1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 {} 243 }; 244 245 static void __init aio_sysctl_init(void) 246 { 247 register_sysctl_init("fs", aio_sysctls); 248 } 249 #else 250 #define aio_sysctl_init() do { } while (0) 251 #endif 252 253 static struct kmem_cache *kiocb_cachep; 254 static struct kmem_cache *kioctx_cachep; 255 256 static struct vfsmount *aio_mnt; 257 258 static const struct file_operations aio_ring_fops; 259 static const struct address_space_operations aio_ctx_aops; 260 261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 262 { 263 struct file *file; 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 265 if (IS_ERR(inode)) 266 return ERR_CAST(inode); 267 268 inode->i_mapping->a_ops = &aio_ctx_aops; 269 inode->i_mapping->private_data = ctx; 270 inode->i_size = PAGE_SIZE * nr_pages; 271 272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 273 O_RDWR, &aio_ring_fops); 274 if (IS_ERR(file)) 275 iput(inode); 276 return file; 277 } 278 279 static int aio_init_fs_context(struct fs_context *fc) 280 { 281 if (!init_pseudo(fc, AIO_RING_MAGIC)) 282 return -ENOMEM; 283 fc->s_iflags |= SB_I_NOEXEC; 284 return 0; 285 } 286 287 /* aio_setup 288 * Creates the slab caches used by the aio routines, panic on 289 * failure as this is done early during the boot sequence. 290 */ 291 static int __init aio_setup(void) 292 { 293 static struct file_system_type aio_fs = { 294 .name = "aio", 295 .init_fs_context = aio_init_fs_context, 296 .kill_sb = kill_anon_super, 297 }; 298 aio_mnt = kern_mount(&aio_fs); 299 if (IS_ERR(aio_mnt)) 300 panic("Failed to create aio fs mount."); 301 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 304 aio_sysctl_init(); 305 return 0; 306 } 307 __initcall(aio_setup); 308 309 static void put_aio_ring_file(struct kioctx *ctx) 310 { 311 struct file *aio_ring_file = ctx->aio_ring_file; 312 struct address_space *i_mapping; 313 314 if (aio_ring_file) { 315 truncate_setsize(file_inode(aio_ring_file), 0); 316 317 /* Prevent further access to the kioctx from migratepages */ 318 i_mapping = aio_ring_file->f_mapping; 319 spin_lock(&i_mapping->private_lock); 320 i_mapping->private_data = NULL; 321 ctx->aio_ring_file = NULL; 322 spin_unlock(&i_mapping->private_lock); 323 324 fput(aio_ring_file); 325 } 326 } 327 328 static void aio_free_ring(struct kioctx *ctx) 329 { 330 int i; 331 332 /* Disconnect the kiotx from the ring file. This prevents future 333 * accesses to the kioctx from page migration. 334 */ 335 put_aio_ring_file(ctx); 336 337 for (i = 0; i < ctx->nr_pages; i++) { 338 struct page *page; 339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 340 page_count(ctx->ring_pages[i])); 341 page = ctx->ring_pages[i]; 342 if (!page) 343 continue; 344 ctx->ring_pages[i] = NULL; 345 put_page(page); 346 } 347 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 349 kfree(ctx->ring_pages); 350 ctx->ring_pages = NULL; 351 } 352 } 353 354 static int aio_ring_mremap(struct vm_area_struct *vma) 355 { 356 struct file *file = vma->vm_file; 357 struct mm_struct *mm = vma->vm_mm; 358 struct kioctx_table *table; 359 int i, res = -EINVAL; 360 361 spin_lock(&mm->ioctx_lock); 362 rcu_read_lock(); 363 table = rcu_dereference(mm->ioctx_table); 364 if (!table) 365 goto out_unlock; 366 367 for (i = 0; i < table->nr; i++) { 368 struct kioctx *ctx; 369 370 ctx = rcu_dereference(table->table[i]); 371 if (ctx && ctx->aio_ring_file == file) { 372 if (!atomic_read(&ctx->dead)) { 373 ctx->user_id = ctx->mmap_base = vma->vm_start; 374 res = 0; 375 } 376 break; 377 } 378 } 379 380 out_unlock: 381 rcu_read_unlock(); 382 spin_unlock(&mm->ioctx_lock); 383 return res; 384 } 385 386 static const struct vm_operations_struct aio_ring_vm_ops = { 387 .mremap = aio_ring_mremap, 388 #if IS_ENABLED(CONFIG_MMU) 389 .fault = filemap_fault, 390 .map_pages = filemap_map_pages, 391 .page_mkwrite = filemap_page_mkwrite, 392 #endif 393 }; 394 395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 396 { 397 vm_flags_set(vma, VM_DONTEXPAND); 398 vma->vm_ops = &aio_ring_vm_ops; 399 return 0; 400 } 401 402 static const struct file_operations aio_ring_fops = { 403 .mmap = aio_ring_mmap, 404 }; 405 406 #if IS_ENABLED(CONFIG_MIGRATION) 407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 408 struct folio *src, enum migrate_mode mode) 409 { 410 struct kioctx *ctx; 411 unsigned long flags; 412 pgoff_t idx; 413 int rc; 414 415 /* 416 * We cannot support the _NO_COPY case here, because copy needs to 417 * happen under the ctx->completion_lock. That does not work with the 418 * migration workflow of MIGRATE_SYNC_NO_COPY. 419 */ 420 if (mode == MIGRATE_SYNC_NO_COPY) 421 return -EINVAL; 422 423 rc = 0; 424 425 /* mapping->private_lock here protects against the kioctx teardown. */ 426 spin_lock(&mapping->private_lock); 427 ctx = mapping->private_data; 428 if (!ctx) { 429 rc = -EINVAL; 430 goto out; 431 } 432 433 /* The ring_lock mutex. The prevents aio_read_events() from writing 434 * to the ring's head, and prevents page migration from mucking in 435 * a partially initialized kiotx. 436 */ 437 if (!mutex_trylock(&ctx->ring_lock)) { 438 rc = -EAGAIN; 439 goto out; 440 } 441 442 idx = src->index; 443 if (idx < (pgoff_t)ctx->nr_pages) { 444 /* Make sure the old folio hasn't already been changed */ 445 if (ctx->ring_pages[idx] != &src->page) 446 rc = -EAGAIN; 447 } else 448 rc = -EINVAL; 449 450 if (rc != 0) 451 goto out_unlock; 452 453 /* Writeback must be complete */ 454 BUG_ON(folio_test_writeback(src)); 455 folio_get(dst); 456 457 rc = folio_migrate_mapping(mapping, dst, src, 1); 458 if (rc != MIGRATEPAGE_SUCCESS) { 459 folio_put(dst); 460 goto out_unlock; 461 } 462 463 /* Take completion_lock to prevent other writes to the ring buffer 464 * while the old folio is copied to the new. This prevents new 465 * events from being lost. 466 */ 467 spin_lock_irqsave(&ctx->completion_lock, flags); 468 folio_migrate_copy(dst, src); 469 BUG_ON(ctx->ring_pages[idx] != &src->page); 470 ctx->ring_pages[idx] = &dst->page; 471 spin_unlock_irqrestore(&ctx->completion_lock, flags); 472 473 /* The old folio is no longer accessible. */ 474 folio_put(src); 475 476 out_unlock: 477 mutex_unlock(&ctx->ring_lock); 478 out: 479 spin_unlock(&mapping->private_lock); 480 return rc; 481 } 482 #else 483 #define aio_migrate_folio NULL 484 #endif 485 486 static const struct address_space_operations aio_ctx_aops = { 487 .dirty_folio = noop_dirty_folio, 488 .migrate_folio = aio_migrate_folio, 489 }; 490 491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 492 { 493 struct aio_ring *ring; 494 struct mm_struct *mm = current->mm; 495 unsigned long size, unused; 496 int nr_pages; 497 int i; 498 struct file *file; 499 500 /* Compensate for the ring buffer's head/tail overlap entry */ 501 nr_events += 2; /* 1 is required, 2 for good luck */ 502 503 size = sizeof(struct aio_ring); 504 size += sizeof(struct io_event) * nr_events; 505 506 nr_pages = PFN_UP(size); 507 if (nr_pages < 0) 508 return -EINVAL; 509 510 file = aio_private_file(ctx, nr_pages); 511 if (IS_ERR(file)) { 512 ctx->aio_ring_file = NULL; 513 return -ENOMEM; 514 } 515 516 ctx->aio_ring_file = file; 517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 518 / sizeof(struct io_event); 519 520 ctx->ring_pages = ctx->internal_pages; 521 if (nr_pages > AIO_RING_PAGES) { 522 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 523 GFP_KERNEL); 524 if (!ctx->ring_pages) { 525 put_aio_ring_file(ctx); 526 return -ENOMEM; 527 } 528 } 529 530 for (i = 0; i < nr_pages; i++) { 531 struct page *page; 532 page = find_or_create_page(file->f_mapping, 533 i, GFP_HIGHUSER | __GFP_ZERO); 534 if (!page) 535 break; 536 pr_debug("pid(%d) page[%d]->count=%d\n", 537 current->pid, i, page_count(page)); 538 SetPageUptodate(page); 539 unlock_page(page); 540 541 ctx->ring_pages[i] = page; 542 } 543 ctx->nr_pages = i; 544 545 if (unlikely(i != nr_pages)) { 546 aio_free_ring(ctx); 547 return -ENOMEM; 548 } 549 550 ctx->mmap_size = nr_pages * PAGE_SIZE; 551 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 552 553 if (mmap_write_lock_killable(mm)) { 554 ctx->mmap_size = 0; 555 aio_free_ring(ctx); 556 return -EINTR; 557 } 558 559 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 560 PROT_READ | PROT_WRITE, 561 MAP_SHARED, 0, &unused, NULL); 562 mmap_write_unlock(mm); 563 if (IS_ERR((void *)ctx->mmap_base)) { 564 ctx->mmap_size = 0; 565 aio_free_ring(ctx); 566 return -ENOMEM; 567 } 568 569 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 570 571 ctx->user_id = ctx->mmap_base; 572 ctx->nr_events = nr_events; /* trusted copy */ 573 574 ring = kmap_atomic(ctx->ring_pages[0]); 575 ring->nr = nr_events; /* user copy */ 576 ring->id = ~0U; 577 ring->head = ring->tail = 0; 578 ring->magic = AIO_RING_MAGIC; 579 ring->compat_features = AIO_RING_COMPAT_FEATURES; 580 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 581 ring->header_length = sizeof(struct aio_ring); 582 kunmap_atomic(ring); 583 flush_dcache_page(ctx->ring_pages[0]); 584 585 return 0; 586 } 587 588 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 589 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 590 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 591 592 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 593 { 594 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 595 struct kioctx *ctx = req->ki_ctx; 596 unsigned long flags; 597 598 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 599 return; 600 601 spin_lock_irqsave(&ctx->ctx_lock, flags); 602 list_add_tail(&req->ki_list, &ctx->active_reqs); 603 req->ki_cancel = cancel; 604 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 605 } 606 EXPORT_SYMBOL(kiocb_set_cancel_fn); 607 608 /* 609 * free_ioctx() should be RCU delayed to synchronize against the RCU 610 * protected lookup_ioctx() and also needs process context to call 611 * aio_free_ring(). Use rcu_work. 612 */ 613 static void free_ioctx(struct work_struct *work) 614 { 615 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 616 free_rwork); 617 pr_debug("freeing %p\n", ctx); 618 619 aio_free_ring(ctx); 620 free_percpu(ctx->cpu); 621 percpu_ref_exit(&ctx->reqs); 622 percpu_ref_exit(&ctx->users); 623 kmem_cache_free(kioctx_cachep, ctx); 624 } 625 626 static void free_ioctx_reqs(struct percpu_ref *ref) 627 { 628 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 629 630 /* At this point we know that there are no any in-flight requests */ 631 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 632 complete(&ctx->rq_wait->comp); 633 634 /* Synchronize against RCU protected table->table[] dereferences */ 635 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 636 queue_rcu_work(system_wq, &ctx->free_rwork); 637 } 638 639 /* 640 * When this function runs, the kioctx has been removed from the "hash table" 641 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 642 * now it's safe to cancel any that need to be. 643 */ 644 static void free_ioctx_users(struct percpu_ref *ref) 645 { 646 struct kioctx *ctx = container_of(ref, struct kioctx, users); 647 struct aio_kiocb *req; 648 649 spin_lock_irq(&ctx->ctx_lock); 650 651 while (!list_empty(&ctx->active_reqs)) { 652 req = list_first_entry(&ctx->active_reqs, 653 struct aio_kiocb, ki_list); 654 req->ki_cancel(&req->rw); 655 list_del_init(&req->ki_list); 656 } 657 658 spin_unlock_irq(&ctx->ctx_lock); 659 660 percpu_ref_kill(&ctx->reqs); 661 percpu_ref_put(&ctx->reqs); 662 } 663 664 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 665 { 666 unsigned i, new_nr; 667 struct kioctx_table *table, *old; 668 struct aio_ring *ring; 669 670 spin_lock(&mm->ioctx_lock); 671 table = rcu_dereference_raw(mm->ioctx_table); 672 673 while (1) { 674 if (table) 675 for (i = 0; i < table->nr; i++) 676 if (!rcu_access_pointer(table->table[i])) { 677 ctx->id = i; 678 rcu_assign_pointer(table->table[i], ctx); 679 spin_unlock(&mm->ioctx_lock); 680 681 /* While kioctx setup is in progress, 682 * we are protected from page migration 683 * changes ring_pages by ->ring_lock. 684 */ 685 ring = kmap_atomic(ctx->ring_pages[0]); 686 ring->id = ctx->id; 687 kunmap_atomic(ring); 688 return 0; 689 } 690 691 new_nr = (table ? table->nr : 1) * 4; 692 spin_unlock(&mm->ioctx_lock); 693 694 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 695 if (!table) 696 return -ENOMEM; 697 698 table->nr = new_nr; 699 700 spin_lock(&mm->ioctx_lock); 701 old = rcu_dereference_raw(mm->ioctx_table); 702 703 if (!old) { 704 rcu_assign_pointer(mm->ioctx_table, table); 705 } else if (table->nr > old->nr) { 706 memcpy(table->table, old->table, 707 old->nr * sizeof(struct kioctx *)); 708 709 rcu_assign_pointer(mm->ioctx_table, table); 710 kfree_rcu(old, rcu); 711 } else { 712 kfree(table); 713 table = old; 714 } 715 } 716 } 717 718 static void aio_nr_sub(unsigned nr) 719 { 720 spin_lock(&aio_nr_lock); 721 if (WARN_ON(aio_nr - nr > aio_nr)) 722 aio_nr = 0; 723 else 724 aio_nr -= nr; 725 spin_unlock(&aio_nr_lock); 726 } 727 728 /* ioctx_alloc 729 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 730 */ 731 static struct kioctx *ioctx_alloc(unsigned nr_events) 732 { 733 struct mm_struct *mm = current->mm; 734 struct kioctx *ctx; 735 int err = -ENOMEM; 736 737 /* 738 * Store the original nr_events -- what userspace passed to io_setup(), 739 * for counting against the global limit -- before it changes. 740 */ 741 unsigned int max_reqs = nr_events; 742 743 /* 744 * We keep track of the number of available ringbuffer slots, to prevent 745 * overflow (reqs_available), and we also use percpu counters for this. 746 * 747 * So since up to half the slots might be on other cpu's percpu counters 748 * and unavailable, double nr_events so userspace sees what they 749 * expected: additionally, we move req_batch slots to/from percpu 750 * counters at a time, so make sure that isn't 0: 751 */ 752 nr_events = max(nr_events, num_possible_cpus() * 4); 753 nr_events *= 2; 754 755 /* Prevent overflows */ 756 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 757 pr_debug("ENOMEM: nr_events too high\n"); 758 return ERR_PTR(-EINVAL); 759 } 760 761 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 762 return ERR_PTR(-EAGAIN); 763 764 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 765 if (!ctx) 766 return ERR_PTR(-ENOMEM); 767 768 ctx->max_reqs = max_reqs; 769 770 spin_lock_init(&ctx->ctx_lock); 771 spin_lock_init(&ctx->completion_lock); 772 mutex_init(&ctx->ring_lock); 773 /* Protect against page migration throughout kiotx setup by keeping 774 * the ring_lock mutex held until setup is complete. */ 775 mutex_lock(&ctx->ring_lock); 776 init_waitqueue_head(&ctx->wait); 777 778 INIT_LIST_HEAD(&ctx->active_reqs); 779 780 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 781 goto err; 782 783 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 784 goto err; 785 786 ctx->cpu = alloc_percpu(struct kioctx_cpu); 787 if (!ctx->cpu) 788 goto err; 789 790 err = aio_setup_ring(ctx, nr_events); 791 if (err < 0) 792 goto err; 793 794 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 795 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 796 if (ctx->req_batch < 1) 797 ctx->req_batch = 1; 798 799 /* limit the number of system wide aios */ 800 spin_lock(&aio_nr_lock); 801 if (aio_nr + ctx->max_reqs > aio_max_nr || 802 aio_nr + ctx->max_reqs < aio_nr) { 803 spin_unlock(&aio_nr_lock); 804 err = -EAGAIN; 805 goto err_ctx; 806 } 807 aio_nr += ctx->max_reqs; 808 spin_unlock(&aio_nr_lock); 809 810 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 811 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 812 813 err = ioctx_add_table(ctx, mm); 814 if (err) 815 goto err_cleanup; 816 817 /* Release the ring_lock mutex now that all setup is complete. */ 818 mutex_unlock(&ctx->ring_lock); 819 820 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 821 ctx, ctx->user_id, mm, ctx->nr_events); 822 return ctx; 823 824 err_cleanup: 825 aio_nr_sub(ctx->max_reqs); 826 err_ctx: 827 atomic_set(&ctx->dead, 1); 828 if (ctx->mmap_size) 829 vm_munmap(ctx->mmap_base, ctx->mmap_size); 830 aio_free_ring(ctx); 831 err: 832 mutex_unlock(&ctx->ring_lock); 833 free_percpu(ctx->cpu); 834 percpu_ref_exit(&ctx->reqs); 835 percpu_ref_exit(&ctx->users); 836 kmem_cache_free(kioctx_cachep, ctx); 837 pr_debug("error allocating ioctx %d\n", err); 838 return ERR_PTR(err); 839 } 840 841 /* kill_ioctx 842 * Cancels all outstanding aio requests on an aio context. Used 843 * when the processes owning a context have all exited to encourage 844 * the rapid destruction of the kioctx. 845 */ 846 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 847 struct ctx_rq_wait *wait) 848 { 849 struct kioctx_table *table; 850 851 spin_lock(&mm->ioctx_lock); 852 if (atomic_xchg(&ctx->dead, 1)) { 853 spin_unlock(&mm->ioctx_lock); 854 return -EINVAL; 855 } 856 857 table = rcu_dereference_raw(mm->ioctx_table); 858 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 859 RCU_INIT_POINTER(table->table[ctx->id], NULL); 860 spin_unlock(&mm->ioctx_lock); 861 862 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 863 wake_up_all(&ctx->wait); 864 865 /* 866 * It'd be more correct to do this in free_ioctx(), after all 867 * the outstanding kiocbs have finished - but by then io_destroy 868 * has already returned, so io_setup() could potentially return 869 * -EAGAIN with no ioctxs actually in use (as far as userspace 870 * could tell). 871 */ 872 aio_nr_sub(ctx->max_reqs); 873 874 if (ctx->mmap_size) 875 vm_munmap(ctx->mmap_base, ctx->mmap_size); 876 877 ctx->rq_wait = wait; 878 percpu_ref_kill(&ctx->users); 879 return 0; 880 } 881 882 /* 883 * exit_aio: called when the last user of mm goes away. At this point, there is 884 * no way for any new requests to be submited or any of the io_* syscalls to be 885 * called on the context. 886 * 887 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 888 * them. 889 */ 890 void exit_aio(struct mm_struct *mm) 891 { 892 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 893 struct ctx_rq_wait wait; 894 int i, skipped; 895 896 if (!table) 897 return; 898 899 atomic_set(&wait.count, table->nr); 900 init_completion(&wait.comp); 901 902 skipped = 0; 903 for (i = 0; i < table->nr; ++i) { 904 struct kioctx *ctx = 905 rcu_dereference_protected(table->table[i], true); 906 907 if (!ctx) { 908 skipped++; 909 continue; 910 } 911 912 /* 913 * We don't need to bother with munmap() here - exit_mmap(mm) 914 * is coming and it'll unmap everything. And we simply can't, 915 * this is not necessarily our ->mm. 916 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 917 * that it needs to unmap the area, just set it to 0. 918 */ 919 ctx->mmap_size = 0; 920 kill_ioctx(mm, ctx, &wait); 921 } 922 923 if (!atomic_sub_and_test(skipped, &wait.count)) { 924 /* Wait until all IO for the context are done. */ 925 wait_for_completion(&wait.comp); 926 } 927 928 RCU_INIT_POINTER(mm->ioctx_table, NULL); 929 kfree(table); 930 } 931 932 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 933 { 934 struct kioctx_cpu *kcpu; 935 unsigned long flags; 936 937 local_irq_save(flags); 938 kcpu = this_cpu_ptr(ctx->cpu); 939 kcpu->reqs_available += nr; 940 941 while (kcpu->reqs_available >= ctx->req_batch * 2) { 942 kcpu->reqs_available -= ctx->req_batch; 943 atomic_add(ctx->req_batch, &ctx->reqs_available); 944 } 945 946 local_irq_restore(flags); 947 } 948 949 static bool __get_reqs_available(struct kioctx *ctx) 950 { 951 struct kioctx_cpu *kcpu; 952 bool ret = false; 953 unsigned long flags; 954 955 local_irq_save(flags); 956 kcpu = this_cpu_ptr(ctx->cpu); 957 if (!kcpu->reqs_available) { 958 int avail = atomic_read(&ctx->reqs_available); 959 960 do { 961 if (avail < ctx->req_batch) 962 goto out; 963 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 964 &avail, avail - ctx->req_batch)); 965 966 kcpu->reqs_available += ctx->req_batch; 967 } 968 969 ret = true; 970 kcpu->reqs_available--; 971 out: 972 local_irq_restore(flags); 973 return ret; 974 } 975 976 /* refill_reqs_available 977 * Updates the reqs_available reference counts used for tracking the 978 * number of free slots in the completion ring. This can be called 979 * from aio_complete() (to optimistically update reqs_available) or 980 * from aio_get_req() (the we're out of events case). It must be 981 * called holding ctx->completion_lock. 982 */ 983 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 984 unsigned tail) 985 { 986 unsigned events_in_ring, completed; 987 988 /* Clamp head since userland can write to it. */ 989 head %= ctx->nr_events; 990 if (head <= tail) 991 events_in_ring = tail - head; 992 else 993 events_in_ring = ctx->nr_events - (head - tail); 994 995 completed = ctx->completed_events; 996 if (events_in_ring < completed) 997 completed -= events_in_ring; 998 else 999 completed = 0; 1000 1001 if (!completed) 1002 return; 1003 1004 ctx->completed_events -= completed; 1005 put_reqs_available(ctx, completed); 1006 } 1007 1008 /* user_refill_reqs_available 1009 * Called to refill reqs_available when aio_get_req() encounters an 1010 * out of space in the completion ring. 1011 */ 1012 static void user_refill_reqs_available(struct kioctx *ctx) 1013 { 1014 spin_lock_irq(&ctx->completion_lock); 1015 if (ctx->completed_events) { 1016 struct aio_ring *ring; 1017 unsigned head; 1018 1019 /* Access of ring->head may race with aio_read_events_ring() 1020 * here, but that's okay since whether we read the old version 1021 * or the new version, and either will be valid. The important 1022 * part is that head cannot pass tail since we prevent 1023 * aio_complete() from updating tail by holding 1024 * ctx->completion_lock. Even if head is invalid, the check 1025 * against ctx->completed_events below will make sure we do the 1026 * safe/right thing. 1027 */ 1028 ring = kmap_atomic(ctx->ring_pages[0]); 1029 head = ring->head; 1030 kunmap_atomic(ring); 1031 1032 refill_reqs_available(ctx, head, ctx->tail); 1033 } 1034 1035 spin_unlock_irq(&ctx->completion_lock); 1036 } 1037 1038 static bool get_reqs_available(struct kioctx *ctx) 1039 { 1040 if (__get_reqs_available(ctx)) 1041 return true; 1042 user_refill_reqs_available(ctx); 1043 return __get_reqs_available(ctx); 1044 } 1045 1046 /* aio_get_req 1047 * Allocate a slot for an aio request. 1048 * Returns NULL if no requests are free. 1049 * 1050 * The refcount is initialized to 2 - one for the async op completion, 1051 * one for the synchronous code that does this. 1052 */ 1053 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1054 { 1055 struct aio_kiocb *req; 1056 1057 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1058 if (unlikely(!req)) 1059 return NULL; 1060 1061 if (unlikely(!get_reqs_available(ctx))) { 1062 kmem_cache_free(kiocb_cachep, req); 1063 return NULL; 1064 } 1065 1066 percpu_ref_get(&ctx->reqs); 1067 req->ki_ctx = ctx; 1068 INIT_LIST_HEAD(&req->ki_list); 1069 refcount_set(&req->ki_refcnt, 2); 1070 req->ki_eventfd = NULL; 1071 return req; 1072 } 1073 1074 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1075 { 1076 struct aio_ring __user *ring = (void __user *)ctx_id; 1077 struct mm_struct *mm = current->mm; 1078 struct kioctx *ctx, *ret = NULL; 1079 struct kioctx_table *table; 1080 unsigned id; 1081 1082 if (get_user(id, &ring->id)) 1083 return NULL; 1084 1085 rcu_read_lock(); 1086 table = rcu_dereference(mm->ioctx_table); 1087 1088 if (!table || id >= table->nr) 1089 goto out; 1090 1091 id = array_index_nospec(id, table->nr); 1092 ctx = rcu_dereference(table->table[id]); 1093 if (ctx && ctx->user_id == ctx_id) { 1094 if (percpu_ref_tryget_live(&ctx->users)) 1095 ret = ctx; 1096 } 1097 out: 1098 rcu_read_unlock(); 1099 return ret; 1100 } 1101 1102 static inline void iocb_destroy(struct aio_kiocb *iocb) 1103 { 1104 if (iocb->ki_eventfd) 1105 eventfd_ctx_put(iocb->ki_eventfd); 1106 if (iocb->ki_filp) 1107 fput(iocb->ki_filp); 1108 percpu_ref_put(&iocb->ki_ctx->reqs); 1109 kmem_cache_free(kiocb_cachep, iocb); 1110 } 1111 1112 /* aio_complete 1113 * Called when the io request on the given iocb is complete. 1114 */ 1115 static void aio_complete(struct aio_kiocb *iocb) 1116 { 1117 struct kioctx *ctx = iocb->ki_ctx; 1118 struct aio_ring *ring; 1119 struct io_event *ev_page, *event; 1120 unsigned tail, pos, head; 1121 unsigned long flags; 1122 1123 /* 1124 * Add a completion event to the ring buffer. Must be done holding 1125 * ctx->completion_lock to prevent other code from messing with the tail 1126 * pointer since we might be called from irq context. 1127 */ 1128 spin_lock_irqsave(&ctx->completion_lock, flags); 1129 1130 tail = ctx->tail; 1131 pos = tail + AIO_EVENTS_OFFSET; 1132 1133 if (++tail >= ctx->nr_events) 1134 tail = 0; 1135 1136 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1137 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1138 1139 *event = iocb->ki_res; 1140 1141 kunmap_atomic(ev_page); 1142 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1143 1144 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1145 (void __user *)(unsigned long)iocb->ki_res.obj, 1146 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1147 1148 /* after flagging the request as done, we 1149 * must never even look at it again 1150 */ 1151 smp_wmb(); /* make event visible before updating tail */ 1152 1153 ctx->tail = tail; 1154 1155 ring = kmap_atomic(ctx->ring_pages[0]); 1156 head = ring->head; 1157 ring->tail = tail; 1158 kunmap_atomic(ring); 1159 flush_dcache_page(ctx->ring_pages[0]); 1160 1161 ctx->completed_events++; 1162 if (ctx->completed_events > 1) 1163 refill_reqs_available(ctx, head, tail); 1164 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1165 1166 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1167 1168 /* 1169 * Check if the user asked us to deliver the result through an 1170 * eventfd. The eventfd_signal() function is safe to be called 1171 * from IRQ context. 1172 */ 1173 if (iocb->ki_eventfd) 1174 eventfd_signal(iocb->ki_eventfd, 1); 1175 1176 /* 1177 * We have to order our ring_info tail store above and test 1178 * of the wait list below outside the wait lock. This is 1179 * like in wake_up_bit() where clearing a bit has to be 1180 * ordered with the unlocked test. 1181 */ 1182 smp_mb(); 1183 1184 if (waitqueue_active(&ctx->wait)) 1185 wake_up(&ctx->wait); 1186 } 1187 1188 static inline void iocb_put(struct aio_kiocb *iocb) 1189 { 1190 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1191 aio_complete(iocb); 1192 iocb_destroy(iocb); 1193 } 1194 } 1195 1196 /* aio_read_events_ring 1197 * Pull an event off of the ioctx's event ring. Returns the number of 1198 * events fetched 1199 */ 1200 static long aio_read_events_ring(struct kioctx *ctx, 1201 struct io_event __user *event, long nr) 1202 { 1203 struct aio_ring *ring; 1204 unsigned head, tail, pos; 1205 long ret = 0; 1206 int copy_ret; 1207 1208 /* 1209 * The mutex can block and wake us up and that will cause 1210 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1211 * and repeat. This should be rare enough that it doesn't cause 1212 * peformance issues. See the comment in read_events() for more detail. 1213 */ 1214 sched_annotate_sleep(); 1215 mutex_lock(&ctx->ring_lock); 1216 1217 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1218 ring = kmap_atomic(ctx->ring_pages[0]); 1219 head = ring->head; 1220 tail = ring->tail; 1221 kunmap_atomic(ring); 1222 1223 /* 1224 * Ensure that once we've read the current tail pointer, that 1225 * we also see the events that were stored up to the tail. 1226 */ 1227 smp_rmb(); 1228 1229 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1230 1231 if (head == tail) 1232 goto out; 1233 1234 head %= ctx->nr_events; 1235 tail %= ctx->nr_events; 1236 1237 while (ret < nr) { 1238 long avail; 1239 struct io_event *ev; 1240 struct page *page; 1241 1242 avail = (head <= tail ? tail : ctx->nr_events) - head; 1243 if (head == tail) 1244 break; 1245 1246 pos = head + AIO_EVENTS_OFFSET; 1247 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1248 pos %= AIO_EVENTS_PER_PAGE; 1249 1250 avail = min(avail, nr - ret); 1251 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1252 1253 ev = kmap(page); 1254 copy_ret = copy_to_user(event + ret, ev + pos, 1255 sizeof(*ev) * avail); 1256 kunmap(page); 1257 1258 if (unlikely(copy_ret)) { 1259 ret = -EFAULT; 1260 goto out; 1261 } 1262 1263 ret += avail; 1264 head += avail; 1265 head %= ctx->nr_events; 1266 } 1267 1268 ring = kmap_atomic(ctx->ring_pages[0]); 1269 ring->head = head; 1270 kunmap_atomic(ring); 1271 flush_dcache_page(ctx->ring_pages[0]); 1272 1273 pr_debug("%li h%u t%u\n", ret, head, tail); 1274 out: 1275 mutex_unlock(&ctx->ring_lock); 1276 1277 return ret; 1278 } 1279 1280 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1281 struct io_event __user *event, long *i) 1282 { 1283 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1284 1285 if (ret > 0) 1286 *i += ret; 1287 1288 if (unlikely(atomic_read(&ctx->dead))) 1289 ret = -EINVAL; 1290 1291 if (!*i) 1292 *i = ret; 1293 1294 return ret < 0 || *i >= min_nr; 1295 } 1296 1297 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1298 struct io_event __user *event, 1299 ktime_t until) 1300 { 1301 long ret = 0; 1302 1303 /* 1304 * Note that aio_read_events() is being called as the conditional - i.e. 1305 * we're calling it after prepare_to_wait() has set task state to 1306 * TASK_INTERRUPTIBLE. 1307 * 1308 * But aio_read_events() can block, and if it blocks it's going to flip 1309 * the task state back to TASK_RUNNING. 1310 * 1311 * This should be ok, provided it doesn't flip the state back to 1312 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1313 * will only happen if the mutex_lock() call blocks, and we then find 1314 * the ringbuffer empty. So in practice we should be ok, but it's 1315 * something to be aware of when touching this code. 1316 */ 1317 if (until == 0) 1318 aio_read_events(ctx, min_nr, nr, event, &ret); 1319 else 1320 wait_event_interruptible_hrtimeout(ctx->wait, 1321 aio_read_events(ctx, min_nr, nr, event, &ret), 1322 until); 1323 return ret; 1324 } 1325 1326 /* sys_io_setup: 1327 * Create an aio_context capable of receiving at least nr_events. 1328 * ctxp must not point to an aio_context that already exists, and 1329 * must be initialized to 0 prior to the call. On successful 1330 * creation of the aio_context, *ctxp is filled in with the resulting 1331 * handle. May fail with -EINVAL if *ctxp is not initialized, 1332 * if the specified nr_events exceeds internal limits. May fail 1333 * with -EAGAIN if the specified nr_events exceeds the user's limit 1334 * of available events. May fail with -ENOMEM if insufficient kernel 1335 * resources are available. May fail with -EFAULT if an invalid 1336 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1337 * implemented. 1338 */ 1339 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1340 { 1341 struct kioctx *ioctx = NULL; 1342 unsigned long ctx; 1343 long ret; 1344 1345 ret = get_user(ctx, ctxp); 1346 if (unlikely(ret)) 1347 goto out; 1348 1349 ret = -EINVAL; 1350 if (unlikely(ctx || nr_events == 0)) { 1351 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1352 ctx, nr_events); 1353 goto out; 1354 } 1355 1356 ioctx = ioctx_alloc(nr_events); 1357 ret = PTR_ERR(ioctx); 1358 if (!IS_ERR(ioctx)) { 1359 ret = put_user(ioctx->user_id, ctxp); 1360 if (ret) 1361 kill_ioctx(current->mm, ioctx, NULL); 1362 percpu_ref_put(&ioctx->users); 1363 } 1364 1365 out: 1366 return ret; 1367 } 1368 1369 #ifdef CONFIG_COMPAT 1370 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1371 { 1372 struct kioctx *ioctx = NULL; 1373 unsigned long ctx; 1374 long ret; 1375 1376 ret = get_user(ctx, ctx32p); 1377 if (unlikely(ret)) 1378 goto out; 1379 1380 ret = -EINVAL; 1381 if (unlikely(ctx || nr_events == 0)) { 1382 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1383 ctx, nr_events); 1384 goto out; 1385 } 1386 1387 ioctx = ioctx_alloc(nr_events); 1388 ret = PTR_ERR(ioctx); 1389 if (!IS_ERR(ioctx)) { 1390 /* truncating is ok because it's a user address */ 1391 ret = put_user((u32)ioctx->user_id, ctx32p); 1392 if (ret) 1393 kill_ioctx(current->mm, ioctx, NULL); 1394 percpu_ref_put(&ioctx->users); 1395 } 1396 1397 out: 1398 return ret; 1399 } 1400 #endif 1401 1402 /* sys_io_destroy: 1403 * Destroy the aio_context specified. May cancel any outstanding 1404 * AIOs and block on completion. Will fail with -ENOSYS if not 1405 * implemented. May fail with -EINVAL if the context pointed to 1406 * is invalid. 1407 */ 1408 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1409 { 1410 struct kioctx *ioctx = lookup_ioctx(ctx); 1411 if (likely(NULL != ioctx)) { 1412 struct ctx_rq_wait wait; 1413 int ret; 1414 1415 init_completion(&wait.comp); 1416 atomic_set(&wait.count, 1); 1417 1418 /* Pass requests_done to kill_ioctx() where it can be set 1419 * in a thread-safe way. If we try to set it here then we have 1420 * a race condition if two io_destroy() called simultaneously. 1421 */ 1422 ret = kill_ioctx(current->mm, ioctx, &wait); 1423 percpu_ref_put(&ioctx->users); 1424 1425 /* Wait until all IO for the context are done. Otherwise kernel 1426 * keep using user-space buffers even if user thinks the context 1427 * is destroyed. 1428 */ 1429 if (!ret) 1430 wait_for_completion(&wait.comp); 1431 1432 return ret; 1433 } 1434 pr_debug("EINVAL: invalid context id\n"); 1435 return -EINVAL; 1436 } 1437 1438 static void aio_remove_iocb(struct aio_kiocb *iocb) 1439 { 1440 struct kioctx *ctx = iocb->ki_ctx; 1441 unsigned long flags; 1442 1443 spin_lock_irqsave(&ctx->ctx_lock, flags); 1444 list_del(&iocb->ki_list); 1445 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1446 } 1447 1448 static void aio_complete_rw(struct kiocb *kiocb, long res) 1449 { 1450 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1451 1452 if (!list_empty_careful(&iocb->ki_list)) 1453 aio_remove_iocb(iocb); 1454 1455 if (kiocb->ki_flags & IOCB_WRITE) { 1456 struct inode *inode = file_inode(kiocb->ki_filp); 1457 1458 /* 1459 * Tell lockdep we inherited freeze protection from submission 1460 * thread. 1461 */ 1462 if (S_ISREG(inode->i_mode)) 1463 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1464 file_end_write(kiocb->ki_filp); 1465 } 1466 1467 iocb->ki_res.res = res; 1468 iocb->ki_res.res2 = 0; 1469 iocb_put(iocb); 1470 } 1471 1472 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1473 { 1474 int ret; 1475 1476 req->ki_complete = aio_complete_rw; 1477 req->private = NULL; 1478 req->ki_pos = iocb->aio_offset; 1479 req->ki_flags = req->ki_filp->f_iocb_flags; 1480 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1481 req->ki_flags |= IOCB_EVENTFD; 1482 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1483 /* 1484 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1485 * aio_reqprio is interpreted as an I/O scheduling 1486 * class and priority. 1487 */ 1488 ret = ioprio_check_cap(iocb->aio_reqprio); 1489 if (ret) { 1490 pr_debug("aio ioprio check cap error: %d\n", ret); 1491 return ret; 1492 } 1493 1494 req->ki_ioprio = iocb->aio_reqprio; 1495 } else 1496 req->ki_ioprio = get_current_ioprio(); 1497 1498 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1499 if (unlikely(ret)) 1500 return ret; 1501 1502 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1503 return 0; 1504 } 1505 1506 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1507 struct iovec **iovec, bool vectored, bool compat, 1508 struct iov_iter *iter) 1509 { 1510 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1511 size_t len = iocb->aio_nbytes; 1512 1513 if (!vectored) { 1514 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1515 *iovec = NULL; 1516 return ret; 1517 } 1518 1519 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1520 } 1521 1522 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1523 { 1524 switch (ret) { 1525 case -EIOCBQUEUED: 1526 break; 1527 case -ERESTARTSYS: 1528 case -ERESTARTNOINTR: 1529 case -ERESTARTNOHAND: 1530 case -ERESTART_RESTARTBLOCK: 1531 /* 1532 * There's no easy way to restart the syscall since other AIO's 1533 * may be already running. Just fail this IO with EINTR. 1534 */ 1535 ret = -EINTR; 1536 fallthrough; 1537 default: 1538 req->ki_complete(req, ret); 1539 } 1540 } 1541 1542 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1543 bool vectored, bool compat) 1544 { 1545 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1546 struct iov_iter iter; 1547 struct file *file; 1548 int ret; 1549 1550 ret = aio_prep_rw(req, iocb); 1551 if (ret) 1552 return ret; 1553 file = req->ki_filp; 1554 if (unlikely(!(file->f_mode & FMODE_READ))) 1555 return -EBADF; 1556 if (unlikely(!file->f_op->read_iter)) 1557 return -EINVAL; 1558 1559 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1560 if (ret < 0) 1561 return ret; 1562 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1563 if (!ret) 1564 aio_rw_done(req, call_read_iter(file, req, &iter)); 1565 kfree(iovec); 1566 return ret; 1567 } 1568 1569 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1570 bool vectored, bool compat) 1571 { 1572 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1573 struct iov_iter iter; 1574 struct file *file; 1575 int ret; 1576 1577 ret = aio_prep_rw(req, iocb); 1578 if (ret) 1579 return ret; 1580 file = req->ki_filp; 1581 1582 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1583 return -EBADF; 1584 if (unlikely(!file->f_op->write_iter)) 1585 return -EINVAL; 1586 1587 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1588 if (ret < 0) 1589 return ret; 1590 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1591 if (!ret) { 1592 /* 1593 * Open-code file_start_write here to grab freeze protection, 1594 * which will be released by another thread in 1595 * aio_complete_rw(). Fool lockdep by telling it the lock got 1596 * released so that it doesn't complain about the held lock when 1597 * we return to userspace. 1598 */ 1599 if (S_ISREG(file_inode(file)->i_mode)) { 1600 sb_start_write(file_inode(file)->i_sb); 1601 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1602 } 1603 req->ki_flags |= IOCB_WRITE; 1604 aio_rw_done(req, call_write_iter(file, req, &iter)); 1605 } 1606 kfree(iovec); 1607 return ret; 1608 } 1609 1610 static void aio_fsync_work(struct work_struct *work) 1611 { 1612 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1613 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1614 1615 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1616 revert_creds(old_cred); 1617 put_cred(iocb->fsync.creds); 1618 iocb_put(iocb); 1619 } 1620 1621 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1622 bool datasync) 1623 { 1624 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1625 iocb->aio_rw_flags)) 1626 return -EINVAL; 1627 1628 if (unlikely(!req->file->f_op->fsync)) 1629 return -EINVAL; 1630 1631 req->creds = prepare_creds(); 1632 if (!req->creds) 1633 return -ENOMEM; 1634 1635 req->datasync = datasync; 1636 INIT_WORK(&req->work, aio_fsync_work); 1637 schedule_work(&req->work); 1638 return 0; 1639 } 1640 1641 static void aio_poll_put_work(struct work_struct *work) 1642 { 1643 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1644 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1645 1646 iocb_put(iocb); 1647 } 1648 1649 /* 1650 * Safely lock the waitqueue which the request is on, synchronizing with the 1651 * case where the ->poll() provider decides to free its waitqueue early. 1652 * 1653 * Returns true on success, meaning that req->head->lock was locked, req->wait 1654 * is on req->head, and an RCU read lock was taken. Returns false if the 1655 * request was already removed from its waitqueue (which might no longer exist). 1656 */ 1657 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1658 { 1659 wait_queue_head_t *head; 1660 1661 /* 1662 * While we hold the waitqueue lock and the waitqueue is nonempty, 1663 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1664 * lock in the first place can race with the waitqueue being freed. 1665 * 1666 * We solve this as eventpoll does: by taking advantage of the fact that 1667 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1668 * we enter rcu_read_lock() and see that the pointer to the queue is 1669 * non-NULL, we can then lock it without the memory being freed out from 1670 * under us, then check whether the request is still on the queue. 1671 * 1672 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1673 * case the caller deletes the entry from the queue, leaving it empty. 1674 * In that case, only RCU prevents the queue memory from being freed. 1675 */ 1676 rcu_read_lock(); 1677 head = smp_load_acquire(&req->head); 1678 if (head) { 1679 spin_lock(&head->lock); 1680 if (!list_empty(&req->wait.entry)) 1681 return true; 1682 spin_unlock(&head->lock); 1683 } 1684 rcu_read_unlock(); 1685 return false; 1686 } 1687 1688 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1689 { 1690 spin_unlock(&req->head->lock); 1691 rcu_read_unlock(); 1692 } 1693 1694 static void aio_poll_complete_work(struct work_struct *work) 1695 { 1696 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1697 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1698 struct poll_table_struct pt = { ._key = req->events }; 1699 struct kioctx *ctx = iocb->ki_ctx; 1700 __poll_t mask = 0; 1701 1702 if (!READ_ONCE(req->cancelled)) 1703 mask = vfs_poll(req->file, &pt) & req->events; 1704 1705 /* 1706 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1707 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1708 * synchronize with them. In the cancellation case the list_del_init 1709 * itself is not actually needed, but harmless so we keep it in to 1710 * avoid further branches in the fast path. 1711 */ 1712 spin_lock_irq(&ctx->ctx_lock); 1713 if (poll_iocb_lock_wq(req)) { 1714 if (!mask && !READ_ONCE(req->cancelled)) { 1715 /* 1716 * The request isn't actually ready to be completed yet. 1717 * Reschedule completion if another wakeup came in. 1718 */ 1719 if (req->work_need_resched) { 1720 schedule_work(&req->work); 1721 req->work_need_resched = false; 1722 } else { 1723 req->work_scheduled = false; 1724 } 1725 poll_iocb_unlock_wq(req); 1726 spin_unlock_irq(&ctx->ctx_lock); 1727 return; 1728 } 1729 list_del_init(&req->wait.entry); 1730 poll_iocb_unlock_wq(req); 1731 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1732 list_del_init(&iocb->ki_list); 1733 iocb->ki_res.res = mangle_poll(mask); 1734 spin_unlock_irq(&ctx->ctx_lock); 1735 1736 iocb_put(iocb); 1737 } 1738 1739 /* assumes we are called with irqs disabled */ 1740 static int aio_poll_cancel(struct kiocb *iocb) 1741 { 1742 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1743 struct poll_iocb *req = &aiocb->poll; 1744 1745 if (poll_iocb_lock_wq(req)) { 1746 WRITE_ONCE(req->cancelled, true); 1747 if (!req->work_scheduled) { 1748 schedule_work(&aiocb->poll.work); 1749 req->work_scheduled = true; 1750 } 1751 poll_iocb_unlock_wq(req); 1752 } /* else, the request was force-cancelled by POLLFREE already */ 1753 1754 return 0; 1755 } 1756 1757 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1758 void *key) 1759 { 1760 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1761 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1762 __poll_t mask = key_to_poll(key); 1763 unsigned long flags; 1764 1765 /* for instances that support it check for an event match first: */ 1766 if (mask && !(mask & req->events)) 1767 return 0; 1768 1769 /* 1770 * Complete the request inline if possible. This requires that three 1771 * conditions be met: 1772 * 1. An event mask must have been passed. If a plain wakeup was done 1773 * instead, then mask == 0 and we have to call vfs_poll() to get 1774 * the events, so inline completion isn't possible. 1775 * 2. The completion work must not have already been scheduled. 1776 * 3. ctx_lock must not be busy. We have to use trylock because we 1777 * already hold the waitqueue lock, so this inverts the normal 1778 * locking order. Use irqsave/irqrestore because not all 1779 * filesystems (e.g. fuse) call this function with IRQs disabled, 1780 * yet IRQs have to be disabled before ctx_lock is obtained. 1781 */ 1782 if (mask && !req->work_scheduled && 1783 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1784 struct kioctx *ctx = iocb->ki_ctx; 1785 1786 list_del_init(&req->wait.entry); 1787 list_del(&iocb->ki_list); 1788 iocb->ki_res.res = mangle_poll(mask); 1789 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1790 iocb = NULL; 1791 INIT_WORK(&req->work, aio_poll_put_work); 1792 schedule_work(&req->work); 1793 } 1794 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1795 if (iocb) 1796 iocb_put(iocb); 1797 } else { 1798 /* 1799 * Schedule the completion work if needed. If it was already 1800 * scheduled, record that another wakeup came in. 1801 * 1802 * Don't remove the request from the waitqueue here, as it might 1803 * not actually be complete yet (we won't know until vfs_poll() 1804 * is called), and we must not miss any wakeups. POLLFREE is an 1805 * exception to this; see below. 1806 */ 1807 if (req->work_scheduled) { 1808 req->work_need_resched = true; 1809 } else { 1810 schedule_work(&req->work); 1811 req->work_scheduled = true; 1812 } 1813 1814 /* 1815 * If the waitqueue is being freed early but we can't complete 1816 * the request inline, we have to tear down the request as best 1817 * we can. That means immediately removing the request from its 1818 * waitqueue and preventing all further accesses to the 1819 * waitqueue via the request. We also need to schedule the 1820 * completion work (done above). Also mark the request as 1821 * cancelled, to potentially skip an unneeded call to ->poll(). 1822 */ 1823 if (mask & POLLFREE) { 1824 WRITE_ONCE(req->cancelled, true); 1825 list_del_init(&req->wait.entry); 1826 1827 /* 1828 * Careful: this *must* be the last step, since as soon 1829 * as req->head is NULL'ed out, the request can be 1830 * completed and freed, since aio_poll_complete_work() 1831 * will no longer need to take the waitqueue lock. 1832 */ 1833 smp_store_release(&req->head, NULL); 1834 } 1835 } 1836 return 1; 1837 } 1838 1839 struct aio_poll_table { 1840 struct poll_table_struct pt; 1841 struct aio_kiocb *iocb; 1842 bool queued; 1843 int error; 1844 }; 1845 1846 static void 1847 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1848 struct poll_table_struct *p) 1849 { 1850 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1851 1852 /* multiple wait queues per file are not supported */ 1853 if (unlikely(pt->queued)) { 1854 pt->error = -EINVAL; 1855 return; 1856 } 1857 1858 pt->queued = true; 1859 pt->error = 0; 1860 pt->iocb->poll.head = head; 1861 add_wait_queue(head, &pt->iocb->poll.wait); 1862 } 1863 1864 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1865 { 1866 struct kioctx *ctx = aiocb->ki_ctx; 1867 struct poll_iocb *req = &aiocb->poll; 1868 struct aio_poll_table apt; 1869 bool cancel = false; 1870 __poll_t mask; 1871 1872 /* reject any unknown events outside the normal event mask. */ 1873 if ((u16)iocb->aio_buf != iocb->aio_buf) 1874 return -EINVAL; 1875 /* reject fields that are not defined for poll */ 1876 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1877 return -EINVAL; 1878 1879 INIT_WORK(&req->work, aio_poll_complete_work); 1880 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1881 1882 req->head = NULL; 1883 req->cancelled = false; 1884 req->work_scheduled = false; 1885 req->work_need_resched = false; 1886 1887 apt.pt._qproc = aio_poll_queue_proc; 1888 apt.pt._key = req->events; 1889 apt.iocb = aiocb; 1890 apt.queued = false; 1891 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1892 1893 /* initialized the list so that we can do list_empty checks */ 1894 INIT_LIST_HEAD(&req->wait.entry); 1895 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1896 1897 mask = vfs_poll(req->file, &apt.pt) & req->events; 1898 spin_lock_irq(&ctx->ctx_lock); 1899 if (likely(apt.queued)) { 1900 bool on_queue = poll_iocb_lock_wq(req); 1901 1902 if (!on_queue || req->work_scheduled) { 1903 /* 1904 * aio_poll_wake() already either scheduled the async 1905 * completion work, or completed the request inline. 1906 */ 1907 if (apt.error) /* unsupported case: multiple queues */ 1908 cancel = true; 1909 apt.error = 0; 1910 mask = 0; 1911 } 1912 if (mask || apt.error) { 1913 /* Steal to complete synchronously. */ 1914 list_del_init(&req->wait.entry); 1915 } else if (cancel) { 1916 /* Cancel if possible (may be too late though). */ 1917 WRITE_ONCE(req->cancelled, true); 1918 } else if (on_queue) { 1919 /* 1920 * Actually waiting for an event, so add the request to 1921 * active_reqs so that it can be cancelled if needed. 1922 */ 1923 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1924 aiocb->ki_cancel = aio_poll_cancel; 1925 } 1926 if (on_queue) 1927 poll_iocb_unlock_wq(req); 1928 } 1929 if (mask) { /* no async, we'd stolen it */ 1930 aiocb->ki_res.res = mangle_poll(mask); 1931 apt.error = 0; 1932 } 1933 spin_unlock_irq(&ctx->ctx_lock); 1934 if (mask) 1935 iocb_put(aiocb); 1936 return apt.error; 1937 } 1938 1939 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1940 struct iocb __user *user_iocb, struct aio_kiocb *req, 1941 bool compat) 1942 { 1943 req->ki_filp = fget(iocb->aio_fildes); 1944 if (unlikely(!req->ki_filp)) 1945 return -EBADF; 1946 1947 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1948 struct eventfd_ctx *eventfd; 1949 /* 1950 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1951 * instance of the file* now. The file descriptor must be 1952 * an eventfd() fd, and will be signaled for each completed 1953 * event using the eventfd_signal() function. 1954 */ 1955 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1956 if (IS_ERR(eventfd)) 1957 return PTR_ERR(eventfd); 1958 1959 req->ki_eventfd = eventfd; 1960 } 1961 1962 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1963 pr_debug("EFAULT: aio_key\n"); 1964 return -EFAULT; 1965 } 1966 1967 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1968 req->ki_res.data = iocb->aio_data; 1969 req->ki_res.res = 0; 1970 req->ki_res.res2 = 0; 1971 1972 switch (iocb->aio_lio_opcode) { 1973 case IOCB_CMD_PREAD: 1974 return aio_read(&req->rw, iocb, false, compat); 1975 case IOCB_CMD_PWRITE: 1976 return aio_write(&req->rw, iocb, false, compat); 1977 case IOCB_CMD_PREADV: 1978 return aio_read(&req->rw, iocb, true, compat); 1979 case IOCB_CMD_PWRITEV: 1980 return aio_write(&req->rw, iocb, true, compat); 1981 case IOCB_CMD_FSYNC: 1982 return aio_fsync(&req->fsync, iocb, false); 1983 case IOCB_CMD_FDSYNC: 1984 return aio_fsync(&req->fsync, iocb, true); 1985 case IOCB_CMD_POLL: 1986 return aio_poll(req, iocb); 1987 default: 1988 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1989 return -EINVAL; 1990 } 1991 } 1992 1993 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1994 bool compat) 1995 { 1996 struct aio_kiocb *req; 1997 struct iocb iocb; 1998 int err; 1999 2000 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2001 return -EFAULT; 2002 2003 /* enforce forwards compatibility on users */ 2004 if (unlikely(iocb.aio_reserved2)) { 2005 pr_debug("EINVAL: reserve field set\n"); 2006 return -EINVAL; 2007 } 2008 2009 /* prevent overflows */ 2010 if (unlikely( 2011 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2012 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2013 ((ssize_t)iocb.aio_nbytes < 0) 2014 )) { 2015 pr_debug("EINVAL: overflow check\n"); 2016 return -EINVAL; 2017 } 2018 2019 req = aio_get_req(ctx); 2020 if (unlikely(!req)) 2021 return -EAGAIN; 2022 2023 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2024 2025 /* Done with the synchronous reference */ 2026 iocb_put(req); 2027 2028 /* 2029 * If err is 0, we'd either done aio_complete() ourselves or have 2030 * arranged for that to be done asynchronously. Anything non-zero 2031 * means that we need to destroy req ourselves. 2032 */ 2033 if (unlikely(err)) { 2034 iocb_destroy(req); 2035 put_reqs_available(ctx, 1); 2036 } 2037 return err; 2038 } 2039 2040 /* sys_io_submit: 2041 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2042 * the number of iocbs queued. May return -EINVAL if the aio_context 2043 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2044 * *iocbpp[0] is not properly initialized, if the operation specified 2045 * is invalid for the file descriptor in the iocb. May fail with 2046 * -EFAULT if any of the data structures point to invalid data. May 2047 * fail with -EBADF if the file descriptor specified in the first 2048 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2049 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2050 * fail with -ENOSYS if not implemented. 2051 */ 2052 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2053 struct iocb __user * __user *, iocbpp) 2054 { 2055 struct kioctx *ctx; 2056 long ret = 0; 2057 int i = 0; 2058 struct blk_plug plug; 2059 2060 if (unlikely(nr < 0)) 2061 return -EINVAL; 2062 2063 ctx = lookup_ioctx(ctx_id); 2064 if (unlikely(!ctx)) { 2065 pr_debug("EINVAL: invalid context id\n"); 2066 return -EINVAL; 2067 } 2068 2069 if (nr > ctx->nr_events) 2070 nr = ctx->nr_events; 2071 2072 if (nr > AIO_PLUG_THRESHOLD) 2073 blk_start_plug(&plug); 2074 for (i = 0; i < nr; i++) { 2075 struct iocb __user *user_iocb; 2076 2077 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2078 ret = -EFAULT; 2079 break; 2080 } 2081 2082 ret = io_submit_one(ctx, user_iocb, false); 2083 if (ret) 2084 break; 2085 } 2086 if (nr > AIO_PLUG_THRESHOLD) 2087 blk_finish_plug(&plug); 2088 2089 percpu_ref_put(&ctx->users); 2090 return i ? i : ret; 2091 } 2092 2093 #ifdef CONFIG_COMPAT 2094 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2095 int, nr, compat_uptr_t __user *, iocbpp) 2096 { 2097 struct kioctx *ctx; 2098 long ret = 0; 2099 int i = 0; 2100 struct blk_plug plug; 2101 2102 if (unlikely(nr < 0)) 2103 return -EINVAL; 2104 2105 ctx = lookup_ioctx(ctx_id); 2106 if (unlikely(!ctx)) { 2107 pr_debug("EINVAL: invalid context id\n"); 2108 return -EINVAL; 2109 } 2110 2111 if (nr > ctx->nr_events) 2112 nr = ctx->nr_events; 2113 2114 if (nr > AIO_PLUG_THRESHOLD) 2115 blk_start_plug(&plug); 2116 for (i = 0; i < nr; i++) { 2117 compat_uptr_t user_iocb; 2118 2119 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2120 ret = -EFAULT; 2121 break; 2122 } 2123 2124 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2125 if (ret) 2126 break; 2127 } 2128 if (nr > AIO_PLUG_THRESHOLD) 2129 blk_finish_plug(&plug); 2130 2131 percpu_ref_put(&ctx->users); 2132 return i ? i : ret; 2133 } 2134 #endif 2135 2136 /* sys_io_cancel: 2137 * Attempts to cancel an iocb previously passed to io_submit. If 2138 * the operation is successfully cancelled, the resulting event is 2139 * copied into the memory pointed to by result without being placed 2140 * into the completion queue and 0 is returned. May fail with 2141 * -EFAULT if any of the data structures pointed to are invalid. 2142 * May fail with -EINVAL if aio_context specified by ctx_id is 2143 * invalid. May fail with -EAGAIN if the iocb specified was not 2144 * cancelled. Will fail with -ENOSYS if not implemented. 2145 */ 2146 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2147 struct io_event __user *, result) 2148 { 2149 struct kioctx *ctx; 2150 struct aio_kiocb *kiocb; 2151 int ret = -EINVAL; 2152 u32 key; 2153 u64 obj = (u64)(unsigned long)iocb; 2154 2155 if (unlikely(get_user(key, &iocb->aio_key))) 2156 return -EFAULT; 2157 if (unlikely(key != KIOCB_KEY)) 2158 return -EINVAL; 2159 2160 ctx = lookup_ioctx(ctx_id); 2161 if (unlikely(!ctx)) 2162 return -EINVAL; 2163 2164 spin_lock_irq(&ctx->ctx_lock); 2165 /* TODO: use a hash or array, this sucks. */ 2166 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2167 if (kiocb->ki_res.obj == obj) { 2168 ret = kiocb->ki_cancel(&kiocb->rw); 2169 list_del_init(&kiocb->ki_list); 2170 break; 2171 } 2172 } 2173 spin_unlock_irq(&ctx->ctx_lock); 2174 2175 if (!ret) { 2176 /* 2177 * The result argument is no longer used - the io_event is 2178 * always delivered via the ring buffer. -EINPROGRESS indicates 2179 * cancellation is progress: 2180 */ 2181 ret = -EINPROGRESS; 2182 } 2183 2184 percpu_ref_put(&ctx->users); 2185 2186 return ret; 2187 } 2188 2189 static long do_io_getevents(aio_context_t ctx_id, 2190 long min_nr, 2191 long nr, 2192 struct io_event __user *events, 2193 struct timespec64 *ts) 2194 { 2195 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2196 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2197 long ret = -EINVAL; 2198 2199 if (likely(ioctx)) { 2200 if (likely(min_nr <= nr && min_nr >= 0)) 2201 ret = read_events(ioctx, min_nr, nr, events, until); 2202 percpu_ref_put(&ioctx->users); 2203 } 2204 2205 return ret; 2206 } 2207 2208 /* io_getevents: 2209 * Attempts to read at least min_nr events and up to nr events from 2210 * the completion queue for the aio_context specified by ctx_id. If 2211 * it succeeds, the number of read events is returned. May fail with 2212 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2213 * out of range, if timeout is out of range. May fail with -EFAULT 2214 * if any of the memory specified is invalid. May return 0 or 2215 * < min_nr if the timeout specified by timeout has elapsed 2216 * before sufficient events are available, where timeout == NULL 2217 * specifies an infinite timeout. Note that the timeout pointed to by 2218 * timeout is relative. Will fail with -ENOSYS if not implemented. 2219 */ 2220 #ifdef CONFIG_64BIT 2221 2222 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2223 long, min_nr, 2224 long, nr, 2225 struct io_event __user *, events, 2226 struct __kernel_timespec __user *, timeout) 2227 { 2228 struct timespec64 ts; 2229 int ret; 2230 2231 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2232 return -EFAULT; 2233 2234 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2235 if (!ret && signal_pending(current)) 2236 ret = -EINTR; 2237 return ret; 2238 } 2239 2240 #endif 2241 2242 struct __aio_sigset { 2243 const sigset_t __user *sigmask; 2244 size_t sigsetsize; 2245 }; 2246 2247 SYSCALL_DEFINE6(io_pgetevents, 2248 aio_context_t, ctx_id, 2249 long, min_nr, 2250 long, nr, 2251 struct io_event __user *, events, 2252 struct __kernel_timespec __user *, timeout, 2253 const struct __aio_sigset __user *, usig) 2254 { 2255 struct __aio_sigset ksig = { NULL, }; 2256 struct timespec64 ts; 2257 bool interrupted; 2258 int ret; 2259 2260 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2261 return -EFAULT; 2262 2263 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2264 return -EFAULT; 2265 2266 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2267 if (ret) 2268 return ret; 2269 2270 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2271 2272 interrupted = signal_pending(current); 2273 restore_saved_sigmask_unless(interrupted); 2274 if (interrupted && !ret) 2275 ret = -ERESTARTNOHAND; 2276 2277 return ret; 2278 } 2279 2280 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2281 2282 SYSCALL_DEFINE6(io_pgetevents_time32, 2283 aio_context_t, ctx_id, 2284 long, min_nr, 2285 long, nr, 2286 struct io_event __user *, events, 2287 struct old_timespec32 __user *, timeout, 2288 const struct __aio_sigset __user *, usig) 2289 { 2290 struct __aio_sigset ksig = { NULL, }; 2291 struct timespec64 ts; 2292 bool interrupted; 2293 int ret; 2294 2295 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2296 return -EFAULT; 2297 2298 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2299 return -EFAULT; 2300 2301 2302 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2303 if (ret) 2304 return ret; 2305 2306 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2307 2308 interrupted = signal_pending(current); 2309 restore_saved_sigmask_unless(interrupted); 2310 if (interrupted && !ret) 2311 ret = -ERESTARTNOHAND; 2312 2313 return ret; 2314 } 2315 2316 #endif 2317 2318 #if defined(CONFIG_COMPAT_32BIT_TIME) 2319 2320 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2321 __s32, min_nr, 2322 __s32, nr, 2323 struct io_event __user *, events, 2324 struct old_timespec32 __user *, timeout) 2325 { 2326 struct timespec64 t; 2327 int ret; 2328 2329 if (timeout && get_old_timespec32(&t, timeout)) 2330 return -EFAULT; 2331 2332 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2333 if (!ret && signal_pending(current)) 2334 ret = -EINTR; 2335 return ret; 2336 } 2337 2338 #endif 2339 2340 #ifdef CONFIG_COMPAT 2341 2342 struct __compat_aio_sigset { 2343 compat_uptr_t sigmask; 2344 compat_size_t sigsetsize; 2345 }; 2346 2347 #if defined(CONFIG_COMPAT_32BIT_TIME) 2348 2349 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2350 compat_aio_context_t, ctx_id, 2351 compat_long_t, min_nr, 2352 compat_long_t, nr, 2353 struct io_event __user *, events, 2354 struct old_timespec32 __user *, timeout, 2355 const struct __compat_aio_sigset __user *, usig) 2356 { 2357 struct __compat_aio_sigset ksig = { 0, }; 2358 struct timespec64 t; 2359 bool interrupted; 2360 int ret; 2361 2362 if (timeout && get_old_timespec32(&t, timeout)) 2363 return -EFAULT; 2364 2365 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2366 return -EFAULT; 2367 2368 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2369 if (ret) 2370 return ret; 2371 2372 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2373 2374 interrupted = signal_pending(current); 2375 restore_saved_sigmask_unless(interrupted); 2376 if (interrupted && !ret) 2377 ret = -ERESTARTNOHAND; 2378 2379 return ret; 2380 } 2381 2382 #endif 2383 2384 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2385 compat_aio_context_t, ctx_id, 2386 compat_long_t, min_nr, 2387 compat_long_t, nr, 2388 struct io_event __user *, events, 2389 struct __kernel_timespec __user *, timeout, 2390 const struct __compat_aio_sigset __user *, usig) 2391 { 2392 struct __compat_aio_sigset ksig = { 0, }; 2393 struct timespec64 t; 2394 bool interrupted; 2395 int ret; 2396 2397 if (timeout && get_timespec64(&t, timeout)) 2398 return -EFAULT; 2399 2400 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2401 return -EFAULT; 2402 2403 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2404 if (ret) 2405 return ret; 2406 2407 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2408 2409 interrupted = signal_pending(current); 2410 restore_saved_sigmask_unless(interrupted); 2411 if (interrupted && !ret) 2412 ret = -ERESTARTNOHAND; 2413 2414 return ret; 2415 } 2416 #endif 2417