1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct kioctx { 81 struct percpu_ref users; 82 atomic_t dead; 83 84 struct percpu_ref reqs; 85 86 unsigned long user_id; 87 88 struct __percpu kioctx_cpu *cpu; 89 90 /* 91 * For percpu reqs_available, number of slots we move to/from global 92 * counter at a time: 93 */ 94 unsigned req_batch; 95 /* 96 * This is what userspace passed to io_setup(), it's not used for 97 * anything but counting against the global max_reqs quota. 98 * 99 * The real limit is nr_events - 1, which will be larger (see 100 * aio_setup_ring()) 101 */ 102 unsigned max_reqs; 103 104 /* Size of ringbuffer, in units of struct io_event */ 105 unsigned nr_events; 106 107 unsigned long mmap_base; 108 unsigned long mmap_size; 109 110 struct page **ring_pages; 111 long nr_pages; 112 113 struct work_struct free_work; 114 115 struct { 116 /* 117 * This counts the number of available slots in the ringbuffer, 118 * so we avoid overflowing it: it's decremented (if positive) 119 * when allocating a kiocb and incremented when the resulting 120 * io_event is pulled off the ringbuffer. 121 * 122 * We batch accesses to it with a percpu version. 123 */ 124 atomic_t reqs_available; 125 } ____cacheline_aligned_in_smp; 126 127 struct { 128 spinlock_t ctx_lock; 129 struct list_head active_reqs; /* used for cancellation */ 130 } ____cacheline_aligned_in_smp; 131 132 struct { 133 struct mutex ring_lock; 134 wait_queue_head_t wait; 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 unsigned tail; 139 spinlock_t completion_lock; 140 } ____cacheline_aligned_in_smp; 141 142 struct page *internal_pages[AIO_RING_PAGES]; 143 struct file *aio_ring_file; 144 145 unsigned id; 146 }; 147 148 /*------ sysctl variables----*/ 149 static DEFINE_SPINLOCK(aio_nr_lock); 150 unsigned long aio_nr; /* current system wide number of aio requests */ 151 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 152 /*----end sysctl variables---*/ 153 154 static struct kmem_cache *kiocb_cachep; 155 static struct kmem_cache *kioctx_cachep; 156 157 static struct vfsmount *aio_mnt; 158 159 static const struct file_operations aio_ring_fops; 160 static const struct address_space_operations aio_ctx_aops; 161 162 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 163 { 164 struct qstr this = QSTR_INIT("[aio]", 5); 165 struct file *file; 166 struct path path; 167 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 168 if (IS_ERR(inode)) 169 return ERR_CAST(inode); 170 171 inode->i_mapping->a_ops = &aio_ctx_aops; 172 inode->i_mapping->private_data = ctx; 173 inode->i_size = PAGE_SIZE * nr_pages; 174 175 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 176 if (!path.dentry) { 177 iput(inode); 178 return ERR_PTR(-ENOMEM); 179 } 180 path.mnt = mntget(aio_mnt); 181 182 d_instantiate(path.dentry, inode); 183 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 184 if (IS_ERR(file)) { 185 path_put(&path); 186 return file; 187 } 188 189 file->f_flags = O_RDWR; 190 file->private_data = ctx; 191 return file; 192 } 193 194 static struct dentry *aio_mount(struct file_system_type *fs_type, 195 int flags, const char *dev_name, void *data) 196 { 197 static const struct dentry_operations ops = { 198 .d_dname = simple_dname, 199 }; 200 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 201 } 202 203 /* aio_setup 204 * Creates the slab caches used by the aio routines, panic on 205 * failure as this is done early during the boot sequence. 206 */ 207 static int __init aio_setup(void) 208 { 209 static struct file_system_type aio_fs = { 210 .name = "aio", 211 .mount = aio_mount, 212 .kill_sb = kill_anon_super, 213 }; 214 aio_mnt = kern_mount(&aio_fs); 215 if (IS_ERR(aio_mnt)) 216 panic("Failed to create aio fs mount."); 217 218 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 219 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 220 221 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 222 223 return 0; 224 } 225 __initcall(aio_setup); 226 227 static void put_aio_ring_file(struct kioctx *ctx) 228 { 229 struct file *aio_ring_file = ctx->aio_ring_file; 230 if (aio_ring_file) { 231 truncate_setsize(aio_ring_file->f_inode, 0); 232 233 /* Prevent further access to the kioctx from migratepages */ 234 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 235 aio_ring_file->f_inode->i_mapping->private_data = NULL; 236 ctx->aio_ring_file = NULL; 237 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 238 239 fput(aio_ring_file); 240 } 241 } 242 243 static void aio_free_ring(struct kioctx *ctx) 244 { 245 int i; 246 247 /* Disconnect the kiotx from the ring file. This prevents future 248 * accesses to the kioctx from page migration. 249 */ 250 put_aio_ring_file(ctx); 251 252 for (i = 0; i < ctx->nr_pages; i++) { 253 struct page *page; 254 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 255 page_count(ctx->ring_pages[i])); 256 page = ctx->ring_pages[i]; 257 if (!page) 258 continue; 259 ctx->ring_pages[i] = NULL; 260 put_page(page); 261 } 262 263 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 264 kfree(ctx->ring_pages); 265 ctx->ring_pages = NULL; 266 } 267 } 268 269 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 270 { 271 vma->vm_ops = &generic_file_vm_ops; 272 return 0; 273 } 274 275 static const struct file_operations aio_ring_fops = { 276 .mmap = aio_ring_mmap, 277 }; 278 279 static int aio_set_page_dirty(struct page *page) 280 { 281 return 0; 282 } 283 284 #if IS_ENABLED(CONFIG_MIGRATION) 285 static int aio_migratepage(struct address_space *mapping, struct page *new, 286 struct page *old, enum migrate_mode mode) 287 { 288 struct kioctx *ctx; 289 unsigned long flags; 290 pgoff_t idx; 291 int rc; 292 293 rc = 0; 294 295 /* mapping->private_lock here protects against the kioctx teardown. */ 296 spin_lock(&mapping->private_lock); 297 ctx = mapping->private_data; 298 if (!ctx) { 299 rc = -EINVAL; 300 goto out; 301 } 302 303 /* The ring_lock mutex. The prevents aio_read_events() from writing 304 * to the ring's head, and prevents page migration from mucking in 305 * a partially initialized kiotx. 306 */ 307 if (!mutex_trylock(&ctx->ring_lock)) { 308 rc = -EAGAIN; 309 goto out; 310 } 311 312 idx = old->index; 313 if (idx < (pgoff_t)ctx->nr_pages) { 314 /* Make sure the old page hasn't already been changed */ 315 if (ctx->ring_pages[idx] != old) 316 rc = -EAGAIN; 317 } else 318 rc = -EINVAL; 319 320 if (rc != 0) 321 goto out_unlock; 322 323 /* Writeback must be complete */ 324 BUG_ON(PageWriteback(old)); 325 get_page(new); 326 327 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 328 if (rc != MIGRATEPAGE_SUCCESS) { 329 put_page(new); 330 goto out_unlock; 331 } 332 333 /* Take completion_lock to prevent other writes to the ring buffer 334 * while the old page is copied to the new. This prevents new 335 * events from being lost. 336 */ 337 spin_lock_irqsave(&ctx->completion_lock, flags); 338 migrate_page_copy(new, old); 339 BUG_ON(ctx->ring_pages[idx] != old); 340 ctx->ring_pages[idx] = new; 341 spin_unlock_irqrestore(&ctx->completion_lock, flags); 342 343 /* The old page is no longer accessible. */ 344 put_page(old); 345 346 out_unlock: 347 mutex_unlock(&ctx->ring_lock); 348 out: 349 spin_unlock(&mapping->private_lock); 350 return rc; 351 } 352 #endif 353 354 static const struct address_space_operations aio_ctx_aops = { 355 .set_page_dirty = aio_set_page_dirty, 356 #if IS_ENABLED(CONFIG_MIGRATION) 357 .migratepage = aio_migratepage, 358 #endif 359 }; 360 361 static int aio_setup_ring(struct kioctx *ctx) 362 { 363 struct aio_ring *ring; 364 unsigned nr_events = ctx->max_reqs; 365 struct mm_struct *mm = current->mm; 366 unsigned long size, unused; 367 int nr_pages; 368 int i; 369 struct file *file; 370 371 /* Compensate for the ring buffer's head/tail overlap entry */ 372 nr_events += 2; /* 1 is required, 2 for good luck */ 373 374 size = sizeof(struct aio_ring); 375 size += sizeof(struct io_event) * nr_events; 376 377 nr_pages = PFN_UP(size); 378 if (nr_pages < 0) 379 return -EINVAL; 380 381 file = aio_private_file(ctx, nr_pages); 382 if (IS_ERR(file)) { 383 ctx->aio_ring_file = NULL; 384 return -ENOMEM; 385 } 386 387 ctx->aio_ring_file = file; 388 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 389 / sizeof(struct io_event); 390 391 ctx->ring_pages = ctx->internal_pages; 392 if (nr_pages > AIO_RING_PAGES) { 393 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 394 GFP_KERNEL); 395 if (!ctx->ring_pages) { 396 put_aio_ring_file(ctx); 397 return -ENOMEM; 398 } 399 } 400 401 for (i = 0; i < nr_pages; i++) { 402 struct page *page; 403 page = find_or_create_page(file->f_inode->i_mapping, 404 i, GFP_HIGHUSER | __GFP_ZERO); 405 if (!page) 406 break; 407 pr_debug("pid(%d) page[%d]->count=%d\n", 408 current->pid, i, page_count(page)); 409 SetPageUptodate(page); 410 SetPageDirty(page); 411 unlock_page(page); 412 413 ctx->ring_pages[i] = page; 414 } 415 ctx->nr_pages = i; 416 417 if (unlikely(i != nr_pages)) { 418 aio_free_ring(ctx); 419 return -ENOMEM; 420 } 421 422 ctx->mmap_size = nr_pages * PAGE_SIZE; 423 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 424 425 down_write(&mm->mmap_sem); 426 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 427 PROT_READ | PROT_WRITE, 428 MAP_SHARED, 0, &unused); 429 up_write(&mm->mmap_sem); 430 if (IS_ERR((void *)ctx->mmap_base)) { 431 ctx->mmap_size = 0; 432 aio_free_ring(ctx); 433 return -ENOMEM; 434 } 435 436 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 437 438 ctx->user_id = ctx->mmap_base; 439 ctx->nr_events = nr_events; /* trusted copy */ 440 441 ring = kmap_atomic(ctx->ring_pages[0]); 442 ring->nr = nr_events; /* user copy */ 443 ring->id = ~0U; 444 ring->head = ring->tail = 0; 445 ring->magic = AIO_RING_MAGIC; 446 ring->compat_features = AIO_RING_COMPAT_FEATURES; 447 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 448 ring->header_length = sizeof(struct aio_ring); 449 kunmap_atomic(ring); 450 flush_dcache_page(ctx->ring_pages[0]); 451 452 return 0; 453 } 454 455 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 456 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 457 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 458 459 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 460 { 461 struct kioctx *ctx = req->ki_ctx; 462 unsigned long flags; 463 464 spin_lock_irqsave(&ctx->ctx_lock, flags); 465 466 if (!req->ki_list.next) 467 list_add(&req->ki_list, &ctx->active_reqs); 468 469 req->ki_cancel = cancel; 470 471 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 472 } 473 EXPORT_SYMBOL(kiocb_set_cancel_fn); 474 475 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 476 { 477 kiocb_cancel_fn *old, *cancel; 478 479 /* 480 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 481 * actually has a cancel function, hence the cmpxchg() 482 */ 483 484 cancel = ACCESS_ONCE(kiocb->ki_cancel); 485 do { 486 if (!cancel || cancel == KIOCB_CANCELLED) 487 return -EINVAL; 488 489 old = cancel; 490 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 491 } while (cancel != old); 492 493 return cancel(kiocb); 494 } 495 496 static void free_ioctx(struct work_struct *work) 497 { 498 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 499 500 pr_debug("freeing %p\n", ctx); 501 502 aio_free_ring(ctx); 503 free_percpu(ctx->cpu); 504 kmem_cache_free(kioctx_cachep, ctx); 505 } 506 507 static void free_ioctx_reqs(struct percpu_ref *ref) 508 { 509 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 510 511 INIT_WORK(&ctx->free_work, free_ioctx); 512 schedule_work(&ctx->free_work); 513 } 514 515 /* 516 * When this function runs, the kioctx has been removed from the "hash table" 517 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 518 * now it's safe to cancel any that need to be. 519 */ 520 static void free_ioctx_users(struct percpu_ref *ref) 521 { 522 struct kioctx *ctx = container_of(ref, struct kioctx, users); 523 struct kiocb *req; 524 525 spin_lock_irq(&ctx->ctx_lock); 526 527 while (!list_empty(&ctx->active_reqs)) { 528 req = list_first_entry(&ctx->active_reqs, 529 struct kiocb, ki_list); 530 531 list_del_init(&req->ki_list); 532 kiocb_cancel(ctx, req); 533 } 534 535 spin_unlock_irq(&ctx->ctx_lock); 536 537 percpu_ref_kill(&ctx->reqs); 538 percpu_ref_put(&ctx->reqs); 539 } 540 541 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 542 { 543 unsigned i, new_nr; 544 struct kioctx_table *table, *old; 545 struct aio_ring *ring; 546 547 spin_lock(&mm->ioctx_lock); 548 rcu_read_lock(); 549 table = rcu_dereference(mm->ioctx_table); 550 551 while (1) { 552 if (table) 553 for (i = 0; i < table->nr; i++) 554 if (!table->table[i]) { 555 ctx->id = i; 556 table->table[i] = ctx; 557 rcu_read_unlock(); 558 spin_unlock(&mm->ioctx_lock); 559 560 /* While kioctx setup is in progress, 561 * we are protected from page migration 562 * changes ring_pages by ->ring_lock. 563 */ 564 ring = kmap_atomic(ctx->ring_pages[0]); 565 ring->id = ctx->id; 566 kunmap_atomic(ring); 567 return 0; 568 } 569 570 new_nr = (table ? table->nr : 1) * 4; 571 572 rcu_read_unlock(); 573 spin_unlock(&mm->ioctx_lock); 574 575 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 576 new_nr, GFP_KERNEL); 577 if (!table) 578 return -ENOMEM; 579 580 table->nr = new_nr; 581 582 spin_lock(&mm->ioctx_lock); 583 rcu_read_lock(); 584 old = rcu_dereference(mm->ioctx_table); 585 586 if (!old) { 587 rcu_assign_pointer(mm->ioctx_table, table); 588 } else if (table->nr > old->nr) { 589 memcpy(table->table, old->table, 590 old->nr * sizeof(struct kioctx *)); 591 592 rcu_assign_pointer(mm->ioctx_table, table); 593 kfree_rcu(old, rcu); 594 } else { 595 kfree(table); 596 table = old; 597 } 598 } 599 } 600 601 static void aio_nr_sub(unsigned nr) 602 { 603 spin_lock(&aio_nr_lock); 604 if (WARN_ON(aio_nr - nr > aio_nr)) 605 aio_nr = 0; 606 else 607 aio_nr -= nr; 608 spin_unlock(&aio_nr_lock); 609 } 610 611 /* ioctx_alloc 612 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 613 */ 614 static struct kioctx *ioctx_alloc(unsigned nr_events) 615 { 616 struct mm_struct *mm = current->mm; 617 struct kioctx *ctx; 618 int err = -ENOMEM; 619 620 /* 621 * We keep track of the number of available ringbuffer slots, to prevent 622 * overflow (reqs_available), and we also use percpu counters for this. 623 * 624 * So since up to half the slots might be on other cpu's percpu counters 625 * and unavailable, double nr_events so userspace sees what they 626 * expected: additionally, we move req_batch slots to/from percpu 627 * counters at a time, so make sure that isn't 0: 628 */ 629 nr_events = max(nr_events, num_possible_cpus() * 4); 630 nr_events *= 2; 631 632 /* Prevent overflows */ 633 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 634 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 635 pr_debug("ENOMEM: nr_events too high\n"); 636 return ERR_PTR(-EINVAL); 637 } 638 639 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 640 return ERR_PTR(-EAGAIN); 641 642 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 643 if (!ctx) 644 return ERR_PTR(-ENOMEM); 645 646 ctx->max_reqs = nr_events; 647 648 spin_lock_init(&ctx->ctx_lock); 649 spin_lock_init(&ctx->completion_lock); 650 mutex_init(&ctx->ring_lock); 651 /* Protect against page migration throughout kiotx setup by keeping 652 * the ring_lock mutex held until setup is complete. */ 653 mutex_lock(&ctx->ring_lock); 654 init_waitqueue_head(&ctx->wait); 655 656 INIT_LIST_HEAD(&ctx->active_reqs); 657 658 if (percpu_ref_init(&ctx->users, free_ioctx_users)) 659 goto err; 660 661 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs)) 662 goto err; 663 664 ctx->cpu = alloc_percpu(struct kioctx_cpu); 665 if (!ctx->cpu) 666 goto err; 667 668 err = aio_setup_ring(ctx); 669 if (err < 0) 670 goto err; 671 672 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 673 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 674 if (ctx->req_batch < 1) 675 ctx->req_batch = 1; 676 677 /* limit the number of system wide aios */ 678 spin_lock(&aio_nr_lock); 679 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 680 aio_nr + nr_events < aio_nr) { 681 spin_unlock(&aio_nr_lock); 682 err = -EAGAIN; 683 goto err_ctx; 684 } 685 aio_nr += ctx->max_reqs; 686 spin_unlock(&aio_nr_lock); 687 688 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 689 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 690 691 err = ioctx_add_table(ctx, mm); 692 if (err) 693 goto err_cleanup; 694 695 /* Release the ring_lock mutex now that all setup is complete. */ 696 mutex_unlock(&ctx->ring_lock); 697 698 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 699 ctx, ctx->user_id, mm, ctx->nr_events); 700 return ctx; 701 702 err_cleanup: 703 aio_nr_sub(ctx->max_reqs); 704 err_ctx: 705 aio_free_ring(ctx); 706 err: 707 mutex_unlock(&ctx->ring_lock); 708 free_percpu(ctx->cpu); 709 free_percpu(ctx->reqs.pcpu_count); 710 free_percpu(ctx->users.pcpu_count); 711 kmem_cache_free(kioctx_cachep, ctx); 712 pr_debug("error allocating ioctx %d\n", err); 713 return ERR_PTR(err); 714 } 715 716 /* kill_ioctx 717 * Cancels all outstanding aio requests on an aio context. Used 718 * when the processes owning a context have all exited to encourage 719 * the rapid destruction of the kioctx. 720 */ 721 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 722 { 723 if (!atomic_xchg(&ctx->dead, 1)) { 724 struct kioctx_table *table; 725 726 spin_lock(&mm->ioctx_lock); 727 rcu_read_lock(); 728 table = rcu_dereference(mm->ioctx_table); 729 730 WARN_ON(ctx != table->table[ctx->id]); 731 table->table[ctx->id] = NULL; 732 rcu_read_unlock(); 733 spin_unlock(&mm->ioctx_lock); 734 735 /* percpu_ref_kill() will do the necessary call_rcu() */ 736 wake_up_all(&ctx->wait); 737 738 /* 739 * It'd be more correct to do this in free_ioctx(), after all 740 * the outstanding kiocbs have finished - but by then io_destroy 741 * has already returned, so io_setup() could potentially return 742 * -EAGAIN with no ioctxs actually in use (as far as userspace 743 * could tell). 744 */ 745 aio_nr_sub(ctx->max_reqs); 746 747 if (ctx->mmap_size) 748 vm_munmap(ctx->mmap_base, ctx->mmap_size); 749 750 percpu_ref_kill(&ctx->users); 751 } 752 } 753 754 /* wait_on_sync_kiocb: 755 * Waits on the given sync kiocb to complete. 756 */ 757 ssize_t wait_on_sync_kiocb(struct kiocb *req) 758 { 759 while (!req->ki_ctx) { 760 set_current_state(TASK_UNINTERRUPTIBLE); 761 if (req->ki_ctx) 762 break; 763 io_schedule(); 764 } 765 __set_current_state(TASK_RUNNING); 766 return req->ki_user_data; 767 } 768 EXPORT_SYMBOL(wait_on_sync_kiocb); 769 770 /* 771 * exit_aio: called when the last user of mm goes away. At this point, there is 772 * no way for any new requests to be submited or any of the io_* syscalls to be 773 * called on the context. 774 * 775 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 776 * them. 777 */ 778 void exit_aio(struct mm_struct *mm) 779 { 780 struct kioctx_table *table; 781 struct kioctx *ctx; 782 unsigned i = 0; 783 784 while (1) { 785 rcu_read_lock(); 786 table = rcu_dereference(mm->ioctx_table); 787 788 do { 789 if (!table || i >= table->nr) { 790 rcu_read_unlock(); 791 rcu_assign_pointer(mm->ioctx_table, NULL); 792 if (table) 793 kfree(table); 794 return; 795 } 796 797 ctx = table->table[i++]; 798 } while (!ctx); 799 800 rcu_read_unlock(); 801 802 /* 803 * We don't need to bother with munmap() here - 804 * exit_mmap(mm) is coming and it'll unmap everything. 805 * Since aio_free_ring() uses non-zero ->mmap_size 806 * as indicator that it needs to unmap the area, 807 * just set it to 0; aio_free_ring() is the only 808 * place that uses ->mmap_size, so it's safe. 809 */ 810 ctx->mmap_size = 0; 811 812 kill_ioctx(mm, ctx); 813 } 814 } 815 816 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 817 { 818 struct kioctx_cpu *kcpu; 819 820 preempt_disable(); 821 kcpu = this_cpu_ptr(ctx->cpu); 822 823 kcpu->reqs_available += nr; 824 while (kcpu->reqs_available >= ctx->req_batch * 2) { 825 kcpu->reqs_available -= ctx->req_batch; 826 atomic_add(ctx->req_batch, &ctx->reqs_available); 827 } 828 829 preempt_enable(); 830 } 831 832 static bool get_reqs_available(struct kioctx *ctx) 833 { 834 struct kioctx_cpu *kcpu; 835 bool ret = false; 836 837 preempt_disable(); 838 kcpu = this_cpu_ptr(ctx->cpu); 839 840 if (!kcpu->reqs_available) { 841 int old, avail = atomic_read(&ctx->reqs_available); 842 843 do { 844 if (avail < ctx->req_batch) 845 goto out; 846 847 old = avail; 848 avail = atomic_cmpxchg(&ctx->reqs_available, 849 avail, avail - ctx->req_batch); 850 } while (avail != old); 851 852 kcpu->reqs_available += ctx->req_batch; 853 } 854 855 ret = true; 856 kcpu->reqs_available--; 857 out: 858 preempt_enable(); 859 return ret; 860 } 861 862 /* aio_get_req 863 * Allocate a slot for an aio request. 864 * Returns NULL if no requests are free. 865 */ 866 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 867 { 868 struct kiocb *req; 869 870 if (!get_reqs_available(ctx)) 871 return NULL; 872 873 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 874 if (unlikely(!req)) 875 goto out_put; 876 877 percpu_ref_get(&ctx->reqs); 878 879 req->ki_ctx = ctx; 880 return req; 881 out_put: 882 put_reqs_available(ctx, 1); 883 return NULL; 884 } 885 886 static void kiocb_free(struct kiocb *req) 887 { 888 if (req->ki_filp) 889 fput(req->ki_filp); 890 if (req->ki_eventfd != NULL) 891 eventfd_ctx_put(req->ki_eventfd); 892 kmem_cache_free(kiocb_cachep, req); 893 } 894 895 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 896 { 897 struct aio_ring __user *ring = (void __user *)ctx_id; 898 struct mm_struct *mm = current->mm; 899 struct kioctx *ctx, *ret = NULL; 900 struct kioctx_table *table; 901 unsigned id; 902 903 if (get_user(id, &ring->id)) 904 return NULL; 905 906 rcu_read_lock(); 907 table = rcu_dereference(mm->ioctx_table); 908 909 if (!table || id >= table->nr) 910 goto out; 911 912 ctx = table->table[id]; 913 if (ctx && ctx->user_id == ctx_id) { 914 percpu_ref_get(&ctx->users); 915 ret = ctx; 916 } 917 out: 918 rcu_read_unlock(); 919 return ret; 920 } 921 922 /* aio_complete 923 * Called when the io request on the given iocb is complete. 924 */ 925 void aio_complete(struct kiocb *iocb, long res, long res2) 926 { 927 struct kioctx *ctx = iocb->ki_ctx; 928 struct aio_ring *ring; 929 struct io_event *ev_page, *event; 930 unsigned long flags; 931 unsigned tail, pos; 932 933 /* 934 * Special case handling for sync iocbs: 935 * - events go directly into the iocb for fast handling 936 * - the sync task with the iocb in its stack holds the single iocb 937 * ref, no other paths have a way to get another ref 938 * - the sync task helpfully left a reference to itself in the iocb 939 */ 940 if (is_sync_kiocb(iocb)) { 941 iocb->ki_user_data = res; 942 smp_wmb(); 943 iocb->ki_ctx = ERR_PTR(-EXDEV); 944 wake_up_process(iocb->ki_obj.tsk); 945 return; 946 } 947 948 if (iocb->ki_list.next) { 949 unsigned long flags; 950 951 spin_lock_irqsave(&ctx->ctx_lock, flags); 952 list_del(&iocb->ki_list); 953 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 954 } 955 956 /* 957 * Add a completion event to the ring buffer. Must be done holding 958 * ctx->completion_lock to prevent other code from messing with the tail 959 * pointer since we might be called from irq context. 960 */ 961 spin_lock_irqsave(&ctx->completion_lock, flags); 962 963 tail = ctx->tail; 964 pos = tail + AIO_EVENTS_OFFSET; 965 966 if (++tail >= ctx->nr_events) 967 tail = 0; 968 969 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 970 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 971 972 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 973 event->data = iocb->ki_user_data; 974 event->res = res; 975 event->res2 = res2; 976 977 kunmap_atomic(ev_page); 978 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 979 980 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 981 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 982 res, res2); 983 984 /* after flagging the request as done, we 985 * must never even look at it again 986 */ 987 smp_wmb(); /* make event visible before updating tail */ 988 989 ctx->tail = tail; 990 991 ring = kmap_atomic(ctx->ring_pages[0]); 992 ring->tail = tail; 993 kunmap_atomic(ring); 994 flush_dcache_page(ctx->ring_pages[0]); 995 996 spin_unlock_irqrestore(&ctx->completion_lock, flags); 997 998 pr_debug("added to ring %p at [%u]\n", iocb, tail); 999 1000 /* 1001 * Check if the user asked us to deliver the result through an 1002 * eventfd. The eventfd_signal() function is safe to be called 1003 * from IRQ context. 1004 */ 1005 if (iocb->ki_eventfd != NULL) 1006 eventfd_signal(iocb->ki_eventfd, 1); 1007 1008 /* everything turned out well, dispose of the aiocb. */ 1009 kiocb_free(iocb); 1010 1011 /* 1012 * We have to order our ring_info tail store above and test 1013 * of the wait list below outside the wait lock. This is 1014 * like in wake_up_bit() where clearing a bit has to be 1015 * ordered with the unlocked test. 1016 */ 1017 smp_mb(); 1018 1019 if (waitqueue_active(&ctx->wait)) 1020 wake_up(&ctx->wait); 1021 1022 percpu_ref_put(&ctx->reqs); 1023 } 1024 EXPORT_SYMBOL(aio_complete); 1025 1026 /* aio_read_events 1027 * Pull an event off of the ioctx's event ring. Returns the number of 1028 * events fetched 1029 */ 1030 static long aio_read_events_ring(struct kioctx *ctx, 1031 struct io_event __user *event, long nr) 1032 { 1033 struct aio_ring *ring; 1034 unsigned head, tail, pos; 1035 long ret = 0; 1036 int copy_ret; 1037 1038 mutex_lock(&ctx->ring_lock); 1039 1040 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1041 ring = kmap_atomic(ctx->ring_pages[0]); 1042 head = ring->head; 1043 tail = ring->tail; 1044 kunmap_atomic(ring); 1045 1046 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1047 1048 if (head == tail) 1049 goto out; 1050 1051 while (ret < nr) { 1052 long avail; 1053 struct io_event *ev; 1054 struct page *page; 1055 1056 avail = (head <= tail ? tail : ctx->nr_events) - head; 1057 if (head == tail) 1058 break; 1059 1060 avail = min(avail, nr - ret); 1061 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1062 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1063 1064 pos = head + AIO_EVENTS_OFFSET; 1065 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1066 pos %= AIO_EVENTS_PER_PAGE; 1067 1068 ev = kmap(page); 1069 copy_ret = copy_to_user(event + ret, ev + pos, 1070 sizeof(*ev) * avail); 1071 kunmap(page); 1072 1073 if (unlikely(copy_ret)) { 1074 ret = -EFAULT; 1075 goto out; 1076 } 1077 1078 ret += avail; 1079 head += avail; 1080 head %= ctx->nr_events; 1081 } 1082 1083 ring = kmap_atomic(ctx->ring_pages[0]); 1084 ring->head = head; 1085 kunmap_atomic(ring); 1086 flush_dcache_page(ctx->ring_pages[0]); 1087 1088 pr_debug("%li h%u t%u\n", ret, head, tail); 1089 1090 put_reqs_available(ctx, ret); 1091 out: 1092 mutex_unlock(&ctx->ring_lock); 1093 1094 return ret; 1095 } 1096 1097 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1098 struct io_event __user *event, long *i) 1099 { 1100 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1101 1102 if (ret > 0) 1103 *i += ret; 1104 1105 if (unlikely(atomic_read(&ctx->dead))) 1106 ret = -EINVAL; 1107 1108 if (!*i) 1109 *i = ret; 1110 1111 return ret < 0 || *i >= min_nr; 1112 } 1113 1114 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1115 struct io_event __user *event, 1116 struct timespec __user *timeout) 1117 { 1118 ktime_t until = { .tv64 = KTIME_MAX }; 1119 long ret = 0; 1120 1121 if (timeout) { 1122 struct timespec ts; 1123 1124 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1125 return -EFAULT; 1126 1127 until = timespec_to_ktime(ts); 1128 } 1129 1130 /* 1131 * Note that aio_read_events() is being called as the conditional - i.e. 1132 * we're calling it after prepare_to_wait() has set task state to 1133 * TASK_INTERRUPTIBLE. 1134 * 1135 * But aio_read_events() can block, and if it blocks it's going to flip 1136 * the task state back to TASK_RUNNING. 1137 * 1138 * This should be ok, provided it doesn't flip the state back to 1139 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1140 * will only happen if the mutex_lock() call blocks, and we then find 1141 * the ringbuffer empty. So in practice we should be ok, but it's 1142 * something to be aware of when touching this code. 1143 */ 1144 wait_event_interruptible_hrtimeout(ctx->wait, 1145 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1146 1147 if (!ret && signal_pending(current)) 1148 ret = -EINTR; 1149 1150 return ret; 1151 } 1152 1153 /* sys_io_setup: 1154 * Create an aio_context capable of receiving at least nr_events. 1155 * ctxp must not point to an aio_context that already exists, and 1156 * must be initialized to 0 prior to the call. On successful 1157 * creation of the aio_context, *ctxp is filled in with the resulting 1158 * handle. May fail with -EINVAL if *ctxp is not initialized, 1159 * if the specified nr_events exceeds internal limits. May fail 1160 * with -EAGAIN if the specified nr_events exceeds the user's limit 1161 * of available events. May fail with -ENOMEM if insufficient kernel 1162 * resources are available. May fail with -EFAULT if an invalid 1163 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1164 * implemented. 1165 */ 1166 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1167 { 1168 struct kioctx *ioctx = NULL; 1169 unsigned long ctx; 1170 long ret; 1171 1172 ret = get_user(ctx, ctxp); 1173 if (unlikely(ret)) 1174 goto out; 1175 1176 ret = -EINVAL; 1177 if (unlikely(ctx || nr_events == 0)) { 1178 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1179 ctx, nr_events); 1180 goto out; 1181 } 1182 1183 ioctx = ioctx_alloc(nr_events); 1184 ret = PTR_ERR(ioctx); 1185 if (!IS_ERR(ioctx)) { 1186 ret = put_user(ioctx->user_id, ctxp); 1187 if (ret) 1188 kill_ioctx(current->mm, ioctx); 1189 percpu_ref_put(&ioctx->users); 1190 } 1191 1192 out: 1193 return ret; 1194 } 1195 1196 /* sys_io_destroy: 1197 * Destroy the aio_context specified. May cancel any outstanding 1198 * AIOs and block on completion. Will fail with -ENOSYS if not 1199 * implemented. May fail with -EINVAL if the context pointed to 1200 * is invalid. 1201 */ 1202 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1203 { 1204 struct kioctx *ioctx = lookup_ioctx(ctx); 1205 if (likely(NULL != ioctx)) { 1206 kill_ioctx(current->mm, ioctx); 1207 percpu_ref_put(&ioctx->users); 1208 return 0; 1209 } 1210 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1211 return -EINVAL; 1212 } 1213 1214 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1215 unsigned long, loff_t); 1216 1217 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1218 int rw, char __user *buf, 1219 unsigned long *nr_segs, 1220 struct iovec **iovec, 1221 bool compat) 1222 { 1223 ssize_t ret; 1224 1225 *nr_segs = kiocb->ki_nbytes; 1226 1227 #ifdef CONFIG_COMPAT 1228 if (compat) 1229 ret = compat_rw_copy_check_uvector(rw, 1230 (struct compat_iovec __user *)buf, 1231 *nr_segs, 1, *iovec, iovec); 1232 else 1233 #endif 1234 ret = rw_copy_check_uvector(rw, 1235 (struct iovec __user *)buf, 1236 *nr_segs, 1, *iovec, iovec); 1237 if (ret < 0) 1238 return ret; 1239 1240 /* ki_nbytes now reflect bytes instead of segs */ 1241 kiocb->ki_nbytes = ret; 1242 return 0; 1243 } 1244 1245 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1246 int rw, char __user *buf, 1247 unsigned long *nr_segs, 1248 struct iovec *iovec) 1249 { 1250 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1251 return -EFAULT; 1252 1253 iovec->iov_base = buf; 1254 iovec->iov_len = kiocb->ki_nbytes; 1255 *nr_segs = 1; 1256 return 0; 1257 } 1258 1259 /* 1260 * aio_setup_iocb: 1261 * Performs the initial checks and aio retry method 1262 * setup for the kiocb at the time of io submission. 1263 */ 1264 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1265 char __user *buf, bool compat) 1266 { 1267 struct file *file = req->ki_filp; 1268 ssize_t ret; 1269 unsigned long nr_segs; 1270 int rw; 1271 fmode_t mode; 1272 aio_rw_op *rw_op; 1273 struct iovec inline_vec, *iovec = &inline_vec; 1274 1275 switch (opcode) { 1276 case IOCB_CMD_PREAD: 1277 case IOCB_CMD_PREADV: 1278 mode = FMODE_READ; 1279 rw = READ; 1280 rw_op = file->f_op->aio_read; 1281 goto rw_common; 1282 1283 case IOCB_CMD_PWRITE: 1284 case IOCB_CMD_PWRITEV: 1285 mode = FMODE_WRITE; 1286 rw = WRITE; 1287 rw_op = file->f_op->aio_write; 1288 goto rw_common; 1289 rw_common: 1290 if (unlikely(!(file->f_mode & mode))) 1291 return -EBADF; 1292 1293 if (!rw_op) 1294 return -EINVAL; 1295 1296 ret = (opcode == IOCB_CMD_PREADV || 1297 opcode == IOCB_CMD_PWRITEV) 1298 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1299 &iovec, compat) 1300 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1301 iovec); 1302 if (ret) 1303 return ret; 1304 1305 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1306 if (ret < 0) { 1307 if (iovec != &inline_vec) 1308 kfree(iovec); 1309 return ret; 1310 } 1311 1312 req->ki_nbytes = ret; 1313 1314 /* XXX: move/kill - rw_verify_area()? */ 1315 /* This matches the pread()/pwrite() logic */ 1316 if (req->ki_pos < 0) { 1317 ret = -EINVAL; 1318 break; 1319 } 1320 1321 if (rw == WRITE) 1322 file_start_write(file); 1323 1324 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1325 1326 if (rw == WRITE) 1327 file_end_write(file); 1328 break; 1329 1330 case IOCB_CMD_FDSYNC: 1331 if (!file->f_op->aio_fsync) 1332 return -EINVAL; 1333 1334 ret = file->f_op->aio_fsync(req, 1); 1335 break; 1336 1337 case IOCB_CMD_FSYNC: 1338 if (!file->f_op->aio_fsync) 1339 return -EINVAL; 1340 1341 ret = file->f_op->aio_fsync(req, 0); 1342 break; 1343 1344 default: 1345 pr_debug("EINVAL: no operation provided\n"); 1346 return -EINVAL; 1347 } 1348 1349 if (iovec != &inline_vec) 1350 kfree(iovec); 1351 1352 if (ret != -EIOCBQUEUED) { 1353 /* 1354 * There's no easy way to restart the syscall since other AIO's 1355 * may be already running. Just fail this IO with EINTR. 1356 */ 1357 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1358 ret == -ERESTARTNOHAND || 1359 ret == -ERESTART_RESTARTBLOCK)) 1360 ret = -EINTR; 1361 aio_complete(req, ret, 0); 1362 } 1363 1364 return 0; 1365 } 1366 1367 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1368 struct iocb *iocb, bool compat) 1369 { 1370 struct kiocb *req; 1371 ssize_t ret; 1372 1373 /* enforce forwards compatibility on users */ 1374 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1375 pr_debug("EINVAL: reserve field set\n"); 1376 return -EINVAL; 1377 } 1378 1379 /* prevent overflows */ 1380 if (unlikely( 1381 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1382 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1383 ((ssize_t)iocb->aio_nbytes < 0) 1384 )) { 1385 pr_debug("EINVAL: io_submit: overflow check\n"); 1386 return -EINVAL; 1387 } 1388 1389 req = aio_get_req(ctx); 1390 if (unlikely(!req)) 1391 return -EAGAIN; 1392 1393 req->ki_filp = fget(iocb->aio_fildes); 1394 if (unlikely(!req->ki_filp)) { 1395 ret = -EBADF; 1396 goto out_put_req; 1397 } 1398 1399 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1400 /* 1401 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1402 * instance of the file* now. The file descriptor must be 1403 * an eventfd() fd, and will be signaled for each completed 1404 * event using the eventfd_signal() function. 1405 */ 1406 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1407 if (IS_ERR(req->ki_eventfd)) { 1408 ret = PTR_ERR(req->ki_eventfd); 1409 req->ki_eventfd = NULL; 1410 goto out_put_req; 1411 } 1412 } 1413 1414 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1415 if (unlikely(ret)) { 1416 pr_debug("EFAULT: aio_key\n"); 1417 goto out_put_req; 1418 } 1419 1420 req->ki_obj.user = user_iocb; 1421 req->ki_user_data = iocb->aio_data; 1422 req->ki_pos = iocb->aio_offset; 1423 req->ki_nbytes = iocb->aio_nbytes; 1424 1425 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1426 (char __user *)(unsigned long)iocb->aio_buf, 1427 compat); 1428 if (ret) 1429 goto out_put_req; 1430 1431 return 0; 1432 out_put_req: 1433 put_reqs_available(ctx, 1); 1434 percpu_ref_put(&ctx->reqs); 1435 kiocb_free(req); 1436 return ret; 1437 } 1438 1439 long do_io_submit(aio_context_t ctx_id, long nr, 1440 struct iocb __user *__user *iocbpp, bool compat) 1441 { 1442 struct kioctx *ctx; 1443 long ret = 0; 1444 int i = 0; 1445 struct blk_plug plug; 1446 1447 if (unlikely(nr < 0)) 1448 return -EINVAL; 1449 1450 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1451 nr = LONG_MAX/sizeof(*iocbpp); 1452 1453 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1454 return -EFAULT; 1455 1456 ctx = lookup_ioctx(ctx_id); 1457 if (unlikely(!ctx)) { 1458 pr_debug("EINVAL: invalid context id\n"); 1459 return -EINVAL; 1460 } 1461 1462 blk_start_plug(&plug); 1463 1464 /* 1465 * AKPM: should this return a partial result if some of the IOs were 1466 * successfully submitted? 1467 */ 1468 for (i=0; i<nr; i++) { 1469 struct iocb __user *user_iocb; 1470 struct iocb tmp; 1471 1472 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1473 ret = -EFAULT; 1474 break; 1475 } 1476 1477 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1478 ret = -EFAULT; 1479 break; 1480 } 1481 1482 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1483 if (ret) 1484 break; 1485 } 1486 blk_finish_plug(&plug); 1487 1488 percpu_ref_put(&ctx->users); 1489 return i ? i : ret; 1490 } 1491 1492 /* sys_io_submit: 1493 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1494 * the number of iocbs queued. May return -EINVAL if the aio_context 1495 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1496 * *iocbpp[0] is not properly initialized, if the operation specified 1497 * is invalid for the file descriptor in the iocb. May fail with 1498 * -EFAULT if any of the data structures point to invalid data. May 1499 * fail with -EBADF if the file descriptor specified in the first 1500 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1501 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1502 * fail with -ENOSYS if not implemented. 1503 */ 1504 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1505 struct iocb __user * __user *, iocbpp) 1506 { 1507 return do_io_submit(ctx_id, nr, iocbpp, 0); 1508 } 1509 1510 /* lookup_kiocb 1511 * Finds a given iocb for cancellation. 1512 */ 1513 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1514 u32 key) 1515 { 1516 struct list_head *pos; 1517 1518 assert_spin_locked(&ctx->ctx_lock); 1519 1520 if (key != KIOCB_KEY) 1521 return NULL; 1522 1523 /* TODO: use a hash or array, this sucks. */ 1524 list_for_each(pos, &ctx->active_reqs) { 1525 struct kiocb *kiocb = list_kiocb(pos); 1526 if (kiocb->ki_obj.user == iocb) 1527 return kiocb; 1528 } 1529 return NULL; 1530 } 1531 1532 /* sys_io_cancel: 1533 * Attempts to cancel an iocb previously passed to io_submit. If 1534 * the operation is successfully cancelled, the resulting event is 1535 * copied into the memory pointed to by result without being placed 1536 * into the completion queue and 0 is returned. May fail with 1537 * -EFAULT if any of the data structures pointed to are invalid. 1538 * May fail with -EINVAL if aio_context specified by ctx_id is 1539 * invalid. May fail with -EAGAIN if the iocb specified was not 1540 * cancelled. Will fail with -ENOSYS if not implemented. 1541 */ 1542 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1543 struct io_event __user *, result) 1544 { 1545 struct kioctx *ctx; 1546 struct kiocb *kiocb; 1547 u32 key; 1548 int ret; 1549 1550 ret = get_user(key, &iocb->aio_key); 1551 if (unlikely(ret)) 1552 return -EFAULT; 1553 1554 ctx = lookup_ioctx(ctx_id); 1555 if (unlikely(!ctx)) 1556 return -EINVAL; 1557 1558 spin_lock_irq(&ctx->ctx_lock); 1559 1560 kiocb = lookup_kiocb(ctx, iocb, key); 1561 if (kiocb) 1562 ret = kiocb_cancel(ctx, kiocb); 1563 else 1564 ret = -EINVAL; 1565 1566 spin_unlock_irq(&ctx->ctx_lock); 1567 1568 if (!ret) { 1569 /* 1570 * The result argument is no longer used - the io_event is 1571 * always delivered via the ring buffer. -EINPROGRESS indicates 1572 * cancellation is progress: 1573 */ 1574 ret = -EINPROGRESS; 1575 } 1576 1577 percpu_ref_put(&ctx->users); 1578 1579 return ret; 1580 } 1581 1582 /* io_getevents: 1583 * Attempts to read at least min_nr events and up to nr events from 1584 * the completion queue for the aio_context specified by ctx_id. If 1585 * it succeeds, the number of read events is returned. May fail with 1586 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1587 * out of range, if timeout is out of range. May fail with -EFAULT 1588 * if any of the memory specified is invalid. May return 0 or 1589 * < min_nr if the timeout specified by timeout has elapsed 1590 * before sufficient events are available, where timeout == NULL 1591 * specifies an infinite timeout. Note that the timeout pointed to by 1592 * timeout is relative. Will fail with -ENOSYS if not implemented. 1593 */ 1594 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1595 long, min_nr, 1596 long, nr, 1597 struct io_event __user *, events, 1598 struct timespec __user *, timeout) 1599 { 1600 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1601 long ret = -EINVAL; 1602 1603 if (likely(ioctx)) { 1604 if (likely(min_nr <= nr && min_nr >= 0)) 1605 ret = read_events(ioctx, min_nr, nr, events, timeout); 1606 percpu_ref_put(&ioctx->users); 1607 } 1608 return ret; 1609 } 1610