xref: /openbmc/linux/fs/aio.c (revision 1c2f87c2)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	struct {
116 		/*
117 		 * This counts the number of available slots in the ringbuffer,
118 		 * so we avoid overflowing it: it's decremented (if positive)
119 		 * when allocating a kiocb and incremented when the resulting
120 		 * io_event is pulled off the ringbuffer.
121 		 *
122 		 * We batch accesses to it with a percpu version.
123 		 */
124 		atomic_t	reqs_available;
125 	} ____cacheline_aligned_in_smp;
126 
127 	struct {
128 		spinlock_t	ctx_lock;
129 		struct list_head active_reqs;	/* used for cancellation */
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		struct mutex	ring_lock;
134 		wait_queue_head_t wait;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		unsigned	tail;
139 		spinlock_t	completion_lock;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct page		*internal_pages[AIO_RING_PAGES];
143 	struct file		*aio_ring_file;
144 
145 	unsigned		id;
146 };
147 
148 /*------ sysctl variables----*/
149 static DEFINE_SPINLOCK(aio_nr_lock);
150 unsigned long aio_nr;		/* current system wide number of aio requests */
151 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
152 /*----end sysctl variables---*/
153 
154 static struct kmem_cache	*kiocb_cachep;
155 static struct kmem_cache	*kioctx_cachep;
156 
157 static struct vfsmount *aio_mnt;
158 
159 static const struct file_operations aio_ring_fops;
160 static const struct address_space_operations aio_ctx_aops;
161 
162 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
163 {
164 	struct qstr this = QSTR_INIT("[aio]", 5);
165 	struct file *file;
166 	struct path path;
167 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
168 	if (IS_ERR(inode))
169 		return ERR_CAST(inode);
170 
171 	inode->i_mapping->a_ops = &aio_ctx_aops;
172 	inode->i_mapping->private_data = ctx;
173 	inode->i_size = PAGE_SIZE * nr_pages;
174 
175 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
176 	if (!path.dentry) {
177 		iput(inode);
178 		return ERR_PTR(-ENOMEM);
179 	}
180 	path.mnt = mntget(aio_mnt);
181 
182 	d_instantiate(path.dentry, inode);
183 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
184 	if (IS_ERR(file)) {
185 		path_put(&path);
186 		return file;
187 	}
188 
189 	file->f_flags = O_RDWR;
190 	file->private_data = ctx;
191 	return file;
192 }
193 
194 static struct dentry *aio_mount(struct file_system_type *fs_type,
195 				int flags, const char *dev_name, void *data)
196 {
197 	static const struct dentry_operations ops = {
198 		.d_dname	= simple_dname,
199 	};
200 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
201 }
202 
203 /* aio_setup
204  *	Creates the slab caches used by the aio routines, panic on
205  *	failure as this is done early during the boot sequence.
206  */
207 static int __init aio_setup(void)
208 {
209 	static struct file_system_type aio_fs = {
210 		.name		= "aio",
211 		.mount		= aio_mount,
212 		.kill_sb	= kill_anon_super,
213 	};
214 	aio_mnt = kern_mount(&aio_fs);
215 	if (IS_ERR(aio_mnt))
216 		panic("Failed to create aio fs mount.");
217 
218 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
219 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
220 
221 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
222 
223 	return 0;
224 }
225 __initcall(aio_setup);
226 
227 static void put_aio_ring_file(struct kioctx *ctx)
228 {
229 	struct file *aio_ring_file = ctx->aio_ring_file;
230 	if (aio_ring_file) {
231 		truncate_setsize(aio_ring_file->f_inode, 0);
232 
233 		/* Prevent further access to the kioctx from migratepages */
234 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
235 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
236 		ctx->aio_ring_file = NULL;
237 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
238 
239 		fput(aio_ring_file);
240 	}
241 }
242 
243 static void aio_free_ring(struct kioctx *ctx)
244 {
245 	int i;
246 
247 	/* Disconnect the kiotx from the ring file.  This prevents future
248 	 * accesses to the kioctx from page migration.
249 	 */
250 	put_aio_ring_file(ctx);
251 
252 	for (i = 0; i < ctx->nr_pages; i++) {
253 		struct page *page;
254 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
255 				page_count(ctx->ring_pages[i]));
256 		page = ctx->ring_pages[i];
257 		if (!page)
258 			continue;
259 		ctx->ring_pages[i] = NULL;
260 		put_page(page);
261 	}
262 
263 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
264 		kfree(ctx->ring_pages);
265 		ctx->ring_pages = NULL;
266 	}
267 }
268 
269 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
270 {
271 	vma->vm_ops = &generic_file_vm_ops;
272 	return 0;
273 }
274 
275 static const struct file_operations aio_ring_fops = {
276 	.mmap = aio_ring_mmap,
277 };
278 
279 static int aio_set_page_dirty(struct page *page)
280 {
281 	return 0;
282 }
283 
284 #if IS_ENABLED(CONFIG_MIGRATION)
285 static int aio_migratepage(struct address_space *mapping, struct page *new,
286 			struct page *old, enum migrate_mode mode)
287 {
288 	struct kioctx *ctx;
289 	unsigned long flags;
290 	pgoff_t idx;
291 	int rc;
292 
293 	rc = 0;
294 
295 	/* mapping->private_lock here protects against the kioctx teardown.  */
296 	spin_lock(&mapping->private_lock);
297 	ctx = mapping->private_data;
298 	if (!ctx) {
299 		rc = -EINVAL;
300 		goto out;
301 	}
302 
303 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
304 	 * to the ring's head, and prevents page migration from mucking in
305 	 * a partially initialized kiotx.
306 	 */
307 	if (!mutex_trylock(&ctx->ring_lock)) {
308 		rc = -EAGAIN;
309 		goto out;
310 	}
311 
312 	idx = old->index;
313 	if (idx < (pgoff_t)ctx->nr_pages) {
314 		/* Make sure the old page hasn't already been changed */
315 		if (ctx->ring_pages[idx] != old)
316 			rc = -EAGAIN;
317 	} else
318 		rc = -EINVAL;
319 
320 	if (rc != 0)
321 		goto out_unlock;
322 
323 	/* Writeback must be complete */
324 	BUG_ON(PageWriteback(old));
325 	get_page(new);
326 
327 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
328 	if (rc != MIGRATEPAGE_SUCCESS) {
329 		put_page(new);
330 		goto out_unlock;
331 	}
332 
333 	/* Take completion_lock to prevent other writes to the ring buffer
334 	 * while the old page is copied to the new.  This prevents new
335 	 * events from being lost.
336 	 */
337 	spin_lock_irqsave(&ctx->completion_lock, flags);
338 	migrate_page_copy(new, old);
339 	BUG_ON(ctx->ring_pages[idx] != old);
340 	ctx->ring_pages[idx] = new;
341 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
342 
343 	/* The old page is no longer accessible. */
344 	put_page(old);
345 
346 out_unlock:
347 	mutex_unlock(&ctx->ring_lock);
348 out:
349 	spin_unlock(&mapping->private_lock);
350 	return rc;
351 }
352 #endif
353 
354 static const struct address_space_operations aio_ctx_aops = {
355 	.set_page_dirty = aio_set_page_dirty,
356 #if IS_ENABLED(CONFIG_MIGRATION)
357 	.migratepage	= aio_migratepage,
358 #endif
359 };
360 
361 static int aio_setup_ring(struct kioctx *ctx)
362 {
363 	struct aio_ring *ring;
364 	unsigned nr_events = ctx->max_reqs;
365 	struct mm_struct *mm = current->mm;
366 	unsigned long size, unused;
367 	int nr_pages;
368 	int i;
369 	struct file *file;
370 
371 	/* Compensate for the ring buffer's head/tail overlap entry */
372 	nr_events += 2;	/* 1 is required, 2 for good luck */
373 
374 	size = sizeof(struct aio_ring);
375 	size += sizeof(struct io_event) * nr_events;
376 
377 	nr_pages = PFN_UP(size);
378 	if (nr_pages < 0)
379 		return -EINVAL;
380 
381 	file = aio_private_file(ctx, nr_pages);
382 	if (IS_ERR(file)) {
383 		ctx->aio_ring_file = NULL;
384 		return -ENOMEM;
385 	}
386 
387 	ctx->aio_ring_file = file;
388 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
389 			/ sizeof(struct io_event);
390 
391 	ctx->ring_pages = ctx->internal_pages;
392 	if (nr_pages > AIO_RING_PAGES) {
393 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
394 					  GFP_KERNEL);
395 		if (!ctx->ring_pages) {
396 			put_aio_ring_file(ctx);
397 			return -ENOMEM;
398 		}
399 	}
400 
401 	for (i = 0; i < nr_pages; i++) {
402 		struct page *page;
403 		page = find_or_create_page(file->f_inode->i_mapping,
404 					   i, GFP_HIGHUSER | __GFP_ZERO);
405 		if (!page)
406 			break;
407 		pr_debug("pid(%d) page[%d]->count=%d\n",
408 			 current->pid, i, page_count(page));
409 		SetPageUptodate(page);
410 		SetPageDirty(page);
411 		unlock_page(page);
412 
413 		ctx->ring_pages[i] = page;
414 	}
415 	ctx->nr_pages = i;
416 
417 	if (unlikely(i != nr_pages)) {
418 		aio_free_ring(ctx);
419 		return -ENOMEM;
420 	}
421 
422 	ctx->mmap_size = nr_pages * PAGE_SIZE;
423 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
424 
425 	down_write(&mm->mmap_sem);
426 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
427 				       PROT_READ | PROT_WRITE,
428 				       MAP_SHARED, 0, &unused);
429 	up_write(&mm->mmap_sem);
430 	if (IS_ERR((void *)ctx->mmap_base)) {
431 		ctx->mmap_size = 0;
432 		aio_free_ring(ctx);
433 		return -ENOMEM;
434 	}
435 
436 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
437 
438 	ctx->user_id = ctx->mmap_base;
439 	ctx->nr_events = nr_events; /* trusted copy */
440 
441 	ring = kmap_atomic(ctx->ring_pages[0]);
442 	ring->nr = nr_events;	/* user copy */
443 	ring->id = ~0U;
444 	ring->head = ring->tail = 0;
445 	ring->magic = AIO_RING_MAGIC;
446 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
447 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
448 	ring->header_length = sizeof(struct aio_ring);
449 	kunmap_atomic(ring);
450 	flush_dcache_page(ctx->ring_pages[0]);
451 
452 	return 0;
453 }
454 
455 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
456 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
457 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
458 
459 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
460 {
461 	struct kioctx *ctx = req->ki_ctx;
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&ctx->ctx_lock, flags);
465 
466 	if (!req->ki_list.next)
467 		list_add(&req->ki_list, &ctx->active_reqs);
468 
469 	req->ki_cancel = cancel;
470 
471 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
472 }
473 EXPORT_SYMBOL(kiocb_set_cancel_fn);
474 
475 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
476 {
477 	kiocb_cancel_fn *old, *cancel;
478 
479 	/*
480 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
481 	 * actually has a cancel function, hence the cmpxchg()
482 	 */
483 
484 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
485 	do {
486 		if (!cancel || cancel == KIOCB_CANCELLED)
487 			return -EINVAL;
488 
489 		old = cancel;
490 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
491 	} while (cancel != old);
492 
493 	return cancel(kiocb);
494 }
495 
496 static void free_ioctx(struct work_struct *work)
497 {
498 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
499 
500 	pr_debug("freeing %p\n", ctx);
501 
502 	aio_free_ring(ctx);
503 	free_percpu(ctx->cpu);
504 	kmem_cache_free(kioctx_cachep, ctx);
505 }
506 
507 static void free_ioctx_reqs(struct percpu_ref *ref)
508 {
509 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
510 
511 	INIT_WORK(&ctx->free_work, free_ioctx);
512 	schedule_work(&ctx->free_work);
513 }
514 
515 /*
516  * When this function runs, the kioctx has been removed from the "hash table"
517  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
518  * now it's safe to cancel any that need to be.
519  */
520 static void free_ioctx_users(struct percpu_ref *ref)
521 {
522 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
523 	struct kiocb *req;
524 
525 	spin_lock_irq(&ctx->ctx_lock);
526 
527 	while (!list_empty(&ctx->active_reqs)) {
528 		req = list_first_entry(&ctx->active_reqs,
529 				       struct kiocb, ki_list);
530 
531 		list_del_init(&req->ki_list);
532 		kiocb_cancel(ctx, req);
533 	}
534 
535 	spin_unlock_irq(&ctx->ctx_lock);
536 
537 	percpu_ref_kill(&ctx->reqs);
538 	percpu_ref_put(&ctx->reqs);
539 }
540 
541 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
542 {
543 	unsigned i, new_nr;
544 	struct kioctx_table *table, *old;
545 	struct aio_ring *ring;
546 
547 	spin_lock(&mm->ioctx_lock);
548 	rcu_read_lock();
549 	table = rcu_dereference(mm->ioctx_table);
550 
551 	while (1) {
552 		if (table)
553 			for (i = 0; i < table->nr; i++)
554 				if (!table->table[i]) {
555 					ctx->id = i;
556 					table->table[i] = ctx;
557 					rcu_read_unlock();
558 					spin_unlock(&mm->ioctx_lock);
559 
560 					/* While kioctx setup is in progress,
561 					 * we are protected from page migration
562 					 * changes ring_pages by ->ring_lock.
563 					 */
564 					ring = kmap_atomic(ctx->ring_pages[0]);
565 					ring->id = ctx->id;
566 					kunmap_atomic(ring);
567 					return 0;
568 				}
569 
570 		new_nr = (table ? table->nr : 1) * 4;
571 
572 		rcu_read_unlock();
573 		spin_unlock(&mm->ioctx_lock);
574 
575 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
576 				new_nr, GFP_KERNEL);
577 		if (!table)
578 			return -ENOMEM;
579 
580 		table->nr = new_nr;
581 
582 		spin_lock(&mm->ioctx_lock);
583 		rcu_read_lock();
584 		old = rcu_dereference(mm->ioctx_table);
585 
586 		if (!old) {
587 			rcu_assign_pointer(mm->ioctx_table, table);
588 		} else if (table->nr > old->nr) {
589 			memcpy(table->table, old->table,
590 			       old->nr * sizeof(struct kioctx *));
591 
592 			rcu_assign_pointer(mm->ioctx_table, table);
593 			kfree_rcu(old, rcu);
594 		} else {
595 			kfree(table);
596 			table = old;
597 		}
598 	}
599 }
600 
601 static void aio_nr_sub(unsigned nr)
602 {
603 	spin_lock(&aio_nr_lock);
604 	if (WARN_ON(aio_nr - nr > aio_nr))
605 		aio_nr = 0;
606 	else
607 		aio_nr -= nr;
608 	spin_unlock(&aio_nr_lock);
609 }
610 
611 /* ioctx_alloc
612  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
613  */
614 static struct kioctx *ioctx_alloc(unsigned nr_events)
615 {
616 	struct mm_struct *mm = current->mm;
617 	struct kioctx *ctx;
618 	int err = -ENOMEM;
619 
620 	/*
621 	 * We keep track of the number of available ringbuffer slots, to prevent
622 	 * overflow (reqs_available), and we also use percpu counters for this.
623 	 *
624 	 * So since up to half the slots might be on other cpu's percpu counters
625 	 * and unavailable, double nr_events so userspace sees what they
626 	 * expected: additionally, we move req_batch slots to/from percpu
627 	 * counters at a time, so make sure that isn't 0:
628 	 */
629 	nr_events = max(nr_events, num_possible_cpus() * 4);
630 	nr_events *= 2;
631 
632 	/* Prevent overflows */
633 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
634 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
635 		pr_debug("ENOMEM: nr_events too high\n");
636 		return ERR_PTR(-EINVAL);
637 	}
638 
639 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
640 		return ERR_PTR(-EAGAIN);
641 
642 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
643 	if (!ctx)
644 		return ERR_PTR(-ENOMEM);
645 
646 	ctx->max_reqs = nr_events;
647 
648 	spin_lock_init(&ctx->ctx_lock);
649 	spin_lock_init(&ctx->completion_lock);
650 	mutex_init(&ctx->ring_lock);
651 	/* Protect against page migration throughout kiotx setup by keeping
652 	 * the ring_lock mutex held until setup is complete. */
653 	mutex_lock(&ctx->ring_lock);
654 	init_waitqueue_head(&ctx->wait);
655 
656 	INIT_LIST_HEAD(&ctx->active_reqs);
657 
658 	if (percpu_ref_init(&ctx->users, free_ioctx_users))
659 		goto err;
660 
661 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs))
662 		goto err;
663 
664 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
665 	if (!ctx->cpu)
666 		goto err;
667 
668 	err = aio_setup_ring(ctx);
669 	if (err < 0)
670 		goto err;
671 
672 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
673 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
674 	if (ctx->req_batch < 1)
675 		ctx->req_batch = 1;
676 
677 	/* limit the number of system wide aios */
678 	spin_lock(&aio_nr_lock);
679 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
680 	    aio_nr + nr_events < aio_nr) {
681 		spin_unlock(&aio_nr_lock);
682 		err = -EAGAIN;
683 		goto err_ctx;
684 	}
685 	aio_nr += ctx->max_reqs;
686 	spin_unlock(&aio_nr_lock);
687 
688 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
689 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
690 
691 	err = ioctx_add_table(ctx, mm);
692 	if (err)
693 		goto err_cleanup;
694 
695 	/* Release the ring_lock mutex now that all setup is complete. */
696 	mutex_unlock(&ctx->ring_lock);
697 
698 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
699 		 ctx, ctx->user_id, mm, ctx->nr_events);
700 	return ctx;
701 
702 err_cleanup:
703 	aio_nr_sub(ctx->max_reqs);
704 err_ctx:
705 	aio_free_ring(ctx);
706 err:
707 	mutex_unlock(&ctx->ring_lock);
708 	free_percpu(ctx->cpu);
709 	free_percpu(ctx->reqs.pcpu_count);
710 	free_percpu(ctx->users.pcpu_count);
711 	kmem_cache_free(kioctx_cachep, ctx);
712 	pr_debug("error allocating ioctx %d\n", err);
713 	return ERR_PTR(err);
714 }
715 
716 /* kill_ioctx
717  *	Cancels all outstanding aio requests on an aio context.  Used
718  *	when the processes owning a context have all exited to encourage
719  *	the rapid destruction of the kioctx.
720  */
721 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
722 {
723 	if (!atomic_xchg(&ctx->dead, 1)) {
724 		struct kioctx_table *table;
725 
726 		spin_lock(&mm->ioctx_lock);
727 		rcu_read_lock();
728 		table = rcu_dereference(mm->ioctx_table);
729 
730 		WARN_ON(ctx != table->table[ctx->id]);
731 		table->table[ctx->id] = NULL;
732 		rcu_read_unlock();
733 		spin_unlock(&mm->ioctx_lock);
734 
735 		/* percpu_ref_kill() will do the necessary call_rcu() */
736 		wake_up_all(&ctx->wait);
737 
738 		/*
739 		 * It'd be more correct to do this in free_ioctx(), after all
740 		 * the outstanding kiocbs have finished - but by then io_destroy
741 		 * has already returned, so io_setup() could potentially return
742 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
743 		 *  could tell).
744 		 */
745 		aio_nr_sub(ctx->max_reqs);
746 
747 		if (ctx->mmap_size)
748 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
749 
750 		percpu_ref_kill(&ctx->users);
751 	}
752 }
753 
754 /* wait_on_sync_kiocb:
755  *	Waits on the given sync kiocb to complete.
756  */
757 ssize_t wait_on_sync_kiocb(struct kiocb *req)
758 {
759 	while (!req->ki_ctx) {
760 		set_current_state(TASK_UNINTERRUPTIBLE);
761 		if (req->ki_ctx)
762 			break;
763 		io_schedule();
764 	}
765 	__set_current_state(TASK_RUNNING);
766 	return req->ki_user_data;
767 }
768 EXPORT_SYMBOL(wait_on_sync_kiocb);
769 
770 /*
771  * exit_aio: called when the last user of mm goes away.  At this point, there is
772  * no way for any new requests to be submited or any of the io_* syscalls to be
773  * called on the context.
774  *
775  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
776  * them.
777  */
778 void exit_aio(struct mm_struct *mm)
779 {
780 	struct kioctx_table *table;
781 	struct kioctx *ctx;
782 	unsigned i = 0;
783 
784 	while (1) {
785 		rcu_read_lock();
786 		table = rcu_dereference(mm->ioctx_table);
787 
788 		do {
789 			if (!table || i >= table->nr) {
790 				rcu_read_unlock();
791 				rcu_assign_pointer(mm->ioctx_table, NULL);
792 				if (table)
793 					kfree(table);
794 				return;
795 			}
796 
797 			ctx = table->table[i++];
798 		} while (!ctx);
799 
800 		rcu_read_unlock();
801 
802 		/*
803 		 * We don't need to bother with munmap() here -
804 		 * exit_mmap(mm) is coming and it'll unmap everything.
805 		 * Since aio_free_ring() uses non-zero ->mmap_size
806 		 * as indicator that it needs to unmap the area,
807 		 * just set it to 0; aio_free_ring() is the only
808 		 * place that uses ->mmap_size, so it's safe.
809 		 */
810 		ctx->mmap_size = 0;
811 
812 		kill_ioctx(mm, ctx);
813 	}
814 }
815 
816 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
817 {
818 	struct kioctx_cpu *kcpu;
819 
820 	preempt_disable();
821 	kcpu = this_cpu_ptr(ctx->cpu);
822 
823 	kcpu->reqs_available += nr;
824 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
825 		kcpu->reqs_available -= ctx->req_batch;
826 		atomic_add(ctx->req_batch, &ctx->reqs_available);
827 	}
828 
829 	preempt_enable();
830 }
831 
832 static bool get_reqs_available(struct kioctx *ctx)
833 {
834 	struct kioctx_cpu *kcpu;
835 	bool ret = false;
836 
837 	preempt_disable();
838 	kcpu = this_cpu_ptr(ctx->cpu);
839 
840 	if (!kcpu->reqs_available) {
841 		int old, avail = atomic_read(&ctx->reqs_available);
842 
843 		do {
844 			if (avail < ctx->req_batch)
845 				goto out;
846 
847 			old = avail;
848 			avail = atomic_cmpxchg(&ctx->reqs_available,
849 					       avail, avail - ctx->req_batch);
850 		} while (avail != old);
851 
852 		kcpu->reqs_available += ctx->req_batch;
853 	}
854 
855 	ret = true;
856 	kcpu->reqs_available--;
857 out:
858 	preempt_enable();
859 	return ret;
860 }
861 
862 /* aio_get_req
863  *	Allocate a slot for an aio request.
864  * Returns NULL if no requests are free.
865  */
866 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
867 {
868 	struct kiocb *req;
869 
870 	if (!get_reqs_available(ctx))
871 		return NULL;
872 
873 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
874 	if (unlikely(!req))
875 		goto out_put;
876 
877 	percpu_ref_get(&ctx->reqs);
878 
879 	req->ki_ctx = ctx;
880 	return req;
881 out_put:
882 	put_reqs_available(ctx, 1);
883 	return NULL;
884 }
885 
886 static void kiocb_free(struct kiocb *req)
887 {
888 	if (req->ki_filp)
889 		fput(req->ki_filp);
890 	if (req->ki_eventfd != NULL)
891 		eventfd_ctx_put(req->ki_eventfd);
892 	kmem_cache_free(kiocb_cachep, req);
893 }
894 
895 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
896 {
897 	struct aio_ring __user *ring  = (void __user *)ctx_id;
898 	struct mm_struct *mm = current->mm;
899 	struct kioctx *ctx, *ret = NULL;
900 	struct kioctx_table *table;
901 	unsigned id;
902 
903 	if (get_user(id, &ring->id))
904 		return NULL;
905 
906 	rcu_read_lock();
907 	table = rcu_dereference(mm->ioctx_table);
908 
909 	if (!table || id >= table->nr)
910 		goto out;
911 
912 	ctx = table->table[id];
913 	if (ctx && ctx->user_id == ctx_id) {
914 		percpu_ref_get(&ctx->users);
915 		ret = ctx;
916 	}
917 out:
918 	rcu_read_unlock();
919 	return ret;
920 }
921 
922 /* aio_complete
923  *	Called when the io request on the given iocb is complete.
924  */
925 void aio_complete(struct kiocb *iocb, long res, long res2)
926 {
927 	struct kioctx	*ctx = iocb->ki_ctx;
928 	struct aio_ring	*ring;
929 	struct io_event	*ev_page, *event;
930 	unsigned long	flags;
931 	unsigned tail, pos;
932 
933 	/*
934 	 * Special case handling for sync iocbs:
935 	 *  - events go directly into the iocb for fast handling
936 	 *  - the sync task with the iocb in its stack holds the single iocb
937 	 *    ref, no other paths have a way to get another ref
938 	 *  - the sync task helpfully left a reference to itself in the iocb
939 	 */
940 	if (is_sync_kiocb(iocb)) {
941 		iocb->ki_user_data = res;
942 		smp_wmb();
943 		iocb->ki_ctx = ERR_PTR(-EXDEV);
944 		wake_up_process(iocb->ki_obj.tsk);
945 		return;
946 	}
947 
948 	if (iocb->ki_list.next) {
949 		unsigned long flags;
950 
951 		spin_lock_irqsave(&ctx->ctx_lock, flags);
952 		list_del(&iocb->ki_list);
953 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
954 	}
955 
956 	/*
957 	 * Add a completion event to the ring buffer. Must be done holding
958 	 * ctx->completion_lock to prevent other code from messing with the tail
959 	 * pointer since we might be called from irq context.
960 	 */
961 	spin_lock_irqsave(&ctx->completion_lock, flags);
962 
963 	tail = ctx->tail;
964 	pos = tail + AIO_EVENTS_OFFSET;
965 
966 	if (++tail >= ctx->nr_events)
967 		tail = 0;
968 
969 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
970 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
971 
972 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
973 	event->data = iocb->ki_user_data;
974 	event->res = res;
975 	event->res2 = res2;
976 
977 	kunmap_atomic(ev_page);
978 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
979 
980 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
981 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
982 		 res, res2);
983 
984 	/* after flagging the request as done, we
985 	 * must never even look at it again
986 	 */
987 	smp_wmb();	/* make event visible before updating tail */
988 
989 	ctx->tail = tail;
990 
991 	ring = kmap_atomic(ctx->ring_pages[0]);
992 	ring->tail = tail;
993 	kunmap_atomic(ring);
994 	flush_dcache_page(ctx->ring_pages[0]);
995 
996 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
997 
998 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
999 
1000 	/*
1001 	 * Check if the user asked us to deliver the result through an
1002 	 * eventfd. The eventfd_signal() function is safe to be called
1003 	 * from IRQ context.
1004 	 */
1005 	if (iocb->ki_eventfd != NULL)
1006 		eventfd_signal(iocb->ki_eventfd, 1);
1007 
1008 	/* everything turned out well, dispose of the aiocb. */
1009 	kiocb_free(iocb);
1010 
1011 	/*
1012 	 * We have to order our ring_info tail store above and test
1013 	 * of the wait list below outside the wait lock.  This is
1014 	 * like in wake_up_bit() where clearing a bit has to be
1015 	 * ordered with the unlocked test.
1016 	 */
1017 	smp_mb();
1018 
1019 	if (waitqueue_active(&ctx->wait))
1020 		wake_up(&ctx->wait);
1021 
1022 	percpu_ref_put(&ctx->reqs);
1023 }
1024 EXPORT_SYMBOL(aio_complete);
1025 
1026 /* aio_read_events
1027  *	Pull an event off of the ioctx's event ring.  Returns the number of
1028  *	events fetched
1029  */
1030 static long aio_read_events_ring(struct kioctx *ctx,
1031 				 struct io_event __user *event, long nr)
1032 {
1033 	struct aio_ring *ring;
1034 	unsigned head, tail, pos;
1035 	long ret = 0;
1036 	int copy_ret;
1037 
1038 	mutex_lock(&ctx->ring_lock);
1039 
1040 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1041 	ring = kmap_atomic(ctx->ring_pages[0]);
1042 	head = ring->head;
1043 	tail = ring->tail;
1044 	kunmap_atomic(ring);
1045 
1046 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1047 
1048 	if (head == tail)
1049 		goto out;
1050 
1051 	while (ret < nr) {
1052 		long avail;
1053 		struct io_event *ev;
1054 		struct page *page;
1055 
1056 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1057 		if (head == tail)
1058 			break;
1059 
1060 		avail = min(avail, nr - ret);
1061 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1062 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1063 
1064 		pos = head + AIO_EVENTS_OFFSET;
1065 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1066 		pos %= AIO_EVENTS_PER_PAGE;
1067 
1068 		ev = kmap(page);
1069 		copy_ret = copy_to_user(event + ret, ev + pos,
1070 					sizeof(*ev) * avail);
1071 		kunmap(page);
1072 
1073 		if (unlikely(copy_ret)) {
1074 			ret = -EFAULT;
1075 			goto out;
1076 		}
1077 
1078 		ret += avail;
1079 		head += avail;
1080 		head %= ctx->nr_events;
1081 	}
1082 
1083 	ring = kmap_atomic(ctx->ring_pages[0]);
1084 	ring->head = head;
1085 	kunmap_atomic(ring);
1086 	flush_dcache_page(ctx->ring_pages[0]);
1087 
1088 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1089 
1090 	put_reqs_available(ctx, ret);
1091 out:
1092 	mutex_unlock(&ctx->ring_lock);
1093 
1094 	return ret;
1095 }
1096 
1097 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1098 			    struct io_event __user *event, long *i)
1099 {
1100 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1101 
1102 	if (ret > 0)
1103 		*i += ret;
1104 
1105 	if (unlikely(atomic_read(&ctx->dead)))
1106 		ret = -EINVAL;
1107 
1108 	if (!*i)
1109 		*i = ret;
1110 
1111 	return ret < 0 || *i >= min_nr;
1112 }
1113 
1114 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1115 			struct io_event __user *event,
1116 			struct timespec __user *timeout)
1117 {
1118 	ktime_t until = { .tv64 = KTIME_MAX };
1119 	long ret = 0;
1120 
1121 	if (timeout) {
1122 		struct timespec	ts;
1123 
1124 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1125 			return -EFAULT;
1126 
1127 		until = timespec_to_ktime(ts);
1128 	}
1129 
1130 	/*
1131 	 * Note that aio_read_events() is being called as the conditional - i.e.
1132 	 * we're calling it after prepare_to_wait() has set task state to
1133 	 * TASK_INTERRUPTIBLE.
1134 	 *
1135 	 * But aio_read_events() can block, and if it blocks it's going to flip
1136 	 * the task state back to TASK_RUNNING.
1137 	 *
1138 	 * This should be ok, provided it doesn't flip the state back to
1139 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1140 	 * will only happen if the mutex_lock() call blocks, and we then find
1141 	 * the ringbuffer empty. So in practice we should be ok, but it's
1142 	 * something to be aware of when touching this code.
1143 	 */
1144 	wait_event_interruptible_hrtimeout(ctx->wait,
1145 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1146 
1147 	if (!ret && signal_pending(current))
1148 		ret = -EINTR;
1149 
1150 	return ret;
1151 }
1152 
1153 /* sys_io_setup:
1154  *	Create an aio_context capable of receiving at least nr_events.
1155  *	ctxp must not point to an aio_context that already exists, and
1156  *	must be initialized to 0 prior to the call.  On successful
1157  *	creation of the aio_context, *ctxp is filled in with the resulting
1158  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1159  *	if the specified nr_events exceeds internal limits.  May fail
1160  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1161  *	of available events.  May fail with -ENOMEM if insufficient kernel
1162  *	resources are available.  May fail with -EFAULT if an invalid
1163  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1164  *	implemented.
1165  */
1166 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1167 {
1168 	struct kioctx *ioctx = NULL;
1169 	unsigned long ctx;
1170 	long ret;
1171 
1172 	ret = get_user(ctx, ctxp);
1173 	if (unlikely(ret))
1174 		goto out;
1175 
1176 	ret = -EINVAL;
1177 	if (unlikely(ctx || nr_events == 0)) {
1178 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1179 		         ctx, nr_events);
1180 		goto out;
1181 	}
1182 
1183 	ioctx = ioctx_alloc(nr_events);
1184 	ret = PTR_ERR(ioctx);
1185 	if (!IS_ERR(ioctx)) {
1186 		ret = put_user(ioctx->user_id, ctxp);
1187 		if (ret)
1188 			kill_ioctx(current->mm, ioctx);
1189 		percpu_ref_put(&ioctx->users);
1190 	}
1191 
1192 out:
1193 	return ret;
1194 }
1195 
1196 /* sys_io_destroy:
1197  *	Destroy the aio_context specified.  May cancel any outstanding
1198  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1199  *	implemented.  May fail with -EINVAL if the context pointed to
1200  *	is invalid.
1201  */
1202 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1203 {
1204 	struct kioctx *ioctx = lookup_ioctx(ctx);
1205 	if (likely(NULL != ioctx)) {
1206 		kill_ioctx(current->mm, ioctx);
1207 		percpu_ref_put(&ioctx->users);
1208 		return 0;
1209 	}
1210 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1211 	return -EINVAL;
1212 }
1213 
1214 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1215 			    unsigned long, loff_t);
1216 
1217 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1218 				     int rw, char __user *buf,
1219 				     unsigned long *nr_segs,
1220 				     struct iovec **iovec,
1221 				     bool compat)
1222 {
1223 	ssize_t ret;
1224 
1225 	*nr_segs = kiocb->ki_nbytes;
1226 
1227 #ifdef CONFIG_COMPAT
1228 	if (compat)
1229 		ret = compat_rw_copy_check_uvector(rw,
1230 				(struct compat_iovec __user *)buf,
1231 				*nr_segs, 1, *iovec, iovec);
1232 	else
1233 #endif
1234 		ret = rw_copy_check_uvector(rw,
1235 				(struct iovec __user *)buf,
1236 				*nr_segs, 1, *iovec, iovec);
1237 	if (ret < 0)
1238 		return ret;
1239 
1240 	/* ki_nbytes now reflect bytes instead of segs */
1241 	kiocb->ki_nbytes = ret;
1242 	return 0;
1243 }
1244 
1245 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1246 				       int rw, char __user *buf,
1247 				       unsigned long *nr_segs,
1248 				       struct iovec *iovec)
1249 {
1250 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1251 		return -EFAULT;
1252 
1253 	iovec->iov_base = buf;
1254 	iovec->iov_len = kiocb->ki_nbytes;
1255 	*nr_segs = 1;
1256 	return 0;
1257 }
1258 
1259 /*
1260  * aio_setup_iocb:
1261  *	Performs the initial checks and aio retry method
1262  *	setup for the kiocb at the time of io submission.
1263  */
1264 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1265 			    char __user *buf, bool compat)
1266 {
1267 	struct file *file = req->ki_filp;
1268 	ssize_t ret;
1269 	unsigned long nr_segs;
1270 	int rw;
1271 	fmode_t mode;
1272 	aio_rw_op *rw_op;
1273 	struct iovec inline_vec, *iovec = &inline_vec;
1274 
1275 	switch (opcode) {
1276 	case IOCB_CMD_PREAD:
1277 	case IOCB_CMD_PREADV:
1278 		mode	= FMODE_READ;
1279 		rw	= READ;
1280 		rw_op	= file->f_op->aio_read;
1281 		goto rw_common;
1282 
1283 	case IOCB_CMD_PWRITE:
1284 	case IOCB_CMD_PWRITEV:
1285 		mode	= FMODE_WRITE;
1286 		rw	= WRITE;
1287 		rw_op	= file->f_op->aio_write;
1288 		goto rw_common;
1289 rw_common:
1290 		if (unlikely(!(file->f_mode & mode)))
1291 			return -EBADF;
1292 
1293 		if (!rw_op)
1294 			return -EINVAL;
1295 
1296 		ret = (opcode == IOCB_CMD_PREADV ||
1297 		       opcode == IOCB_CMD_PWRITEV)
1298 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1299 						&iovec, compat)
1300 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1301 						  iovec);
1302 		if (ret)
1303 			return ret;
1304 
1305 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1306 		if (ret < 0) {
1307 			if (iovec != &inline_vec)
1308 				kfree(iovec);
1309 			return ret;
1310 		}
1311 
1312 		req->ki_nbytes = ret;
1313 
1314 		/* XXX: move/kill - rw_verify_area()? */
1315 		/* This matches the pread()/pwrite() logic */
1316 		if (req->ki_pos < 0) {
1317 			ret = -EINVAL;
1318 			break;
1319 		}
1320 
1321 		if (rw == WRITE)
1322 			file_start_write(file);
1323 
1324 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1325 
1326 		if (rw == WRITE)
1327 			file_end_write(file);
1328 		break;
1329 
1330 	case IOCB_CMD_FDSYNC:
1331 		if (!file->f_op->aio_fsync)
1332 			return -EINVAL;
1333 
1334 		ret = file->f_op->aio_fsync(req, 1);
1335 		break;
1336 
1337 	case IOCB_CMD_FSYNC:
1338 		if (!file->f_op->aio_fsync)
1339 			return -EINVAL;
1340 
1341 		ret = file->f_op->aio_fsync(req, 0);
1342 		break;
1343 
1344 	default:
1345 		pr_debug("EINVAL: no operation provided\n");
1346 		return -EINVAL;
1347 	}
1348 
1349 	if (iovec != &inline_vec)
1350 		kfree(iovec);
1351 
1352 	if (ret != -EIOCBQUEUED) {
1353 		/*
1354 		 * There's no easy way to restart the syscall since other AIO's
1355 		 * may be already running. Just fail this IO with EINTR.
1356 		 */
1357 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1358 			     ret == -ERESTARTNOHAND ||
1359 			     ret == -ERESTART_RESTARTBLOCK))
1360 			ret = -EINTR;
1361 		aio_complete(req, ret, 0);
1362 	}
1363 
1364 	return 0;
1365 }
1366 
1367 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1368 			 struct iocb *iocb, bool compat)
1369 {
1370 	struct kiocb *req;
1371 	ssize_t ret;
1372 
1373 	/* enforce forwards compatibility on users */
1374 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1375 		pr_debug("EINVAL: reserve field set\n");
1376 		return -EINVAL;
1377 	}
1378 
1379 	/* prevent overflows */
1380 	if (unlikely(
1381 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1382 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1383 	    ((ssize_t)iocb->aio_nbytes < 0)
1384 	   )) {
1385 		pr_debug("EINVAL: io_submit: overflow check\n");
1386 		return -EINVAL;
1387 	}
1388 
1389 	req = aio_get_req(ctx);
1390 	if (unlikely(!req))
1391 		return -EAGAIN;
1392 
1393 	req->ki_filp = fget(iocb->aio_fildes);
1394 	if (unlikely(!req->ki_filp)) {
1395 		ret = -EBADF;
1396 		goto out_put_req;
1397 	}
1398 
1399 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1400 		/*
1401 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1402 		 * instance of the file* now. The file descriptor must be
1403 		 * an eventfd() fd, and will be signaled for each completed
1404 		 * event using the eventfd_signal() function.
1405 		 */
1406 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1407 		if (IS_ERR(req->ki_eventfd)) {
1408 			ret = PTR_ERR(req->ki_eventfd);
1409 			req->ki_eventfd = NULL;
1410 			goto out_put_req;
1411 		}
1412 	}
1413 
1414 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1415 	if (unlikely(ret)) {
1416 		pr_debug("EFAULT: aio_key\n");
1417 		goto out_put_req;
1418 	}
1419 
1420 	req->ki_obj.user = user_iocb;
1421 	req->ki_user_data = iocb->aio_data;
1422 	req->ki_pos = iocb->aio_offset;
1423 	req->ki_nbytes = iocb->aio_nbytes;
1424 
1425 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1426 			   (char __user *)(unsigned long)iocb->aio_buf,
1427 			   compat);
1428 	if (ret)
1429 		goto out_put_req;
1430 
1431 	return 0;
1432 out_put_req:
1433 	put_reqs_available(ctx, 1);
1434 	percpu_ref_put(&ctx->reqs);
1435 	kiocb_free(req);
1436 	return ret;
1437 }
1438 
1439 long do_io_submit(aio_context_t ctx_id, long nr,
1440 		  struct iocb __user *__user *iocbpp, bool compat)
1441 {
1442 	struct kioctx *ctx;
1443 	long ret = 0;
1444 	int i = 0;
1445 	struct blk_plug plug;
1446 
1447 	if (unlikely(nr < 0))
1448 		return -EINVAL;
1449 
1450 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1451 		nr = LONG_MAX/sizeof(*iocbpp);
1452 
1453 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1454 		return -EFAULT;
1455 
1456 	ctx = lookup_ioctx(ctx_id);
1457 	if (unlikely(!ctx)) {
1458 		pr_debug("EINVAL: invalid context id\n");
1459 		return -EINVAL;
1460 	}
1461 
1462 	blk_start_plug(&plug);
1463 
1464 	/*
1465 	 * AKPM: should this return a partial result if some of the IOs were
1466 	 * successfully submitted?
1467 	 */
1468 	for (i=0; i<nr; i++) {
1469 		struct iocb __user *user_iocb;
1470 		struct iocb tmp;
1471 
1472 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1473 			ret = -EFAULT;
1474 			break;
1475 		}
1476 
1477 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1478 			ret = -EFAULT;
1479 			break;
1480 		}
1481 
1482 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1483 		if (ret)
1484 			break;
1485 	}
1486 	blk_finish_plug(&plug);
1487 
1488 	percpu_ref_put(&ctx->users);
1489 	return i ? i : ret;
1490 }
1491 
1492 /* sys_io_submit:
1493  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1494  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1495  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1496  *	*iocbpp[0] is not properly initialized, if the operation specified
1497  *	is invalid for the file descriptor in the iocb.  May fail with
1498  *	-EFAULT if any of the data structures point to invalid data.  May
1499  *	fail with -EBADF if the file descriptor specified in the first
1500  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1501  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1502  *	fail with -ENOSYS if not implemented.
1503  */
1504 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1505 		struct iocb __user * __user *, iocbpp)
1506 {
1507 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1508 }
1509 
1510 /* lookup_kiocb
1511  *	Finds a given iocb for cancellation.
1512  */
1513 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1514 				  u32 key)
1515 {
1516 	struct list_head *pos;
1517 
1518 	assert_spin_locked(&ctx->ctx_lock);
1519 
1520 	if (key != KIOCB_KEY)
1521 		return NULL;
1522 
1523 	/* TODO: use a hash or array, this sucks. */
1524 	list_for_each(pos, &ctx->active_reqs) {
1525 		struct kiocb *kiocb = list_kiocb(pos);
1526 		if (kiocb->ki_obj.user == iocb)
1527 			return kiocb;
1528 	}
1529 	return NULL;
1530 }
1531 
1532 /* sys_io_cancel:
1533  *	Attempts to cancel an iocb previously passed to io_submit.  If
1534  *	the operation is successfully cancelled, the resulting event is
1535  *	copied into the memory pointed to by result without being placed
1536  *	into the completion queue and 0 is returned.  May fail with
1537  *	-EFAULT if any of the data structures pointed to are invalid.
1538  *	May fail with -EINVAL if aio_context specified by ctx_id is
1539  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1540  *	cancelled.  Will fail with -ENOSYS if not implemented.
1541  */
1542 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1543 		struct io_event __user *, result)
1544 {
1545 	struct kioctx *ctx;
1546 	struct kiocb *kiocb;
1547 	u32 key;
1548 	int ret;
1549 
1550 	ret = get_user(key, &iocb->aio_key);
1551 	if (unlikely(ret))
1552 		return -EFAULT;
1553 
1554 	ctx = lookup_ioctx(ctx_id);
1555 	if (unlikely(!ctx))
1556 		return -EINVAL;
1557 
1558 	spin_lock_irq(&ctx->ctx_lock);
1559 
1560 	kiocb = lookup_kiocb(ctx, iocb, key);
1561 	if (kiocb)
1562 		ret = kiocb_cancel(ctx, kiocb);
1563 	else
1564 		ret = -EINVAL;
1565 
1566 	spin_unlock_irq(&ctx->ctx_lock);
1567 
1568 	if (!ret) {
1569 		/*
1570 		 * The result argument is no longer used - the io_event is
1571 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1572 		 * cancellation is progress:
1573 		 */
1574 		ret = -EINPROGRESS;
1575 	}
1576 
1577 	percpu_ref_put(&ctx->users);
1578 
1579 	return ret;
1580 }
1581 
1582 /* io_getevents:
1583  *	Attempts to read at least min_nr events and up to nr events from
1584  *	the completion queue for the aio_context specified by ctx_id. If
1585  *	it succeeds, the number of read events is returned. May fail with
1586  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1587  *	out of range, if timeout is out of range.  May fail with -EFAULT
1588  *	if any of the memory specified is invalid.  May return 0 or
1589  *	< min_nr if the timeout specified by timeout has elapsed
1590  *	before sufficient events are available, where timeout == NULL
1591  *	specifies an infinite timeout. Note that the timeout pointed to by
1592  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1593  */
1594 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1595 		long, min_nr,
1596 		long, nr,
1597 		struct io_event __user *, events,
1598 		struct timespec __user *, timeout)
1599 {
1600 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1601 	long ret = -EINVAL;
1602 
1603 	if (likely(ioctx)) {
1604 		if (likely(min_nr <= nr && min_nr >= 0))
1605 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1606 		percpu_ref_put(&ioctx->users);
1607 	}
1608 	return ret;
1609 }
1610