xref: /openbmc/linux/fs/aio.c (revision 1cac4f26)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[0];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 struct fsync_iocb {
171 	struct work_struct	work;
172 	struct file		*file;
173 	bool			datasync;
174 };
175 
176 struct poll_iocb {
177 	struct file		*file;
178 	struct wait_queue_head	*head;
179 	__poll_t		events;
180 	bool			woken;
181 	bool			cancelled;
182 	struct wait_queue_entry	wait;
183 	struct work_struct	work;
184 };
185 
186 struct aio_kiocb {
187 	union {
188 		struct kiocb		rw;
189 		struct fsync_iocb	fsync;
190 		struct poll_iocb	poll;
191 	};
192 
193 	struct kioctx		*ki_ctx;
194 	kiocb_cancel_fn		*ki_cancel;
195 
196 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
197 	__u64			ki_user_data;	/* user's data for completion */
198 
199 	struct list_head	ki_list;	/* the aio core uses this
200 						 * for cancellation */
201 	refcount_t		ki_refcnt;
202 
203 	/*
204 	 * If the aio_resfd field of the userspace iocb is not zero,
205 	 * this is the underlying eventfd context to deliver events to.
206 	 */
207 	struct eventfd_ctx	*ki_eventfd;
208 };
209 
210 /*------ sysctl variables----*/
211 static DEFINE_SPINLOCK(aio_nr_lock);
212 unsigned long aio_nr;		/* current system wide number of aio requests */
213 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
214 /*----end sysctl variables---*/
215 
216 static struct kmem_cache	*kiocb_cachep;
217 static struct kmem_cache	*kioctx_cachep;
218 
219 static struct vfsmount *aio_mnt;
220 
221 static const struct file_operations aio_ring_fops;
222 static const struct address_space_operations aio_ctx_aops;
223 
224 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
225 {
226 	struct file *file;
227 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
228 	if (IS_ERR(inode))
229 		return ERR_CAST(inode);
230 
231 	inode->i_mapping->a_ops = &aio_ctx_aops;
232 	inode->i_mapping->private_data = ctx;
233 	inode->i_size = PAGE_SIZE * nr_pages;
234 
235 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
236 				O_RDWR, &aio_ring_fops);
237 	if (IS_ERR(file))
238 		iput(inode);
239 	return file;
240 }
241 
242 static struct dentry *aio_mount(struct file_system_type *fs_type,
243 				int flags, const char *dev_name, void *data)
244 {
245 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
246 					   AIO_RING_MAGIC);
247 
248 	if (!IS_ERR(root))
249 		root->d_sb->s_iflags |= SB_I_NOEXEC;
250 	return root;
251 }
252 
253 /* aio_setup
254  *	Creates the slab caches used by the aio routines, panic on
255  *	failure as this is done early during the boot sequence.
256  */
257 static int __init aio_setup(void)
258 {
259 	static struct file_system_type aio_fs = {
260 		.name		= "aio",
261 		.mount		= aio_mount,
262 		.kill_sb	= kill_anon_super,
263 	};
264 	aio_mnt = kern_mount(&aio_fs);
265 	if (IS_ERR(aio_mnt))
266 		panic("Failed to create aio fs mount.");
267 
268 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
269 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
270 	return 0;
271 }
272 __initcall(aio_setup);
273 
274 static void put_aio_ring_file(struct kioctx *ctx)
275 {
276 	struct file *aio_ring_file = ctx->aio_ring_file;
277 	struct address_space *i_mapping;
278 
279 	if (aio_ring_file) {
280 		truncate_setsize(file_inode(aio_ring_file), 0);
281 
282 		/* Prevent further access to the kioctx from migratepages */
283 		i_mapping = aio_ring_file->f_mapping;
284 		spin_lock(&i_mapping->private_lock);
285 		i_mapping->private_data = NULL;
286 		ctx->aio_ring_file = NULL;
287 		spin_unlock(&i_mapping->private_lock);
288 
289 		fput(aio_ring_file);
290 	}
291 }
292 
293 static void aio_free_ring(struct kioctx *ctx)
294 {
295 	int i;
296 
297 	/* Disconnect the kiotx from the ring file.  This prevents future
298 	 * accesses to the kioctx from page migration.
299 	 */
300 	put_aio_ring_file(ctx);
301 
302 	for (i = 0; i < ctx->nr_pages; i++) {
303 		struct page *page;
304 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 				page_count(ctx->ring_pages[i]));
306 		page = ctx->ring_pages[i];
307 		if (!page)
308 			continue;
309 		ctx->ring_pages[i] = NULL;
310 		put_page(page);
311 	}
312 
313 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 		kfree(ctx->ring_pages);
315 		ctx->ring_pages = NULL;
316 	}
317 }
318 
319 static int aio_ring_mremap(struct vm_area_struct *vma)
320 {
321 	struct file *file = vma->vm_file;
322 	struct mm_struct *mm = vma->vm_mm;
323 	struct kioctx_table *table;
324 	int i, res = -EINVAL;
325 
326 	spin_lock(&mm->ioctx_lock);
327 	rcu_read_lock();
328 	table = rcu_dereference(mm->ioctx_table);
329 	for (i = 0; i < table->nr; i++) {
330 		struct kioctx *ctx;
331 
332 		ctx = rcu_dereference(table->table[i]);
333 		if (ctx && ctx->aio_ring_file == file) {
334 			if (!atomic_read(&ctx->dead)) {
335 				ctx->user_id = ctx->mmap_base = vma->vm_start;
336 				res = 0;
337 			}
338 			break;
339 		}
340 	}
341 
342 	rcu_read_unlock();
343 	spin_unlock(&mm->ioctx_lock);
344 	return res;
345 }
346 
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 	.mremap		= aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 	.fault		= filemap_fault,
351 	.map_pages	= filemap_map_pages,
352 	.page_mkwrite	= filemap_page_mkwrite,
353 #endif
354 };
355 
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358 	vma->vm_flags |= VM_DONTEXPAND;
359 	vma->vm_ops = &aio_ring_vm_ops;
360 	return 0;
361 }
362 
363 static const struct file_operations aio_ring_fops = {
364 	.mmap = aio_ring_mmap,
365 };
366 
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 			struct page *old, enum migrate_mode mode)
370 {
371 	struct kioctx *ctx;
372 	unsigned long flags;
373 	pgoff_t idx;
374 	int rc;
375 
376 	/*
377 	 * We cannot support the _NO_COPY case here, because copy needs to
378 	 * happen under the ctx->completion_lock. That does not work with the
379 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
380 	 */
381 	if (mode == MIGRATE_SYNC_NO_COPY)
382 		return -EINVAL;
383 
384 	rc = 0;
385 
386 	/* mapping->private_lock here protects against the kioctx teardown.  */
387 	spin_lock(&mapping->private_lock);
388 	ctx = mapping->private_data;
389 	if (!ctx) {
390 		rc = -EINVAL;
391 		goto out;
392 	}
393 
394 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
395 	 * to the ring's head, and prevents page migration from mucking in
396 	 * a partially initialized kiotx.
397 	 */
398 	if (!mutex_trylock(&ctx->ring_lock)) {
399 		rc = -EAGAIN;
400 		goto out;
401 	}
402 
403 	idx = old->index;
404 	if (idx < (pgoff_t)ctx->nr_pages) {
405 		/* Make sure the old page hasn't already been changed */
406 		if (ctx->ring_pages[idx] != old)
407 			rc = -EAGAIN;
408 	} else
409 		rc = -EINVAL;
410 
411 	if (rc != 0)
412 		goto out_unlock;
413 
414 	/* Writeback must be complete */
415 	BUG_ON(PageWriteback(old));
416 	get_page(new);
417 
418 	rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
419 	if (rc != MIGRATEPAGE_SUCCESS) {
420 		put_page(new);
421 		goto out_unlock;
422 	}
423 
424 	/* Take completion_lock to prevent other writes to the ring buffer
425 	 * while the old page is copied to the new.  This prevents new
426 	 * events from being lost.
427 	 */
428 	spin_lock_irqsave(&ctx->completion_lock, flags);
429 	migrate_page_copy(new, old);
430 	BUG_ON(ctx->ring_pages[idx] != old);
431 	ctx->ring_pages[idx] = new;
432 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
433 
434 	/* The old page is no longer accessible. */
435 	put_page(old);
436 
437 out_unlock:
438 	mutex_unlock(&ctx->ring_lock);
439 out:
440 	spin_unlock(&mapping->private_lock);
441 	return rc;
442 }
443 #endif
444 
445 static const struct address_space_operations aio_ctx_aops = {
446 	.set_page_dirty = __set_page_dirty_no_writeback,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 	.migratepage	= aio_migratepage,
449 #endif
450 };
451 
452 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
453 {
454 	struct aio_ring *ring;
455 	struct mm_struct *mm = current->mm;
456 	unsigned long size, unused;
457 	int nr_pages;
458 	int i;
459 	struct file *file;
460 
461 	/* Compensate for the ring buffer's head/tail overlap entry */
462 	nr_events += 2;	/* 1 is required, 2 for good luck */
463 
464 	size = sizeof(struct aio_ring);
465 	size += sizeof(struct io_event) * nr_events;
466 
467 	nr_pages = PFN_UP(size);
468 	if (nr_pages < 0)
469 		return -EINVAL;
470 
471 	file = aio_private_file(ctx, nr_pages);
472 	if (IS_ERR(file)) {
473 		ctx->aio_ring_file = NULL;
474 		return -ENOMEM;
475 	}
476 
477 	ctx->aio_ring_file = file;
478 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
479 			/ sizeof(struct io_event);
480 
481 	ctx->ring_pages = ctx->internal_pages;
482 	if (nr_pages > AIO_RING_PAGES) {
483 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
484 					  GFP_KERNEL);
485 		if (!ctx->ring_pages) {
486 			put_aio_ring_file(ctx);
487 			return -ENOMEM;
488 		}
489 	}
490 
491 	for (i = 0; i < nr_pages; i++) {
492 		struct page *page;
493 		page = find_or_create_page(file->f_mapping,
494 					   i, GFP_HIGHUSER | __GFP_ZERO);
495 		if (!page)
496 			break;
497 		pr_debug("pid(%d) page[%d]->count=%d\n",
498 			 current->pid, i, page_count(page));
499 		SetPageUptodate(page);
500 		unlock_page(page);
501 
502 		ctx->ring_pages[i] = page;
503 	}
504 	ctx->nr_pages = i;
505 
506 	if (unlikely(i != nr_pages)) {
507 		aio_free_ring(ctx);
508 		return -ENOMEM;
509 	}
510 
511 	ctx->mmap_size = nr_pages * PAGE_SIZE;
512 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
513 
514 	if (down_write_killable(&mm->mmap_sem)) {
515 		ctx->mmap_size = 0;
516 		aio_free_ring(ctx);
517 		return -EINTR;
518 	}
519 
520 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
521 				       PROT_READ | PROT_WRITE,
522 				       MAP_SHARED, 0, &unused, NULL);
523 	up_write(&mm->mmap_sem);
524 	if (IS_ERR((void *)ctx->mmap_base)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -ENOMEM;
528 	}
529 
530 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
531 
532 	ctx->user_id = ctx->mmap_base;
533 	ctx->nr_events = nr_events; /* trusted copy */
534 
535 	ring = kmap_atomic(ctx->ring_pages[0]);
536 	ring->nr = nr_events;	/* user copy */
537 	ring->id = ~0U;
538 	ring->head = ring->tail = 0;
539 	ring->magic = AIO_RING_MAGIC;
540 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
541 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
542 	ring->header_length = sizeof(struct aio_ring);
543 	kunmap_atomic(ring);
544 	flush_dcache_page(ctx->ring_pages[0]);
545 
546 	return 0;
547 }
548 
549 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
552 
553 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
554 {
555 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
556 	struct kioctx *ctx = req->ki_ctx;
557 	unsigned long flags;
558 
559 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
560 		return;
561 
562 	spin_lock_irqsave(&ctx->ctx_lock, flags);
563 	list_add_tail(&req->ki_list, &ctx->active_reqs);
564 	req->ki_cancel = cancel;
565 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
566 }
567 EXPORT_SYMBOL(kiocb_set_cancel_fn);
568 
569 /*
570  * free_ioctx() should be RCU delayed to synchronize against the RCU
571  * protected lookup_ioctx() and also needs process context to call
572  * aio_free_ring().  Use rcu_work.
573  */
574 static void free_ioctx(struct work_struct *work)
575 {
576 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
577 					  free_rwork);
578 	pr_debug("freeing %p\n", ctx);
579 
580 	aio_free_ring(ctx);
581 	free_percpu(ctx->cpu);
582 	percpu_ref_exit(&ctx->reqs);
583 	percpu_ref_exit(&ctx->users);
584 	kmem_cache_free(kioctx_cachep, ctx);
585 }
586 
587 static void free_ioctx_reqs(struct percpu_ref *ref)
588 {
589 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
590 
591 	/* At this point we know that there are no any in-flight requests */
592 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
593 		complete(&ctx->rq_wait->comp);
594 
595 	/* Synchronize against RCU protected table->table[] dereferences */
596 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
597 	queue_rcu_work(system_wq, &ctx->free_rwork);
598 }
599 
600 /*
601  * When this function runs, the kioctx has been removed from the "hash table"
602  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
603  * now it's safe to cancel any that need to be.
604  */
605 static void free_ioctx_users(struct percpu_ref *ref)
606 {
607 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
608 	struct aio_kiocb *req;
609 
610 	spin_lock_irq(&ctx->ctx_lock);
611 
612 	while (!list_empty(&ctx->active_reqs)) {
613 		req = list_first_entry(&ctx->active_reqs,
614 				       struct aio_kiocb, ki_list);
615 		req->ki_cancel(&req->rw);
616 		list_del_init(&req->ki_list);
617 	}
618 
619 	spin_unlock_irq(&ctx->ctx_lock);
620 
621 	percpu_ref_kill(&ctx->reqs);
622 	percpu_ref_put(&ctx->reqs);
623 }
624 
625 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
626 {
627 	unsigned i, new_nr;
628 	struct kioctx_table *table, *old;
629 	struct aio_ring *ring;
630 
631 	spin_lock(&mm->ioctx_lock);
632 	table = rcu_dereference_raw(mm->ioctx_table);
633 
634 	while (1) {
635 		if (table)
636 			for (i = 0; i < table->nr; i++)
637 				if (!rcu_access_pointer(table->table[i])) {
638 					ctx->id = i;
639 					rcu_assign_pointer(table->table[i], ctx);
640 					spin_unlock(&mm->ioctx_lock);
641 
642 					/* While kioctx setup is in progress,
643 					 * we are protected from page migration
644 					 * changes ring_pages by ->ring_lock.
645 					 */
646 					ring = kmap_atomic(ctx->ring_pages[0]);
647 					ring->id = ctx->id;
648 					kunmap_atomic(ring);
649 					return 0;
650 				}
651 
652 		new_nr = (table ? table->nr : 1) * 4;
653 		spin_unlock(&mm->ioctx_lock);
654 
655 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
656 				new_nr, GFP_KERNEL);
657 		if (!table)
658 			return -ENOMEM;
659 
660 		table->nr = new_nr;
661 
662 		spin_lock(&mm->ioctx_lock);
663 		old = rcu_dereference_raw(mm->ioctx_table);
664 
665 		if (!old) {
666 			rcu_assign_pointer(mm->ioctx_table, table);
667 		} else if (table->nr > old->nr) {
668 			memcpy(table->table, old->table,
669 			       old->nr * sizeof(struct kioctx *));
670 
671 			rcu_assign_pointer(mm->ioctx_table, table);
672 			kfree_rcu(old, rcu);
673 		} else {
674 			kfree(table);
675 			table = old;
676 		}
677 	}
678 }
679 
680 static void aio_nr_sub(unsigned nr)
681 {
682 	spin_lock(&aio_nr_lock);
683 	if (WARN_ON(aio_nr - nr > aio_nr))
684 		aio_nr = 0;
685 	else
686 		aio_nr -= nr;
687 	spin_unlock(&aio_nr_lock);
688 }
689 
690 /* ioctx_alloc
691  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
692  */
693 static struct kioctx *ioctx_alloc(unsigned nr_events)
694 {
695 	struct mm_struct *mm = current->mm;
696 	struct kioctx *ctx;
697 	int err = -ENOMEM;
698 
699 	/*
700 	 * Store the original nr_events -- what userspace passed to io_setup(),
701 	 * for counting against the global limit -- before it changes.
702 	 */
703 	unsigned int max_reqs = nr_events;
704 
705 	/*
706 	 * We keep track of the number of available ringbuffer slots, to prevent
707 	 * overflow (reqs_available), and we also use percpu counters for this.
708 	 *
709 	 * So since up to half the slots might be on other cpu's percpu counters
710 	 * and unavailable, double nr_events so userspace sees what they
711 	 * expected: additionally, we move req_batch slots to/from percpu
712 	 * counters at a time, so make sure that isn't 0:
713 	 */
714 	nr_events = max(nr_events, num_possible_cpus() * 4);
715 	nr_events *= 2;
716 
717 	/* Prevent overflows */
718 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
719 		pr_debug("ENOMEM: nr_events too high\n");
720 		return ERR_PTR(-EINVAL);
721 	}
722 
723 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
724 		return ERR_PTR(-EAGAIN);
725 
726 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
727 	if (!ctx)
728 		return ERR_PTR(-ENOMEM);
729 
730 	ctx->max_reqs = max_reqs;
731 
732 	spin_lock_init(&ctx->ctx_lock);
733 	spin_lock_init(&ctx->completion_lock);
734 	mutex_init(&ctx->ring_lock);
735 	/* Protect against page migration throughout kiotx setup by keeping
736 	 * the ring_lock mutex held until setup is complete. */
737 	mutex_lock(&ctx->ring_lock);
738 	init_waitqueue_head(&ctx->wait);
739 
740 	INIT_LIST_HEAD(&ctx->active_reqs);
741 
742 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
743 		goto err;
744 
745 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
746 		goto err;
747 
748 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
749 	if (!ctx->cpu)
750 		goto err;
751 
752 	err = aio_setup_ring(ctx, nr_events);
753 	if (err < 0)
754 		goto err;
755 
756 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
757 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
758 	if (ctx->req_batch < 1)
759 		ctx->req_batch = 1;
760 
761 	/* limit the number of system wide aios */
762 	spin_lock(&aio_nr_lock);
763 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
764 	    aio_nr + ctx->max_reqs < aio_nr) {
765 		spin_unlock(&aio_nr_lock);
766 		err = -EAGAIN;
767 		goto err_ctx;
768 	}
769 	aio_nr += ctx->max_reqs;
770 	spin_unlock(&aio_nr_lock);
771 
772 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
773 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
774 
775 	err = ioctx_add_table(ctx, mm);
776 	if (err)
777 		goto err_cleanup;
778 
779 	/* Release the ring_lock mutex now that all setup is complete. */
780 	mutex_unlock(&ctx->ring_lock);
781 
782 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
783 		 ctx, ctx->user_id, mm, ctx->nr_events);
784 	return ctx;
785 
786 err_cleanup:
787 	aio_nr_sub(ctx->max_reqs);
788 err_ctx:
789 	atomic_set(&ctx->dead, 1);
790 	if (ctx->mmap_size)
791 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
792 	aio_free_ring(ctx);
793 err:
794 	mutex_unlock(&ctx->ring_lock);
795 	free_percpu(ctx->cpu);
796 	percpu_ref_exit(&ctx->reqs);
797 	percpu_ref_exit(&ctx->users);
798 	kmem_cache_free(kioctx_cachep, ctx);
799 	pr_debug("error allocating ioctx %d\n", err);
800 	return ERR_PTR(err);
801 }
802 
803 /* kill_ioctx
804  *	Cancels all outstanding aio requests on an aio context.  Used
805  *	when the processes owning a context have all exited to encourage
806  *	the rapid destruction of the kioctx.
807  */
808 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
809 		      struct ctx_rq_wait *wait)
810 {
811 	struct kioctx_table *table;
812 
813 	spin_lock(&mm->ioctx_lock);
814 	if (atomic_xchg(&ctx->dead, 1)) {
815 		spin_unlock(&mm->ioctx_lock);
816 		return -EINVAL;
817 	}
818 
819 	table = rcu_dereference_raw(mm->ioctx_table);
820 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
821 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
822 	spin_unlock(&mm->ioctx_lock);
823 
824 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
825 	wake_up_all(&ctx->wait);
826 
827 	/*
828 	 * It'd be more correct to do this in free_ioctx(), after all
829 	 * the outstanding kiocbs have finished - but by then io_destroy
830 	 * has already returned, so io_setup() could potentially return
831 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
832 	 *  could tell).
833 	 */
834 	aio_nr_sub(ctx->max_reqs);
835 
836 	if (ctx->mmap_size)
837 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
838 
839 	ctx->rq_wait = wait;
840 	percpu_ref_kill(&ctx->users);
841 	return 0;
842 }
843 
844 /*
845  * exit_aio: called when the last user of mm goes away.  At this point, there is
846  * no way for any new requests to be submited or any of the io_* syscalls to be
847  * called on the context.
848  *
849  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
850  * them.
851  */
852 void exit_aio(struct mm_struct *mm)
853 {
854 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
855 	struct ctx_rq_wait wait;
856 	int i, skipped;
857 
858 	if (!table)
859 		return;
860 
861 	atomic_set(&wait.count, table->nr);
862 	init_completion(&wait.comp);
863 
864 	skipped = 0;
865 	for (i = 0; i < table->nr; ++i) {
866 		struct kioctx *ctx =
867 			rcu_dereference_protected(table->table[i], true);
868 
869 		if (!ctx) {
870 			skipped++;
871 			continue;
872 		}
873 
874 		/*
875 		 * We don't need to bother with munmap() here - exit_mmap(mm)
876 		 * is coming and it'll unmap everything. And we simply can't,
877 		 * this is not necessarily our ->mm.
878 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 		 * that it needs to unmap the area, just set it to 0.
880 		 */
881 		ctx->mmap_size = 0;
882 		kill_ioctx(mm, ctx, &wait);
883 	}
884 
885 	if (!atomic_sub_and_test(skipped, &wait.count)) {
886 		/* Wait until all IO for the context are done. */
887 		wait_for_completion(&wait.comp);
888 	}
889 
890 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
891 	kfree(table);
892 }
893 
894 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
895 {
896 	struct kioctx_cpu *kcpu;
897 	unsigned long flags;
898 
899 	local_irq_save(flags);
900 	kcpu = this_cpu_ptr(ctx->cpu);
901 	kcpu->reqs_available += nr;
902 
903 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
904 		kcpu->reqs_available -= ctx->req_batch;
905 		atomic_add(ctx->req_batch, &ctx->reqs_available);
906 	}
907 
908 	local_irq_restore(flags);
909 }
910 
911 static bool __get_reqs_available(struct kioctx *ctx)
912 {
913 	struct kioctx_cpu *kcpu;
914 	bool ret = false;
915 	unsigned long flags;
916 
917 	local_irq_save(flags);
918 	kcpu = this_cpu_ptr(ctx->cpu);
919 	if (!kcpu->reqs_available) {
920 		int old, avail = atomic_read(&ctx->reqs_available);
921 
922 		do {
923 			if (avail < ctx->req_batch)
924 				goto out;
925 
926 			old = avail;
927 			avail = atomic_cmpxchg(&ctx->reqs_available,
928 					       avail, avail - ctx->req_batch);
929 		} while (avail != old);
930 
931 		kcpu->reqs_available += ctx->req_batch;
932 	}
933 
934 	ret = true;
935 	kcpu->reqs_available--;
936 out:
937 	local_irq_restore(flags);
938 	return ret;
939 }
940 
941 /* refill_reqs_available
942  *	Updates the reqs_available reference counts used for tracking the
943  *	number of free slots in the completion ring.  This can be called
944  *	from aio_complete() (to optimistically update reqs_available) or
945  *	from aio_get_req() (the we're out of events case).  It must be
946  *	called holding ctx->completion_lock.
947  */
948 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
949                                   unsigned tail)
950 {
951 	unsigned events_in_ring, completed;
952 
953 	/* Clamp head since userland can write to it. */
954 	head %= ctx->nr_events;
955 	if (head <= tail)
956 		events_in_ring = tail - head;
957 	else
958 		events_in_ring = ctx->nr_events - (head - tail);
959 
960 	completed = ctx->completed_events;
961 	if (events_in_ring < completed)
962 		completed -= events_in_ring;
963 	else
964 		completed = 0;
965 
966 	if (!completed)
967 		return;
968 
969 	ctx->completed_events -= completed;
970 	put_reqs_available(ctx, completed);
971 }
972 
973 /* user_refill_reqs_available
974  *	Called to refill reqs_available when aio_get_req() encounters an
975  *	out of space in the completion ring.
976  */
977 static void user_refill_reqs_available(struct kioctx *ctx)
978 {
979 	spin_lock_irq(&ctx->completion_lock);
980 	if (ctx->completed_events) {
981 		struct aio_ring *ring;
982 		unsigned head;
983 
984 		/* Access of ring->head may race with aio_read_events_ring()
985 		 * here, but that's okay since whether we read the old version
986 		 * or the new version, and either will be valid.  The important
987 		 * part is that head cannot pass tail since we prevent
988 		 * aio_complete() from updating tail by holding
989 		 * ctx->completion_lock.  Even if head is invalid, the check
990 		 * against ctx->completed_events below will make sure we do the
991 		 * safe/right thing.
992 		 */
993 		ring = kmap_atomic(ctx->ring_pages[0]);
994 		head = ring->head;
995 		kunmap_atomic(ring);
996 
997 		refill_reqs_available(ctx, head, ctx->tail);
998 	}
999 
1000 	spin_unlock_irq(&ctx->completion_lock);
1001 }
1002 
1003 static bool get_reqs_available(struct kioctx *ctx)
1004 {
1005 	if (__get_reqs_available(ctx))
1006 		return true;
1007 	user_refill_reqs_available(ctx);
1008 	return __get_reqs_available(ctx);
1009 }
1010 
1011 /* aio_get_req
1012  *	Allocate a slot for an aio request.
1013  * Returns NULL if no requests are free.
1014  */
1015 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1016 {
1017 	struct aio_kiocb *req;
1018 
1019 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1020 	if (unlikely(!req))
1021 		return NULL;
1022 
1023 	percpu_ref_get(&ctx->reqs);
1024 	req->ki_ctx = ctx;
1025 	INIT_LIST_HEAD(&req->ki_list);
1026 	refcount_set(&req->ki_refcnt, 0);
1027 	req->ki_eventfd = NULL;
1028 	return req;
1029 }
1030 
1031 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1032 {
1033 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1034 	struct mm_struct *mm = current->mm;
1035 	struct kioctx *ctx, *ret = NULL;
1036 	struct kioctx_table *table;
1037 	unsigned id;
1038 
1039 	if (get_user(id, &ring->id))
1040 		return NULL;
1041 
1042 	rcu_read_lock();
1043 	table = rcu_dereference(mm->ioctx_table);
1044 
1045 	if (!table || id >= table->nr)
1046 		goto out;
1047 
1048 	id = array_index_nospec(id, table->nr);
1049 	ctx = rcu_dereference(table->table[id]);
1050 	if (ctx && ctx->user_id == ctx_id) {
1051 		if (percpu_ref_tryget_live(&ctx->users))
1052 			ret = ctx;
1053 	}
1054 out:
1055 	rcu_read_unlock();
1056 	return ret;
1057 }
1058 
1059 static inline void iocb_put(struct aio_kiocb *iocb)
1060 {
1061 	if (refcount_read(&iocb->ki_refcnt) == 0 ||
1062 	    refcount_dec_and_test(&iocb->ki_refcnt)) {
1063 		percpu_ref_put(&iocb->ki_ctx->reqs);
1064 		kmem_cache_free(kiocb_cachep, iocb);
1065 	}
1066 }
1067 
1068 static void aio_fill_event(struct io_event *ev, struct aio_kiocb *iocb,
1069 			   long res, long res2)
1070 {
1071 	ev->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1072 	ev->data = iocb->ki_user_data;
1073 	ev->res = res;
1074 	ev->res2 = res2;
1075 }
1076 
1077 /* aio_complete
1078  *	Called when the io request on the given iocb is complete.
1079  */
1080 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1081 {
1082 	struct kioctx	*ctx = iocb->ki_ctx;
1083 	struct aio_ring	*ring;
1084 	struct io_event	*ev_page, *event;
1085 	unsigned tail, pos, head;
1086 	unsigned long	flags;
1087 
1088 	/*
1089 	 * Add a completion event to the ring buffer. Must be done holding
1090 	 * ctx->completion_lock to prevent other code from messing with the tail
1091 	 * pointer since we might be called from irq context.
1092 	 */
1093 	spin_lock_irqsave(&ctx->completion_lock, flags);
1094 
1095 	tail = ctx->tail;
1096 	pos = tail + AIO_EVENTS_OFFSET;
1097 
1098 	if (++tail >= ctx->nr_events)
1099 		tail = 0;
1100 
1101 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1102 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1103 
1104 	aio_fill_event(event, iocb, res, res2);
1105 
1106 	kunmap_atomic(ev_page);
1107 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1108 
1109 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1110 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1111 		 res, res2);
1112 
1113 	/* after flagging the request as done, we
1114 	 * must never even look at it again
1115 	 */
1116 	smp_wmb();	/* make event visible before updating tail */
1117 
1118 	ctx->tail = tail;
1119 
1120 	ring = kmap_atomic(ctx->ring_pages[0]);
1121 	head = ring->head;
1122 	ring->tail = tail;
1123 	kunmap_atomic(ring);
1124 	flush_dcache_page(ctx->ring_pages[0]);
1125 
1126 	ctx->completed_events++;
1127 	if (ctx->completed_events > 1)
1128 		refill_reqs_available(ctx, head, tail);
1129 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1130 
1131 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1132 
1133 	/*
1134 	 * Check if the user asked us to deliver the result through an
1135 	 * eventfd. The eventfd_signal() function is safe to be called
1136 	 * from IRQ context.
1137 	 */
1138 	if (iocb->ki_eventfd) {
1139 		eventfd_signal(iocb->ki_eventfd, 1);
1140 		eventfd_ctx_put(iocb->ki_eventfd);
1141 	}
1142 
1143 	/*
1144 	 * We have to order our ring_info tail store above and test
1145 	 * of the wait list below outside the wait lock.  This is
1146 	 * like in wake_up_bit() where clearing a bit has to be
1147 	 * ordered with the unlocked test.
1148 	 */
1149 	smp_mb();
1150 
1151 	if (waitqueue_active(&ctx->wait))
1152 		wake_up(&ctx->wait);
1153 	iocb_put(iocb);
1154 }
1155 
1156 /* aio_read_events_ring
1157  *	Pull an event off of the ioctx's event ring.  Returns the number of
1158  *	events fetched
1159  */
1160 static long aio_read_events_ring(struct kioctx *ctx,
1161 				 struct io_event __user *event, long nr)
1162 {
1163 	struct aio_ring *ring;
1164 	unsigned head, tail, pos;
1165 	long ret = 0;
1166 	int copy_ret;
1167 
1168 	/*
1169 	 * The mutex can block and wake us up and that will cause
1170 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1171 	 * and repeat. This should be rare enough that it doesn't cause
1172 	 * peformance issues. See the comment in read_events() for more detail.
1173 	 */
1174 	sched_annotate_sleep();
1175 	mutex_lock(&ctx->ring_lock);
1176 
1177 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1178 	ring = kmap_atomic(ctx->ring_pages[0]);
1179 	head = ring->head;
1180 	tail = ring->tail;
1181 	kunmap_atomic(ring);
1182 
1183 	/*
1184 	 * Ensure that once we've read the current tail pointer, that
1185 	 * we also see the events that were stored up to the tail.
1186 	 */
1187 	smp_rmb();
1188 
1189 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1190 
1191 	if (head == tail)
1192 		goto out;
1193 
1194 	head %= ctx->nr_events;
1195 	tail %= ctx->nr_events;
1196 
1197 	while (ret < nr) {
1198 		long avail;
1199 		struct io_event *ev;
1200 		struct page *page;
1201 
1202 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1203 		if (head == tail)
1204 			break;
1205 
1206 		pos = head + AIO_EVENTS_OFFSET;
1207 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1208 		pos %= AIO_EVENTS_PER_PAGE;
1209 
1210 		avail = min(avail, nr - ret);
1211 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1212 
1213 		ev = kmap(page);
1214 		copy_ret = copy_to_user(event + ret, ev + pos,
1215 					sizeof(*ev) * avail);
1216 		kunmap(page);
1217 
1218 		if (unlikely(copy_ret)) {
1219 			ret = -EFAULT;
1220 			goto out;
1221 		}
1222 
1223 		ret += avail;
1224 		head += avail;
1225 		head %= ctx->nr_events;
1226 	}
1227 
1228 	ring = kmap_atomic(ctx->ring_pages[0]);
1229 	ring->head = head;
1230 	kunmap_atomic(ring);
1231 	flush_dcache_page(ctx->ring_pages[0]);
1232 
1233 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1234 out:
1235 	mutex_unlock(&ctx->ring_lock);
1236 
1237 	return ret;
1238 }
1239 
1240 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1241 			    struct io_event __user *event, long *i)
1242 {
1243 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1244 
1245 	if (ret > 0)
1246 		*i += ret;
1247 
1248 	if (unlikely(atomic_read(&ctx->dead)))
1249 		ret = -EINVAL;
1250 
1251 	if (!*i)
1252 		*i = ret;
1253 
1254 	return ret < 0 || *i >= min_nr;
1255 }
1256 
1257 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1258 			struct io_event __user *event,
1259 			ktime_t until)
1260 {
1261 	long ret = 0;
1262 
1263 	/*
1264 	 * Note that aio_read_events() is being called as the conditional - i.e.
1265 	 * we're calling it after prepare_to_wait() has set task state to
1266 	 * TASK_INTERRUPTIBLE.
1267 	 *
1268 	 * But aio_read_events() can block, and if it blocks it's going to flip
1269 	 * the task state back to TASK_RUNNING.
1270 	 *
1271 	 * This should be ok, provided it doesn't flip the state back to
1272 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1273 	 * will only happen if the mutex_lock() call blocks, and we then find
1274 	 * the ringbuffer empty. So in practice we should be ok, but it's
1275 	 * something to be aware of when touching this code.
1276 	 */
1277 	if (until == 0)
1278 		aio_read_events(ctx, min_nr, nr, event, &ret);
1279 	else
1280 		wait_event_interruptible_hrtimeout(ctx->wait,
1281 				aio_read_events(ctx, min_nr, nr, event, &ret),
1282 				until);
1283 	return ret;
1284 }
1285 
1286 /* sys_io_setup:
1287  *	Create an aio_context capable of receiving at least nr_events.
1288  *	ctxp must not point to an aio_context that already exists, and
1289  *	must be initialized to 0 prior to the call.  On successful
1290  *	creation of the aio_context, *ctxp is filled in with the resulting
1291  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1292  *	if the specified nr_events exceeds internal limits.  May fail
1293  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1294  *	of available events.  May fail with -ENOMEM if insufficient kernel
1295  *	resources are available.  May fail with -EFAULT if an invalid
1296  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1297  *	implemented.
1298  */
1299 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1300 {
1301 	struct kioctx *ioctx = NULL;
1302 	unsigned long ctx;
1303 	long ret;
1304 
1305 	ret = get_user(ctx, ctxp);
1306 	if (unlikely(ret))
1307 		goto out;
1308 
1309 	ret = -EINVAL;
1310 	if (unlikely(ctx || nr_events == 0)) {
1311 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1312 		         ctx, nr_events);
1313 		goto out;
1314 	}
1315 
1316 	ioctx = ioctx_alloc(nr_events);
1317 	ret = PTR_ERR(ioctx);
1318 	if (!IS_ERR(ioctx)) {
1319 		ret = put_user(ioctx->user_id, ctxp);
1320 		if (ret)
1321 			kill_ioctx(current->mm, ioctx, NULL);
1322 		percpu_ref_put(&ioctx->users);
1323 	}
1324 
1325 out:
1326 	return ret;
1327 }
1328 
1329 #ifdef CONFIG_COMPAT
1330 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1331 {
1332 	struct kioctx *ioctx = NULL;
1333 	unsigned long ctx;
1334 	long ret;
1335 
1336 	ret = get_user(ctx, ctx32p);
1337 	if (unlikely(ret))
1338 		goto out;
1339 
1340 	ret = -EINVAL;
1341 	if (unlikely(ctx || nr_events == 0)) {
1342 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1343 		         ctx, nr_events);
1344 		goto out;
1345 	}
1346 
1347 	ioctx = ioctx_alloc(nr_events);
1348 	ret = PTR_ERR(ioctx);
1349 	if (!IS_ERR(ioctx)) {
1350 		/* truncating is ok because it's a user address */
1351 		ret = put_user((u32)ioctx->user_id, ctx32p);
1352 		if (ret)
1353 			kill_ioctx(current->mm, ioctx, NULL);
1354 		percpu_ref_put(&ioctx->users);
1355 	}
1356 
1357 out:
1358 	return ret;
1359 }
1360 #endif
1361 
1362 /* sys_io_destroy:
1363  *	Destroy the aio_context specified.  May cancel any outstanding
1364  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1365  *	implemented.  May fail with -EINVAL if the context pointed to
1366  *	is invalid.
1367  */
1368 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1369 {
1370 	struct kioctx *ioctx = lookup_ioctx(ctx);
1371 	if (likely(NULL != ioctx)) {
1372 		struct ctx_rq_wait wait;
1373 		int ret;
1374 
1375 		init_completion(&wait.comp);
1376 		atomic_set(&wait.count, 1);
1377 
1378 		/* Pass requests_done to kill_ioctx() where it can be set
1379 		 * in a thread-safe way. If we try to set it here then we have
1380 		 * a race condition if two io_destroy() called simultaneously.
1381 		 */
1382 		ret = kill_ioctx(current->mm, ioctx, &wait);
1383 		percpu_ref_put(&ioctx->users);
1384 
1385 		/* Wait until all IO for the context are done. Otherwise kernel
1386 		 * keep using user-space buffers even if user thinks the context
1387 		 * is destroyed.
1388 		 */
1389 		if (!ret)
1390 			wait_for_completion(&wait.comp);
1391 
1392 		return ret;
1393 	}
1394 	pr_debug("EINVAL: invalid context id\n");
1395 	return -EINVAL;
1396 }
1397 
1398 static void aio_remove_iocb(struct aio_kiocb *iocb)
1399 {
1400 	struct kioctx *ctx = iocb->ki_ctx;
1401 	unsigned long flags;
1402 
1403 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1404 	list_del(&iocb->ki_list);
1405 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1406 }
1407 
1408 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1409 {
1410 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1411 
1412 	if (!list_empty_careful(&iocb->ki_list))
1413 		aio_remove_iocb(iocb);
1414 
1415 	if (kiocb->ki_flags & IOCB_WRITE) {
1416 		struct inode *inode = file_inode(kiocb->ki_filp);
1417 
1418 		/*
1419 		 * Tell lockdep we inherited freeze protection from submission
1420 		 * thread.
1421 		 */
1422 		if (S_ISREG(inode->i_mode))
1423 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1424 		file_end_write(kiocb->ki_filp);
1425 	}
1426 
1427 	fput(kiocb->ki_filp);
1428 	aio_complete(iocb, res, res2);
1429 }
1430 
1431 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1432 {
1433 	int ret;
1434 
1435 	req->ki_filp = fget(iocb->aio_fildes);
1436 	if (unlikely(!req->ki_filp))
1437 		return -EBADF;
1438 	req->ki_complete = aio_complete_rw;
1439 	req->ki_pos = iocb->aio_offset;
1440 	req->ki_flags = iocb_flags(req->ki_filp);
1441 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1442 		req->ki_flags |= IOCB_EVENTFD;
1443 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1444 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1445 		/*
1446 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1447 		 * aio_reqprio is interpreted as an I/O scheduling
1448 		 * class and priority.
1449 		 */
1450 		ret = ioprio_check_cap(iocb->aio_reqprio);
1451 		if (ret) {
1452 			pr_debug("aio ioprio check cap error: %d\n", ret);
1453 			goto out_fput;
1454 		}
1455 
1456 		req->ki_ioprio = iocb->aio_reqprio;
1457 	} else
1458 		req->ki_ioprio = get_current_ioprio();
1459 
1460 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1461 	if (unlikely(ret))
1462 		goto out_fput;
1463 
1464 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1465 	return 0;
1466 
1467 out_fput:
1468 	fput(req->ki_filp);
1469 	return ret;
1470 }
1471 
1472 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec,
1473 		bool vectored, bool compat, struct iov_iter *iter)
1474 {
1475 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1476 	size_t len = iocb->aio_nbytes;
1477 
1478 	if (!vectored) {
1479 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1480 		*iovec = NULL;
1481 		return ret;
1482 	}
1483 #ifdef CONFIG_COMPAT
1484 	if (compat)
1485 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1486 				iter);
1487 #endif
1488 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1489 }
1490 
1491 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1492 {
1493 	switch (ret) {
1494 	case -EIOCBQUEUED:
1495 		break;
1496 	case -ERESTARTSYS:
1497 	case -ERESTARTNOINTR:
1498 	case -ERESTARTNOHAND:
1499 	case -ERESTART_RESTARTBLOCK:
1500 		/*
1501 		 * There's no easy way to restart the syscall since other AIO's
1502 		 * may be already running. Just fail this IO with EINTR.
1503 		 */
1504 		ret = -EINTR;
1505 		/*FALLTHRU*/
1506 	default:
1507 		req->ki_complete(req, ret, 0);
1508 	}
1509 }
1510 
1511 static ssize_t aio_read(struct kiocb *req, const struct iocb *iocb,
1512 			bool vectored, bool compat)
1513 {
1514 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1515 	struct iov_iter iter;
1516 	struct file *file;
1517 	ssize_t ret;
1518 
1519 	ret = aio_prep_rw(req, iocb);
1520 	if (ret)
1521 		return ret;
1522 	file = req->ki_filp;
1523 
1524 	ret = -EBADF;
1525 	if (unlikely(!(file->f_mode & FMODE_READ)))
1526 		goto out_fput;
1527 	ret = -EINVAL;
1528 	if (unlikely(!file->f_op->read_iter))
1529 		goto out_fput;
1530 
1531 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1532 	if (ret)
1533 		goto out_fput;
1534 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1535 	if (!ret)
1536 		aio_rw_done(req, call_read_iter(file, req, &iter));
1537 	kfree(iovec);
1538 out_fput:
1539 	if (unlikely(ret))
1540 		fput(file);
1541 	return ret;
1542 }
1543 
1544 static ssize_t aio_write(struct kiocb *req, const struct iocb *iocb,
1545 			 bool vectored, bool compat)
1546 {
1547 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1548 	struct iov_iter iter;
1549 	struct file *file;
1550 	ssize_t ret;
1551 
1552 	ret = aio_prep_rw(req, iocb);
1553 	if (ret)
1554 		return ret;
1555 	file = req->ki_filp;
1556 
1557 	ret = -EBADF;
1558 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1559 		goto out_fput;
1560 	ret = -EINVAL;
1561 	if (unlikely(!file->f_op->write_iter))
1562 		goto out_fput;
1563 
1564 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1565 	if (ret)
1566 		goto out_fput;
1567 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1568 	if (!ret) {
1569 		/*
1570 		 * Open-code file_start_write here to grab freeze protection,
1571 		 * which will be released by another thread in
1572 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1573 		 * released so that it doesn't complain about the held lock when
1574 		 * we return to userspace.
1575 		 */
1576 		if (S_ISREG(file_inode(file)->i_mode)) {
1577 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1578 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1579 		}
1580 		req->ki_flags |= IOCB_WRITE;
1581 		aio_rw_done(req, call_write_iter(file, req, &iter));
1582 	}
1583 	kfree(iovec);
1584 out_fput:
1585 	if (unlikely(ret))
1586 		fput(file);
1587 	return ret;
1588 }
1589 
1590 static void aio_fsync_work(struct work_struct *work)
1591 {
1592 	struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1593 	int ret;
1594 
1595 	ret = vfs_fsync(req->file, req->datasync);
1596 	fput(req->file);
1597 	aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1598 }
1599 
1600 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1601 		     bool datasync)
1602 {
1603 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1604 			iocb->aio_rw_flags))
1605 		return -EINVAL;
1606 
1607 	req->file = fget(iocb->aio_fildes);
1608 	if (unlikely(!req->file))
1609 		return -EBADF;
1610 	if (unlikely(!req->file->f_op->fsync)) {
1611 		fput(req->file);
1612 		return -EINVAL;
1613 	}
1614 
1615 	req->datasync = datasync;
1616 	INIT_WORK(&req->work, aio_fsync_work);
1617 	schedule_work(&req->work);
1618 	return 0;
1619 }
1620 
1621 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1622 {
1623 	struct file *file = iocb->poll.file;
1624 
1625 	aio_complete(iocb, mangle_poll(mask), 0);
1626 	fput(file);
1627 }
1628 
1629 static void aio_poll_complete_work(struct work_struct *work)
1630 {
1631 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1632 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1633 	struct poll_table_struct pt = { ._key = req->events };
1634 	struct kioctx *ctx = iocb->ki_ctx;
1635 	__poll_t mask = 0;
1636 
1637 	if (!READ_ONCE(req->cancelled))
1638 		mask = vfs_poll(req->file, &pt) & req->events;
1639 
1640 	/*
1641 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1642 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1643 	 * synchronize with them.  In the cancellation case the list_del_init
1644 	 * itself is not actually needed, but harmless so we keep it in to
1645 	 * avoid further branches in the fast path.
1646 	 */
1647 	spin_lock_irq(&ctx->ctx_lock);
1648 	if (!mask && !READ_ONCE(req->cancelled)) {
1649 		add_wait_queue(req->head, &req->wait);
1650 		spin_unlock_irq(&ctx->ctx_lock);
1651 		return;
1652 	}
1653 	list_del_init(&iocb->ki_list);
1654 	spin_unlock_irq(&ctx->ctx_lock);
1655 
1656 	aio_poll_complete(iocb, mask);
1657 }
1658 
1659 /* assumes we are called with irqs disabled */
1660 static int aio_poll_cancel(struct kiocb *iocb)
1661 {
1662 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1663 	struct poll_iocb *req = &aiocb->poll;
1664 
1665 	spin_lock(&req->head->lock);
1666 	WRITE_ONCE(req->cancelled, true);
1667 	if (!list_empty(&req->wait.entry)) {
1668 		list_del_init(&req->wait.entry);
1669 		schedule_work(&aiocb->poll.work);
1670 	}
1671 	spin_unlock(&req->head->lock);
1672 
1673 	return 0;
1674 }
1675 
1676 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1677 		void *key)
1678 {
1679 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1680 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1681 	__poll_t mask = key_to_poll(key);
1682 
1683 	req->woken = true;
1684 
1685 	/* for instances that support it check for an event match first: */
1686 	if (mask) {
1687 		if (!(mask & req->events))
1688 			return 0;
1689 
1690 		/* try to complete the iocb inline if we can: */
1691 		if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1692 			list_del(&iocb->ki_list);
1693 			spin_unlock(&iocb->ki_ctx->ctx_lock);
1694 
1695 			list_del_init(&req->wait.entry);
1696 			aio_poll_complete(iocb, mask);
1697 			return 1;
1698 		}
1699 	}
1700 
1701 	list_del_init(&req->wait.entry);
1702 	schedule_work(&req->work);
1703 	return 1;
1704 }
1705 
1706 struct aio_poll_table {
1707 	struct poll_table_struct	pt;
1708 	struct aio_kiocb		*iocb;
1709 	int				error;
1710 };
1711 
1712 static void
1713 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1714 		struct poll_table_struct *p)
1715 {
1716 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1717 
1718 	/* multiple wait queues per file are not supported */
1719 	if (unlikely(pt->iocb->poll.head)) {
1720 		pt->error = -EINVAL;
1721 		return;
1722 	}
1723 
1724 	pt->error = 0;
1725 	pt->iocb->poll.head = head;
1726 	add_wait_queue(head, &pt->iocb->poll.wait);
1727 }
1728 
1729 static ssize_t aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1730 {
1731 	struct kioctx *ctx = aiocb->ki_ctx;
1732 	struct poll_iocb *req = &aiocb->poll;
1733 	struct aio_poll_table apt;
1734 	__poll_t mask;
1735 
1736 	/* reject any unknown events outside the normal event mask. */
1737 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1738 		return -EINVAL;
1739 	/* reject fields that are not defined for poll */
1740 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1741 		return -EINVAL;
1742 
1743 	INIT_WORK(&req->work, aio_poll_complete_work);
1744 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1745 	req->file = fget(iocb->aio_fildes);
1746 	if (unlikely(!req->file))
1747 		return -EBADF;
1748 
1749 	req->head = NULL;
1750 	req->woken = false;
1751 	req->cancelled = false;
1752 
1753 	apt.pt._qproc = aio_poll_queue_proc;
1754 	apt.pt._key = req->events;
1755 	apt.iocb = aiocb;
1756 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1757 
1758 	/* initialized the list so that we can do list_empty checks */
1759 	INIT_LIST_HEAD(&req->wait.entry);
1760 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1761 
1762 	/* one for removal from waitqueue, one for this function */
1763 	refcount_set(&aiocb->ki_refcnt, 2);
1764 
1765 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1766 	if (unlikely(!req->head)) {
1767 		/* we did not manage to set up a waitqueue, done */
1768 		goto out;
1769 	}
1770 
1771 	spin_lock_irq(&ctx->ctx_lock);
1772 	spin_lock(&req->head->lock);
1773 	if (req->woken) {
1774 		/* wake_up context handles the rest */
1775 		mask = 0;
1776 		apt.error = 0;
1777 	} else if (mask || apt.error) {
1778 		/* if we get an error or a mask we are done */
1779 		WARN_ON_ONCE(list_empty(&req->wait.entry));
1780 		list_del_init(&req->wait.entry);
1781 	} else {
1782 		/* actually waiting for an event */
1783 		list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1784 		aiocb->ki_cancel = aio_poll_cancel;
1785 	}
1786 	spin_unlock(&req->head->lock);
1787 	spin_unlock_irq(&ctx->ctx_lock);
1788 
1789 out:
1790 	if (unlikely(apt.error)) {
1791 		fput(req->file);
1792 		return apt.error;
1793 	}
1794 
1795 	if (mask)
1796 		aio_poll_complete(aiocb, mask);
1797 	iocb_put(aiocb);
1798 	return 0;
1799 }
1800 
1801 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1802 			   struct iocb __user *user_iocb, bool compat)
1803 {
1804 	struct aio_kiocb *req;
1805 	ssize_t ret;
1806 
1807 	/* enforce forwards compatibility on users */
1808 	if (unlikely(iocb->aio_reserved2)) {
1809 		pr_debug("EINVAL: reserve field set\n");
1810 		return -EINVAL;
1811 	}
1812 
1813 	/* prevent overflows */
1814 	if (unlikely(
1815 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1816 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1817 	    ((ssize_t)iocb->aio_nbytes < 0)
1818 	   )) {
1819 		pr_debug("EINVAL: overflow check\n");
1820 		return -EINVAL;
1821 	}
1822 
1823 	if (!get_reqs_available(ctx))
1824 		return -EAGAIN;
1825 
1826 	ret = -EAGAIN;
1827 	req = aio_get_req(ctx);
1828 	if (unlikely(!req))
1829 		goto out_put_reqs_available;
1830 
1831 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1832 		/*
1833 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1834 		 * instance of the file* now. The file descriptor must be
1835 		 * an eventfd() fd, and will be signaled for each completed
1836 		 * event using the eventfd_signal() function.
1837 		 */
1838 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1839 		if (IS_ERR(req->ki_eventfd)) {
1840 			ret = PTR_ERR(req->ki_eventfd);
1841 			req->ki_eventfd = NULL;
1842 			goto out_put_req;
1843 		}
1844 	}
1845 
1846 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1847 	if (unlikely(ret)) {
1848 		pr_debug("EFAULT: aio_key\n");
1849 		goto out_put_req;
1850 	}
1851 
1852 	req->ki_user_iocb = user_iocb;
1853 	req->ki_user_data = iocb->aio_data;
1854 
1855 	switch (iocb->aio_lio_opcode) {
1856 	case IOCB_CMD_PREAD:
1857 		ret = aio_read(&req->rw, iocb, false, compat);
1858 		break;
1859 	case IOCB_CMD_PWRITE:
1860 		ret = aio_write(&req->rw, iocb, false, compat);
1861 		break;
1862 	case IOCB_CMD_PREADV:
1863 		ret = aio_read(&req->rw, iocb, true, compat);
1864 		break;
1865 	case IOCB_CMD_PWRITEV:
1866 		ret = aio_write(&req->rw, iocb, true, compat);
1867 		break;
1868 	case IOCB_CMD_FSYNC:
1869 		ret = aio_fsync(&req->fsync, iocb, false);
1870 		break;
1871 	case IOCB_CMD_FDSYNC:
1872 		ret = aio_fsync(&req->fsync, iocb, true);
1873 		break;
1874 	case IOCB_CMD_POLL:
1875 		ret = aio_poll(req, iocb);
1876 		break;
1877 	default:
1878 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1879 		ret = -EINVAL;
1880 		break;
1881 	}
1882 
1883 	/*
1884 	 * If ret is 0, we'd either done aio_complete() ourselves or have
1885 	 * arranged for that to be done asynchronously.  Anything non-zero
1886 	 * means that we need to destroy req ourselves.
1887 	 */
1888 	if (ret)
1889 		goto out_put_req;
1890 	return 0;
1891 out_put_req:
1892 	if (req->ki_eventfd)
1893 		eventfd_ctx_put(req->ki_eventfd);
1894 	iocb_put(req);
1895 out_put_reqs_available:
1896 	put_reqs_available(ctx, 1);
1897 	return ret;
1898 }
1899 
1900 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1901 			 bool compat)
1902 {
1903 	struct iocb iocb;
1904 
1905 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1906 		return -EFAULT;
1907 
1908 	return __io_submit_one(ctx, &iocb, user_iocb, compat);
1909 }
1910 
1911 /* sys_io_submit:
1912  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1913  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1914  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1915  *	*iocbpp[0] is not properly initialized, if the operation specified
1916  *	is invalid for the file descriptor in the iocb.  May fail with
1917  *	-EFAULT if any of the data structures point to invalid data.  May
1918  *	fail with -EBADF if the file descriptor specified in the first
1919  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1920  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1921  *	fail with -ENOSYS if not implemented.
1922  */
1923 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1924 		struct iocb __user * __user *, iocbpp)
1925 {
1926 	struct kioctx *ctx;
1927 	long ret = 0;
1928 	int i = 0;
1929 	struct blk_plug plug;
1930 
1931 	if (unlikely(nr < 0))
1932 		return -EINVAL;
1933 
1934 	ctx = lookup_ioctx(ctx_id);
1935 	if (unlikely(!ctx)) {
1936 		pr_debug("EINVAL: invalid context id\n");
1937 		return -EINVAL;
1938 	}
1939 
1940 	if (nr > ctx->nr_events)
1941 		nr = ctx->nr_events;
1942 
1943 	if (nr > AIO_PLUG_THRESHOLD)
1944 		blk_start_plug(&plug);
1945 	for (i = 0; i < nr; i++) {
1946 		struct iocb __user *user_iocb;
1947 
1948 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1949 			ret = -EFAULT;
1950 			break;
1951 		}
1952 
1953 		ret = io_submit_one(ctx, user_iocb, false);
1954 		if (ret)
1955 			break;
1956 	}
1957 	if (nr > AIO_PLUG_THRESHOLD)
1958 		blk_finish_plug(&plug);
1959 
1960 	percpu_ref_put(&ctx->users);
1961 	return i ? i : ret;
1962 }
1963 
1964 #ifdef CONFIG_COMPAT
1965 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1966 		       int, nr, compat_uptr_t __user *, iocbpp)
1967 {
1968 	struct kioctx *ctx;
1969 	long ret = 0;
1970 	int i = 0;
1971 	struct blk_plug plug;
1972 
1973 	if (unlikely(nr < 0))
1974 		return -EINVAL;
1975 
1976 	ctx = lookup_ioctx(ctx_id);
1977 	if (unlikely(!ctx)) {
1978 		pr_debug("EINVAL: invalid context id\n");
1979 		return -EINVAL;
1980 	}
1981 
1982 	if (nr > ctx->nr_events)
1983 		nr = ctx->nr_events;
1984 
1985 	if (nr > AIO_PLUG_THRESHOLD)
1986 		blk_start_plug(&plug);
1987 	for (i = 0; i < nr; i++) {
1988 		compat_uptr_t user_iocb;
1989 
1990 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1991 			ret = -EFAULT;
1992 			break;
1993 		}
1994 
1995 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1996 		if (ret)
1997 			break;
1998 	}
1999 	if (nr > AIO_PLUG_THRESHOLD)
2000 		blk_finish_plug(&plug);
2001 
2002 	percpu_ref_put(&ctx->users);
2003 	return i ? i : ret;
2004 }
2005 #endif
2006 
2007 /* lookup_kiocb
2008  *	Finds a given iocb for cancellation.
2009  */
2010 static struct aio_kiocb *
2011 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
2012 {
2013 	struct aio_kiocb *kiocb;
2014 
2015 	assert_spin_locked(&ctx->ctx_lock);
2016 
2017 	/* TODO: use a hash or array, this sucks. */
2018 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2019 		if (kiocb->ki_user_iocb == iocb)
2020 			return kiocb;
2021 	}
2022 	return NULL;
2023 }
2024 
2025 /* sys_io_cancel:
2026  *	Attempts to cancel an iocb previously passed to io_submit.  If
2027  *	the operation is successfully cancelled, the resulting event is
2028  *	copied into the memory pointed to by result without being placed
2029  *	into the completion queue and 0 is returned.  May fail with
2030  *	-EFAULT if any of the data structures pointed to are invalid.
2031  *	May fail with -EINVAL if aio_context specified by ctx_id is
2032  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2033  *	cancelled.  Will fail with -ENOSYS if not implemented.
2034  */
2035 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2036 		struct io_event __user *, result)
2037 {
2038 	struct kioctx *ctx;
2039 	struct aio_kiocb *kiocb;
2040 	int ret = -EINVAL;
2041 	u32 key;
2042 
2043 	if (unlikely(get_user(key, &iocb->aio_key)))
2044 		return -EFAULT;
2045 	if (unlikely(key != KIOCB_KEY))
2046 		return -EINVAL;
2047 
2048 	ctx = lookup_ioctx(ctx_id);
2049 	if (unlikely(!ctx))
2050 		return -EINVAL;
2051 
2052 	spin_lock_irq(&ctx->ctx_lock);
2053 	kiocb = lookup_kiocb(ctx, iocb);
2054 	if (kiocb) {
2055 		ret = kiocb->ki_cancel(&kiocb->rw);
2056 		list_del_init(&kiocb->ki_list);
2057 	}
2058 	spin_unlock_irq(&ctx->ctx_lock);
2059 
2060 	if (!ret) {
2061 		/*
2062 		 * The result argument is no longer used - the io_event is
2063 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2064 		 * cancellation is progress:
2065 		 */
2066 		ret = -EINPROGRESS;
2067 	}
2068 
2069 	percpu_ref_put(&ctx->users);
2070 
2071 	return ret;
2072 }
2073 
2074 static long do_io_getevents(aio_context_t ctx_id,
2075 		long min_nr,
2076 		long nr,
2077 		struct io_event __user *events,
2078 		struct timespec64 *ts)
2079 {
2080 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2081 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2082 	long ret = -EINVAL;
2083 
2084 	if (likely(ioctx)) {
2085 		if (likely(min_nr <= nr && min_nr >= 0))
2086 			ret = read_events(ioctx, min_nr, nr, events, until);
2087 		percpu_ref_put(&ioctx->users);
2088 	}
2089 
2090 	return ret;
2091 }
2092 
2093 /* io_getevents:
2094  *	Attempts to read at least min_nr events and up to nr events from
2095  *	the completion queue for the aio_context specified by ctx_id. If
2096  *	it succeeds, the number of read events is returned. May fail with
2097  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2098  *	out of range, if timeout is out of range.  May fail with -EFAULT
2099  *	if any of the memory specified is invalid.  May return 0 or
2100  *	< min_nr if the timeout specified by timeout has elapsed
2101  *	before sufficient events are available, where timeout == NULL
2102  *	specifies an infinite timeout. Note that the timeout pointed to by
2103  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2104  */
2105 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2106 
2107 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2108 		long, min_nr,
2109 		long, nr,
2110 		struct io_event __user *, events,
2111 		struct __kernel_timespec __user *, timeout)
2112 {
2113 	struct timespec64	ts;
2114 	int			ret;
2115 
2116 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2117 		return -EFAULT;
2118 
2119 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2120 	if (!ret && signal_pending(current))
2121 		ret = -EINTR;
2122 	return ret;
2123 }
2124 
2125 #endif
2126 
2127 struct __aio_sigset {
2128 	const sigset_t __user	*sigmask;
2129 	size_t		sigsetsize;
2130 };
2131 
2132 SYSCALL_DEFINE6(io_pgetevents,
2133 		aio_context_t, ctx_id,
2134 		long, min_nr,
2135 		long, nr,
2136 		struct io_event __user *, events,
2137 		struct __kernel_timespec __user *, timeout,
2138 		const struct __aio_sigset __user *, usig)
2139 {
2140 	struct __aio_sigset	ksig = { NULL, };
2141 	sigset_t		ksigmask, sigsaved;
2142 	struct timespec64	ts;
2143 	int ret;
2144 
2145 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2146 		return -EFAULT;
2147 
2148 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2149 		return -EFAULT;
2150 
2151 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2152 	if (ret)
2153 		return ret;
2154 
2155 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2156 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2157 	if (signal_pending(current) && !ret)
2158 		ret = -ERESTARTNOHAND;
2159 
2160 	return ret;
2161 }
2162 
2163 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2164 
2165 SYSCALL_DEFINE6(io_pgetevents_time32,
2166 		aio_context_t, ctx_id,
2167 		long, min_nr,
2168 		long, nr,
2169 		struct io_event __user *, events,
2170 		struct old_timespec32 __user *, timeout,
2171 		const struct __aio_sigset __user *, usig)
2172 {
2173 	struct __aio_sigset	ksig = { NULL, };
2174 	sigset_t		ksigmask, sigsaved;
2175 	struct timespec64	ts;
2176 	int ret;
2177 
2178 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2179 		return -EFAULT;
2180 
2181 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2182 		return -EFAULT;
2183 
2184 
2185 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2186 	if (ret)
2187 		return ret;
2188 
2189 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2190 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2191 	if (signal_pending(current) && !ret)
2192 		ret = -ERESTARTNOHAND;
2193 
2194 	return ret;
2195 }
2196 
2197 #endif
2198 
2199 #if defined(CONFIG_COMPAT_32BIT_TIME)
2200 
2201 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2202 		       compat_long_t, min_nr,
2203 		       compat_long_t, nr,
2204 		       struct io_event __user *, events,
2205 		       struct old_timespec32 __user *, timeout)
2206 {
2207 	struct timespec64 t;
2208 	int ret;
2209 
2210 	if (timeout && get_old_timespec32(&t, timeout))
2211 		return -EFAULT;
2212 
2213 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2214 	if (!ret && signal_pending(current))
2215 		ret = -EINTR;
2216 	return ret;
2217 }
2218 
2219 #endif
2220 
2221 #ifdef CONFIG_COMPAT
2222 
2223 struct __compat_aio_sigset {
2224 	compat_sigset_t __user	*sigmask;
2225 	compat_size_t		sigsetsize;
2226 };
2227 
2228 #if defined(CONFIG_COMPAT_32BIT_TIME)
2229 
2230 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2231 		compat_aio_context_t, ctx_id,
2232 		compat_long_t, min_nr,
2233 		compat_long_t, nr,
2234 		struct io_event __user *, events,
2235 		struct old_timespec32 __user *, timeout,
2236 		const struct __compat_aio_sigset __user *, usig)
2237 {
2238 	struct __compat_aio_sigset ksig = { NULL, };
2239 	sigset_t ksigmask, sigsaved;
2240 	struct timespec64 t;
2241 	int ret;
2242 
2243 	if (timeout && get_old_timespec32(&t, timeout))
2244 		return -EFAULT;
2245 
2246 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2247 		return -EFAULT;
2248 
2249 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2250 	if (ret)
2251 		return ret;
2252 
2253 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2254 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2255 	if (signal_pending(current) && !ret)
2256 		ret = -ERESTARTNOHAND;
2257 
2258 	return ret;
2259 }
2260 
2261 #endif
2262 
2263 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2264 		compat_aio_context_t, ctx_id,
2265 		compat_long_t, min_nr,
2266 		compat_long_t, nr,
2267 		struct io_event __user *, events,
2268 		struct __kernel_timespec __user *, timeout,
2269 		const struct __compat_aio_sigset __user *, usig)
2270 {
2271 	struct __compat_aio_sigset ksig = { NULL, };
2272 	sigset_t ksigmask, sigsaved;
2273 	struct timespec64 t;
2274 	int ret;
2275 
2276 	if (timeout && get_timespec64(&t, timeout))
2277 		return -EFAULT;
2278 
2279 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2280 		return -EFAULT;
2281 
2282 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2283 	if (ret)
2284 		return ret;
2285 
2286 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2287 	restore_user_sigmask(ksig.sigmask, &sigsaved);
2288 	if (signal_pending(current) && !ret)
2289 		ret = -ERESTARTNOHAND;
2290 
2291 	return ret;
2292 }
2293 #endif
2294