 1256 1257 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1258 struct io_event __user *event, 1259 ktime_t until) 1260 { 1261 long ret = 0; 1262 1263 /* 1264 * Note that aio_read_events() is being called as the conditional - i.e. 1265 * we're calling it after prepare_to_wait() has set task state to 1266 * TASK_INTERRUPTIBLE. 1267 * 1268 * But aio_read_events() can block, and if it blocks it's going to flip 1269 * the task state back to TASK_RUNNING. 1270 * 1271 * This should be ok, provided it doesn't flip the state back to 1272 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1273 * will only happen if the mutex_lock() call blocks, and we then find 1274 * the ringbuffer empty. So in practice we should be ok, but it's 1275 * something to be aware of when touching this code. 1276 */ 1277 if (until == 0) 1278 aio_read_events(ctx, min_nr, nr, event, &ret); 1279 else 1280 wait_event_interruptible_hrtimeout(ctx->wait, 1281 aio_read_events(ctx, min_nr, nr, event, &ret), 1282 until); 1283 return ret; 1284 } 1285 1286 /* sys_io_setup: 1287 * Create an aio_context capable of receiving at least nr_events. 1288 * ctxp must not point to an aio_context that already exists, and 1289 * must be initialized to 0 prior to the call. On successful 1290 * creation of the aio_context, *ctxp is filled in with the resulting 1291 * handle. May fail with -EINVAL if *ctxp is not initialized, 1292 * if the specified nr_events exceeds internal limits. May fail 1293 * with -EAGAIN if the specified nr_events exceeds the user's limit 1294 * of available events. May fail with -ENOMEM if insufficient kernel 1295 * resources are available. May fail with -EFAULT if an invalid 1296 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1297 * implemented. 1298 */ 1299 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1300 { 1301 struct kioctx *ioctx = NULL; 1302 unsigned long ctx; 1303 long ret; 1304 1305 ret = get_user(ctx, ctxp); 1306 if (unlikely(ret)) 1307 goto out; 1308 1309 ret = -EINVAL; 1310 if (unlikely(ctx || nr_events == 0)) { 1311 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1312 ctx, nr_events); 1313 goto out; 1314 } 1315 1316 ioctx = ioctx_alloc(nr_events); 1317 ret = PTR_ERR(ioctx); 1318 if (!IS_ERR(ioctx)) { 1319 ret = put_user(ioctx->user_id, ctxp); 1320 if (ret) 1321 kill_ioctx(current->mm, ioctx, NULL); 1322 percpu_ref_put(&ioctx->users); 1323 } 1324 1325 out: 1326 return ret; 1327 } 1328 1329 #ifdef CONFIG_COMPAT 1330 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1331 { 1332 struct kioctx *ioctx = NULL; 1333 unsigned long ctx; 1334 long ret; 1335 1336 ret = get_user(ctx, ctx32p); 1337 if (unlikely(ret)) 1338 goto out; 1339 1340 ret = -EINVAL; 1341 if (unlikely(ctx || nr_events == 0)) { 1342 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1343 ctx, nr_events); 1344 goto out; 1345 } 1346 1347 ioctx = ioctx_alloc(nr_events); 1348 ret = PTR_ERR(ioctx); 1349 if (!IS_ERR(ioctx)) { 1350 /* truncating is ok because it's a user address */ 1351 ret = put_user((u32)ioctx->user_id, ctx32p); 1352 if (ret) 1353 kill_ioctx(current->mm, ioctx, NULL); 1354 percpu_ref_put(&ioctx->users); 1355 } 1356 1357 out: 1358 return ret; 1359 } 1360 #endif 1361 1362 /* sys_io_destroy: 1363 * Destroy the aio_context specified. May cancel any outstanding 1364 * AIOs and block on completion. Will fail with -ENOSYS if not 1365 * implemented. May fail with -EINVAL if the context pointed to 1366 * is invalid. 1367 */ 1368 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1369 { 1370 struct kioctx *ioctx = lookup_ioctx(ctx); 1371 if (likely(NULL != ioctx)) { 1372 struct ctx_rq_wait wait; 1373 int ret; 1374 1375 init_completion(&wait.comp); 1376 atomic_set(&wait.count, 1); 1377 1378 /* Pass requests_done to kill_ioctx() where it can be set 1379 * in a thread-safe way. If we try to set it here then we have 1380 * a race condition if two io_destroy() called simultaneously. 1381 */ 1382 ret = kill_ioctx(current->mm, ioctx, &wait); 1383 percpu_ref_put(&ioctx->users); 1384 1385 /* Wait until all IO for the context are done. Otherwise kernel 1386 * keep using user-space buffers even if user thinks the context 1387 * is destroyed. 1388 */ 1389 if (!ret) 1390 wait_for_completion(&wait.comp); 1391 1392 return ret; 1393 } 1394 pr_debug("EINVAL: invalid context id\n"); 1395 return -EINVAL; 1396 } 1397 1398 static void aio_remove_iocb(struct aio_kiocb *iocb) 1399 { 1400 struct kioctx *ctx = iocb->ki_ctx; 1401 unsigned long flags; 1402 1403 spin_lock_irqsave(&ctx->ctx_lock, flags); 1404 list_del(&iocb->ki_list); 1405 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1406 } 1407 1408 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1409 { 1410 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1411 1412 if (!list_empty_careful(&iocb->ki_list)) 1413 aio_remove_iocb(iocb); 1414 1415 if (kiocb->ki_flags & IOCB_WRITE) { 1416 struct inode *inode = file_inode(kiocb->ki_filp); 1417 1418 /* 1419 * Tell lockdep we inherited freeze protection from submission 1420 * thread. 1421 */ 1422 if (S_ISREG(inode->i_mode)) 1423 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1424 file_end_write(kiocb->ki_filp); 1425 } 1426 1427 fput(kiocb->ki_filp); 1428 aio_complete(iocb, res, res2); 1429 } 1430 1431 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1432 { 1433 int ret; 1434 1435 req->ki_filp = fget(iocb->aio_fildes); 1436 if (unlikely(!req->ki_filp)) 1437 return -EBADF; 1438 req->ki_complete = aio_complete_rw; 1439 req->ki_pos = iocb->aio_offset; 1440 req->ki_flags = iocb_flags(req->ki_filp); 1441 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1442 req->ki_flags |= IOCB_EVENTFD; 1443 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1444 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1445 /* 1446 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1447 * aio_reqprio is interpreted as an I/O scheduling 1448 * class and priority. 1449 */ 1450 ret = ioprio_check_cap(iocb->aio_reqprio); 1451 if (ret) { 1452 pr_debug("aio ioprio check cap error: %d\n", ret); 1453 goto out_fput; 1454 } 1455 1456 req->ki_ioprio = iocb->aio_reqprio; 1457 } else 1458 req->ki_ioprio = get_current_ioprio(); 1459 1460 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1461 if (unlikely(ret)) 1462 goto out_fput; 1463 1464 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1465 return 0; 1466 1467 out_fput: 1468 fput(req->ki_filp); 1469 return ret; 1470 } 1471 1472 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec, 1473 bool vectored, bool compat, struct iov_iter *iter) 1474 { 1475 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1476 size_t len = iocb->aio_nbytes; 1477 1478 if (!vectored) { 1479 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1480 *iovec = NULL; 1481 return ret; 1482 } 1483 #ifdef CONFIG_COMPAT 1484 if (compat) 1485 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec, 1486 iter); 1487 #endif 1488 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter); 1489 } 1490 1491 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1492 { 1493 switch (ret) { 1494 case -EIOCBQUEUED: 1495 break; 1496 case -ERESTARTSYS: 1497 case -ERESTARTNOINTR: 1498 case -ERESTARTNOHAND: 1499 case -ERESTART_RESTARTBLOCK: 1500 /* 1501 * There's no easy way to restart the syscall since other AIO's 1502 * may be already running. Just fail this IO with EINTR. 1503 */ 1504 ret = -EINTR; 1505 /*FALLTHRU*/ 1506 default: 1507 req->ki_complete(req, ret, 0); 1508 } 1509 } 1510 1511 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb, 1512 bool vectored, bool compat) 1513 { 1514 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1515 struct iov_iter iter; 1516 struct file *file; 1517 ssize_t ret; 1518 1519 ret = aio_prep_rw(req, iocb); 1520 if (ret) 1521 return ret; 1522 file = req->ki_filp; 1523 1524 ret = -EBADF; 1525 if (unlikely(!(file->f_mode & FMODE_READ))) 1526 goto out_fput; 1527 ret = -EINVAL; 1528 if (unlikely(!file->f_op->read_iter)) 1529 goto out_fput; 1530 1531 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1532 if (ret) 1533 goto out_fput; 1534 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1535 if (!ret) 1536 aio_rw_done(req, call_read_iter(file, req, &iter)); 1537 kfree(iovec); 1538 out_fput: 1539 if (unlikely(ret)) 1540 fput(file); 1541 return ret; 1542 } 1543 1544 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb, 1545 bool vectored, bool compat) 1546 { 1547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1548 struct iov_iter iter; 1549 struct file *file; 1550 ssize_t ret; 1551 1552 ret = aio_prep_rw(req, iocb); 1553 if (ret) 1554 return ret; 1555 file = req->ki_filp; 1556 1557 ret = -EBADF; 1558 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1559 goto out_fput; 1560 ret = -EINVAL; 1561 if (unlikely(!file->f_op->write_iter)) 1562 goto out_fput; 1563 1564 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1565 if (ret) 1566 goto out_fput; 1567 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1568 if (!ret) { 1569 /* 1570 * Open-code file_start_write here to grab freeze protection, 1571 * which will be released by another thread in 1572 * aio_complete_rw(). Fool lockdep by telling it the lock got 1573 * released so that it doesn't complain about the held lock when 1574 * we return to userspace. 1575 */ 1576 if (S_ISREG(file_inode(file)->i_mode)) { 1577 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); 1578 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1579 } 1580 req->ki_flags |= IOCB_WRITE; 1581 aio_rw_done(req, call_write_iter(file, req, &iter)); 1582 } 1583 kfree(iovec); 1584 out_fput: 1585 if (unlikely(ret)) 1586 fput(file); 1587 return ret; 1588 } 1589 1590 static void aio_fsync_work(struct work_struct *work) 1591 { 1592 struct fsync_iocb *req = container_of(work, struct fsync_iocb, work); 1593 int ret; 1594 1595 ret = vfs_fsync(req->file, req->datasync); 1596 fput(req->file); 1597 aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0); 1598 } 1599 1600 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1601 bool datasync) 1602 { 1603 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1604 iocb->aio_rw_flags)) 1605 return -EINVAL; 1606 1607 req->file = fget(iocb->aio_fildes); 1608 if (unlikely(!req->file)) 1609 return -EBADF; 1610 if (unlikely(!req->file->f_op->fsync)) { 1611 fput(req->file); 1612 return -EINVAL; 1613 } 1614 1615 req->datasync = datasync; 1616 INIT_WORK(&req->work, aio_fsync_work); 1617 schedule_work(&req->work); 1618 return 0; 1619 } 1620 1621 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask) 1622 { 1623 struct file *file = iocb->poll.file; 1624 1625 aio_complete(iocb, mangle_poll(mask), 0); 1626 fput(file); 1627 } 1628 1629 static void aio_poll_complete_work(struct work_struct *work) 1630 { 1631 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1632 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1633 struct poll_table_struct pt = { ._key = req->events }; 1634 struct kioctx *ctx = iocb->ki_ctx; 1635 __poll_t mask = 0; 1636 1637 if (!READ_ONCE(req->cancelled)) 1638 mask = vfs_poll(req->file, &pt) & req->events; 1639 1640 /* 1641 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1642 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1643 * synchronize with them. In the cancellation case the list_del_init 1644 * itself is not actually needed, but harmless so we keep it in to 1645 * avoid further branches in the fast path. 1646 */ 1647 spin_lock_irq(&ctx->ctx_lock); 1648 if (!mask && !READ_ONCE(req->cancelled)) { 1649 add_wait_queue(req->head, &req->wait); 1650 spin_unlock_irq(&ctx->ctx_lock); 1651 return; 1652 } 1653 list_del_init(&iocb->ki_list); 1654 spin_unlock_irq(&ctx->ctx_lock); 1655 1656 aio_poll_complete(iocb, mask); 1657 } 1658 1659 /* assumes we are called with irqs disabled */ 1660 static int aio_poll_cancel(struct kiocb *iocb) 1661 { 1662 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1663 struct poll_iocb *req = &aiocb->poll; 1664 1665 spin_lock(&req->head->lock); 1666 WRITE_ONCE(req->cancelled, true); 1667 if (!list_empty(&req->wait.entry)) { 1668 list_del_init(&req->wait.entry); 1669 schedule_work(&aiocb->poll.work); 1670 } 1671 spin_unlock(&req->head->lock); 1672 1673 return 0; 1674 } 1675 1676 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1677 void *key) 1678 { 1679 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1680 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1681 __poll_t mask = key_to_poll(key); 1682 1683 req->woken = true; 1684 1685 /* for instances that support it check for an event match first: */ 1686 if (mask) { 1687 if (!(mask & req->events)) 1688 return 0; 1689 1690 /* try to complete the iocb inline if we can: */ 1691 if (spin_trylock(&iocb->ki_ctx->ctx_lock)) { 1692 list_del(&iocb->ki_list); 1693 spin_unlock(&iocb->ki_ctx->ctx_lock); 1694 1695 list_del_init(&req->wait.entry); 1696 aio_poll_complete(iocb, mask); 1697 return 1; 1698 } 1699 } 1700 1701 list_del_init(&req->wait.entry); 1702 schedule_work(&req->work); 1703 return 1; 1704 } 1705 1706 struct aio_poll_table { 1707 struct poll_table_struct pt; 1708 struct aio_kiocb *iocb; 1709 int error; 1710 }; 1711 1712 static void 1713 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1714 struct poll_table_struct *p) 1715 { 1716 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1717 1718 /* multiple wait queues per file are not supported */ 1719 if (unlikely(pt->iocb->poll.head)) { 1720 pt->error = -EINVAL; 1721 return; 1722 } 1723 1724 pt->error = 0; 1725 pt->iocb->poll.head = head; 1726 add_wait_queue(head, &pt->iocb->poll.wait); 1727 } 1728 1729 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1730 { 1731 struct kioctx *ctx = aiocb->ki_ctx; 1732 struct poll_iocb *req = &aiocb->poll; 1733 struct aio_poll_table apt; 1734 __poll_t mask; 1735 1736 /* reject any unknown events outside the normal event mask. */ 1737 if ((u16)iocb->aio_buf != iocb->aio_buf) 1738 return -EINVAL; 1739 /* reject fields that are not defined for poll */ 1740 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1741 return -EINVAL; 1742 1743 INIT_WORK(&req->work, aio_poll_complete_work); 1744 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1745 req->file = fget(iocb->aio_fildes); 1746 if (unlikely(!req->file)) 1747 return -EBADF; 1748 1749 req->head = NULL; 1750 req->woken = false; 1751 req->cancelled = false; 1752 1753 apt.pt._qproc = aio_poll_queue_proc; 1754 apt.pt._key = req->events; 1755 apt.iocb = aiocb; 1756 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1757 1758 /* initialized the list so that we can do list_empty checks */ 1759 INIT_LIST_HEAD(&req->wait.entry); 1760 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1761 1762 /* one for removal from waitqueue, one for this function */ 1763 refcount_set(&aiocb->ki_refcnt, 2); 1764 1765 mask = vfs_poll(req->file, &apt.pt) & req->events; 1766 if (unlikely(!req->head)) { 1767 /* we did not manage to set up a waitqueue, done */ 1768 goto out; 1769 } 1770 1771 spin_lock_irq(&ctx->ctx_lock); 1772 spin_lock(&req->head->lock); 1773 if (req->woken) { 1774 /* wake_up context handles the rest */ 1775 mask = 0; 1776 apt.error = 0; 1777 } else if (mask || apt.error) { 1778 /* if we get an error or a mask we are done */ 1779 WARN_ON_ONCE(list_empty(&req->wait.entry)); 1780 list_del_init(&req->wait.entry); 1781 } else { 1782 /* actually waiting for an event */ 1783 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1784 aiocb->ki_cancel = aio_poll_cancel; 1785 } 1786 spin_unlock(&req->head->lock); 1787 spin_unlock_irq(&ctx->ctx_lock); 1788 1789 out: 1790 if (unlikely(apt.error)) { 1791 fput(req->file); 1792 return apt.error; 1793 } 1794 1795 if (mask) 1796 aio_poll_complete(aiocb, mask); 1797 iocb_put(aiocb); 1798 return 0; 1799 } 1800 1801 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1802 struct iocb __user *user_iocb, bool compat) 1803 { 1804 struct aio_kiocb *req; 1805 ssize_t ret; 1806 1807 /* enforce forwards compatibility on users */ 1808 if (unlikely(iocb->aio_reserved2)) { 1809 pr_debug("EINVAL: reserve field set\n"); 1810 return -EINVAL; 1811 } 1812 1813 /* prevent overflows */ 1814 if (unlikely( 1815 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1816 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1817 ((ssize_t)iocb->aio_nbytes < 0) 1818 )) { 1819 pr_debug("EINVAL: overflow check\n"); 1820 return -EINVAL; 1821 } 1822 1823 if (!get_reqs_available(ctx)) 1824 return -EAGAIN; 1825 1826 ret = -EAGAIN; 1827 req = aio_get_req(ctx); 1828 if (unlikely(!req)) 1829 goto out_put_reqs_available; 1830 1831 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1832 /* 1833 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1834 * instance of the file* now. The file descriptor must be 1835 * an eventfd() fd, and will be signaled for each completed 1836 * event using the eventfd_signal() function. 1837 */ 1838 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1839 if (IS_ERR(req->ki_eventfd)) { 1840 ret = PTR_ERR(req->ki_eventfd); 1841 req->ki_eventfd = NULL; 1842 goto out_put_req; 1843 } 1844 } 1845 1846 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1847 if (unlikely(ret)) { 1848 pr_debug("EFAULT: aio_key\n"); 1849 goto out_put_req; 1850 } 1851 1852 req->ki_user_iocb = user_iocb; 1853 req->ki_user_data = iocb->aio_data; 1854 1855 switch (iocb->aio_lio_opcode) { 1856 case IOCB_CMD_PREAD: 1857 ret = aio_read(&req->rw, iocb, false, compat); 1858 break; 1859 case IOCB_CMD_PWRITE: 1860 ret = aio_write(&req->rw, iocb, false, compat); 1861 break; 1862 case IOCB_CMD_PREADV: 1863 ret = aio_read(&req->rw, iocb, true, compat); 1864 break; 1865 case IOCB_CMD_PWRITEV: 1866 ret = aio_write(&req->rw, iocb, true, compat); 1867 break; 1868 case IOCB_CMD_FSYNC: 1869 ret = aio_fsync(&req->fsync, iocb, false); 1870 break; 1871 case IOCB_CMD_FDSYNC: 1872 ret = aio_fsync(&req->fsync, iocb, true); 1873 break; 1874 case IOCB_CMD_POLL: 1875 ret = aio_poll(req, iocb); 1876 break; 1877 default: 1878 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1879 ret = -EINVAL; 1880 break; 1881 } 1882 1883 /* 1884 * If ret is 0, we'd either done aio_complete() ourselves or have 1885 * arranged for that to be done asynchronously. Anything non-zero 1886 * means that we need to destroy req ourselves. 1887 */ 1888 if (ret) 1889 goto out_put_req; 1890 return 0; 1891 out_put_req: 1892 if (req->ki_eventfd) 1893 eventfd_ctx_put(req->ki_eventfd); 1894 iocb_put(req); 1895 out_put_reqs_available: 1896 put_reqs_available(ctx, 1); 1897 return ret; 1898 } 1899 1900 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1901 bool compat) 1902 { 1903 struct iocb iocb; 1904 1905 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1906 return -EFAULT; 1907 1908 return __io_submit_one(ctx, &iocb, user_iocb, compat); 1909 } 1910 1911 /* sys_io_submit: 1912 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1913 * the number of iocbs queued. May return -EINVAL if the aio_context 1914 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1915 * *iocbpp[0] is not properly initialized, if the operation specified 1916 * is invalid for the file descriptor in the iocb. May fail with 1917 * -EFAULT if any of the data structures point to invalid data. May 1918 * fail with -EBADF if the file descriptor specified in the first 1919 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1920 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1921 * fail with -ENOSYS if not implemented. 1922 */ 1923 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1924 struct iocb __user * __user *, iocbpp) 1925 { 1926 struct kioctx *ctx; 1927 long ret = 0; 1928 int i = 0; 1929 struct blk_plug plug; 1930 1931 if (unlikely(nr < 0)) 1932 return -EINVAL; 1933 1934 ctx = lookup_ioctx(ctx_id); 1935 if (unlikely(!ctx)) { 1936 pr_debug("EINVAL: invalid context id\n"); 1937 return -EINVAL; 1938 } 1939 1940 if (nr > ctx->nr_events) 1941 nr = ctx->nr_events; 1942 1943 if (nr > AIO_PLUG_THRESHOLD) 1944 blk_start_plug(&plug); 1945 for (i = 0; i < nr; i++) { 1946 struct iocb __user *user_iocb; 1947 1948 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1949 ret = -EFAULT; 1950 break; 1951 } 1952 1953 ret = io_submit_one(ctx, user_iocb, false); 1954 if (ret) 1955 break; 1956 } 1957 if (nr > AIO_PLUG_THRESHOLD) 1958 blk_finish_plug(&plug); 1959 1960 percpu_ref_put(&ctx->users); 1961 return i ? i : ret; 1962 } 1963 1964 #ifdef CONFIG_COMPAT 1965 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1966 int, nr, compat_uptr_t __user *, iocbpp) 1967 { 1968 struct kioctx *ctx; 1969 long ret = 0; 1970 int i = 0; 1971 struct blk_plug plug; 1972 1973 if (unlikely(nr < 0)) 1974 return -EINVAL; 1975 1976 ctx = lookup_ioctx(ctx_id); 1977 if (unlikely(!ctx)) { 1978 pr_debug("EINVAL: invalid context id\n"); 1979 return -EINVAL; 1980 } 1981 1982 if (nr > ctx->nr_events) 1983 nr = ctx->nr_events; 1984 1985 if (nr > AIO_PLUG_THRESHOLD) 1986 blk_start_plug(&plug); 1987 for (i = 0; i < nr; i++) { 1988 compat_uptr_t user_iocb; 1989 1990 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1991 ret = -EFAULT; 1992 break; 1993 } 1994 1995 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1996 if (ret) 1997 break; 1998 } 1999 if (nr > AIO_PLUG_THRESHOLD) 2000 blk_finish_plug(&plug); 2001 2002 percpu_ref_put(&ctx->users); 2003 return i ? i : ret; 2004 } 2005 #endif 2006 2007 /* lookup_kiocb 2008 * Finds a given iocb for cancellation. 2009 */ 2010 static struct aio_kiocb * 2011 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb) 2012 { 2013 struct aio_kiocb *kiocb; 2014 2015 assert_spin_locked(&ctx->ctx_lock); 2016 2017 /* TODO: use a hash or array, this sucks. */ 2018 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2019 if (kiocb->ki_user_iocb == iocb) 2020 return kiocb; 2021 } 2022 return NULL; 2023 } 2024 2025 /* sys_io_cancel: 2026 * Attempts to cancel an iocb previously passed to io_submit. If 2027 * the operation is successfully cancelled, the resulting event is 2028 * copied into the memory pointed to by result without being placed 2029 * into the completion queue and 0 is returned. May fail with 2030 * -EFAULT if any of the data structures pointed to are invalid. 2031 * May fail with -EINVAL if aio_context specified by ctx_id is 2032 * invalid. May fail with -EAGAIN if the iocb specified was not 2033 * cancelled. Will fail with -ENOSYS if not implemented. 2034 */ 2035 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2036 struct io_event __user *, result) 2037 { 2038 struct kioctx *ctx; 2039 struct aio_kiocb *kiocb; 2040 int ret = -EINVAL; 2041 u32 key; 2042 2043 if (unlikely(get_user(key, &iocb->aio_key))) 2044 return -EFAULT; 2045 if (unlikely(key != KIOCB_KEY)) 2046 return -EINVAL; 2047 2048 ctx = lookup_ioctx(ctx_id); 2049 if (unlikely(!ctx)) 2050 return -EINVAL; 2051 2052 spin_lock_irq(&ctx->ctx_lock); 2053 kiocb = lookup_kiocb(ctx, iocb); 2054 if (kiocb) { 2055 ret = kiocb->ki_cancel(&kiocb->rw); 2056 list_del_init(&kiocb->ki_list); 2057 } 2058 spin_unlock_irq(&ctx->ctx_lock); 2059 2060 if (!ret) { 2061 /* 2062 * The result argument is no longer used - the io_event is 2063 * always delivered via the ring buffer. -EINPROGRESS indicates 2064 * cancellation is progress: 2065 */ 2066 ret = -EINPROGRESS; 2067 } 2068 2069 percpu_ref_put(&ctx->users); 2070 2071 return ret; 2072 } 2073 2074 static long do_io_getevents(aio_context_t ctx_id, 2075 long min_nr, 2076 long nr, 2077 struct io_event __user *events, 2078 struct timespec64 *ts) 2079 { 2080 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2081 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2082 long ret = -EINVAL; 2083 2084 if (likely(ioctx)) { 2085 if (likely(min_nr <= nr && min_nr >= 0)) 2086 ret = read_events(ioctx, min_nr, nr, events, until); 2087 percpu_ref_put(&ioctx->users); 2088 } 2089 2090 return ret; 2091 } 2092 2093 /* io_getevents: 2094 * Attempts to read at least min_nr events and up to nr events from 2095 * the completion queue for the aio_context specified by ctx_id. If 2096 * it succeeds, the number of read events is returned. May fail with 2097 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2098 * out of range, if timeout is out of range. May fail with -EFAULT 2099 * if any of the memory specified is invalid. May return 0 or 2100 * < min_nr if the timeout specified by timeout has elapsed 2101 * before sufficient events are available, where timeout == NULL 2102 * specifies an infinite timeout. Note that the timeout pointed to by 2103 * timeout is relative. Will fail with -ENOSYS if not implemented. 2104 */ 2105 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 2106 2107 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2108 long, min_nr, 2109 long, nr, 2110 struct io_event __user *, events, 2111 struct __kernel_timespec __user *, timeout) 2112 { 2113 struct timespec64 ts; 2114 int ret; 2115 2116 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2117 return -EFAULT; 2118 2119 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2120 if (!ret && signal_pending(current)) 2121 ret = -EINTR; 2122 return ret; 2123 } 2124 2125 #endif 2126 2127 struct __aio_sigset { 2128 const sigset_t __user *sigmask; 2129 size_t sigsetsize; 2130 }; 2131 2132 SYSCALL_DEFINE6(io_pgetevents, 2133 aio_context_t, ctx_id, 2134 long, min_nr, 2135 long, nr, 2136 struct io_event __user *, events, 2137 struct __kernel_timespec __user *, timeout, 2138 const struct __aio_sigset __user *, usig) 2139 { 2140 struct __aio_sigset ksig = { NULL, }; 2141 sigset_t ksigmask, sigsaved; 2142 struct timespec64 ts; 2143 int ret; 2144 2145 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2146 return -EFAULT; 2147 2148 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2149 return -EFAULT; 2150 2151 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2152 if (ret) 2153 return ret; 2154 2155 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2156 restore_user_sigmask(ksig.sigmask, &sigsaved); 2157 if (signal_pending(current) && !ret) 2158 ret = -ERESTARTNOHAND; 2159 2160 return ret; 2161 } 2162 2163 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2164 2165 SYSCALL_DEFINE6(io_pgetevents_time32, 2166 aio_context_t, ctx_id, 2167 long, min_nr, 2168 long, nr, 2169 struct io_event __user *, events, 2170 struct old_timespec32 __user *, timeout, 2171 const struct __aio_sigset __user *, usig) 2172 { 2173 struct __aio_sigset ksig = { NULL, }; 2174 sigset_t ksigmask, sigsaved; 2175 struct timespec64 ts; 2176 int ret; 2177 2178 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2179 return -EFAULT; 2180 2181 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2182 return -EFAULT; 2183 2184 2185 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2186 if (ret) 2187 return ret; 2188 2189 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2190 restore_user_sigmask(ksig.sigmask, &sigsaved); 2191 if (signal_pending(current) && !ret) 2192 ret = -ERESTARTNOHAND; 2193 2194 return ret; 2195 } 2196 2197 #endif 2198 2199 #if defined(CONFIG_COMPAT_32BIT_TIME) 2200 2201 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id, 2202 compat_long_t, min_nr, 2203 compat_long_t, nr, 2204 struct io_event __user *, events, 2205 struct old_timespec32 __user *, timeout) 2206 { 2207 struct timespec64 t; 2208 int ret; 2209 2210 if (timeout && get_old_timespec32(&t, timeout)) 2211 return -EFAULT; 2212 2213 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2214 if (!ret && signal_pending(current)) 2215 ret = -EINTR; 2216 return ret; 2217 } 2218 2219 #endif 2220 2221 #ifdef CONFIG_COMPAT 2222 2223 struct __compat_aio_sigset { 2224 compat_sigset_t __user *sigmask; 2225 compat_size_t sigsetsize; 2226 }; 2227 2228 #if defined(CONFIG_COMPAT_32BIT_TIME) 2229 2230 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2231 compat_aio_context_t, ctx_id, 2232 compat_long_t, min_nr, 2233 compat_long_t, nr, 2234 struct io_event __user *, events, 2235 struct old_timespec32 __user *, timeout, 2236 const struct __compat_aio_sigset __user *, usig) 2237 { 2238 struct __compat_aio_sigset ksig = { NULL, }; 2239 sigset_t ksigmask, sigsaved; 2240 struct timespec64 t; 2241 int ret; 2242 2243 if (timeout && get_old_timespec32(&t, timeout)) 2244 return -EFAULT; 2245 2246 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2247 return -EFAULT; 2248 2249 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2250 if (ret) 2251 return ret; 2252 2253 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2254 restore_user_sigmask(ksig.sigmask, &sigsaved); 2255 if (signal_pending(current) && !ret) 2256 ret = -ERESTARTNOHAND; 2257 2258 return ret; 2259 } 2260 2261 #endif 2262 2263 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2264 compat_aio_context_t, ctx_id, 2265 compat_long_t, min_nr, 2266 compat_long_t, nr, 2267 struct io_event __user *, events, 2268 struct __kernel_timespec __user *, timeout, 2269 const struct __compat_aio_sigset __user *, usig) 2270 { 2271 struct __compat_aio_sigset ksig = { NULL, }; 2272 sigset_t ksigmask, sigsaved; 2273 struct timespec64 t; 2274 int ret; 2275 2276 if (timeout && get_timespec64(&t, timeout)) 2277 return -EFAULT; 2278 2279 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2280 return -EFAULT; 2281 2282 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2283 if (ret) 2284 return ret; 2285 2286 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2287 restore_user_sigmask(ksig.sigmask, &sigsaved); 2288 if (signal_pending(current) && !ret) 2289 ret = -ERESTARTNOHAND; 2290 2291 return ret; 2292 } 2293 #endif 2294